北师大版七年级数学上册教案《比较线段的长短》

合集下载

新北师大版七年级数学上册《比较线段的长短》教案

新北师大版七年级数学上册《比较线段的长短》教案

《比较线段的长短》教案一、 教学目标1、借助具体情境,了解“两点之间的所有连线中,线段最短”的性质。

2、借助直尺、圆规等工具比较两条线段的长短。

3、会用直尺和圆规画一条线段等于已知线段4、理解线段的中点以及线段的和差的意义,并根据给出的条件求出线段的长。

5、通过小组学习过程,形成相互帮助、共同进步的习惯,进一步培养学生的动手能力、观察能力、合作能力。

二、 教学重点线段长短的两种比较方法;尺规作图;线段中点的概念级表示方法。

三、 教学难点对线段与数之间的认识,线段中点的实际应用。

四、 教具准备铅笔、圆规、直尺(三角板)等一自主学习,提出问题1、复习回顾:什么叫线段?射线和直线?它们之间的联系和区别是什么?2、创设情境情景一:绿地里本没有路,走的人多了… …为什么? 情景二:老师用多媒体出示一张图片,让学生猜测 “从A 到C 的四条道路,哪条最短?”3、发现结论: (1)线段的性质:两点之间的所有连线中,线段最短. 图4-6简述为:两点之间线段最短。

(2)两点之间的距离定义:两点之间线段的长度,叫做这两点之间的距离4、练一练:经过平面上A 、B 两点之间的距离是指( )A 、经过A 、B 两点的直线 B 、射线ABC 、A 、B 两点之间的线段D 、A 、B 两点之间线段的长度。

C BA5、提出问题问题:观察图4-6,比较的是线段和曲线、折线的长短,两条线段之间怎么比较长短?板书课题:2.比较线段的长短二、合作学习,探究问题1、分组讨论:每个人画一条线段,另其他同学比较,讨论方法。

接着另外每人拿出不同的笔(可以看成线段),你又怎么比较它们的长短,互相交流。

2.通过刚才分组讨论,得出两条线段比较长短的方法。

(1)、度量法:用刻度尺分别量出线段AB 和线段CD 的长度,再将长度进行比较。

(2)叠合法:把线段AB 、CD 放在同一直线上比较,步骤有三:① 将线段AB 的端点A 与线段CD 的端点C 重合② 将线段AB 沿着线段CD 的方向落下③ 若端点B 与端点D 重合,则得到线段AB 等于线段CD ,可记做:AB=CD (几何语言)若端点B 落在D 内,则得到线段AB 小于线段CD ,可记做:AB <CD若端点B 落在D 外,则得到线段AB 大于线段CD ,可记做:AB >CD 如图1 A CD 3.“练一练”P 112习题 第1题三、动手操作,解决问题。

《比较线段的长短》教案-北师版数学七年级上册

《比较线段的长短》教案-北师版数学七年级上册

(实际生活经验的小视频引入引发学生的兴趣,根据学生的生活经验东知道中间的路线最短,教师要提出疑问,你能用数学道理来解释吗?这节课我们一起来探究一下,引出下一个问题)二、探究学习如右图,从A地到C地有四条道路,那条路最近?你发现了什么规律?结论:线段的性质两点之间的所有连线中,线段最短。

简述为两点之间线段最短。

两点之间线段的长度叫做两点之间的距离。

学以致用:刚才的视频说明的数学道理你知道了么?请同学回答。

三、合作学习:活动一:请两位学生比身高,让学生说明理由。

教师引入你能比较两条线段的长短吗?动动手,小组合作:各小组拿着你们手中的绳子与其他同学的进行比较,看看谁的长,谁的短?并且思考怎样比较两条线段的长短?学生思考并回答结论:1.把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,这种方法叫做叠合法。

2.用刻度尺量出它们的长度,再进行比较,这种方法叫做度量法。

3.说明:如果两条线段相差很大,直接视察就可以进行比较了。

学以致用:怎样比较下面两棵树的高矮?怎样比较两根铅笔的长短?怎样比较窗框相邻两边的长?( ) ( ) ( )活动二:1.什么是尺规作图?2.小组合作交流,试一试用尺规做一条线段等于已知直线。

尺规作图 :只用没有刻度的直尺和圆规画图称为尺规作图教师引导学生:作一条线段等于已知线段如图,已知线段AB,用尺规作一条线段等于已知线段AB.作图规律如下:(1)作射线A′C′(如图所示);(2)用圆规在射线A ′C ′上截取A ′B ′=AB.线段A ′B ′就是所求作的线段.活动三:想一想,折一折,怎样找到你手上绳子的中点位置?点M 把线段AB 分成相等的两条线段AM 与BM, 点M 叫做线段AB 的中点.表达式:如果点M 是线段AB 的中点, 那么AM=BM= ( 21) AB. 或者AB=2AM=2BM 练习:如图示:点C 为AB 的中点,AC=3cm ,则BC=() cm ,AB=()cm 。

