证明函数单调性的方法总结

合集下载

证明单调性的方法总结

证明单调性的方法总结

证明单调性的方法总结
1. 导数法:证明函数单调递增(或递减)时,可以求出其导数,证明导数恒大于(或小于)零。

2. 差值法:如果f(x_2)> f(x_1),则我们可以构造函数g(x) = f(x) - f(x_1),证明g(x_2)> g(x_1)。

3. 归纳法:证明f(x) 在区间[a_n,a_{n+1}] 上单调递增(或递减)时,将整个区间分为n 个子区间,并依次证明这n 个子区间上f(x) 单调递增(或递减)。

4. 对偶法:证明f(x) 在区间[a,b] 上单调递增(或递减)时,可以证明其对偶函数1/f(x) 在区间上单调递减(或递增)。

5. 中值定理法:可以利用中值定理,证明f(x) 在区间上的导数恒大于(或小于)零,从而证明其单调性。

6. 极值法:如果f(x) 在某一点处有极大值或极小值,那么它在该点附近一定是单调的。

可以利用极值的存在,证明f(x) 在该区间上单调递增(或递减)。

总之,证明函数单调性的方法应当具体问题具体分析,选择合适的方法,能够提高证明效率。

函数单调性的判断或证明方法

函数单调性的判断或证明方法

函数单调性的判断或证明方法.(1)定义法。

用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。

例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。

(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得(2)运算性质法.①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)②若.③当函数.④函数二者有相反的单调性。

⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。

(3)图像法.根据函数图像的上升或下降判断函数的单调性。

例3.求函数的单调区间。

解:在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。

高中数学函数单调性的判定和证明方法(详细)

高中数学函数单调性的判定和证明方法(详细)
④定号,判断 的正负符号,当符号不确定时,需进行分类讨论;
⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -


∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。

判断函数单调性的常用方法

判断函数单调性的常用方法

判断函数单调性的常用方法判断函数单调性的常用方法一、定义法设$x_1.x_2$是函数$f(x)$定义域上任意的两个数,且$x_1f(x_2)$,则此函数为减函数。

例如,证明:当$x>0$时,$x>\ln(1+x)$。

f'(x)=\frac{1}{1+x}>0$,所以$f(x)$为严格递增的。

因为$f(x)>\lim\limits_{x\to 0}-\ln(1+x)=-\ln(1+0)=0$,所以$x>\ln(1+x)$。

二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题。

若函数$f(x)。

g(x)$在区间$B$上具有单调性,则在区间$B$上有:⑴$f(x)$与$f(x)+C$($C$为常数)具有相同的单调性;⑵$f(x)$与$c\cdot f(x)$当$c>0$时具有相同的单调性,当$c<0$时具有相反的单调性;⑷当$f(x)。

g(x)$都是增(减)函数,则$f(x)+g(x)$都是增(减)函数;⑸当$f(x)。

g(x)$都是增(减)函数,则$f(x)\cdot g(x)$当两者都恒大于时也是增(减)函数,当两者都恒小于时也是减(增)函数。

三、同增异减法是处理复合函数的单调性问题的常用方法。

对于复合函数$y=f[g(x)]$满足“同增异减”法(应注意内层函数的值域),可令$t=g(x)$,则三个函数$y=f(t)。

t=g(x)。

y=f[g(x)]$中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。

注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;2)互为反函数的两个函数有相同的单调性;3)如果$f(x)$在区间$D$上是增(减)函数,那么$f(x)$在$D$的任一子区间上也是增(减)函数。

设单调函数$y=f(x)$为外层函数,$y=g(x)$为内层函数。

证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.搜集整理,仅供参考学习,请按需要编辑修改。

函数的单调性证明

函数的单调性证明

函数的单调性证明函数的单调性是数学分析中一个重要的概念,它描述了函数的增减关系。

在数学证明中,为了证明一个函数的单调性,我们通常需要使用导数的概念和相关的数学性质。

下面将从定义单调性开始,介绍函数单调性的证明方法和常用的技巧。

一、定义和性质在数学中,对于定义在区间上的函数f(x),我们说它是单调递增的,如果对于区间内的任意两个数a和b,当a小于b时,f(a)小于或等于f(b),即f(a)<=f(b)。

