2016年广东省3+证书高职高考数学试题(卷)(真题)和答案
广东高职高考数学试卷
篇一:20XX年广东省3+证书高职高考数学试卷(真题)和答案20XX年广东省高等职业院校招收中等职业学校毕业生考试数学班级学号姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。在每小题给出的四个选项中,只有一项是符合题目要求的。)1.设集合M???2,0,1?,N???1,0,2?,则M N=(). A.?0? B. ?1?C. ?0,1,2?D.??1,0,1,2? 2.函数f(x)? (). A. ???,1? B. ??1,???C. ??1,1?D. (?1,1) 3.若向量a?(2sin?,2cos?),则a?(). A. 8 B. 4 C. 2 D. 1 4.下列等式正确的是() . A. lg7?lg3?1 B. lg?C. lg37? 73 lg7 lg3 lg3 D. lg37?7lg3 lg7 5.设向量a??4,5?,b??1,0?,c??2,x?,且满足a?bc,则x? ( ). A. ?2B.?C. 12 1 D. 2 2 6.下列抛物线中,其方程形式为y2?2px(p?0)的是( ).A. B. C. D. 7.下列函数单调递减的是(). x 11?A.y?x B. y?2xC. y??D. y?x2 ??2?2? 8.函数f(x)?4sinxcosx(x?R)的最大值是任意实数(). A. 1 B. 2C. 4 D. 8 9.已知角?的顶点为坐标原点,始边为x轴正半轴,若P?4,3?是角?终边上的一点,则tan??(). 3443 B. C.D.5534 x?1 ?0”的( ). 10. “?x?1??x?2??0”是“x?2 A. A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分非必要条件(1,2)在?ABC中,若直线l过点,在y轴上的截距为,则l的方程为11.在图1所示的平行四边形ABCD中,下列等式子不正确的是(). A. AC?AB?AD B. AC?AD?DC C. AC?BA?BC D. AC?BC?BAn,则a5? (). n?1 1451A. B. C.D. 425630 12.已知数列?an?的前n项和Sn? 13.在样本x1,x2,x3,x4,x5若x1,x2,x3的均值为80,x4,x5均值为90,则x1,x2,x3,x4,x5均值( ). A. 80B. 84 C. 85 D.90 14.今年第一季度在某妇幼医院出生的男、女婴人数统计表(单位:人)如下:则今年第一季度该医院男婴的出生频率是(). A. 44405964 B. C.D. 123123123123 15.若圆x2?y2?2x?4y?3?2k?k2与直线2x?y?5?0相切,则k?(). A.3或?1 B. ?3或1C. 2或?1D. ?2或1二、填空题:(本大题共5个小题,每小题5分,满分25分。) 16.已知等比数列?an?,满足an?0?n?N*?且a5a7?9,则a6?23,4,5,,67七个数中任取一个数,则这个数是偶数的概率是17.在1,,18.已知f(x)是偶函数,且x?0时f(x)?3x,则f(?2)? . 19.若函数f(x)??x2?2x?k?x?R?的最大值为1,则k?20.已知点A?1,3?和点B?3,1??,则线段AB的垂直平分线方程是三、解答题:(本大题共4小题,满分50分。解答应写出文字说明、证明过程或演算步骤。)21.(本小题满分12分)?ADE将10米长的铁丝做成一个如图2所示的五边形框架ABCDE,要求连接AD后,为等边三角形,四边形ABCD为正方形.(1)求边BC的长;(2)求框架ABCDE围成的图形的面积.(注:铁丝的粗细忽略不计)22.(本小题满分12分)在?ABC中,角A,B,C对应的边分别为a,b,c,且A?B?(1)求sinAcosB?cosAsinB的值;(2)若a?1,b?2求c的值.,,? 3 .23.(本小题满分12分)已知点F1和点F2是椭圆E的两个焦点,且点A?0,6?在椭圆E上.(1)求椭圆E的方程; (2)设P是椭圆E上的一点,若PF2?4,求以线段PF1为直径的圆的面积. 24.(本小题满分14分)已知数列?an?满足an?1?2?an ?n?N?,且a * 1 ?1,(1)求数列?an?的通项公式及?an?的前n项和Sn;(2)设bn?2a,求数列?bn?的前n项和Tn;n(3)证明:TnTn?2* ?1(n?N). 2 Tn?1篇二:20XX年广东省3+证书高职高考数学试卷20XX年广东省高等职业院校招收中等职业学校毕业生考试只有一项是符合题目要求的。)1.设集合A??2,3,a?,B??1,4?,且A?B??4?,则a? A.1 B.2C.3D. 4 2.函数y?2x?3的定义域是(). 3??3??A. ???,??? B. ??,???C. ???,??D. ?0,??? 2??2??数学试卷一、选择题:(本大题共15小题,每小题5分,满分75分。在每小题给出的四个选项中,3.若a,b为实数,则b?3是a(b?3)?0的A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分必要条件4.不等式x2?5x?6?0的解集是A.?x?2?x?3? B.?x?1?x?6? C.?x?6?x?1? D.?xx??1或x?6? 5.下列函数在其定义域内单调递增的是1x3x A.y?x B.y?()C. y?x D. y??log3x 322 6.函数y?cos(???5???x)在区间?,?上的最大值是2?36? 12A. B.C. D. 1 222 ??7.设向量a?(?3,1),b?(0,5)a?b? A. 1 B. 3C. 4 D. 5 8.在等比数列?an?中,已知a3?7,a6?56,则该等比数列的公比是A. 2 B. 3C. 4 D. 8 9.函数y?(sin2x?cos2x)2的中最小正周期是第1页共1页A. ? B. ?C. 2?D. 4? 2 10.已知f(x)为偶函数,且y?f(x)的图像经过点(2,?5),则下列等式恒成立的是A. f(?5)?2 B. f(?5)??2 C. f(?2)?5 D. f(?2)??5 11.抛物线x2?4y的准线方程是A. y??1 B. y?1 C. x??1 D. x?1 12.设三点A(1,2),B(?1,3)和C(x?1,5),若AB与BC共线,则x? A. ?4 B. ?1C. 1 D. 4 13.已知直线l的倾斜角为?,在y轴上的截距为2,则l的方程是4 A. y?x?2?0B. y?x?2?0C. y?x?2?0D. y?x?2?0 2,x,5的均值为3,则该样本的方差是14.若样本数据3,A. 2B. 1.5 C. 2.5 D. 6 15.同时抛三枚硬币,恰有两枚硬币正面朝上的概率是1135A. B. C. D.8488二、填空题:(本大题共5个小题,每小题5分,满分25分。) 16.已知?an?为等差数列,且a4?a8?a10?50,则a2?2a10?17.某高中学校三个年级共有学生2000名,若在全校学生中随机抽取一名学生,抽到高二年级女生的概率为0.19,则高二年级的女生人数为18.在?ABC中,若AB?2,则?(?)? 19.已知sin( .. ?1??)??cos?,则tan?? 62。20.已知直角三角形的顶点A(?4,4),B(?1,7)和C(2,4),则该三角形外接圆的方程是.第2页共2页三、解答题:本大题共4小题,第21、22、23题各12分,第24题14分,满分50分,解答须写出文字说明、证明过程和演算步骤。21、如图所示,在平面直角坐标系xoy中,已知点A(?2,0)和B(8,0),以AB为直径作半圆交y轴于点M,点P为半圆的圆心,以AB为边作正方形ABCD,CD交y轴于点N,连接CM和MP。(1)求点C,P和M的坐标;(2)求四边形BCMP的面积S。22、在中?ABC,已知a?1,b?2,cosC??1 4(1)求?ABC的周长;(2)求sin(A?C)的值。第3页共3页23、已知数列?an?的前n项和Sn满足an?Sn?1(n?N*)。(1)求?an?的通项公式;(2)设bn?log2an(n?N*),求数列?bn?的前n项和Tn. x2724、设椭圆C:2?y2?1的焦点在x轴上,其离心率为8a(1)求椭圆C的方程;(2)求椭圆C上的点到直线l:y?x?4的距离的最小值和最大值。第4页共4页篇三:2015广东省高职高考真题数学卷2015广东省高职高考数学真题数学试题本试卷共24小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题上右上角“条形码粘贴处”. 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需
广东省2016年高考信息卷(三)数学(文史类)试题(PDF版)
广东省 2016 年高考信息卷
