第4章线性规划求解的基本方法

合集下载

04第四章线性规划的求解法

04第四章线性规划的求解法

第四章 线性规划的求解法当线性规划的变量和约束条件比较多,而初始基本可行解又不知道时,是不容易用尝试的方法得到初始基本可行解的,何况有可能基本可行解根本就不存在。

在此时,大M 法可能是应付此类情况的一个行之有效的算法。

§4.1 大M 法的原理当初始基本可行解不知道时,则1.,2.两个特点不能兼得,即下列两条件不能兼得: 1. 中心部位具有单位子块; 2. 右列元素非负;这时可以先用容许的运算使由列为非负,然后在中心部位人为添加一个单位子块。

如下例所述: 例4.1123123123123min 32..323624,,0z x x x s tx x x x x x x x x =-+++-=-+-=-≥ (4.1.1)列成表格:上述第三张表中人工增加了两个变量45,x x ,称为人工变量,即把原来的约束条件改为:1234123512345..323624,,,,0s tx x x x x x x x x x x x x +-+=-++=≥ (4.1.2) 式(4.1)和(4.2)的约束方程组并不同解,但(4.1)的解和(4.2)中450x x ==的解是相对应的。

只要找到以(4.2)为约束条件,且人工变量45,x x 均为自由变量的基本可行解,也就找到了(4.1)的基本可行解,于是,要设法迫使450x x ==。

以上途径通过修改(4.1)的目标函数来实现。

具体修改为:12345min 32z x x x Mx Mx =-++++ (4.1.3)其中M 为足够大的正数,然后以(4.2)为约束条件,求(4.3)的最小值。

只要45,x x 不为零,就一定为正数,于是目标函数的值就会增加它们和的M 倍。

由于M 为足够大的正数,所以只要原问题有基本可行解,就不会在45,x x 取正值时达到最小值。

本例中把表改为:通过运算使它具备第三个特点:底行相应于单位子块位置的元素为0,然后再严格按照单纯形法的步骤求解:由于M 为足够大的正数,所以-3-4M 应视为负数,故选它。

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等领域都有着广泛的应用。

下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。

1、图解法适用于只有两个决策变量的线性规划问题。

步骤如下:画出直角坐标系。

画出约束条件所对应的直线。

确定可行域(满足所有约束条件的区域)。

画出目标函数的等值线。

移动等值线,找出最优解。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。

第四章 线性规划问题的计算机求解

第四章  线性规划问题的计算机求解

第四章线性规划问题的计算机求解4.1 有以下线性规划数学问题:max Z=2x l+3 x2S.T. x l+ x2≤102x l+ x2≥4x l+3 x2≤242x l+ x2≤16x l 、x2≥01、用EXCEL线性规划求解模板求解该数学模型。

2、本问题的最优解是什么?此时最大目标函数值是多少?3、四个约束条件中,哪些约束条件起到了作用?各约束条件的剩余量或松弛量及对偶价格是多少?4、目标函数中各变量系数在什么范围内变化时,最优解不变?5、确定各给定条件中的常数项的上限和下限。

解:1、2、最优解:(3,7),最优值:273、第一、第三个约束条件起到了约束作用。

松弛量/剩余量对偶价格x l+ x2≤10 0 1.52x l+ x2≥4 9 0x l+3 x2≤24 0 0.52x l+ x2≤16 13 04、目标函数中各变量系数1≤C1≤32≤C1≤65、常数项8≤b1≤9.2无限≤b2≤1318≤b3≤3013≤b4≤无限4.2 有以下线性规划数学问题:min f=8x l+3 x2S.T. 500x l+100 x2≤12000005x l+4 x2≥60000100x l≥300000x l 、x2≥01、用EXCEL线性规划求解模板求解该数学模型。

2、本问题的最优解是什么?此时最大目标函数值是多少?3、各约束条件的剩余量或松弛量及对偶价格是多少?分别解释其含义。

4、目标函数中各变量系数在什么范围内变化时,最优解不变?5、确定各给定条件中的常数项的上限和下限。

解:本问题无解。

4.3 有以下线性规划数学问题:max Z=x l+2 x2+3 x3- x4S.T. x l+2 x2+3 x3≤152x l+ x2+5 x3≤20x l+2 x2+ x3+ x4≤10x l 、x2、x3、x4≥01、用EXCEL线性规划求解模板求解该数学模型。