如果不等号取等号即为单调递增严格的定义。

类似地,函数f(x)是单调递减的,当且仅当对于区间内的任意两个数a和b,当a小于b时,f(a)大于或等于f(b),即f(a)>=f(b)。

同样,当不等号取等号时,为单调递减严格的定义。

对于一个单调递增的函数f(x),我们有以下性质:1.若函数在区间[a,b]上单调递增,则其在该区间上任意一点的左极限总是小于或等于右极限,即f(a-)≤f(a+)≤f(b-)≤f(b+);2.若函数在区间[a,b]上单调递增,则其必须在该区间内是有界的;3.若函数在区间[a,b]上单调递增,则其在该区间上是可积的;4.若函数在区间[a,b]上连续,则其在该区间上的函数值区间是连续的。

二、证明方法在证明函数的单调性时,我们常常使用导数的相关性质。

导数可以表示函数的变化率,而单调性对应于导数的正负性。

具体的证明方法主要有以下几种。

1.利用导数的定义证明利用导数的定义f'(x) = lim(h->0)(f(x+h) - f(x))/h来证明函数的单调性。

首先计算导数f'(x),然后判断f'(x)在给定区间内的正负性来推断函数的单调性。

2.利用导数的性质证明利用导数的性质来证明函数的单调性,包括导数大于0表示函数单调递增,导数小于0表示函数单调递减,以及导数恒为0表示函数是常数等。

这种方法通常适用于已知函数的导数形式的情况。

3.利用导数的比较性质证明对于两个函数f(x)和g(x),如果在给定区间内f'(x)>=g'(x),那么我们可以推断f(x)>=g(x),即f(x)单调递增;如果f'(x)<=g'(x),那么我们可以推断f(x)<=g(x),即f(x)单调递减。

高中数学函数单调性的判定和证明方法

高中数学函数单调性的判定和证明方法

函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商: ,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。

作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。

(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.关于函数单调的性质可总结如下几个结论: ①)(x f 与)(x f +C 单调性相同。

函数单调性方法和各种题型

函数单调性方法和各种题型

函数单调性奇偶性方法和各种题型总结一、单调性总结:(一)判断函数单调性的基本方法Ⅰ、定义法:定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。

例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出):在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性Ⅲ、图像法:说明:⑴单调区间是定义域的子集⑵定义x1、x2的任意性⑶代数:自变量与函数值同大或同小→单调增函数自变量与函数相对→单调减函数例3:y=|x2+2x-3|练习:(二)函数单调性的应用Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论:(1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。

(2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。

例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题:1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在[a,b]上的最小值是 ( )2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是( )3、()有函数13+--=x x y存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4-44-0044、](()()的值域为时,函数当1435,02+-=∈x x x f x()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、⎢⎣⎡⎪⎭⎫⎝⎛⎢⎣⎡⎥⎦⎤⎪⎭⎫ ⎝⎛ 5、求函数y=-x-6+ 的值域x -1Ⅱ、利用函数单调性求单调区间1、()________..62是的单调区间函数-+=x x x f2、()的递增区间是函数245x x y --=](][][)[∞+∞∞、、、、、、、、11-2-2--2--D C B A3、函数的增区间是( )。

高中数学函数单调性的判定和证明方法(详细)

高中数学函数单调性的判定和证明方法(详细)

函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x V x ,并是某个区间上任意二 值;X 叱)②作差;或作商:,g ) 丰0;f (叼)③ 变形/⑴叩(巧)向有利于判断差值符号的方向变形;-Si ) 乒o 向有利于判断商的值是否大于 1方向变形;(常用的变形技巧有:1、分解因式,当原函数是 多项式时,作差后进行因式分解; 2、通分,当原函数是 分式函数时,作差后往往进行通分再进行因式分解; 3、配 方,当原函数是 二次函数 时,作差后考虑配方便于判定符号; 4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④ 定号,判断的正负符号,当符号不确定时,需进行分类讨论; ⑤ 下结论,根据函数单调性的定义下结论。