三、解答题:本大题共 6 小题,满分 70 分。解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分 12 分) 1 → → 在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且 a>c.已知BA·BC=2,cos B= , 3 b=3. 求:(Ⅰ)a 和 c 的值; (Ⅱ)cos(B-C)的值. 18. (本小题满分 12 分) 如图,棱柱 ABC A1 B1C1 的侧面 BCC1 B1 是菱形, B1C A1 B (Ⅰ)证明:平面 AB1C 平面 A1 BC1 ; (Ⅱ)设 D 是 A1C1 上的点,且 A1 B // 平面 B1CD ,求被平面 B1 DC 分成 左右两部分几何体的体积比.
19. (本小题满分 12 分) 某商品计划每天购进某商品若干件,商品每销售一件该商品可获利润 50 元,若供大于求, 剩余商品全部退回,但每件商品亏损 10 元,若供不应求,则从外部调剂,此时每件调剂商 品可获利润 30 元. (Ⅰ)若商品一天购进商品 10 件,求当天的利润 y(单位:元)关于当天需求量 n(单位: 件 n N )的函数解析式; (Ⅱ)商品记录了 50 天该商品的日需求量 n(单位:件) ,整理得下表:
r1 4, r2 3 .则两截面间的距离为________.
15. 已知双曲线
x2 y 2 1(a 0, b 0) 的两条渐近线与抛物线 y 2 2 px( p 0) 的准线分别 a 2 b2
交于 A, B 两点, O 为坐标原点,若双曲线的离心率为 2, △AOB 的面积为 3 , 则 p =________. 16.为了考察某校各班参加课外书法小组的人数,从全校随机抽取 5 个班级,把每个班级 参加该小组的人数作为样本数据,已知样本平均数为 7,样本方差为 4,且样本数据 互不相同,则样本数据中的最大值为________.
2016高考全国3数学试卷及解析
2016年普通高等学校招生全国统一考试(III)一.选择题(共12小题)1.设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i3.已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.6.已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b7.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.68.在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.﹣B.C.﹣ D.9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.8110.在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB. C.6πD.11.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.12.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个二.填空题(共4小题)13.若x,y满足约束条件,则z=x+y的最大值为.14.函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.16.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.三.解答题(共7小题)17.已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.18.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.20.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.23.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2018年04月22日fago的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),∵T=(0,+∞),∴S∩T=(0,2]∪[3,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.6.已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.7.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.8.在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.﹣B.C.﹣ D.【分析】作出图形,令∠DAC=θ,依题意,可求得c osθ===,sinθ=,利用两角和的余弦即可求得答案.【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,∵在△ABC中,B=,BC边上的高AD=h=BC=a,∴BD=AD=a,CD=a,在Rt△ADC中,cosθ===,故sinθ=,∴cosA=cos(+θ)=cos cosθ﹣sin sinθ=×﹣×=﹣.故选:A.【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA 是关键,也是亮点,属于中档题.9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90 D.81【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.10.在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB. C.6πD.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.11.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.12.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故选:C.【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.二.填空题(共4小题)13.若x,y满足约束条件,则z=x+y的最大值为.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.14.函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是2x+y+1=0.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.三.解答题(共7小题)17.已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.18.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨.【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD 内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.20.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S=|FN||y1﹣y2|,△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++>1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+co sθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.23.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。
高职数学试题试卷及答案
高职数学试题试卷及答案一、选择题(每题2分,共10分)1. 下列哪个数是自然数?A. -3B. 0C. 1.5D. π2. 函数f(x) = 2x^2 + 3x - 5的图像与x轴的交点个数是:A. 0B. 1C. 2D. 33. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^24. 已知集合A = {1, 2, 3},B = {2, 3, 4},A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 等差数列的第5项是15,第1项是5,求公差d:A. 2B. 3C. 4D. 5二、填空题(每题2分,共10分)6. 若a + b = 10,a - b = 4,则a = __________。