2、本问题的最优解是什么?此时最大目标函数值是多少?3、分别解释“递减成本”栏中各数据的含义。

线性规划知识点

线性规划知识点

线性规划知识点一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在各个领域都有广泛的应用,如经济学、管理学、工程学等。

本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用案例。

二、基本概念1. 变量:线性规划中的变量是决策的对象,通常用x1、x2、...、xn表示。

2. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c1x1 + c2x2 + ... + cnxn。

3. 约束条件:线性规划的变量需要满足一系列线性约束条件,通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1,...,am1x1 + am2x2 + ... + amnxn ≤ bm。

4. 非负约束:线性规划中的变量通常需要满足非负约束条件,即xi ≥ 0。

三、模型构建1. 目标函数的确定:根据问题的具体要求,确定最大化或最小化的目标函数。

2. 约束条件的确定:根据问题的限制条件,确定各个变量的线性约束条件。

3. 变量的非负约束:确定各个变量的非负约束条件。

四、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。

首先画出目标函数的等高线图和约束条件的线性图形,然后找到使目标函数取得最大(最小)值的交点。

2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。

该方法通过迭代计算,逐步找到使目标函数取得最大(最小)值的解。

3. 整数规划方法:当变量需要取整数值时,可以使用整数规划方法进行求解。

该方法通过将线性规划问题转化为整数规划问题,并应用相应的算法进行求解。

五、应用案例假设某公司生产两种产品A和B,产品A每单位利润为10元,产品B每单位利润为15元。

公司的生产能力限制为每天生产不超过100个单位的产品A和150个单位的产品B。

另外,公司还有两个约束条件:产品A的生产量不能超过产品B的两倍,产品B的生产量不能超过产品A的三倍。

问如何安排生产计划以最大化利润。

线性规划问题的解法

线性规划问题的解法

线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。

线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。

本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。

一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。

它通过在可行解空间中不断移动,直到找到目标函数的最优解。

单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。

2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。

3. 进行迭代:通过不断移动至更优解来逼近最优解。

首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。

通过迭代进行入基和出基操作,直到无法找到更优解为止。

4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。

单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。

但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。

二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。

与单纯形法相比,内点法具有更好的数值稳定性和运算效率。

内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。

首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。

每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。

内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。

此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。

三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。

线性规划的应用与求解方法

线性规划的应用与求解方法

线性规划的应用与求解方法线性规划是数学中一种重要的优化方法,被广泛应用于各个领域,如经济学、管理学、工程学等。

它可以帮助我们在给定的约束条件下,找到最优解,使得目标函数取得最大值或最小值。

本文将介绍线性规划的应用领域以及常用的求解方法。

一、线性规划的应用领域1. 生产与资源分配线性规划可以帮助企业合理安排生产资源,优化生产效率。

例如,一个工厂需要决定如何分配有限的人力、物力和财力,以满足最大产出或最小成本的要求。

线性规划可以帮助企业找到最佳的资源分配方案,提高生产效率。

2. 项目排程与调度线性规划可以用于项目排程与调度问题,帮助规划员安排项目的开始时间、结束时间和资源分配。