北师大版数学七年级上册4.2 比较线段的长短教案

北师大版数学七年级上册4.2 比较线段的长短教案

2 比较线段的长短●情景导入 同学们请看大屏幕,认识他们吗?我们目测一下他们的身高,发现姚明高一些.那要是让潘长江老师站到二楼上,姚明站在地面上呢? 如果我们用线段来表示人的身高,又如何比较线段的长短呢?从而引入课题.【教学与建议】教学:把现实生活中的比高矮问题抽象成线段比较长短问题,激发学生解决问题的热情.建议:重点让学生明白两条线段长短的比较方法.●置疑导入 师:如图,从A 村到B 村有四条道路可供选择,你愿意选第几条道路?说出你的理由. 生:走第②条路.因为这条路是直路,感觉它最近.师:虽说条条大路通罗马,但我们都希望走条近路.那么怎样找出最近的路呢?你是怎样得出结论的? 【教学与建议】教学:利用生活中熟悉的情境,极大地激发学生的学习热情.建议:在学生操作时,教师要引导学生进行思考、分析.*命题角度1 利用两点之间线段最短解决问题根据两点之间的所有连线中,线段最短,解决实际问题.【例1】在春季运动会上,七年级的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法是(A)A .把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B .把两条绳子重合,观察另一端的情况C .把两条绳子接在一起D .没有办法挑选【例2】为抄近路践踏草坪是一种不文明现象,如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条“捷径”,“捷径”的数学道理是(C)A.经过两点有一条直线,并且只有一条直线B .两条直线相交只有一个交点C .两点之间的所有连线中,线段最短D .两点之间线段的长度,叫做这两点之间的距离【例3】把一条弯曲的河道改直,可以缩短航程,这样做的根据是__两点之间线段最短__. *命题角度2 比较线段的长短比较线段长度常用的方法有两种:(1)度量法;(2)叠合法. 【例4】用度量法可得下列线段中最长的是(B)A BC D *命题角度3 线段中点的概念辨析中点具备两个特点:①点在线段上;②把线段分成相等的两条线段,这两者缺一不可. 【例5】如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是(C)A .BC =AB -CD B .BC =AC -BDC .BC =12 (AD -CD ) D .BC =12AD -CD【例6】已知线段AB 和点P ,如果P A +PB =AB ,且P A =PB ,则(A) A .点P 为AB 中点 B .点P 在线段AB 的延长线上C .点P 在线段AB 外D .无法确定 *命题角度4 求线段的长度求线段长度,通常借助线段中点的性质和线段的比进行线段长度的变换进行求解.【例7】如图,长度为12 cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC ∶CB =1∶2,则线段AC 的长度为(A)A .8 cmB .6 cmC .4 cmD .2 cm【例8】如图,B ,C 两点把线段AD 分成长度比为2∶3∶4的三部分,点E 是线段AD 的中点,EC =2 cm ,求:(1)AD 的长; (2)AB ∶BE .解:(1)因为AB ∶BC ∶CD =2∶3∶4,点E 是线段AD 的中点,所以CD =49 AD ,ED =12AD ,所以EC =ED-CD =12 AD -49 AD =2,解得AD =36 cm ;(2)由(1)知,AD =36 cm ,易得AB =36×29 =8(cm),BC =36×39=12(cm),BE =BC -EC =12-2=10(cm).所以AB ∶BE =8∶10=4∶5.高效课堂 教学设计1.借助情境了解“两点之间线段最短”的性质. 2.能借助尺、规等工具比较两条线段的大小. 3.能用圆规作一条线段等于已知线段.线段长短的两种比较方法:线段中点的概念及表示方法;线段的和、差、倍、分关系.叠合法比较两条线段大小;会画一条线段等于已知线段.活动一:创设情境 导入新课(课件:公园曲桥、河道改直的图片)把弯曲的河道改直就可以缩短航程.在公园的河面上修建曲折的桥,就能增加观光的路程,你知道这其中的道理吗?怎样比较两个同学的高矮?你有哪些方法?活动二:实践探究 交流新知 【探究1】 线段公理问题:(多媒体投影P 110图4-6)学生通过观察,实际操作,容易得出线段AC 最短.【归纳】两点之间的所有连线中,线段最短.这一事实可以简述为:两点之间线段最短.我们把两点之间线段的长度,叫做这两点之间的距离.【探究2】 线段的比较多媒体展示P 110“议一议”【归纳】如果直接观察难以判断,我们可以有两种方法进行比较:一种方法是用刻度尺量出它们的长度,再进行比较,即度量法;另一种方法是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,即叠合法.活动三:开放训练 应用举例【例1】(教材P 111例题)如图,已知线段AB ,用尺规作一条线段等于已知线段AB . 【方法指导】学生通过操作,掌握作一条线段等于已知线段的方法.解:作图步骤如下:(1)作射线A ′C ′(如图所示);(2)用圆规在射线A ′C ′上截取A ′B ′=AB . 线段A ′B ′就是所求作的线段.【例2】(1)如图,点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点.这时AM =BM =12 AB (或AB =2AM =2BM ).(2)在直线l 上顺次取A ,B ,C 三点,使得AB =4 cm ,BC =3 cm.如果点O 是线段AC 的中点,那么线段OB 的长度是多少?【方法指导】学生画图加以分析,与同伴进行交流,进一步掌握线段中点的性质. 解:如图所示:OB =4-4+32=0.5(cm).活动四:随堂练习1.如图,在我国“西气东输”的过程中,从A 城市往B 城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是__①__,依据是__两点之间线段最短__.2.已知线段AB =6 cm ,在直线AB 上取点C ,使BC =3 cm ,则线段AC 的长是__9或3__cm. 3.教材第112页上方的“随堂练习”第1题. 解:可用刻度尺量出折线AB 各段线段的长度,再量出线段A ′B ′的长度.将折线AB 各段线段的长度和与A ′B ′的长度作比较,也可用尺规作图法将AB 的每段长度移到线段A ′B ′上,再做判断.4.教材第112页上方的“随堂练习”第2题.解:5.已知线段AB =6,点C 在直线AB 上,BC =4,D 是AC 的中点,那么A ,D 两点间的距离是多少? 解:5或1.活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?教学说明:教师引导学生回顾线段的公理,线段的比较,线段的中点等知识,让学生大胆发言,积极与同伴交流,进行知识的提炼和归纳.作业:课本P 112习题4.2中的T 2、T 3、T 4本节课的内容是比较线段的长短,这涉及线段的度量和比较,是几何中的一个基本问题.在教学过程中,把身边的数学材料引入课堂,从而使原来枯燥无味的讲解转变为生动活泼的学习活动,调动了学生学习的积极性,加深了学生对几何知识的理解,从而达到了很好的教学效果,同时也培养了学生分析问题、解决问题、应用数学知识的能力.。