7. 将分数\(\frac{3}{4}\)化为最简分数是 __________。
8. 一个直角三角形的两条直角边分别为3和4,其斜边长为__________。
9. 函数y = log_2(x)的定义域是 __________。
10. 一个圆的半径为5,其周长为 __________。
三、简答题(每题10分,共20分)11. 证明:若a > b > 0,则a^3 > b^3。
12. 解不等式:2x - 5 > 3x + 1。
四、计算题(每题15分,共30分)13. 计算下列定积分:\(\int_{0}^{1} (2x + 1)dx\)。
14. 求函数f(x) = 3x^2 - 2x + 1的极值。
五、解答题(每题15分,共30分)15. 解方程组:\[\begin{cases}x + y = 4 \\2x - y = 2\end{cases}\]16. 已知数列{an}的通项公式为an = 2n - 1,求前n项和Sn。
六、论述题(每题15分,共15分)17. 论述函数的连续性与可导性之间的关系。
答案:一、选择题1. B2. C3. B4. B5. B二、填空题6. 77. \(\frac{3}{4}\)8. 59. \((0, +\infty)\)10. \(10\pi\)三、简答题11. 证明略。
2016年广东省3+证书高职高考数学试卷(真题)和标准答案
2016年广东省高等职业院校招收中等职业学校毕业生考试数 学班级 __________学号 ___________ 姓名 ______________本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)题号12345678910 11 12131415答 案1.若集合 A*2,3,a?,B ={1,4:,且 ApIBh©,则( ).A. 1B. 2C. 3D. 42.函数f (x )二的定义域是3. 设a,b 为实数,则 b=3”是 a (b-3)=0 ”的 ().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分不必要条件4. 不等式x 2-5x-6曲的解集是 ().A. {x —2 兰x 兰3}B.{x —1 兰x$6}C. {x-6Wx^1}D. x 兰 T 或x 臭 6〉5. 下列函数在其定义域内单调递增的是 A2B 『1 ¥C 3xA. y = xB. yC. y x13 丿2x6.函数y = cos( x)在区间一,匚 上的最大值是A. (」:,::)B. D. 0,-( ).D. y —log s x( ).3C.2 L3 6」A. 1B. —C.乜D. 12 2 27. 设向量 2=(—3,1), 匸(0,5),贝S a-b = ().A. 1B. 3C. 4D. 58. 在等比数列GJ 中,已知a^7 , a 6 =56,贝卩该等比数列的公比是( ). A. 2B. 3C. 4D. 89. 函数y=(sin2x-cos2xj 的最小正周期是 ().A.B.二C. 2D. 4 二210. 已知f(x)为偶函数,且y = f(x)的图像经过点2,-5,则下列等式恒成立的是14. 若样本数据3, 2,x,5的均值为3.则该样本的方差是 ().A. 1B. 1.5C. 2. 5D. 615.同时抛三枚硬币,恰有两枚硬币正面朝上的概率是 ().A. 1B.丄C. -D.-8488A. f(-5)=2B. f (-5)—211. 抛物线x 2=4y 的准线方程是 A. y--1B. y=1( ).C. f(-2)=5D. f(-2)=「5( ).C. x - -1D. x=1若AB 与BC 共线, 则 x= ( ).A. -4B. -1C. 1D. 413. 已知直线1的倾斜角为上, 4在y 轴上的截距为2, 则l 的方程是()A. y x -2 = 0B. y x 2 = 0C. y -x -2 = 0D. y -x 2 = 012. 设三点 A 1,2 , B -1,3 和 C x-1,5,二、填空题:(本大题共5个小题,每小题5分,满分25分。
2016 年广东高职高考数学卷(含答案解析版)
( ) 23.(2016 广东高职高考 T23)已知数列{ an } 的前 n 项和 Sn 满足 an + Sn = 1 n ∈ Ν∗ .
(1)求{ an } 的通项公式;
( ) (2= )求 bn log2 an n ∈ Ν∗ ,求数列{ bn } 的前 n 项和Tn . ( ) ( ) 答案:(1)因为 an + Sn = 1 n ∈ Ν∗ ,所以 an+1 + Sn+1 = 1 n ∈ Ν∗ .
( ).
A. y = x2
B.
y
=
1 3
x
C.
y=
3x 2x
D. y = − log3 x
答案: C
6. (2016 广东高职高考 T6)函= 数 y
cos(π 2
−
x)
在区间
π 3
,
5π 6
上的最大值是
( ).
A. 1 B. 2
2
2
C. 3 D. 1 2
答案: D 7. (2016 广东高职高考 T7)设向量 a = (−3,1) , b = (0,5) ,则 a − b =
.
答案: 380
18.
(2016
广东高职高考
T18)在
∆ABC
中,若
AB
=
2
,则
AB (CA
−
CB)
=
.
答案: −4
19. (2016 广东高职高考 T19)已知 sin(π −α ) =− 1 cosα ,则 tana =
.
6
2
答案: 2 3 3
20. (2016 广东高职高考 T20)已知直角三角形的顶点 A(−4, 4) , B (−1, 7) 和 C (2, 4) ,则该三角形
广东省证书高职高考数学试卷和答案
广东省证书高职高考数学试卷和答案2017年广东省高等职业院校招收中等职业学校毕业生考试数学班级学号姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.2. 若集合{}0,1,2,3,4=M ,{}3,4,5=N ,则下列结论正确的是 ( ).A.?M NB. ?N MC. {}3,4=I M ND. {}0,1,2,5=U M N2. 函数()=f x 的定义域是 ( ).A. (,)-∞+∞B. 3,2-+∞C. 3,2?-∞- ??D. ()0,+∞3. 设向量(,4)=r a x ,(2,3)=-rb ,若2?=r r a b 则 =x ( ).A. 5-B. 2-C. 2D. 74. 样本5,4,6,7,3的平均数和标准差分别为 ( ).A. 5和2B. 5C. 6和3D. 6不等式2560x x --≤的解集是 ( ).A. {}23x x -≤≤B. {}16x x -≤≤C. {}61x x -≤≤D. {}16x x x ≤-≥或5. 设()f x 是定义在上的奇函数,已知当0≥x 时,23()4=-f x x x ,则(1)-=f ().下列函数在其定义域内单调递增的是 ( ) .A. 5-B. 3-C. 3D. 56.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为34,55??-P ,则下列等式正确的是 ( ).A. 3sin 5θ= B. 4cos 5θ=- C. 4tan 3θ=- D. 3tan 4θ=-7. “4>x ”,是“(1)(4)0-->x x ”的 ( ).A. 必要非充分条件B. 充分非必要条件C. 充分必要条件D. 非充分非必要条件8. 下列运算不正确的是( ) .A. 22log 10log 51-=B. 222log 10log 5log 15+=C. 021=D. 108224÷=9. 函数()cos3cos sin 3sin =-f x x x x x 的最小正周期为 ( ). A. 2 πB. 23πC. πD. 2π10. 抛物线28=-y x 的焦点坐标是 ( ).A. (2,0)-B. (2,0)C. (0,2)-D. (0,2)11. 已知双曲线22216-=x y a 的离心率为2,则=a ( ).A.6 B. 3 C. D.12. 从某班的21名男生和20名女生中,任意选派一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有 ( ).A. 41种B. 420种C. 520种D. 820种13. 已知数列{}n a 为等差数列,且12=a ,公差2=d ,若12,,k aa a 成等比数列,则=k ( ).A. 4B. 6C. 8D. 1014. 设直线l 经过圆22220+++=x y x y 的圆心,且在y 轴上的截距为1,则直线l 的斜率为 ( ).A. 2B. 2-C. 12D. 12-15. 已知函数=x y e 的图象与单调递减函数()=y f x ,()∈x R 的图象相交于点(),a b ,给出下列四个结论:则(1)ln =a b (2)ln =b a (3)()=f a b (4)当>x a 时,()<="" e="" f="" p="" x="" 。