例如,在建设一个大型工程项目时,需要考虑多个任务的依赖关系、资源限制和时间限制,线性规划可以帮助规划员合理安排项目进度,最大程度地利用资源。

3. 物流与运输线性规划可以用于优化物流与运输问题。

例如,一个配送中心需要决定如何将货物从不同供应商配送到不同的客户,以最小化运输成本。

线性规划可以帮助物流公司找到最佳的配送路线和运输方案,提高运输效率。

4. 投资与资产配置线性规划可以用于优化投资与资产配置问题。

例如,一个投资者希望在多个资产中进行配置,以最大化收益或最小化风险。

线性规划可以帮助投资者找到最佳的资产配置方案,提高投资收益率。

二、线性规划的求解方法1. 图形法图形法是线性规划最直观的求解方法之一。

它通过绘制目标函数和约束条件所对应的直线或曲线,找到使目标函数取得最大(小)值的交点。

但是,图形法只适用于二维线性规划问题,对于多维问题并不适用。

2. 单纯形法单纯形法是线性规划最常用的求解方法之一。

它通过迭代的方式,在可行域内搜索有效解。

单纯形法首先找到一个基础解,并在每一步中通过改进的方式找到更优的基础解,直到找到最优解为止。

单纯形法可以求解多维线性规划问题,并且具有较高的效率。

3. 对偶理论对偶理论是线性规划的重要理论基础。

它将线性规划问题转化为对偶问题,并通过对偶问题的求解来获得原问题的最优解。

线性规划问题求解的基本方法

线性规划问题求解的基本方法

线性规划问题求解的基本方法线性规划是一种重要的数学方法,可用来解决许多实际问题。

它的核心是寻找目标函数下的最优解,同时满足一组线性等式或不等式约束条件。

在实际应用中,我们通常使用线性规划求解器来解决这些问题。

本文将介绍线性规划问题求解的基本方法。

一、线性规划问题的标准形式线性规划问题可以写成如下的标准形式:$$ \begin{aligned} &\text{最小化} \quad \mathbf{c}^T \mathbf{x} \\ &\text{满足} \quad A \mathbf{x} = \mathbf{b}, \mathbf{x} \geq\mathbf{0} \end{aligned} $$其中,$ \mathbf{x} \in \mathbb{R}^n $ 是一个 $ n $ 维向量,$ \mathbf{c} \in \mathbb{R}^n $ 是目标函数的系数向量,$ A \in\mathbb{R}^{m \times n} $ 是约束条件矩阵,$ \mathbf{b} \in\mathbb{R}^m $ 是约束条件的右侧向量。

二、线性规划问题的求解方法1. 单纯形法单纯形法是求解线性规划问题最常用的方法,基本思想是不断循环迭代,利用基变量与非基变量的互换来寻找可行解,并逐步靠近最优解。

具体步骤如下:(1)将标准形式化为相应的单纯形表。

(2)从单纯形表的行中选择一个入基变量,使目标函数值减小。

(3)从入基变量所在列中选择一个出基变量。

(4)用入基变量和出基变量生成一个新的单纯形表。

(5)重复上述步骤直到达到最优解。

单纯形法的优点在于可以找到最优解,但当变量数量增多时,计算时间随之增加。

因此,对于大规模问题来说,单纯形法可能不是最优的求解方法。

2. 内点法内点法是一种比单纯形法更高效的求解线性规划问题的方法。

它选取一个内点作为初始点,逐步靠近最优解。

具体步骤如下:(1)选取一个内点作为初始点。

线性规划知识点

线性规划知识点

线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它可以帮助我们在资源有限的情况下,找到最佳的解决方案。

本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用领域。

一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。

例如,最大化利润或最小化成本。

2. 约束条件:线性规划问题通常有一系列线性约束条件,用于限制变量的取值范围。

例如,生产数量不能超过资源限制。

3. 变量:线性规划问题中的变量是我们要优化的决策变量。

例如,生产的数量或分配的资源。

4. 非负约束:线性规划的变量通常需要满足非负约束,即变量的取值必须大于等于零。

二、模型构建线性规划问题的模型构建包括确定目标函数、约束条件和变量的定义。

下面以一个简单的生产问题为例进行说明。

假设某工厂生产两种产品A和B,每单位产品A的利润为10元,产品B的利润为15元。

工厂拥有两台机器,每台机器每天的工作时间为8小时。

生产一单位产品A需要2小时,生产一单位产品B需要3小时。

工厂希望确定每种产品的生产数量,以最大化总利润。

目标函数:最大化总利润,即10A + 15B。

约束条件:工作时间约束,即2A + 3B ≤ 16。

非负约束:A ≥ 0,B ≥ 0。

三、求解方法线性规划问题可以使用多种方法求解,其中最常用的方法是单纯形法。

单纯形法通过迭代的方式逐步接近最优解,直到找到最优解为止。

单纯形法的基本步骤如下:1. 将线性规划问题转化为标准形式,即将不等式约束转化为等式约束。

2. 选择一个初始可行解,通常为原点(0,0)。

3. 计算目标函数的值,并确定是否达到最优解。

4. 如果未达到最优解,则选择一个进入变量和一个离开变量,通过调整这两个变量的值来改善目标函数的值。

5. 重复步骤3和步骤4,直到达到最优解。

四、应用领域线性规划在各个领域都有广泛的应用,以下是一些常见的应用领域:1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,以最大化利润或最小化成本。