【北师版七年级数学上册教案】4.2比较线段的长短

【北师版七年级数学上册教案】4.2比较线段的长短

4.2 比较线段的长短教课目标【知识与技术】1.借助详尽情境,认识“两点之间的全部连线中,线段最短”的性质.2.借助直尺、圆规等工具比较两条线段的长短.3.能用尺规作一条线段等于已知线段.【过程与方法】学习使用经过思虑想象、合作交流、着手操作等数学研究过程,认识线段大小比较的方法,会集工具操作方法,发展几何图形意识和研究意识.【感情态度价值观】在解决问题的过程中体验着手操作、合作交流、研究解决的学习过程、激发学生解决问题的踊跃性和主动性 .教课重难点【教课要点】借助直尺、圆规比较两条线段的长短,用圆规作一条线段等于已知线段.【教课难点】学会尺规作图 .课前准备四支筷子(三红一绿,长短不一)、圆规、直尺、课件.教课过程(一)创建情境教师:老师手中有两只筷子(一红一绿)如何比较它们的长短?学生:先挪动一根筷子,与另一根筷子一头对齐,两根棒靠紧,观察另一头的地址,多出的较长 .教师:比较长短的要点是什么?学生:必有一头对齐教师:除此以外,还有其余的方法吗?学生:可以用刻度尺分别测出两根筷子的长度,而后比较两个数值.教师:我们可以用近似于比筷子的两种方法来比较两条线段的长短(二)新课教课让学生在本子上画出AB 、 CD 两条线段 .(长短不一)1.“议一议”如何比较两条线段的长短?先让学生用自己的语言描述比较的过程,而后教师边演示边用规范的几何语言描述叠合法:把线段 AB 、 CD 放在同向来线上比较,步骤有三:①将线段 AB 的端点 A 与线段 CD 的端点 C 重合②将线段 AB 沿着线段CD 的方向落下③若端点 B 与端点 D 重合,则获取线段 AB 等于线段 CD,可记作: AB=CD (几何语言)若端点 B 落在 D 内,则获取线段AB 小于线段CD,可记作: AB < CD若端点 B 落在 D 外,则获取线段 AB 大于线段 CD,可记作: AB > CD 如图1C D CCA B A B DA D B(注:讲此方法时,教师应采纳圆规截取线段比较形象,还需向学生讲明从“形”角度去比较线段的长短)胸襟法:用刻度尺分别量出线段AB 和线段 CD 的长度,再将长度进行比较 .总结;用胸襟法比较线段大小,其实就是比较两个数的大小.(从“数”的角度去比较线段的长短)2.“做一做”P141随堂练习第1题(注意:可先让学生观察,再回答.说明“目睹不必定为实”的道理,培育慎重的推理习惯)3.“想想”问题一:已知线段a(如图 2),用直尺和圆规画一条线段,使它等于已知线段 a.a图 2先让学生自己试试画,而后教师示范画图并表达作法,让学生模拟画图.画法;①先作一条射线AC②用圆规量取已知线段 a 的长度③在射线上截取AB=a ,线段 AB 就是所求的线段(注意:要修业生不用写画法,但最后一定写好结论)问题二:已知线段a、b,画一条线段c,使它的长度等于已知线段的长度的和.相同让学生自己先画,可以请一位学生板演.教师总结,讲规范的步骤,同时指出线段和的感怀(重申:线段的和指的是线段的长度之和)变式:画一条线段d,使它的长度等于已知线段的长度的差.由学生自己谈论合作完成,教师作谈论.4.“做一做”P141习题4.2知识技术1、 2课外题:(有时间可选做)做一个三角形纸片,你能用几种方法比较线段AB 与线段 AC 的长短?BAC(三)课堂小结:说说收获:(由学生总结)①线段长短比较的两种方法②画一条线段等于已知线段③线段的和、差的看法及画法(四)作业部署:作业题P(B组视学生定,可选做)(五)板书设计:1、线段长短比较的方法:问题1:问题2:叠合法:(形)C DA BAB=CDCA BDAB <CDCA DBAB >CD胸襟法:(数)(板演处)2、线段和、差:教课反思:1.本课时设计的主导思想是:将数形结合的思想浸透给学生,使学生对数与形有一个初步的认识.为未来的学习打下基础,这节课是一堂初步课,它为学生的思想开辟了一个新的天地.在传统的教课安排中,这节课的地位没有提到必定的高度,不过交给学生比较线段的方法,没有从数形结合的高度去认识.实质上这节课大有可讲,可以发掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在平常的教课中要不时注意.2.学生在小学时只会用圆规画圆,不会用圆规去胸襟线段的大小以及截取线段,经过这节课,学生对圆规的用法有一个新的认识.3.在课堂练习中安排了胸襟一些三角形的边的长度,目的是想经过重量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下边的教课做一个铺垫.。

4.2比较线段的长短(教案)北师大版数学七年级上册

4.2比较线段的长短(教案)北师大版数学七年级上册

4.2比较线段的长短
如图,从A地到C地有四条道路,哪条路最近?
学习准备
1.(1)可表示为线段(或)或者线
段.
2.请同学们阅读教材第2节《比较线段的长短》,并完成随堂练习和习题.
教材精读
1.线段的性质:两点之间的所有连线中,线段最短.简单地说:两点之间,线段最短.
2.线段大小的比较方法
(1)观察法;(2)叠合法;(3)度量法.
3.线段的中点
线段的中点是指在线段上且把线段分成相等的两条线段的点.线段的中点只有1个.
文字语言:点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点.
用几何语言表示:
因为点M是线段AB的中点,
所以AM=BM=1
AB(或AB=2AM=2BM).
2
教材拓展
已知线段AB=20 cm,直线AB上有一点C,且BC=6 cm,D是AC的中点,求
CD的长?
分析:点A,B,C在同一条直线上,点C有两种可能:(1)点C在线段AB的延
长线上;(2)点C在线段AB上.
续表
是热点问题.
1.如图,直线上四点A,B,C,D,看图填空:
①AC=+BC;②CD=AD;③AC+BDBC=.
2.在直线AB上,有AB=5 cm,BC=3 cm,求AC的长.
(1)当C在线段AB上时,AC=.
(2)当C在线段AB的延长线上时,AC=.
3.如图,AB=20 cm,C是AB上一点,且AC=12 cm,D是AC的中点,E是BC的
中点,求线段DE的长.
4.已知:如图,B,C两点把线段AD分成2∶4∶3三部分,M是AD的中点,CD=6,
求线段MC的长.
5.如图所示:。

比较线段的长短北师大版数学初一上册教案

比较线段的长短北师大版数学初一上册教案

比较线段的长短北师大版数学初一上册教案一、教学内容本节课选自北师大版数学初一上册第二章《直线与线段》的第一节“比较线段的长短”。

具体内容包括:理解线段的概念,掌握线段的表示方法,学会比较两条线段的长短,通过实践活动,培养观察能力和动手操作能力。

二、教学目标1. 知识与技能:理解并掌握线段的概念,能够准确地表示线段,学会比较两条线段的长短。

2. 过程与方法:通过实践情景引入,培养学生观察、分析、解决问题的能力,提高学生的动手操作能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流的意识。

三、教学难点与重点重点:线段的概念及表示方法,比较线段的长短。

难点:如何准确地比较两条线段的长短。

四、教具与学具准备1. 教具:黑板、粉笔、直尺、圆规、三角板、教学课件。

2. 学具:直尺、圆规、三角板、练习本。

五、教学过程1. 实践情景引入利用绳子、直尺等教具,现场演示如何测量物体的长度,引导学生关注线段的概念。

2. 知识讲解(1)线段的概念:线段是由两个端点及这两个端点之间的所有点组成的。

(2)线段的表示:用两个端点的字母表示,如线段AB。

(3)比较线段的长短:通过观察、测量、折叠等方法,比较两条线段的长短。

3. 例题讲解(1)题目:比较线段AB和CD的长短。

(2)分析:观察两条线段的长度,可通过直尺测量或折叠比较。

(3)解答:线段AB比线段CD长。

4. 随堂练习让学生分组合作,利用直尺、圆规等工具,测量并比较给定线段的长短。

六、板书设计1. 线段的概念2. 线段的表示方法3. 比较线段的长短方法七、作业设计(1)线段AB和线段CD(2)线段MN和线段PQ2. 答案:(1)线段AB比线段CD长,通过测量可得。

(2)线段MN和线段PQ等长,通过折叠可得。

八、课后反思及拓展延伸1. 反思:本节课学生对线段的概念和表示方法的掌握情况较好,但在比较线段长短的方法上还需加强练习。

2. 拓展延伸:让学生尝试用三角板、圆规等工具,设计一些有关线段的题目,进行交流和分享。

北师大版七年级数学上册《比较线段的长短》精品教案1

北师大版七年级数学上册《比较线段的长短》精品教案1

《比较线段的长短》精品教案【教学目标】1.借助于具体情景中了解“两点之间线段最短”的性质;能借助于尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段。