2016年广东高考数学试题及答案
2016年广东高考数学试题及答案【篇一:2016年广东高考(全国i卷)文数含答案】t>试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合a?{1,3,5,7},b?{x|2?x?5},则a?b?(a){1,3}(b){3,5}(c){5,7}(d){1,7}(2)设(1?2i)(a?i)的实部与虚部相等,其中a为实数,则a=(a)-3(b)-2(c)2(d)3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是1152(a)3(b)2(c)(d)63(4)△abc的内角a、b、c的对边分别为a、b、c.已知a?c?2,cosa?(abc)2(d)31(5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为41123(a)(b)(c)(d)3234(6)若将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的函数为(a)y=2sin(2x+) (b)y=2sin(2x+) (c)y=2sin(2x–) (d)y=2sin(2x–)43432,则b= 33,则它的表面积是(a)logaclogbc(b)logcalogcb(c)acbc(d)cacb (9)函数y=2x2–e|x|在[–2,2]的图像大致为(a)(b)(c)(d)(10)执行右面的程序框图,如果输入的x?0,y?1,n=1,则输出x,y 的值满足(a)y?2x(b)y?3x (c)y?4x (d)y?5x(11)平面?过正文体abcd—a1b1c1d1的顶点a?//平面cb1d1,??平面abcd?m,??平面abb1a1?n,则m,n所成角的正弦值为(a1(b)(c(d)32(12)若函数f(x)?x-sin2x?asinx在???,???单调递增,则a的取值范围是(a)??1,1?(b)??1,?(c)??,?(d)??1,??333313??1???11?????1??第ii卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分,则圆c的面积为。
广东省高考数学试卷真题带答案
2016年广东省高考数学试卷(文)真题带答案(文档版)(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--绝密★启封并使用完毕前试题类型:B 2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A=,{|25}B x x=≤≤,则A B =(A){1,3}(B){3,5}(C){5,7}(D){1,7}(2)设(12i)(i)a++的实部与虚部相等,其中a为实数,则a=(A)-3(B)-2(C)2(D)3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)13(B)12(C)13(D)56(4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,2c=,2cos3A=,则b=(ABC)2(D)3(5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为(A)13(B)12(C)23(D)34(6)若将函数y=2sin (2x+π6)的图像向右平移14个周期后,所得图像对应的函数为(A)y=2sin(2x+π4) (B)y=2sin(2x+π3) (C)y=2sin(2x–π4) (D)y=2sin(2x–π3 )(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A)17π (B)18π (C)20π (D)28π (8)若a>b>0,0<c<1,则(A)log a c<log b c(B)log c a<log c b(C)a c<b c(D)c a>c b (9)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为(A )3(B )22(C )3(D )13 (12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦ 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =._____________(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=.____________(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为______。
高职数学试题试卷及答案
高职数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是微分方程 \( y' = 2y \) 的解?A. \( y = e^{2x} \)B. \( y = e^{-2x} \)C. \( y = e^{x} \)D. \( y = e^{-x} \)答案:A4. 求定积分 \(\int_{0}^{1} x^2 dx\) 的值。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A5. 矩阵 \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\) 的行列式是多少?A. 5B. -5C. 7D. -7答案:B6. 以下哪个选项是函数 \( f(x) = x^2 - 4x + 4 \) 的极值点?A. \( x = 0 \)B. \( x = 2 \)C. \( x = 4 \)D. \( x = -2 \)答案:B7. 计算二重积分 \(\iint_{D} x^2 + y^2 dA\),其中 \(D\) 是由\(x^2 + y^2 \leq 1\) 定义的圆盘区域。
A. \(\frac{\pi}{2}\)B. \(\frac{\pi}{4}\)C. \(\pi\)D. \(2\pi\)答案:C8. 以下哪个选项是曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线方程?A. \( y = 3x - 2 \)B. \( y = 3x - 1 \)C. \( y = 3x + 1 \)D. \( y = 3x \)答案:B9. 以下哪个选项是函数 \( f(x) = \ln(x) \) 的反函数?A. \( f^{-1}(x) = e^x \)B. \( f^{-1}(x) = \ln(x) \)C. \( f^{-1}(x) = e^{-x} \)D. \( f^{-1}(x) = \frac{1}{x} \)答案:A10. 以下哪个选项是函数 \( f(x) = \cos(x) \) 的周期?A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)答案:A二、填空题(每题2分,共20分)11. 函数 \( f(x) = \sin(x) \) 的导数是 ________。
广东省3+证书高职高考数学试卷(真题)及参考答案精编版
⼴东省3+证书⾼职⾼考数学试卷(真题)及参考答案精编版2014年⼴东省⾼等职业院校招收中等职业学校毕业⽣考试数学⼀、选择题:(本⼤题共15⼩题,每⼩题5分,满分75分。
在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1.设集合{}2,0,1M =-,{}1,0,2N =-,则=M N ( )A .{}0B .{}1C .{}0,1,2D .{}1,0,1,2-2.函数()f x =的定义域是( ) A .(),1-∞B .()1,-+∞C .[]1,1-D .(1,1)-3.若向量(2sin ,2cos )θθ=a ,则||=a ( ) A .8B .4C .2D .14.下列等式正确的是( ) A .lg7lg31+=B .7lg7lg3lg3=C .3lg3lg 7lg7=D .7lg37lg3=5.设向量()4,5=a ,()1,0=b ,()2,x =a ,且满⾜//+a b c ,则x = ( ) A .2-B .12-C .D .26.下列抛物线中,其⽅程形式为22(0)y px p =>的是( )A .BC .D .7.下列函数单调递减的是( )A .12y x =B .2xy =C .12xy ??=D .2y x =8.函数()4sin cos ()f x x x x =∈R 的最⼤值是( ) A .1B .2C .4D .89.已知⾓θ的顶点为坐标原点,始边为x 轴正半轴,若()4,3P 是⾓θ终边上的⼀点,则tan θ=().A .35B .45C .43D .3410. “()()120x x -+>”是“1x x ->+”的( ). A .充分⾮必要条件 B .必要⾮充分条件 C .充分必要条件D .⾮充分⾮必要条件11.在图1所⽰的平⾏四边形ABCD 中,下列等式⼦不正确的是( )A .AC AB AD =+ B .AC AD DC =+ C .AC BA BC =- D .AC BC BA =-12.已知数列{}n a 的前n 项和1n nS n =+,则5a = ( ) A .142B .130 C .45D .5613.在样本12345x x x x x ,,,,中,若1x ,2x ,3x 的均值为80,4x ,5x 均值为90,则1x ,2x ,3x ,4x ,5x 均值为( )A .80B .84C .85D .9014.今年第⼀季度在某妇幼医院出⽣的男、⼥婴⼈数统计表(单位:⼈)如下:则今年第⼀季度该医院男婴的出⽣频率是()A .44123B .40123C .59123D .6412315.若圆2222432x y x y k k +-+=--与直线250x y ++=相切,则k =() A .3或1-B .3-或1C .2或1-D .2-或1⼆、填空题:(本⼤题共5个⼩题,每⼩题5分,满分25分。