线性规划问题的两种求解方式

线性规划问题的两种求解方式

线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。

线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。

⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。

解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。

在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。

⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。

从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。

以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。

例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。

每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。

问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在各个领域中都有广泛的应用,如生产计划、资源分配、物流管理等。

本文将对线性规划的基本概念、模型建立、求解方法和应用进行总结。

二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

目标函数的系数称为目标系数,代表了各个决策变量对目标的影响程度。

2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,通常表示为等式或者不等式。

3. 可行解:满足所有约束条件的解称为可行解。

4. 最优解:在所有可行解中,使目标函数取得最大(最小)值的解称为最优解。

三、模型建立1. 决策变量:线性规划中,需要确定一组决策变量,代表问题中的可调整参数。

决策变量通常用符号x1, x2, ..., xn表示。

2. 目标函数:根据问题的具体要求,建立目标函数。

例如,最大化利润、最小化成本等。

3. 约束条件:根据问题中的限制条件,建立线性约束条件。

约束条件通常表示为等式或者不等式。

4. 非负约束:决策变量通常需要满足非负约束条件,即x1, x2, ..., xn≥0。

四、求解方法1. 图解法:对于二维线性规划问题,可以使用图解法进行求解。

首先绘制约束条件的直线,然后确定可行解区域,最后在可行解区域中找到最优解。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。

通过不断迭代,找到使目标函数取得最大(最小)值的最优解。

3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。

整数规划通常比线性规划更复杂,求解时间更长。

4. 网络流算法:对于某些特殊的线性规划问题,可以使用网络流算法进行求解。

网络流算法利用图论的方法,将问题转化为网络流问题进行求解。

五、应用领域1. 生产计划:线性规划可以用于确定最佳生产计划,使得生产成本最小化或者利润最大化。

2. 资源分配:线性规划可以用于确定资源的最佳分配方案,如人力资源、物资资源等。

线性规划的解法

线性规划的解法

线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。

在现实生活中,许多问题都可以用线性规划求解。

如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。

线性规划的解法有多种,下面我们就来对其进行详细的介绍。

1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。

单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。

单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。

2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。

这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。

对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。

3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。

内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。

内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。

4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。

这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。

总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。

希望本文能够对您有所帮助。

第4章线性规划

第4章线性规划

f ( X ) 5 x1 4 x 2 4 x1 x 2 60 x1 x 2 24 x1 0 x2 0
(1) ( 2) ( 3) ( 4) ( 5)
例题21: • 首先由(4),(5)二式(x1≥ 0、x2 ≥ 0)知, 其解
在第一象限所在的范围,所以在画图时将第二、
产品Ⅰ 产品Ⅱ 资源总量
设 备(台时)
原料A(公斤) 原料B(公斤)
1
4 0
2
0 4
8
16 12
利 润(百元)
2
3
线性规划范例
• 例B. 任务分配问题
表2
产品
1 23
2 21
3 19
4 17
某公司拟生产4种产品, 可分配给下属的3个工厂 生产,由于工厂的地理位 置和设备不同,每个工厂 生产每种产品的成本不相 同,加工能力也不相同。 有关数据分别由表2和表3 给出。公司应如何给下属 各工厂分配任务,才能在 保证完成每种产品的任务 的条件下,使得公司所花 费的成本最少?
例 : x2 0 y 0, y x2
对于无限制变量的处理:同时引进两个非负变量, 然后用它们的差代替无限制变量。
例 : x2无限制 x2 y1 y2 y1 , y2 0
例题20: 将下述线性规划问题化为标准形
m i n s .t . f ( X ) x1 2 x 2 3 x 3 2 x1 x 2 x 3 9 3 x1 x 2 2 x 3 4 3 x1 2 x 2 3 x 3 6 x1 0, x 2 0, x 3无限制
含量限制 原 A B C 加工费(元/kg) 料 纱线1 ≥60% 无 ≤20% 1.5 纱线2 ≥15% ≥10% ≤60% 1.2 纱线3 无 无 50% 0.9 (元/kg) 6 4.5 3 (kg/月) 2000 2500 1200 原料成本 原料限量