(知识与技能)⒉通过思考想象、合作交流、动手操作等数学探究过程,了解线段大小比较的方法策略,学习开始使用几何工具操作方法,发展几何图形意识和探究意识。

(过程与方法)⒊在解决问题的过程中体验动手操作、合作交流、探究解决的学习过程,激发学生解决问题的积极性和主动性。

(情感与态度)【教学重点】比较线段的方法、线段的公理【教学难点】叠合法比较两条线段大小。

【教学方法】师生互动法与生生互动相结合。

【课前准备】多媒体课件【教学过程】第一环节情境导入,适时点题1.老师用多媒体出示一张动画人物美羊羊“抢红旗”比赛的图片,让学生猜测它的走法。

(学生自由发言)两点之间的所有连线中,线段最短.两点之间线段的长度,叫做这两点之间的距离2.创设生活情境:看图,数一数新县城与南口相距多远?3.思考:如果从你家到学校走了三公里,能否认为学校与你家的距离为三公里吗?4.区分:距离和线段,路程。

两点之间线段的长度, 叫做这两点之间的距离。

练习:(1)如图:这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出。

你的理由是_______________________(2)如图,村庄A, B 之间有一条河流,要在河流上建造一座大桥P, 为了使村庄A, B 之间的距离最短,请问:这座大桥P 应建造在哪里。

为什么?请画出图形。

5.拓展:如图是一个四边形,在各边上任意取一点,并顺次连接它们,想一想你得到的图形周长与原四边形周长哪一个大?为什么?如果是一个五边形呢?六边形呢?两点之间线段最短,得到的四边形周长小于原来的的四边形周长。

同理可得,五边形六边形也是如此。

6.在黑板上画出两条线段,同时让学生在草稿纸上画出两条线段,让学生思考、讨论比较方法。

北师大版数学七年级上册4.2《比较线段的长短》教学设计

北师大版数学七年级上册4.2《比较线段的长短》教学设计

北师大版数学七年级上册4.2《比较线段的长短》教学设计一. 教材分析《比较线段的长短》是北师大版数学七年级上册第4章《几何图形》中的一个知识点。

这部分内容主要是让学生掌握比较线段长短的方法,培养学生的观察、操作和推理能力。

教材通过生活实例引入线段的比较,让学生在实际情境中体会数学与生活的联系,感受数学的价值。

二. 学情分析七年级的学生已经具备了一定的空间观念和逻辑思维能力,但对线段的认识还停留在直观层面。

因此,在教学过程中,教师需要从学生的实际出发,引导学生通过观察、操作、思考、交流等活动,逐步理解和掌握线段的比较方法。

三. 教学目标1.知识与技能:让学生掌握比较线段长短的方法,能运用这些方法解决实际问题。

2.过程与方法:培养学生的观察、操作和推理能力,提高学生解决问题的能力。

3.情感态度与价值观:让学生感受数学与生活的联系,体验数学的价值。

四. 教学重难点1.重点:比较线段长短的方法。

2.难点:如何在实际问题中灵活运用比较线段长短的方法。

五. 教学方法1.情境教学法:通过生活实例引入线段的比较,激发学生的学习兴趣。

2.观察法:引导学生观察线段的特点,发现比较线段长短的方法。

3.操作法:让学生动手操作,加深对线段比较方法的理解。

4.讨论法:分组讨论,培养学生的合作意识和沟通能力。

六. 教学准备1.教学课件:制作课件,展示线段比较的方法和实际应用。

2.教学素材:准备一些生活中的图片和实例,用于导入和巩固环节。

3.学具:为学生准备尺子、直线等工具,便于操作和实践。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的线段,如尺子、书桌、道路等,引导学生关注线段。

然后提出问题:“如何比较这些线段的长短?”激发学生的思考和兴趣。

2.呈现(10分钟)展示一些线段,让学生观察并尝试比较它们的长短。

引导学生发现,可以通过观察线段的形状、位置和度量工具来比较长短。

同时,介绍线段的度量方法,如用尺子量、用直角三角板比较等。

北师大版数学七年级上册《2 比较线段的长短》教学设计3

北师大版数学七年级上册《2 比较线段的长短》教学设计3

北师大版数学七年级上册《2 比较线段的长短》教学设计3一. 教材分析《2 比较线段的长短》是北师大版数学七年级上册的教学内容。

这部分内容主要包括线段的比较,目的让学生理解线段的大小比较方法,能够运用这些方法解决实际问题。

教材通过引入生活中实际的情景,让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。

二. 学情分析七年级的学生已经具备了一定的几何图形的基础知识,对长度、角度等概念有初步的认识。

但线段的长短比较对他们来说还是一种新的认识,需要通过具体的活动和操作,让学生在实际操作中感受和理解线段的长短比较方法。

三. 教学目标1.让学生理解线段长短比较的方法,并能够运用这些方法解决实际问题。

2.培养学生的观察能力、动手操作能力和逻辑思维能力。

3.激发学生学习数学的兴趣,感受数学与生活的紧密联系。

四. 教学重难点1.重点:线段长短比较的方法。

2.难点:如何运用线段长短比较的方法解决实际问题。

五. 教学方法采用问题驱动法、操作实验法、小组合作法等教学方法,引导学生观察、思考、操作、交流,从而理解线段长短比较的方法。

六. 教学准备1.准备长短不同的线段模型。

2.准备练习题和作业。

3.准备教学课件。

七. 教学过程1.导入(5分钟)通过生活中的实际问题,如裁缝师傅剪裁衣服时需要比较布料的长度,引发学生对线段长短比较的思考。

2.呈现(10分钟)教师展示长短不同的线段模型,让学生直观地感受线段的长短。

同时,引导学生思考:如何比较这些线段的长短?3.操练(10分钟)学生分组进行线段长短比较的实验,通过实际操作,总结出比较线段长短的方法。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师通过出示不同长度的线段,让学生运用刚刚学到的方法进行比较。

同时,让学生解释比较的依据,加深对线段长短比较方法的理解。

5.拓展(10分钟)让学生运用线段长短比较的方法解决实际问题,如计算比赛路线的长度、设计不等式等。

6.小结(5分钟)教师引导学生总结本节课所学的内容,巩固线段长短比较的方法。

北师大版七年级上册4.2比较线段的长短教学设计

北师大版七年级上册4.2比较线段的长短教学设计

北师大版七年级上册4.2比较线段的长短教学设计教学目标1.了解线段的定义,掌握线段比较的基本方法;2.理解比较线段的长短的数学概念,掌握比较线段长短的方法和技巧;3.培养学生较强的观察能力和比较能力,帮助学生提高逻辑思维和数学能力。