作差法:解:设一1<X 1<X 2,如1 吧则 f (X 1)—f (X 2)= "+1 —冷 *1+1) ■皿(而 +1)-(升硕恐+1)Ui+i )(j+D例1.判断函数ax7+i 在(-1,+ 8 )上的单调性,并证明.—1<X i <X 2,X 1 — X 2<0 , X i+ 1>0 , X 2 + 1>0..•当 a>0 时,f (X 1)-f (X 2)<0 , 即f (X 1)<f (X 2), •••函数y=f (X )在(-1, + 8)上单调递增.当 a<0 时,f (X 1)—f (X 2)>0 , 即f (X 1)>f (X 2), 函数y=f (X )在(—1, + °°)上单调递减.所 W1-—<0所以砰砰 ,所以(心)二玉 -^2-—) 则 七 -因为知fE 泗对,三口所以所以砰砰所以「「一-":-解1、[ /⑴在+8)上为增函数*例2.证明函数*卜扁赌晌向上为减函数。

证明:设。

5也幅”'幻(-皿-石]屯尊\+00)在区间L ' V 」和妃% ,/ (增两端,减中间)/ 31) — J g )=瓦 + —-Xj-—上是增函数;在31—叱)(1-—)因为强而,所以5 〈泗e同理可得在(-咛-齐止为增函现在止为诫函氮作商法:例3.设函数y=f (x)定义在R上,对于任意实数m , n,恒有f (m+n ) =f (m) ?f (n) 且当x> 0 时,0v f (x) v 1(1) 求证:f (0) =1 且当xv 0 时,f (x) > 1(2) 求证:f (x)在R上是减函数.证明:(1) •.,对于任意实数m, n,恒有f (m+n ) =f (m) ?f (n),令m=1 , n=0,可得 f (1) =f (1) ?f (0),..当x> 0 时,0v f (x) v 1, . • f (1)乒0.f (0) =1 .令m=x v 0, n=-x > 0,则 f (m+n ) =f (0) =f (-x) ?f (x) =1 ,f (-x) f (x) =1 ,又.• -x > 0 时,0 V f (-x ) V 1 ,• • f(x)=1f(-x)> 1.(1)设x1 vx2,贝U x1-x2 v 0,根据(1)可知f (x1-x2 ) > 1, f (x2) > 0.. f (x1) =f[ (x1-x2 ) +x2]=f (x1-x2 ) ?f (x2) > f (x2),•••函数f (x)在R上单调递减.(二)、运算性质法.函数表达式单调区间次函数y kx b(k 0)二次函数_ 2 , - y ax bx c(a 0,a,b,c R)反比例函数指数函数对数函数ky -x(k R 且k 0)xy a(a 0,a 1)当k 0时,y在R上是增函数;当k 。