计量地理学第四章——线性规划和多目标规划

计量地理学第四章——线性规划和多目标规划

目标:用料最少
一、 线性规划的数学模型
(一)线性规划数学模型
以上例子表明,线性规划问题具有以下特征: ①每一个问题都用一组未知变量(x1,x2,…,xn)表示某一规 划方案,其一组定值代表一个具体的方案,而且通常要求这些未 知变量的取值是非负的。
②每一个问题的组成部分:一是目标函数,按照研究问题的不同, 常常要求目标函数取最大或最小值;二是约束条件,它定义了一 种求解范围,使问题的解必须在这一范围之内。
二 线性规划的标准形式
(二)化为标准形式的方法
2.约束方程化为标准形式的方法
若第k个约束方程为不等式,即
ak1 x1 ak 2 x2 akn xn ()bk
引入松弛变量 x nk 0, K个方程改写为:
ak1 x1 ak 2 x2 akn xn () xnk bk
则目标函数标准形式为:
非负约束
xij 0(i 1,2,, m; j 1,2,, n)
mn
z
cij xij min
i1 j1
目标:总运费最小
一、 线性规划的数学模型
(一)线性规划模型之实例 资源利用问题 假设某地区拥有m种资源,其中,第i种资源在规
划期内的限额为bi(i=1,2,…,m)。这m种资源可用 来生产n种产品,其中,生产单位数量的第j种产品需 要 消 耗 的 第 i 种 资 源 的 数 量 为 aij(i=1 , 2 , … , m ; j=1,2, …,n),第j种产品的单价为cj(j=1,2, …,n)。 试问如何安排这几种产品的生产计划,才能使规划期 内资源利用的总产值达到最大?
一、 线性规划的数学模型
(一)线性规划模型之实例
资源利用问题
设第j种产品的生产数量为xj(j=1,2,…,n),则上述资源问题就是:

线性规划基本知识

线性规划基本知识

线性规划基本知识线性规划是一种数学优化方法,用于在给定限制条件下最大或最小化线性目标函数。

它是现代数学、工程学和运筹学的基础之一,被广泛应用于制造业、金融、交通、物流等领域。

本文将介绍线性规划的基础知识,包括线性规划问题的表达方式、标准形式、单纯形法求解以及对偶理论等。

一、线性规划问题的表达方式线性规划问题的表达方式通常包含以下部分:1. 决策变量:表示求解问题时需要确定的变量,通常用x1、x2、......、xn表示。

2. 目标函数:表示优化的目标,通常是一个线性函数,用c1x1+c2x2+......+cnxn表示。

3. 约束条件:表示限制决策变量的取值范围,通常是线性等式或不等式,用a11x1+a12x2+......+a1nxn≤b1、a21x1+a22x2+......+a2nxn≤b2、......、am1x1+am2x2+......+amnxn≤bm 表示。

其中,决策变量x1、x2、......、xn的取值范围可以是非负实数集合、整数集合或者其他特定取值范围。

二、线性规划的标准形式通常情况下,线性规划问题都可以通过一些变换,转化为标准形式进行求解。

标准形式的线性规划问题包括以下三个部分:1. 最大化或最小化的目标函数2. 约束条件,所有约束条件都是小于等于号3. 决策变量的取值范围,所有决策变量都是非负实数三、单纯形法求解线性规划问题单纯形法是线性规划问题最常用的求解方法之一,它是一种迭代的过程,通过一系列基本变换(基本可行解、进入变量、离开变量、更新表格)逐步接近最优解。

