证明函数单调性的方法总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明函数单调性的方法总结

导读:1、定义法:

利用定义证明函数单调性的一般步骤是:

①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);

③依据差式的符号确定其增减性.

2、导数法:

设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充)

(1)若使得f′(x)=0的x的值只有有限个,

则如果f ′(x)≥0,则f(x)在区间D内为增函数;

如果f′(x) ≤0,则f(x)在区间D内为减函数.

(2)单调性的判断方法:

定义法及导数法、图象法、

复合函数的单调性(同增异减)、

用已知函数的单调性等

(补充)单调性的有关结论

1.若f(x),g(x)均为增(减)函数,

则f(x)+g(x)仍为增(减)函数.

2.若f(x)为增(减)函数,

则-f(x)为减(增)函数,如果同时有f(x)>0,

为减(增)函数,

为增(减)函数

3.互为反函数的两个函数有相同的单调性.

4.y=f[g(x)]是定义在M上的函数,

若f(x)与g(x)的'单调性相同,

则其复合函数f[g(x)]为增函数;

若f(x)、g(x)的单调性相反,

则其复合函数f[g(x)]为减函数.简称”同增异减”

5. 奇函数在关于原点对称的两个区间上的单调性相同;

偶函数在关于原点对称的两个区间上的单调性相反.

函数单调性的应用

(1)求某些函数的值域或最值.

(2)比较函数值或自变量值的大小.

(3)解、证不等式.

(4)求参数的取值范围或值.

(5)作函数图象.

【证明函数单调性的方法总结】

1.函数单调性的说课稿

2.高中数学函数的单调性的教学设计

3.导数与函数的单调性的教学反思

4.高中函数单调性的教学设计

5.《函数的单调性》的说课稿

6.函数单调性教案练习题

7.函数单调性说课课件

8.《函数的单调性》教学设计

上文是关于证明函数单调性的方法总结,感谢您的阅读,希望对您有帮助,谢谢

相关文档
最新文档