函数的单调性求解技巧

函数的单调性求解技巧

函数的单调性求解技巧函数的单调性是指函数在定义域上的增减性质,也就是函数图像的上升或下降趋势。

在数学中,确定函数的单调性是解决不等式和优化问题的重要步骤。

本文将介绍一些常用的技巧和方法,帮助读者更好地求解函数的单调性。

一、导数法求解函数的单调性最常用的方法就是使用导数。

利用导数可以确定函数的增减性。

具体步骤如下:1.求函数的导数。

设函数为f(x),则求导得到f'(x)。

2.求出f'(x)的零点。

零点即为f(x)的增减区间的分界点。

3.根据f'(x)的正负确定f(x)的单调性。

当f'(x)>0时,f(x)在该区间上单调递增;当f'(x)<0时,f(x)在该区间上单调递减。

例如,求解函数f(x) = x^2 + 3x + 2的单调性:1.求导得到f'(x) = 2x + 3。

2.令f'(x) = 0,解得x = -3/2。

3.当x < -3/2时,f'(x) < 0,函数f(x)在该区间上单调递减;当x > -3/2时,f'(x) > 0,函数f(x)在该区间上单调递增。

二、二阶导数法除了使用一阶导数外,还可以通过二阶导数的正负确定函数的凹凸性,从而进一步确定函数的单调性。

1.求函数的二阶导数。

设函数为f(x),求导得到f''(x)。

2.求出f''(x)的零点。

零点即为f(x)的拐点。

3.根据f''(x)的正负确定f(x)的凹凸性。

当f''(x)>0时,f(x)在该区间上为凹函数,即函数图像上凹;当f''(x)<0时,f(x)在该区间上为凸函数,即函数图像下凸。

4.进一步根据一阶导数f'(x)的正负确定f(x的单调性。

当f''(x)>0且f'(x)>0时,f(x)在该区间上单调递增;当f''(x)>0且f'(x)<0时,f(x)在该区间上单调递减。

判断函数单调性的常见方法

判断函数单调性的常见方法

判断函数单调性的常见方法一、函数单调性的定义:
一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2,
1)、当X1&lt;X2时,都有f(X1)&lt;f(X2),那么就说y=f(x)在区间I上是单
调增函数,I称为函数的单调增区间;
2)、当X1&gt;X2时,都有f(X1)&gt;f(X2),那么就说y=f(x)在区间I上是单
调减函数,I称为函数的单调减区间。

二、常见方法:
Ⅰ、定义法:定义域判断函数单调性的步骤
①取值:
在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1&lt;X2; ②作差(或商)变形:
作差f(X1)-f(X2),并通过因式分解、配方、有理化等方法向有利于
判断差的符号的方向变形;
③定号:
确定差f(X1)-f(X2)的符号;
④判断:
根据定义得出结论。

例:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明解:任取x1、x2?(-∞,+∞),x1&lt;x2,则
f﹙x1﹚-f﹙x2﹚=(x13+x1)- (x23+x2)=(x1-x2)+(x13-x23)。

判断函数单调性的常用方法

判断函数单调性的常用方法

1江北观音桥步行街阳光城16楼A3/A4 判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。

证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。

二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: ⑴ f(x)与f(x)+C (C 为常数)具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性;⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;(2)互为反函数的两个函数有相同的单调性;(3)如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增.2江北观音桥步行街阳光城16楼A3/A4 xy21-(2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减. 例1. 求函数222)(-+=x x x f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。

高中数学函数单调性的判定和证明方法(详细)

高中数学函数单调性的判定和证明方法(详细)

函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。

作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。

(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。

证明函数单调性的方法总结

证明函数单调性的方法总结

证明函数单调性的方法总结
一、定义函数单调性
函数单调性指的是函数在区间内的变化是单调的,也就是说,函数只
有增加或减少的情况,而不会出现先增大后减少或者先减少后又增大的情况。

1、证明函数单调性的方法
(1)一阶导数法
若函数的一阶导数在区间上为正或者为负,则该函数在该区间是单调
递增或者单调递减的。

(2)二阶导数法
若函数的二阶导数在区间上为正或者为负,则该函数在该区间是单调
递增或者单调递减的。

(3)数轴变换法
对于有界函数,可以做数轴变换,以确定该函数是单调递增函数还是
单调递减函数。

(4)极限法
由极限定理可知,当其中一函数在其中一数轴上的极限存在且单调时,该函数在该数轴上是单调的。

(5)拉格朗日法
利用拉格朗日法计算函数的一阶导数,可以判断函数在其中一区间上是单调的还是不单调的。

2、证明函数单调性的几个案例
(1)一阶导数法
案例1:设函数f(x)=x^2-2x+1,若想证明它在(-oo,+oo)上是单调递减的,首先找到它的一阶导数:f'(x)=2x-2,如果对比得出f'(x)在(-oo,+oo)上均为负数,那么函数f(x)就是增减函数。