广东高职高考数学试卷
广东高职高考数学试卷篇一:20XX年广东省3+证书高职高考数学试卷(真题)和答案20XX年广东省高等职业院校招收中等职业学校毕业生考试数学班级学号姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设集合M???2,0,1?,N???1,0,2?,则MN=().A.?0?B. ?1?C. ?0,1,2?D.??1,0,1,2? 2. 函数f(x)?(). A. ???,1? B. ??1,???C. ??1,1?D. (?1,1) 3. 若向量a?(2sin?,2cos?),则a?(). A. 8 B. 4 C. 2 D. 1 4. 下列等式正确的是() . A. lg7?lg3?1 B. lg?C.lg37?73lg7lg3lg3D. lg37?7lg3 lg75. 设向量a??4,5?,b??1,0?,c??2,x?,且满足a?bc,则x? ( ).A. ?2B.?C.121D. 2 26.下列抛物线中,其方程形式为y2?2px(p?0)的是( ).A. B. C. D.7.下列函数单调递减的是().x11?A.y?x B. y?2xC. y??D. y?x2 ??2?2?8. 函数f(x)?4sinxcosx(x?R)的最大值是任意实数(). A. 1B. 2C. 4D. 89.已知角?的顶点为坐标原点,始边为x轴正半轴,若P?4,3?是角?终边上的一点,则tan??().3443B. C.D.5534x?1?0”的( ). 10. “?x?1??x?2??0”是“x?2A.A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 非充分非必要条件(1,2)在?ABC中,若直线l过点,在y轴上的截距为,则l的方程为11. 在图1所示的平行四边形ABCD中,下列等式子不正确的是(). A. AC?AB?AD B. AC?AD?DC C. AC?BA?BC D. AC?BC?BAn,则a5? (). n?11451A. B. C.D.42563012. 已知数列?an?的前n项和Sn?13. 在样本x1,x2,x3,x4,x5若x1,x2,x3的均值为80,x4,x5均值为90,则x1,x2,x3,x4,x5 均值( ).A. 80B. 84C. 85D.9014. 今年第一季度在某妇幼医院出生的男、女婴人数统计表(单位:人)如下:则今年第一季度该医院男婴的出生频率是(). A. 44405964B. C.D. 12312312312315. 若圆x2?y2?2x?4y?3?2k?k2与直线2x?y?5?0相切,则k?(). A.3或?1 B. ?3或1C. 2或?1D. ?2或1二、填空题:(本大题共5个小题,每小题5分,满分25分。
历届广东省高职高考数学试题
广东高职高考第一至九章考题精选第一章 集合与逻辑用语1.(05年)设}7,6,5,4,3{=A ,}9,7,5,3,1{=B ,则B A 的元素个数为( )A. 1B. 2C. 3D. 4 2.(06年)已知}2,1,1{-=A ,}02{2=-=x x x B ,则=B A ( )A. ∅B. }2{C. }2,0{D. }2,1,0,1{- 3.(07年)已知集合}3,2,1,0{=A ,}11{<-=x x B ,则=B A ( )A. }1,0{B. }2,1,0{C. }3,2{D. }3,2,1,0{ 4. (08年)设集合{}3,2,1,1-=A ,{}3<=x x B ,则=B A ( )A.)1,1(-B.{}1,1-C.{}2,1,1-D.{}3,2,1,1-5. (09年)设集合=M {}432,,,=N {}452,, ,则=N M ( ) A .{}5432,,,B .{}42,C .{}3D .{}5 6.(10年)设集合=M {}1,1- ,=N {}3,1- ,则=N M ( )A .{}1,1-B .{}3,1-C .{}1-D .{}3,1,1- 7.(11年)已知集合{}2|==x x M ,{}1,3-=N ,则=N M ( )A .∅B .{}1,2,3--C .{}2,1,3-D .{}2,1,2,3-- 8.(12年)设集合{1,3,5}M =,{1,2,5}N =,则=N M ( )A.{1,3,5}B. {1,2,5}C. {1,2,3,5}D. {1,5} 9.(13年)设集合{}1,1-=M ,{}2,1,0=N ,则=N M ( ) A . {}0 B . {}1 C . {}2,1,0 D . {}2,1,0,1-10.(14年)已知集合{}1,0,2-=M ,{}2,0,1-=N ,则=N M ( ) A .{}0 B .{}1,2- C .∅ D .{}2,1,0,1,2--11. (05年)“042>-ac b ”是“方程02=++c bx ax ,0≠a 有实数解”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既非充分又非必要条件 12. (06年)设G 和F 是两个集合,则G 中元素都在F 中是F G =的( )A. 充分条件B. 充要条件C. 必要条件D. 既非充分又非必要条件 13. (08年)R x ∈,“3<x ”是“3<x ”的( )A .充分必要条件 B.充分不必要条件 C.既不必要也不充分条件 D.必要不充分条件 14.(09年)设c b a ,,均为实数,则“b a >”是“c b c a +>+”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件 15.(10年)“2>a 且2>b ”是“4>+b a ”的( )A. 必要非充分条件B. 充分非必要条件C. 充要条件D. 非充分非必要条件 16.(11年)“7=x ”是“7≤x ”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分,也非必要条件 17.(12年)“12x =”是 “1x =”的 ( )A. 充分必要条件B. 充分非必要条件C. 非充分也非必要条件D. 必要非充分条件 18.(13年)在ABC ∆中,“ 30>∠A ”是“21sin >A ”的( ) A. 充分非必要条件 B. 充分必要条件 C. 必要非充分条件 D. 非充分非必要条件 19.(14年)“0)2)(1(>+-x x ”是“021>+-x x ”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 非充分非必要条件第二章 不等式1.(06年)若a ,R b ∈,且b a >,则下列不等式成立的是( )A. 22b a >2B. b a >C. 0)lg(>-b aD. b a )21()21(<2. (08年)若c b a ,,是实数,且,b a >则下列不等式中正确的是( )A. bc ac >B. bc ac <C. 22bc ac >D. 22bc ac ≥ 3.(13年)设b a ,是任意实数,且b a >,则下列式子正确的是( ) A . 22b a > B . 1<abC . 0)lg(>-b aD . b a 22>4.(07年)不等式0432>--x x 的解为___ ____.5.(09年)已知集合=A ⎭⎬⎫⎩⎨⎧≥-+032x x x ,则=A ( )A .(]2,-∞-B .()+∞,3C .[)3,2-D .]3,2[- 19.(09年)不等式)13(log )5(log 22+<-x x 的解是6.(10年)不等式11<-x 的解集是( )A .{}0<x xB .{}20<<x xC . {}2>x xD .{}20><x x x 或 7.