教学内容1.线段的定义及符号表示;2.比较线段的长短方法;3.给定线段,探究用何种方法确定线段的长短。

教学重点1.线段比较的技巧;2.给定线段,探究用何种方法确定线段的长短。

教学难点1.掌握线段比较的基本方法;2.刻苦钻研,探究用何种方法确定线段的长短。

教学过程导入(15分钟)1.环节目的:引入线段比较的知识,导引学生进入学习状态。

2.操作方法:通过绘图、举例等形式,引导学生简单了解线段及线段比较的概念。

发现(40分钟)1.环节目的:让学生发现线段的比较规律,并总结比较线段长短的方法和技巧。

2.操作方法:1.通过实物或图片展示不同长度的线段,让学生对线段比较产生兴趣;2.提出比较2个线段长短的问题,引导学生尝试使用尺子或直尺等测量工具进行实测,发现线段之间的大小关系;3.让学生通过练习尺子和直尺的使用,总结不同长度线段的比较规律;4.引导学生探究线段比较的方法和技巧,形成总结。

确认(30分钟)1.环节目的:巩固学生所学知识,在确认环节中加深学生对线段比较的理解。

2.操作方法:1.提供5组长度不同的线段,让学生两两比较并记录下线段的大小关系;2.引导学生分析线段比较的方法和技巧,并进行总结;3.在小组交流环节中展示各组的比较结果并进行讨论;4.老师进行点评并总结。

小结(5分钟)1.环节目的:对所学知识进行简单概括,巩固所学内容,为下一节课做好铺垫。

2.操作方法:由老师对所学知识进行简单概括。

总结本次教学以比较线段长短为主题,通过寓教于乐的互动方式,让学生在轻松愉悦的氛围中认识线段并掌握线段比较的基本方法和技巧。

同时,通过发现、确认和小结三个环节的教学过程,促进了学生的思维能力、观察能力和比较能力的提升,加深了学生对线段比较的理解和运用。

北师大版七年级上册数学4.2《比较线段的长短》【教案】

北师大版七年级上册数学4.2《比较线段的长短》【教案】

北师大版七年级上册数学 4.2《比较线段的长短》【教案】积极性和主动性。

教学重难点【教学重点】能借助直尺,圆规等工具比较两条线段的长短。

【教学难点】尺规作图。

课前准备1、多媒体课件;2、学生完成相应预习内容。

教学过程一、引入1复习:.线段、射线、直线的定义及特征;线段、射线、直线中____可以度量长度,所以只有____才可以比较长短。

2.问题一:A处有一只蚂蚁,想取位于C处的食物。

你估计蚂蚁会走怎样的路线?问题二:从教室A地到图书馆B,总有少数同学不走人行道而横穿草坪,这是为什么呢?结论:两点之间的所有连线中,线段最短.简述为:两点之间线段最短。

顺利的引出定义:两点之间线段的长度,叫做这两点之间的距离。

设计意图:利用生活中可以感知的的情境,极大激发学习兴趣,使学生感受生活中所蕴含的数学道理。

二、探索1. 怎样比较两棵树的高矮?怎样比较两根铅笔的长短?比较窗框相邻两边的长?教师提示:把两棵树的高度、两根铅笔的长、窗框相边的长看成两条线段,怎么比较它们的大小?思考:如果线段不能任意移动,怎么用叠合法比较线长短?总结:方法一: 测量法(用刻度尺)方法二:叠合法圆规)设计意图:经过师生交流并归纳出线段的大小比较方法,教师用多媒体演示比较过程、让学生动手操作更能加深学生的体会,并顺利引出尺规作图.教师应强调在比较线段长短后如何用数学语言表示。

三、例题1.介绍尺规作图2.例:如图,已知线段a,用尺规做一条线段等于已知线段a。

解:步骤:(1).作射线AC;(2).用圆规在射线AC上截取AB=a (度量已知线段并移到射线上);(3).下结论教师在黑板上,规范作图演示,让学生明白作图要保留痕迹,不要求写作图过程。

3.拓展:已知线段a,用尺规作一条线段AB,使AB=2a.设计意图:让学生自己在动手操作中去真正的感受用尺、规作图,并开始有作图痕迹意识,即让别人看清楚你的作图方法。

用尺规作一条线段等于已知线段,其实就是“叠合法”的具体运用。

比较线段的长短北师大版数学初一上册教案

比较线段的长短北师大版数学初一上册教案

比较线段的长短数学初一上册教案比较线段的长短北师大版数学初一上册教案作为一名为他人授业解惑的教育工作者,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。

那么大家知道正规的教案是怎么写的吗?下面是小编为大家收集的比较线段的长短北师大版数学初一上册教案,欢迎大家分享。

学习目标:能借助直尺、圆规等工具,比较两条线段的长短。

能用圆规作一条线段等于已知线段。

重点:了解线段性质及比较方法,两点之间的距离的概念和线段中点的概念。

难点:比较线段长短的'方法,线段中点的表示方法和应用。

学习过程:课前热身:辨别直线、射线、线段,并能用不同的方法表示一条线段.自主学习:阅读课本139页内容,完成下列问题,1.在地面上有两点和,处放有一块骨头,三只不同颜色的小狗从点跑到点吃骨头,所经过的路线不同,请同学们辨别,哪只狗更聪明.结论:2.探究:作一条线段等于已知线段方法:3.探究:比较线段的长短怎样比较两根筷子的长短.方法:4.探究:线段的中点通过学生玩跷跷板,抽象出线段的中点线段的中点的定义:因为点在线段上,M是AB的中点所以AM==0.5.1分钟记忆:说说线段的性质、线段的中点反馈检测:判断:1.两点之间的线段叫做这两点间的距离( )2.如果点是线段的中点,那么( )3.如果,那么点是的中点( )选择:1.两点之间线段的长度是( )A.线段的中点B.线段最短C.这两点间的距离D.线段的三等分点2.在跳绳比赛中,要在两条长度相近的绳中挑选一条最长的绳子参加比赛,最简单的选择方法是( )A.把两根绳子接在一起B.把两条绳子一端对齐,然后拉直两条绳子,另一端在外面的即为长绳C.用尺量绳长D.没有办法挑选3.已知线段,在直线上画线段,使,求线段的长.实践应用1.有一弯曲的灌渠流经一片农田,为了缩短流程,以减少分水的过分流失,现要将该灌渠改直,请问这应用的是什么结论?4.2比较线段的长短课时练习知识点1线段基本事实及两点间的距离1.下列说法正确的是( )A.两点之间直线最短B.画出A、B两点间的距离C.连接点A与点B的线段,叫做A、B两点间的距离D.两点之间的距离是一个数,不是指线段本身2.把弯曲的河道改直,能够缩短航程,这样做的道理是( )A.两点之间,射线最短B.两点确定一条直线C.两点之间,线段最短D.两点之间,直线最短《4.2比较线段的长短》同步练习2.(知识点1,2,4)下列说法正确的是( )A.两点之间的所有连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫作这两点之间的距离3 .(题型二)把一段弯曲的公路改为直路,可以缩短路程,其理由是( )A.两点之间线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小。