单纯形法求解线性规划问题的步骤如下:1. 将线性规划问题转化为标准形式。

2. 确定一个初始可行解。

3. 计算第一行表格的系数,并找出最小的系数所在的列,作为进入变量。

4. 确定离开变量,通过将所有正数元素对应的值除以对应进入变量的系数,找到最小的元素所在的行,作为离开变量所在行。

5. 更新表格,完成一次迭代。

6. 重复第三至第五步,直至得到最优解或者确定问题无可行解或是无界问题。

线性规划问题的四种求解方法

线性规划问题的四种求解方法
x +y ≤300 x ≤200 x ≥0 ,y ≥0
可出直线
l0
:y
=-
2 3
x
,
把直线
l0
向右上方
平移 , 当经过可行域上点 B 时 , 直线的截距最
大 .此时 z = 12x +18y 取最大值 .解方程组
z =6x +3y +5[ 300 -(x +y)] +5(200 -x ) +9(450 -y)+6(100 +x +y)=2 x -5y +
★解题方法与技巧
线性规划问题的四种求解方法
江 苏溧 阳中 学(2 13300) 吕清 平
线性规划问题是现实生活中一类重要的应 用问题 , 它常用来研究物资调运 、生产安排 、下
时 , zmax =12 ×5 +18 ×4 =132(万美元) 答 :购买第一种机器 5 台 , 第二种机器 4 台
料等工作的资源优化配制问题 , 寻求线性规划 时能使工厂获得的年利润最大 .
值线值的大小知 , 当等值线经过可行域上点 C 成本如下表 :
时 , 等值线的值最小 .z 有最小值 5650 元 , 此时 x =0 、y =300 , 故甲地产品运往 B 地 ;乙地产 品运往 A 、B 、C 三地分别为 200 吨 、150 吨 、400
甲乙丙 维生素 A(单位 / 千克) 600 700 400
解 设每天生产甲 、乙产品的件数分别是
维生素 B (单位 / 千克) 800 400 500
成本(单位 / 千克) 11 9 4
某食物营养所想用 x 千克甲种食物 , y 千 克乙种食物 , z 千克丙种食物配成 100 千克混合 物 , 并使混合物至少含有 56000 单位维生素 A 和 63000 单位维生素 B

线性规划模型的求解方法

线性规划模型的求解方法

线性规划模型的求解方法线性规划是数学中的一个分支,是用来解决优化问题的方法。

一般来说,它适用于那些具有一定限制条件,但是希望达到最优解的问题。

在实际应用中,无论是在工业、商业还是管理等领域,都可以使用线性规划模型来进行求解。

本文将详细介绍线性规划模型的求解方法,包括单纯形算法、内点法和分支定界法。

1、单纯形算法单纯形算法是线性规划求解中最常用的方法,它是基于不等式约束条件的优化算法,主要是通过这些不等式约束来定义一些可行域并寻找最优解。

单纯形算法的基本思路是将约束条件重写为等式,然后再将变量从这些等式中解出来,最后根据这些解来判断是否找到最优解。

举例来说,假设有如下线性规划的问题:$$\begin{aligned}\text { maximize } \quad &60 x_{1}+40 x_{2} \\\text { subject to } \quad &x_{1}+x_{2} \leq 100 \\&2 x_{1}+x_{2} \leq 150 \\&x_{1}+2 x_{2} \leq 120 \\&x_{1}, x_{2} \geq 0\end{aligned}$$我们可以将这些约束条件重写为等式:$$\begin{aligned}x_{3} &=100-x_{1}-x_{2} \\x_{4} &=150-2 x_{1}-x_{2} \\x_{5} &=120-x_{1}-2 x_{2}\end{aligned}$$然后我们可以利用这些等式来解出每个变量的取值,从而得到最优解。

通常情况下,单纯形算法利用较小的限制空间集合来缩小可行的解空间集合,并通过一定的规则,比如说乘子法则来找到最优的解。

2、内点法内点法则是比单纯形算法更快的一个线性规划求解方法,它通过不停地迭代,将可行域中的点从内部向最优解方向移动,从而找到最优解。

在实际应用中,内点法通常能够达到非常高的精确度,而且与单纯型算法相比,它在数值计算方面更加稳定。

线性规划问题的基本概念及求解方法

线性规划问题的基本概念及求解方法

线性规划问题的基本概念及求解方法线性规划是一种优化方法,用于找到一个线性方程的最大或最小值,同时满足一组线性约束条件。

线性规划问题广泛应用于经济、工业、运输、物流等各个领域。

本文将讲述线性规划问题的基本概念和求解方法。

一、线性规划的基本概念线性规划问题可表示为:$\max_{x} z = c^Tx$$\text{s.t.} \qquad Ax \leq b$其中,x表示决策变量,z表示目标函数,c和b为常数系数,A为系数矩阵。