(11年)不等式112≥+x 的解集是( ) A .{}11≤<-x x B .{}1≤x x C . {}1->x x D .{}11->≤x x x 或 8. (12年)不等式312x -<的解集是( )A . 113,⎛⎫- ⎪⎝⎭B . 113,⎛⎫⎪⎝⎭C . ()13,-D . ()13,9.(13年)对任意R x ∈,下列式子恒成立的是( )A . 0122>+-x xB . 01>-xC . 012>+xD . 0)1(log 22>+x 10.(13年)不等式0322<--x x 的解集为 . 11.(05年)解不等式:)24(log )34(log 222->-+x x x12.(06年)解不等式:2445≤+-x x13. (08年)解不等式21692<++x x第三章 函数1.(05年)下列四组函数中,)(x f ,)(x g 表示同一个函数的是( )A. x x f =)(,2)(x x g = B. 1)(+=x x f ,11)(2--=x x x gC. 2)(x x f =,4)()(x x g =D. x x f lg 2)(=,2lg )(x x g =2.(10年)设函数⎪⎩⎪⎨⎧≤>=0,20,log )(3x x x x f x ,则[])1(f f ( )A. 0B. 2log 3C. 1D. 23.(13年)设函数⎪⎩⎪⎨⎧>≤+=1,21,1)(2x xx x x f ,则=))2((f f ( )A . 1B . 2C . 3D . 44.(05年)函数13)(+-=x x x f 的定义域为( ) A. )1,(--∞ B. ),1(+∞- C. ),3(+∞ D. ),3[+∞ 5.(06年)函数xx y --=2)1(log 2 的定义域是( )A. )2,(-∞B. )2,1(C. ]2,1(D. ),2(+∞ 6.(08年)函数)10(log 123x x y -+-=的定义域是( )A. )10,(-∞B. )10,21(C. )10,21[D. ),21[+∞7.(10年)函数xx x f -+=21)(的定义域为( )A. )2,(-∞B. ),2(+∞C. ),1()1,(+∞---∞D. ),2()2,(+∞-∞ 8.(11年)函数xx y +-=1)1lg(的定义域是( )A .[]1,1-B .()1,1-C .()1,∞-D .()+∞-,1 9.(12年) 函数lg(1)y x =-的定义域是 ( )A . ()1,+∞B . ()1,-+∞C . ()1,-∞-D . ()1,-∞10.(13年)函数24x y -=的定义域是( ) A . ()2,2- B . []2,2- C . ()2,-∞- D . ()+∞,2 11.(14年)函数xx f -=11)(的定义域是( )A .)1,(-∞B .),1(+∞-C .]1,1[-D .)1,1(-12.(06年)函数242+-=x x y ,]3,0[∈x 的最大值为( )A. 2-B. 1-C. 2D. 3 13.(10年)函数182)(++=x xx f 在区间),0(+∞内的最小值( ) A. 5 B. 7 C. 9 D. 1114.(05年)下列在R 上是增函数的为( )A. x y 2=B. 2x y =C. x y cos =D. x y sin = 15.(05年)设x ax x f sin )1()(2+=,其中a 为常数,则)(x f 是( )A. 既是奇函数又是偶函数B. 奇函数C. 非奇非偶函数D. 偶函数 16.(06年)下列函数中,为偶函数的是( )A. x x f cos )(=,),0[+∞∈xB. x x x f sin )(+=,R x ∈C. x x x f sin )(2+=,R x ∈D. x x x f sin )(⋅=,R x ∈ 17.(07年)下列函数中,在其定义域上为奇函数的是( )A. x x y cos 2sin +=B. x x y 33+=C. x x y -+=22D. x x y cot tan +=18.(09年))内是减函数,,在区间(∞+=0)(x f y 则)3(sin ),4(sin ),6(sin πf c πf b πf a ===的 大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .c b a >> 19.(09年)函数)1lg()(2x x x f +=是( )A .奇函数B .既是奇函数也是偶函数C .偶函数D .既不是奇函数也不是偶函数 20.(10年)若函数)(x f y =满足:对区间[]b a ,上任意两点1x 、2x ,当21x x <时,有)()(21x f x f >,且0)()(<b f a f ,则)(x f y =对区间[]b a ,上的图像只可能是( )x x x x21.(11年)已知函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤>=,31,sin1,log)(21xxxxxxxf,则下列结论中,正确的是()A.)(xf在区间),1(+∞上是增函数 B.)(xf在区间]1,(-∞上是增函数C.1)2(=πf D.1)2(=f22.(12年)下列函数为奇函数的是( )A.2y x=B.2siny x=C.2cosy x=D.2lny x=23.(12年)()f x是定义在()0,+∞上的增函数,则不等式()(23)f x f x>-的解集是. 24.(13年)下列函数为偶函数的是()A. x ey= B. xy lg= C. xy sin= D. xy cos=25.(14年)下列函数在其定义域内单调递减的是()A.xy21= B.xy2= C.xy)21(= D.2xy=26.(14年)已知)(xf是偶函数,且0≥x时,xxf3)(=,则=-)2(f .27.(05年)下列图形中,经过向左及向上平移一个单位后,能与函数1)(2+=xxf图象重叠的图形是()28. (06年)抛物线4412-+-=xxy的对称轴是( )A. 4-=x B. 2-=x C. 2=x D. 4=x29. (06年)直线caxy+=分别与x轴、y轴相交,交点均在正半轴上,则下列图形中与函数caxy+=2图象相符的是()212+x12-30.(07年)已知函数cbxaxy++=2)(Rx∈的图象在x轴上方,且对称轴在y轴左侧,则函数baxy+=的图象大致是()31. (08年)下列区间中,函数34)(2+-=xxxf在其上单调增加的是( )A. (0,∞-] B. ),0[+∞ C.]2,(-∞ D.),2[+∞32. (08年)二次函数cbacbxaxy,,(2++=为常数)的图像如右图所示,则( )A. 0<ac B. 0>ac C. 0=ac D. 0>ab33. (09年)已知函数为实数)bbxxxf(3)(2++=的图像以1=x为对称轴,则)(xf的最小值为()A.1 B.2 C.3 D.434.(14年)若函数kxxxf++-=2)(2)(Rx∈的最大值为1,则=k .35. (05年)设函数)(xf对任意x都有)10()(xfxf-=,且方程0)(=xf有且仅有2个不同的实数根,则这2个根的和为( )A. 0B. 5C. 10D. 1536.(07年)某公司生产一种电子仪器的成本C(单位:万元)与产量x(3500≤≤x,单位:台)的关系式为xC10010000+=,而总收益R(单位:万元)与产量x的关系式为221300xxR-=,(Ⅰ)试求利润L与产量x的关系式;(说明:总收益=成本+利润),(Ⅱ)当产量为多少时,公司所获得的利润最大?最大利润是多少?37.(09年)已知小王的移动电话按月结算话费,月话费y (元)与通话世界t (分钟)的关系可表示为3600360),360(68,68≤≤⎩⎨⎧>-+=t t l a y ,其中1月份的通话时间未460分钟,月话费为86元, (1)求a 的值。
广东省3+证书高职高考数学试卷(真题)和答案学习资料