北师大版数学七年级上册 4.2 比较线段的长短 教案.doc

北师大版数学七年级上册 4.2 比较线段的长短 教案.doc

第二节比较线段的长短一、教学目标1.借助具体情境,了解“两点之间的所有连线中,线段最短”的性质.2.能借助直尺、圆规等工具比较两条线段的长短.3.能用尺规作一条线段等于已知线段.二、教学重难点教学重点:线段的性质及线段的中点教学难点:两点间的距离三、教学课型:新授课四、教学方法:师生互动五、教学过程第一环节复习回顾,引入课题1.下列表示线段的方法中,正确的是( )A.线段A B.线段ABC.线段ab D.线段Ab2.如图,图中的直线可以表示为________或________.3.如右图,射线BC和射线________是同一条射线.4. 猜测“从A到C的四条道路,哪条最短?”(学生观察并发言,易于得出线段AC最短,从而引出本节课的主题,老师板书课题)第二环节探究与拓展活动(一)猜测“从A到C的四条道路,哪条最短?”根据生活经验,小明沿着线段AC走最快.这说明了什么道理?说明了这样一个公理:两点之间的所有连线中,线段最短,我们把这个公理叫做线段公理. 简单地说:两点之间,线段最短.顺利的引出定义:两点之间线段的长度,叫做这两点之间的距离线段是一个几何图形,如右图可表示为线段AB 或线段a 。

A a B而距离是长度,为非负数,故线段AB≥0或线段a≥0活动(二)怎样比较下面图形的长短?1.怎样比较两棵树的高矮?怎样比较两根铅笔的长短?怎样比较窗框相邻两边的长?怎么比较?(学生自由发言)教师点明课题:把两棵树的高度、两根铅笔的长、窗框相邻两边的长看成两条线段,怎么比较它们的大小?2. 在黑板上画出两条线,同时让学生在草稿纸上画出两条线段,让学生思考、讨论比较方法。

a b第三环节问题探究,形成策略1.引导学生从交流发言中归纳出方法策略。

第一种方法是:观察法.即用眼睛去直观的感受两条线段的长短。

第二种方法是:度量法.即用刻度尺量出两条线段的长度,再进行比较.a b经过测量,a=4.6cm, b=2.8cm因4.6>2.8,故 a>b总结:用度量法比较线段大小,其实就是比较两个数的大小。

比较线段的长短北师大版数学初一上册教案

比较线段的长短北师大版数学初一上册教案

比较线段的长短北师大版数学初一上册教案教案一:教学内容:比较线段的长短教学目标:1. 学生能够通过视觉比较线段的长短。

2. 学生能够用数学符号表示线段的长短关系。

教学重点:比较线段的长短教学难点:用数学符号表示线段的长短关系教学准备:纸、铅笔、直尺教学过程:Step 1 导入新知1. 引导学生观察教室中的不同物体,并比较它们的大小。

2. 提出问题:你是如何判断不同物体的大小的?3. 引导学生发现,我们可以通过直观观察来判断物体的大小。

4. 引导学生思考,线段的长短也可以通过直观观察来判断吗?Step 2 学习新知1. 引导学生观察两条线段AB和CD,并比较它们的长短。

2. 引导学生发现,线段AB的长度大于线段CD,可以表示为AB > CD。

3. 通过类似的比较,引导学生记住其他符号,如“小于”<、“等于”=等。

Step 3 练习巩固1. 让学生用纸和铅笔画出两条线段,并通过比较判断线段的长短关系。

2. 让学生互相交流和比较自己画的线段的长短,用数学符号表示出来。

3. 提供更多的练习题,让学生通过比较线段的长度并用数学符号表示出来。

Step 4 拓展应用1. 张贴一些图片,让学生比较不同线段的长度,并用数学符号表示出来。

2. 教师出示一些实际生活中的例子,让学生比较不同物体的长度并用数学符号表示出来。

3. 让学生用线段比较法判断图形的大小关系,并用数学符号表示出来。

教学反思:本节课通过直观观察线段的长短,引导学生理解和掌握了比较线段的方法,并能够用数学符号表示线段的长短关系。

通过练习巩固和应用拓展,提高了学生对线段比较的能力和应用能力。

北师大版七年级上册数学4.2比较线段的长短优秀教案

北师大版七年级上册数学4.2比较线段的长短优秀教案

4.2比较线段的长短1.认识“两点之间,线段最短” .2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段 .3.认识线段的中点及线段的和、差、倍、分的意义,并能依据条件求出线段的长.一、情境导入爱惜花草树木是我们每一个人都应具备的优异质量 .从教课楼到图书室,总有少量同学不走人行道而横穿草坪(如图) ,同学们,你感觉这样做对吗?为认识释这类现象,学习了下边的知识,你就会知道 .二、合作研究研究点一:线段长度的计算【种类一】 依据线段的中点求线段的长如图,若线段 AB = 20cm ,点 C 是线段 AB 上一点, M 、N 分别是线段AC 、BC 的中点 .( 1)求线段 MN 的长;( 2)依据( 1)中的计算过程和结果,设吗?请用简短的话表达你发现的规律.AB = a ,其余条件不变,你能猜出MN的长度分析:( 1)先依据 M 、 N 分别是线段 AC 、 BC 的中点得出 MC =1AC , CN = 1 B C ,再由22线段 AB = 20cm 即可求出结果; ( 2)依据( 1)中的条件可得出结论 .解:(1)∵ M 、N 分别是线段 AC 、 BC 的中点,1 1∴ MC = AC , CN = BC ,∵线段 AB = 20cm ,22∴ MN = MC +CN = 1( AC + BC )= 1AB =10cm ;221( AC + BC )= 1 1( 2)由( 1)得, MN =MC + CN =2 AB = a.即 MN 一直等于 AB 的一2 2半 .方法总结: 依据线段的中点表示出线段的长,再依据线段的和、 差求未知线段的长度 .【种类二】 已知线段的比求线段的长如图, B 、C 两点把线段 AD 分红 2∶ 3∶4 的三部分,点 E 是线段 AD 的中点, EC= 2cm ,求:(1)AD 的长;(2)AB ∶BE.分析:( 1)依据线段的比,可设出未知数,依据线段的和差,可列方程,依据解方程,可得 x 的值,依据x 的值,可得AD 的长度;( 2)依据线段的和差,可得线段据比的意义,可得出答案.解:(1)设 AB= 2x,则 BC= 3x,CD= 4x,由线段的和差,得AD = AB+ BC+ CD= 9x.BE 的长,根由 E 为AD的中点,得19ED =2AD= 2x.9x由线段的和差得, CE= DE - CD =2x- 4x=2= 2.解得 x= 4.∴ AD=9x= 36( cm) .(2)AB =2x= 8, BC= 3x= 12.由线段的和差,得BE= BC- CE= 12- 2= 10(cm) .∴AB∶ BE= 8∶ 10= 4∶ 5.方法总结:在碰到线段之间比的问题时,常常设出未知数,列方程解答【种类三】当图不确准时求线段的长.假如线段AB= 6,点 C 在直线AB 上, BC=4, D是AC 的中点,那么A、D两点间的距离是()A.5C.5 或2.5D.5或1分析:此题有两种情况:( 1)当点 C 在线段 AB上时,如图:AC= AB- BC,又∵ AB= 6, BC= 4,∴ AC= 6- 4= 2,∵D 是 AC 的中点,∴AD = 1;( 2)当点 C 在线段 AB 的延伸线上时,如图:AC= AB+ BC,又∵ AB= 6, BC= 4,∴ AC= 6+ 4= 10,∵D 是 AC 的中点,∴AD = 5.应选 D.方法总结:解答此题重点是正确绘图,此题浸透了分类议论的思想,表现了思想的严实性,在此后解决近似的问题时,要防备漏解.研究点二:线段性质的应用如图,把曲折的河流改直,可以缩短航程,这样做的依据是()A.两点之间,直线最短B.两点确立一条线段C.两点确立一条直线D.两点之间,线段最短分析:把曲折的河流改直缩短航程的依据是:两点之间,线段最短.应选 D.方法总结:此题考察了线段的性质,熟记两点之间线段最短是解题的重点.三、板书设计教课过程中,重申学生经过想象、合作沟通等数学研究过程,认识线段大小的比较方法,学习使用几何工具的操作方法,发展几何图形意识和研究意识,激发学生解决问题的踊跃性和主动性 .。