目标函数表示要最大化或最小化的数量,约束条件表示限制决策变量取值的条件。

二、线性规划的求解方法线性规划问题的求解方法有两种,即图形法和单纯形法。

1. 图形法图形法是一种用图形的方式来求解线性规划问题的方法。

它可以用于二元线性规划问题求解,但对于多元线性规划问题,它的应用受到了限制。

对于二元线性规划问题,我们可以将目标函数表示为直线,约束条件表示为线段,然后在可行域内寻找能让目标函数最大或最小的点。

2. 单纯形法单纯形法是一种通过交换决策变量的取值来寻找最优解的方法。

它通过构建初始单纯形表格,逐步利用高斯消元法将问题转化为标准型,然后不断交换基变量和非基变量,直到找到最优解。

单纯形法在求解多元线性规划问题时具有广泛的应用,因为它能够较快地寻找最优解。

但是,它也存在一些问题,例如当问题的维度较高时,算法的计算复杂度会相应增加,计算机的处理能力也会受到限制。

三、线性规划的应用线性规划在各个领域中都有着广泛的应用。

以下是一些典型的应用案例:1. 运输问题运输问题是一种线性规划问题,旨在确定一组产品从生产场所运往销售场所的最优方案。

这种问题通常涉及到对物流成本、物流时间等多种因素的优化。

2. 设备维护问题设备维护问题是一种线性规划问题,旨在通过优化设备的维护策略来最大化设备的使用寿命和效益。

这种问题通常涉及到对机器的使用寿命、维修成本、机器停机时间等多种因素的优化。

3. 生产计划问题生产计划问题是一种线性规划问题,旨在通过对原材料和生产线的安排来优化产品的生产过程。

解线性规划问题的常见方法与策略

解线性规划问题的常见方法与策略

解线性规划问题的常见方法与策略线性规划是数学中的一类优化问题,目标函数和约束条件都是线性的。

线性规划在运筹学、经济学、管理学、工程学等领域得到了广泛的应用。

本文将介绍解决线性规划问题的常见方法与策略。

1. 模型建立在解决线性规划问题之前,应该先建立数学模型。

模型主要包含目标函数和约束条件。

通常需要对问题进行分析和抽象,确定需求变量、决策变量、目标和限制条件。

建立好模型后,就可以应用各种算法进行求解了。

2. 单纯性法单纯性法是一种直接、高效的线性规划求解方法,也是最为广泛应用的方法。

它通过不断的交替基变换来逐步靠近最优解。

具体而言,单纯性法首先选择一个基本可行解,然后通过行变换和列变换找到下一个更优的基本可行解,直到找到最优解或者无法继续优化为止。

3. 对偶理论对偶理论是解决线性规划问题的另一种方法,它将线性规划问题转化为一个对偶问题。

对偶问题又称对偶线性规划,它的目标函数与原问题的约束条件有关。

对偶问题可以通过单纯性法或其他优化方法来求解,从而得到原问题的最优解。

4. 网络流算法网络流算法是一种常用的线性规划求解方法,它通过流量平衡条件和容量限制条件来描述约束条件。

将线性规划问题转化为网络流问题,然后应用最大化流算法或最小费用最大流算法求解。

5. 分支定界法分支定界法是一种可以求解任何类型的数学规划问题的通用方法。

其基本思想是将问题分解成多个子问题,然后用分支定界法求解。

分支定界法可以解决较小规模的线性规划问题,但是对于大规模问题求解效率较低。

综上所述,单纯性法、对偶理论、网络流算法和分支定界法是解决线性规划问题的常见方法。

在实际应用中,应该结合问题的特点和求解效率选择合适的方法和策略。

4线性规划的基本理论

4线性规划的基本理论

第四章 线性规划本章主要内容:线性规划的基本理论 线性规划的单纯形法 线性规划的对偶理论 线性规划的对偶单纯形法教学目的及要求:理解线性规划的基本理论;掌握线性规划的单纯形法;理解线性规划的对偶理论;掌握线性规划的对偶单纯形法。