2015年广东省高等职业院校招收中等职业学校毕业生考试数 学班级 学号 姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设集合{}1,4M =,{}1,3,5N =,则=M N U ( ). A.{}0 B. {}1 C. {}0,1,2 D. {}1,0,1,2-2. 函数()f x = ( ). A. (),1-∞ B. [)1,-+∞ C. (],1-∞ D. (,)-∞+∞3. 不等式2760x x -+>的解集是 ( ). A. ()1,6 B. ()(),16,-∞+∞U C. φ D. (,)-∞+∞4. 设0a >且1a ≠,,x y 为任意实数,则下列算式错误的是 ( ) .A. 01a = B. xyx ya a a +=g C. xx y y a a a-= D. ()22x x a a =5. 在平面直角坐标系中,已知三点()1,2A -,()2,1B -,()0,2C -,则AB BC +=u u u r u u u r( ).A. 1B. 2C. 3D. 46.下列方程的图像为双曲线的是 ( ). A. 220x y -= B. 22x y = C. 22341x y += D. 2222x y -=7.已知函数()f x 是奇函数,且(2)1f =,则[]3(2)f -= ( ).A. 8-B. 1-C. 1D. 88. “01a <<”是“log 2log 3a a >”的 ( ). A. 必要非充分条件 B. 充分非必要条件 C. 充分必要条件 D. 非充分非必要条件9. 若函数()2sin f x x ω=的最小正周期为3π,则ω= ( ). A.13 B. 23C. 1D. 2 10. 当0x >时,下列不等式正确的是 ( ). A. 44x x +≤ B. 44x x +≥ C. 48x x +≤ D. 48x x+≥11. 已知向量(sin ,2)a θ=r ,(1,cos )b θ=r,若a b ⊥r r ,则tan θ= ( ).A. 12- B.12C. 2-D. 2 12. 在各项为正数的等比数列{}n a 中,若1413a a =g ,则3233log log a a += ( ).A. 1-B. 1C. 3-D. 313. 若圆22(1)(1)2x y -++=与直线0x y k +-=相切,则k = ( ).A. 2±B.C. ±D. 4±14.七位顾客对某商品的满意度(满分10分)打出的分数为:8,5,7,6,9,6,8.去掉一个最高分和最低分后,所剩数据的平均值为 ( ). A. 6 B. 7 C. 8 D. 915.甲班和乙班各有两名男羽毛球运动员,从这四人中任意选取两人配对参加双打比赛,则这对运动员来自不同班的概率是 ( ). A.13 B.12 C. 23 D. 43二、填空题:(本大题共5个小题,每小题5分,满分25分。
年广东省3+证书高职高考数学试卷及解析答案(真题)和答案
2015年广东省高等职业院校招收中等职业学校毕业生考试数 学班级 学号 姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案1. 设集合{}1,4M =,{}1,3,5N =,则=MN ( ).A.{}0B. {}1C. {}0,1,2D. {}1,0,1,2-2. 函数()1f x x + ( ). A. (),1-∞ B. [)1,-+∞ C. (],1-∞ D. (,)-∞+∞3. 不等式2760x x -+>的解集是 ( ). A. ()1,6 B. ()(),16,-∞+∞ C. φ D. (,)-∞+∞4. 设0a >且1a ≠,,x y 为任意实数,则下列算式错误的是 ( ) . A. 01a = B. xyx ya a a+= C. xx y y a a a-= D. ()22x x a a =5. 在平面直角坐标系中,已知三点()1,2A -,()2,1B -,()0,2C -,则AB BC +=( ). A. 1 B. 2 C. 3 D. 46.下列方程的图像为双曲线的是 ( ). A. 220x y -= B. 22x y = C. 22341x y += D. 2222x y -=7.已知函数是奇函数,且,则[]3( ).8. “01a <<”是“log 2log 3a a >”的 ( ). A. 必要非充分条件 B. 充分非必要条件 C. 充分必要条件 D. 非充分非必要条件9. 若函数()2sin f x x ω=的最小正周期为3π,则ω= ( ). A.13 B. 23C. 1D. 2 10. 当0x >时,下列不等式正确的是 ( ). A. 44x x+≤ B. 44x x+≥ C. 48x x+≤ D. 48x x+≥11. 已知向量(sin ,2)a θ=,(1,cos )b θ=,若a b ⊥,则tan θ= ( ).A. 12- B.12C. 2-D. 2 12. 在各项为正数的等比数列{}n a 中,若1413a a =,则3233log log a a += ( ).A. 1-B. 1C. 3-D. 313. 若圆22(1)(1)2x y -++=与直线0x y k +-=相切,则k = ( ). A. 2± B. 2± C. 22± D. 4±14.七位顾客对某商品的满意度(满分10分)打出的分数为:8,5,7,6,9,6,8.去掉一个最高分和最低分后,所剩数据的平均值为 ( ). A. 6 B. 7 C. 8 D. 915.甲班和乙班各有两名男羽毛球运动员,从这四人中任意选取两人配对参加双打比赛,则这对运动员来自不同班的概率是 ( ). A.13 B.12 C. 23 D. 43二、填空题:(本大题共5个小题,每小题5分,满分25分。
2016广东省中职高考数学试题(完整资料).doc
【最新整理,下载后即可编辑】2016年广东省普通高校高职考试数学试题一、 选择题(共15小题,每题5分,共75分) 1、(2016)已知集合{}2,3,A a =,{}1,4B =,且{}4A B =,则a =( )A. 1B. 2C. 3D. 4(2016)函数y = )A 、(),-∞+∞B 、3,2⎡⎫-+∞⎪⎢⎣⎭C 、3,2⎛⎤-∞- ⎥⎝⎦D 、()0,+∞ (2016)设,a b 为实数,则 “3b =”是“()30a b -=”的( )A 、充分条件B 、必要条件C 、充分必要条件D 、非充分非必要条件(2016)不等式2560x x --≤的解集是( )A 、{}23x x -≤≤B 、{}16x x -≤≤C 、{}61x x -≤≤D 、{}16x x x ≤-≥或 3、(2016)下列函数在其定义域内单调递增的是( )A 、2y x = B 、13xy ⎛⎫= ⎪⎝⎭C 、32x x y =D 、3log y x =-(2016)函数cos 2y x π⎛⎫=- ⎪⎝⎭在区间5,36ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A 、12B C 、2 D 、1(2016)设向量()()3,1,0,5a b =-=,则a b -=( )A 、1B 、3C 、4D 、5(2016)在等比数列{}n a 中,已知367,56a a ==,则该等比数列的公比是( )A 、2B 、3C 、4D 、 8(2016)函数()2sin 2cos2y x x =-的最小正周期是( )A 、2π B 、π C 、2π D 、4π7、(2016)已知()f x 是偶函数,且()y f x =的图像经过点()2,5-,则下列等式恒成立的是( )A 、()52f -=B 、()52f -=-C 、()25f -=D 、()25f -=- (2016)抛物线24x y =的准线方程是( )A 、1y =-B 、1y =C 、1x =-D 、1x =(2016)设三点()()()1,2,1,3,1,5A B C x --,若AB 与BC 共线,则x =( )A 、4-B 、1-C 、 1D 、 4 (2016)已知直线l 的倾斜角为4π,在y 轴上的截距为2,则l 的方程是( )A 、20y x +-=B 、20y x ++=C 、20y x --=D 、20y x -+=(2016)若样本数据3,2,,5x 的均值为3,则该样本的方差是( )A 、1B 、1.5C 、2.5D 、6(2016)同时抛三枚硬币,恰有两枚硬币正面朝上的概率是( )A 、18B 、14C 、38D 、58填空题 16、(2016)已知{}n a 为等差数列,且481050a a a ++=,则2102a a += ; 17、(2016)某高中学校三个年级共有学生2000名,若在全校学生中随机抽取一名学生,抽到高二年级女生的概率为0.19,则高二年级的女生人数为 ; 18、(2016)在ABC ∆中,若2AB =,则()AB CA CB ⋅-= ; 19、(2016)已知1sin cos 62παα⎛⎫-=-⎪⎝⎭,则tan α=;20、(2016)已知直角三角形的顶点()(4,4),1,7A B --和(2,4)C ,则该三角形外接圆的方程是 ;解答题 21、(2016)如图所示,在平面直角坐标系xOy 中,已知点(2,0)A -和()8,0B ,以AB 为直径作半圆交y 轴于点M ,以点P 为半圆的圆心,以AB 为边作正方形,ABCD CD 交y 轴于点N ,连接CM 和MP . (1)求点,C P 和M 的坐标;(2)求四边形BCMP 的面积S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年广东省高等职业院校招收中等职业学校毕业生考试
数 学
班级 学号 姓名
本试卷共4页,24小题,满分150分,考试用时120分钟
一、选择题:(本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,
只有一项是符合题目要求的。
)
1. 若集合{}2,3,A a =,{}1,4B =,且{}=4A B I ,则a = ( ). A.1 B. 2 C. 3 D. 4
2. 函数()f x = ( ).