比较线段的长短北师大版数学初一上册优质教案

比较线段的长短北师大版数学初一上册优质教案

比较线段的长短北师大版数学初一上册优质教案一、教学内容本节课选自北师大版数学初一上册第四章《比较线段的长短》,具体内容包括:理解线段的概念,掌握比较线段长短的方法,能够运用工具测量线段长度,并解决实际问题。

二、教学目标1. 知识与技能:使学生理解线段的概念,掌握比较线段长短的方法,能够准确测量线段的长度。

2. 过程与方法:培养学生动手操作、观察、思考的能力,提高学生解决问题的策略和方法。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流的意识。

三、教学难点与重点教学难点:比较线段长短的方法。

教学重点:线段的概念及测量线段长度。

四、教具与学具准备教具:直尺、三角板、多媒体课件。

学具:直尺、三角板、练习本。

五、教学过程1. 实践情景引入(1)展示图片:比较两条跑道长短,引导学生思考如何判断两条线段的长度。

(2)组织讨论:让学生分享自己判断线段长短的方法。

2. 知识讲解(1)讲解线段的概念,引导学生理解线段的特征。

(2)介绍比较线段长短的方法:直接观察法、工具测量法、叠合法。

3. 例题讲解(1)题目:比较两条线段AB和CD的长短。

解答:先观察,无法直接判断时,使用直尺测量线段长度,然后进行比较。

(2)题目:在三角形ABC中,比较AB、BC、AC三条边的大小。

解答:使用叠合法,将三条边相互重叠,观察重叠部分,判断大小关系。

4. 随堂练习(1)让学生测量课本、铅笔等物品的长度,巩固测量方法。

(2)分组讨论:比较教室内的线段长短,如黑板的长度、桌子的宽度等。

(2)拓展:探讨如何比较弯曲的线段长短,引出后续课程内容。

六、板书设计1. 线段的概念2. 比较线段长短的方法直接观察法工具测量法叠合法七、作业设计1. 作业题目:(2)在三角形DEF中,比较DE、EF、DF三条边的大小。

2. 答案:(1)AB > BC > CD > DE(2)DE > EF > DF八、课后反思及拓展延伸1. 反思:本节课学生对线段概念和比较方法的掌握程度,调整教学方法,提高教学效果。

北师大版数学七年级上册4.2比较线段的长短教案

北师大版数学七年级上册4.2比较线段的长短教案
在实践活动和小组讨论环节,我发现学生们表现得相当积极,能够主动参与讨论和分享。但也有一些学生在讨论中显得不够自信,这可能是因为他们对知识点的掌握不够扎实。为了提高这部分学生的自信心,我会在课堂上多给予他们鼓励,并在课后提供更多的辅导和帮助。
同时,我也注意到,将实际问题引入课堂,能够激发学生们的学习兴趣,使他们更加投入地参与到课堂讨论和实践中。因此,在今后的教学中,我会继续寻找更多贴近生活的例子,让数学知识变得更加生动有趣。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了线段的定义、比较线段长短的方法和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,通过今天的课程,我深刻认识到教学反思的重要性。在今后的教学过程中,我会更加关注学生的反馈,及时调整教学方法和策略,以提高教学效果。同时,我也会不断学习,提升自己的教育教学水平,为学生们提供更优质的教学服务。
-空间想象能力的培养可以通过模型展示、动画辅助等手段,帮助学生建立起线段在三维空间中的形象。
-对于实际问题的应用,可以设计一些实际问题,如测量房间内家具的长度,ቤተ መጻሕፍቲ ባይዱ学生通过实际操作,将所学知识应用于解决具体问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《比较线段的长短》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较两个物体长度的情况?”(如比较两支铅笔的长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索比较线段长短的奥秘。

比较线段的长短北师大版数学初一上册精品教案

比较线段的长短北师大版数学初一上册精品教案

比较线段长短北师大版数学初一上册精品教案一、教学内容本节课我们将要学习是《比较线段长短》,这是北师大版数学初一上册第二章“直线与线段”中内容。

具体涉及到章节为2.2节,详细内容包括认识线段特征,学会比较两条线段长短,掌握如何用工具测量线段长度以及如何通过观察和推理来判断线段长短。

二、教学目标通过本节课学习,我希望学生们能够:1. 理解线段概念,掌握线段两个基本要素:长度和端点。

2. 学会使用直尺、卷尺等工具准确测量线段长度。

3. 掌握比较两条线段长短方法,能够通过观察和逻辑推理解决相关问题。

三、教学难点与重点教学难点:如何准确比较两条线段长短,特别是在没有测量工具情况下。

教学重点:线段长度测量以及比较方法掌握。

四、教具与学具准备教具:多媒体教学设备、黑板、直尺、卷尺、模型线段。

学具:学生用直尺、卷尺、练习本、铅笔。

五、教学过程1. 实践情景引入我将通过比较学生们跳远距离引入线段长短概念。

让学生们直观地理解线段长度在实际生活中应用。

2. 理论知识讲解介绍线段基本定义,强调线段长度和端点重要性。

3. 例题讲解通过例题讲解如何使用直尺和卷尺来测量线段长度,以及如何在纸上准确画出指定长度线段。

4. 随堂练习5. 知识巩固出示几组线段,让学生们不用工具,仅通过观察和逻辑推理来判断线段长短。

6. 互动提问针对比较线段长短几种方法进行提问,检查学生们理解和掌握情况。

六、板书设计板书将分为两部分:1. 线段定义和长度测量方法。

2. 比较线段长短几种常用方法。

七、作业设计1. 作业题目:(1) 测量并记录家中某一物品长度。

(3) 如果线段EF比线段GH长3厘米,而线段IJ比线段EF短2厘米,问线段IJ和GH哪个更长?2. 答案:(1) 学生需自己测量并记录真实数据。

(2) CD更长。

(3) 线段IJ和GH长度相同。

八、课后反思及拓展延伸课后反思:本节课学生是否掌握线段测量和比较方法,对于不用工具比较线段长短方法是否理解深刻。

初中七年级上册《比较线段的长短》精品教案

初中七年级上册《比较线段的长短》精品教案

第四章基本平面图形北师大版初中七年级上册《比较线段的长短》精品教案一、学生起点状况分析本节课选自北师大版数学七年级上册第四章的第二节,是平面图形的重要的基础知识。