案例2:设函数f(x)=x^2+2x+1。

函数单调性的证明

函数单调性的证明

函数单调性的证明函数的单调性需抓住单调性定义来证明,这是目前高一阶段唯一的方法。

一、证明方法步骤为:① 在给定区间上任取两个自变量X 1、X 2且X 1<X 2 ② 将f(x 1)与f(x 2)作差或作商(分母不为零)③ 变形(合并同类项、通分、分解因式、配方等) ④ 比较差值(商)与0(1)的大小 ⑤ 下结论,确定函数的单调性。

在做差比较时,我们常将差化为积讨论,常用因式分解(整式)、通分(分式)、有理化(无理式)、配方等手段。

二、常见的类型有两种: (一)已知函数的解析式:例1:证明:函数()1=x-1f x 在x ∈(1,+∞)单调递减例2:证明:函数()3=x +x+1x f x R 在∈时单调递增例3:证明:函数()x [1+f x ∞∈,)时单调递增例4:讨论函数()1=x+1+x-1f x ∞在(,)的单调性,并求最小值例5:求函数()x+2=x-1f x 的单调区间练习:1、证明函数()a=x+a 0xf x ∞(>)单调递增 2、讨论函数()f x 的单调性(二)抽象函数的单调性:抽象函数的单调性关键是抽象函数关系式的运用,同时,要注意选择作差还是作商,这一点可观察题意中()f x 与0比较,应作差;与1比较,应作商。

如下三例:例1:已知函数满足x 、y ∈R 时, 恒成立,且当x >0时,>0.证明:在R 上单调递增.例2:已知函数满足x 、y ∈R 时, 恒成立,且当x >1时,>0.证明:在(0,+∞)上单调递增.例3:已知函数满足x 、y ∈R 时, 恒成立,且当x >1时,>1.若.证明:在(0,+∞)上单调递增.(三)复合函数分析法设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,则[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明函数单调性的方法总结
导读:1、定义法:
利用定义证明函数单调性的一般步骤是:
①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);
③依据差式的符号确定其增减性.
2、导数法:
设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充)
(1)若使得f′(x)=0的x的值只有有限个,
则如果f ′(x)≥0,则f(x)在区间D内为增函数;
如果f′(x) ≤0,则f(x)在区间D内为减函数.
(2)单调性的判断方法:
定义法及导数法、图象法、
复合函数的单调性(同增异减)、
用已知函数的单调性等
(补充)单调性的有关结论
1.若f(x),g(x)均为增(减)函数,
则f(x)+g(x)仍为增(减)函数.
2.若f(x)为增(减)函数,
则-f(x)为减(增)函数,如果同时有f(x)>0,

为减(增)函数,
为增(减)函数
3.互为反函数的两个函数有相同的单调性.
4.y=f[g(x)]是定义在M上的函数,
若f(x)与g(x)的'单调性相同,
则其复合函数f[g(x)]为增函数;
若f(x)、g(x)的单调性相反,
则其复合函数f[g(x)]为减函数.简称”同增异减”
5. 奇函数在关于原点对称的两个区间上的单调性相同;
偶函数在关于原点对称的两个区间上的单调性相反.
函数单调性的应用
(1)求某些函数的值域或最值.
(2)比较函数值或自变量值的大小.
(3)解、证不等式.
(4)求参数的取值范围或值.
(5)作函数图象.
【证明函数单调性的方法总结】
1.函数单调性的说课稿
2.高中数学函数的单调性的教学设计
3.导数与函数的单调性的教学反思
4.高中函数单调性的教学设计
5.《函数的单调性》的说课稿
6.函数单调性教案练习题
7.函数单调性说课课件
8.《函数的单调性》教学设计
上文是关于证明函数单调性的方法总结,感谢您的阅读,希望对您有帮助,谢谢。

相关文档
最新文档