A. (,)-∞+∞
B. 3,2
⎡⎫-+∞⎪⎢
⎣⎭
C. 3,2⎛
⎤-∞- ⎥⎝
⎦
D. ()0,+∞ 3. 设,a b 为实数,则 “3b =”是“(3)0a b -=”的 ( ).
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分不必要条件
4. 不等式2560x x --≤的解集是 ( ). A. {}23x x -≤≤ B. {}16x x -≤≤ C. {}61x x -≤≤ D. {}16x x x ≤-≥或
5.
下
列
函
数
在
其
定
义
域
内
单
调
递
增
的
是
( ) .
A. 2
y x = B. 13x
y ⎛⎫
= ⎪⎝⎭
C. 32x x y =
D. 3log y x =-
6.函数cos()2
y x π=-在区间5,
3
6ππ⎡⎤
⎢⎥⎣⎦
上的最大值是 ( ).
A. 12
B.
2 C. 2
D. 1 7. 设向量(3,1)a =-r ,(0,5)b =r ,则a b -=r r
( ).
A. 1
B. 3
C. 4
D. 5
8. 在等比数列{}n a 中,已知37a =,656a =,则该等比数列的公比是 ( ). A. 2 B. 3 C. 4 D. 8
9. 函数()2
sin 2cos2y x x =-的最小正周期是 ( ). A. 2
π B. π C. 2π D. 4π
10. 已知()f x 为偶函数,且()y f x =的图像经过点()2,5-,则下列等式恒成立的是
( ).
A. (5)2f -=
B. (5)2f -=-
C. (2)5f -=
D. (2)5f -=- 11. 抛物线24x y =的准线方程是 ( ). A. 1y =- B. 1y = C. 1x =- D. 1x =
12. 设三点()1,2A ,()1,3B -和()1,5C x -,若AB u u u r
与BC uuu r 共线,则x = ( ).
A. 4-
B. 1-
C. 1
D. 4
13. 已知直线l 的倾斜角为4
π,在y 轴上的截距为2,则l 的方程是 ( ). A. 20y x +-= B. 20y x ++= C. 20y x --= D. 20y x -+=
14.若样本数据3,2,,5x 的均值为3.则该样本的方差是 ( ).
A. 1
B. 1.5
C. 2.5
D. 6
15.同时抛三枚硬币,恰有两枚硬币正面朝上的概率是 ( ).
A. 18
B.14
C. 38
D. 58
二、填空题:(本大题共5个小题,每小题5分,满分25分。
) 16. 已知{}n a 为等差数列,且481050a a a ++=,则2102a a += . 17.某高中学校三个年级共有学生2000名。
若在全校学生中随机抽取一名学生,抽到高二年级女生的概率为0.19,则高二年级的女生人数为 .
18. 在ABC ∆中,若2AB =,则()AB CA CB -=u u u r u u u r u u u r
g
.
19.已知1sin()cos 6
2
π
αα-=-,则tan α= .
20. 已知直角三角形的顶点()4,4A -,()1,7B -和()2,4C ,则该三角形外接圆的方程是 .
三、解答题:(本大题共4小题,第21、22、24题各12分,第23题14分满分50分。
解答应写出文字说明、证明过程或演算步骤.) 21. (本小题满分12分)
如图所示,在平面直角坐标系xOy 中,已知点()2,0A -和()8,0B ,以AB 为直径作半圆交y 轴于点M ,点P 为半圆的圆心,以AB 为边作正方形ABCD , CD 交y 轴于点
N ,连接CM 和MP .
(1)求点C ,P 和M 的坐标; (2)求四边形BCMP 的面积S .
22. (本小题满分12分)
在ABC ∆中,已知1a =,2b =,1
cos 4
C =-. (1)求ABC ∆的周长; (2)求sin()A C +的值.
23.(本小题满分12分)
已知数列{}n a 的前n 项和n S 满足1()n n a S n N *+=∈. (1)求数列{}n a 的通项公式;
(2)设2log n n b a =*()n N ∈,求数列{}n b 的前n 项和n T .
24.(本小题满分14分)
设椭圆2
22:1x C y a
+=的焦点在x (1)求椭圆C 的方程;
(2)求椭圆C 上的点到直线:4l y x =+的距离的最小值和最大值.
参考答案: 一、选择题:
1. D
2. B
3. A
4. B
5. C
6. D
7. D
8. A
9. A 10. D 11. A 12. A
13. C 14. B 15. C 二.填空题:
16.50 17. 380 18. 4- 20. 22(1)(4)9x y ++-= 三、解答题:
21. (1)点的坐标(8,10)C ,(3,0)P 和(0,4)M ,(2)四边形BCMP 的面积50S =
22. (1)求ABC ∆的周长3+; (2)sin()sin A C B +==
23. (1)数列{}n a 的通项公式12n
n a ⎛⎫= ⎪
⎝⎭
*()n N ∈;
(2))221log log 2n
n n b a n
⎛⎫
===- ⎪⎝⎭
Q (1)
2
n n n T +=
=-
24. (1) 椭圆的方程2
218
x y +=;
(2) 椭圆C 上的点到直线:4l y x =+的距离的最小值
2和最大值2
.。