学生凭借自己已有的知识经验,能掌握线段等基本几何图形,并且通过第一章的学习,进一步了解了棱柱等几何体的特征,理解了图形是由点、线、面构成的,学生已经能初步建立几何观念。

而本章起始课的学习又使学生进一步明确了线段、射线和直线的定义和表示方法,这一节将重点研究线段的重要的基本性质和比较方法。

所以从学生的生活经验出发,抽象提炼线段的基本性质,线段的大小比较方法、和、差作图等,知识策略的获得完全是根据学生的生活经验和理解水平得到,能充分调动学生的积极性。

本节课的内容知识、结构的学习,有利于学生空间思维的发展、有利于学生图形意识的培养、为后继学习角、四边形等空间与图形奠定重要的基础。

立足于学生实际,着眼于中小学的衔接,从他们的生活背景和已有经验出发,鼓励他们积极参与,动手操作,交流讨论,让他们了解几何学习的基本的操作方法,学习结论获得的策略,进一步去理解线段本质属性与现实生活的紧密相关都有着较为深刻的意义。

二、教学任务分析本课时的教学内容安排,首先是问题的引入,直接开门见山的让学生感受生活现实中所蕴含的最本质的“直线距离最短”的性质,并提出“两点之间的距离”的定义。

然后引出比较两条线段的大小的必要性,让学生充分思考和交流比较方法和策略,重点突破比较方法。

在“叠合法”中使用的工具中自然引出用圆规作线段,并进一步作出线段的和、差,突出运用所学解释和解决实际问题。

当然,线段中的特殊点——中点的认识和应用,也是本节课的难点知识。

鉴于学生的认知水平和几何方法的才起步,教学中要始终遵循学生主动学习的原则,低起点、多铺垫、给足时间思考、动手操作,通过丰富的活动让学生经历数学知识的获得与应用过程,学习几何策略方法,同时采用多媒体辅助教学拓展学生的思维,初步培养学生数学语言的规范性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《比较线段的长短》教学设计
教材分析
在学习了《线段、射线、直线》了解了线段的形象、描述性定义和表示方法,这一节将进一步研究线段的重要的基本性质和比较方法。从学生的生活经验出发,抽象提炼线段的基本性质,线段的大小比较方法、和、差作图等。
教学目标
【知识与能力目标】
助于具体情景中了解“两点之间线段最短”的性质;能借助于尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段。
设计意图:通过练习检测学生的掌握情况,并设置拓展题提升难度。
六、归纳小结
本节课你学到的数学知识和数学思想方法有哪些?
作业布置
习题4.2
教学反思
整节课的设计中既注重了平面几何的起步,立足于学生的知识经验水平,强调“知识源于生活”,从直观经验到理性验证,问题的设置都体现了这一点;反复让学生动手操作试图强化知识的形成与过程的体验,让学生在动手中去摸索方法,并归纳形成理论。
五、测试
1例:在直线l上顺次取出A、B、C三点,使AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度?
2练习:
(1)、下列图形能比较大小的是()
A、直线与线段B、直线与射线C、两条线段D、射线与线段
(2)、判断:若AM=BM,则M为是线段AB的中点,点D是线段BC的中点,求线段AD的长。
设计意图:让学生自己在动手操作中去真正的感受用尺、规作图,并开始有作图痕迹意识,即让别人看清楚你的作图方法。用尺规作一条线段等于已知线段,其实就是“叠合法”的具体运用。学生完成拓展训练后,会发现自己作的图把线段分成相等的两段。
四、交流合作
如图,线段上一点M把线段AB分成相等的两条线段点M叫做线段AB的中点。
三、例题
1.介绍尺规作图
2.例:如图,已知线段a,用尺规做一条线段等于已知线段a。
解:步骤:(1).作射线AC;
(2).用圆规在射线AC上截取AB=a(度量已知线段并移到射线上);
(3).下结论
教师在黑板上,规范作图演示,让学生明白作图要保留作图痕迹,不要求写作图过程。
3.拓展:已知线段a,用尺规作一条线段AB,使AB=2a.
(1)已知点M是线段AB的中点,则:①若AB=10cm,则AM=cm:②若BM=3cm,则AB=cm;
(2)若点M是线段AB的中点,可以得到哪些结论?AM = BM =AB或者AB=2AM=2BM
数学语言:∵点M是线段AB的中点
∴AM = BM =AB
或者AB=2AM=2BM
设计意图:让学生从尺规作图中体会到中点是将一条线段等分的点,由于线段是可度量的所以也有等量关系,在表示时AM表示的是线段AM的长度。教师应注意强调数学语言的重要性。
【过程与方法目标】
通过思考想象、合作交流、动手操作等数学探究过程,了解线段大小比较的方法策略,学习开始使用几何工具操作方法,发展几何图形意识和探究意识。
【情感态度价值观目标】
在解决问题的过程中体验动手操作、合作交流、探究解决的学习过程,激发学生解决问题的积极性和主动性。
教学重难点
【教学重点】
能借助直尺,圆规等工具比较两条线段的长短。
结论:两点之间的所有连线中,线段最短.简述为:两点之间线段最短。顺利的引出定义:两点之间线段的长度,叫做这两点之间的距离。
设计意图:利用生活中可以感知的的情境,极大激发学习兴趣,使学生感受生活中所蕴含的数学道理。
二、探索
1.怎样比较两棵树的高矮?怎样比较两根铅笔的长短?怎样比较窗框相邻两边的长?
教师提示:把两棵树的高度、两根铅笔的长、窗框相邻两边的长看成两条线段,
怎么比较它们的大小?
思考:如果线段不能任意移动,怎么用叠合法比较线段的长短?
总结:方法一:测量法(用刻度尺)方法二:叠合法(用圆规)
设计意图:经过师生交流并归纳出线段的大小比较方法,教师用多媒体演示比较过程、让学生动手操作更能加深学生的体会,并顺利引出尺规作图.教师应强调在比较线段长短后如何用数学语言表示。
【教学难点】
尺规作图。
课前准备
1、多媒体课件;
2、学生完成相应预习内容。
教学过程
一、引入
1复习:.线段、射线、直线的定义及特征;线段、射线、直线中____可以度量长度,所以只有____才可以比较长短。
2.问题一:A处有一只蚂蚁,想取位于C处的食物。你估计蚂蚁会走怎样的路线?
问题二:从教室A地到图书馆B,总有少数同学不走人行道而横穿草坪,这是为什么呢?
相关文档
最新文档