教学重点:线性规划的单纯形法. 教学难点:线性规划的对偶单纯形法. 教学方法:启发式.教学手段:多媒体演示、演讲与板书相结合. 教学时间:6学时. 教学内容:§4.1 线性规划的基本理论考虑线性规划问题11min ;,1,2,,,0,1,2,,.nj j j n ij j i j j c x a x b i m x j n ==⎧⎪⎪⎪==⎨⎪⎪≥=⎪⎩∑∑s.t. (LP)或min ;,0.T c x Ax b x ⎧⎪=⎨⎪≥⎩s.t. 其中 121212(,,,),(,,,),(,,,),(),T T T n n m ij m n x x x x c c c c b b b b A a ⨯====A 称为约束矩阵,Ax b =称为约束方程组,0x ≥称为非负约束.假定:rank()A m =.定义 在(LP )中,满足约束方程组及非负约束的向量x 称为可行解或可行点;所有可行解的全体称为可行解集或可行域,记作K ,即{,0}K Ax b x ==≥.使目标函数在K 上取到最小值的可行解称为最优解;最优解对应的目标函数值称为最优值.定义 在(LP )中,约束矩阵A 的任意一个m 阶满秩子方阵B 称为基,B 中m 个线性无关的列向量称为基向量,x 中与B 的列对应的分量称为关于B 的基变量,其余的变量称为关于B 的非基变量.任取(LP )的一个基12(,,,)m j j j B p p p =,记12(,,,)m T B j j j x x x x =,若令关于B 的非基变量都取0,则约束方程Ax b =变为B Bx b =.由于B 是满秩方阵,因此B Bx b =有唯一解1B x B b -=.记121(,,,)m T j j j B b x x x -=,则由12,1,2,,,0,{1,2,,}{,,,}k k j j j m x x k m x j n j j j ===∀∈-所构成的n 维向量x 是Ax b =的一个解,称之为(LP )的关于B 的基本解.基本解满足约束方程组,但不一定满足非负约束,所以不一定是可行解.若10B b -≥,即基本解x 也是可行解,则称x 为(LP )的关于基B 的基本可行解,相应的基B 称为(LP )的可行基;当10B b ->时,称此基本可行解x 是非退化的,否则,称之为退化的.若一个(LP )的所有基本可行解都是非退化的,则称该(LP )是非退化的,否则,称它是退化的.例1 求下列线性规划问题的所有基本可行解.12123124min 44;4,2,0,1,2,3,4.j x x x x x x x x x j -⎧⎪-+=⎪⎨-++=⎪⎪≥=⎩s.t. 解 约束矩阵的4个列向量依次为12341110,,,1101p p p p -⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.全部基为113214323424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====对于1B ,1x 和3x 为基变量,2x 和4x 为非基变量.令2x =4x =0,有1314,2,x x x +=⎧⎨-=⎩ 得到关于1B 的基本解(1)(2,0,6,0)T x =-,它不是可行解.对于2B ,1x 和4x 为基变量,2x 和3x 为非基变量.令2x =3x =0,有1144,2,x x x =⎧⎨-+=⎩ 得到关于2B 的基本解(2)(4,0,0,6)T x =,它是一个非退化的基本可行解.同理,可求得关于345,,B B B 的基本解分别为(3)(4)(5)(0,2,6,0),(0,4,0,6),(0,0,4,2)T T T x x x ==-=,显然,(3)x 和(5)x 均是非退化的基本可行解,而(4)x 不是可行解.因此,该问题的所有基本可行解为(2)(3)(5),,x x x .此外,因为这些基本可行解都是非退化的,所以该问题是非退化的.定理1 设x 为(LP )的可行解,则x 为(LP )的基本可行解的充要条件是它的非零分量所对应的列向量线性无关.证明 不妨设x 的前r 个分量为正分量,即12(,,,,0,,0),0(1,2,,).T r j x x x x x j r =>=若x 是基本可行解,则取正值的变量12,,,r x x x 必定是基变量,而这些基变量对应的列向量12,,,r p p p 是基向量.故必定线性相关.反之,若12,,,r p p p 线性无关,则必有0r m ≤≤.当r m =时,12(,,,)r B p p p =就是一个基;当r m <时,一定可以从约束矩阵A 的后n r -个列向量中选出m r -个,不妨设为12,,,r r m p p p ++,使121(,,,,,,)r r m B p p p p p +=成为一个基.由于x 是可行解,因此1rj j j x p b ==∑,从而必有1mj j j x p b ==∑.由此可知x 是关于B 的基本可行解.定理2 x 是(LP )的基本可行解的充要条件是x 为(LP )的可行域的极点. 证明 由定理4.1.1和定理2.2.2知结论成立. 例2 求下列线性规划问题的可行域的极点.1212314min ;22,2,0,1,2,3,4.j x x x x x x x x j -⎧⎪++=⎪⎨+=⎪⎪≥=⎩s.t. 解 因为约束矩阵的4个列向量依次为12341210,,,1001p p p p ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.全部基为112213314424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====求得关于基12345,,,,B B B B B 的基本解分别为(1)(2)(3)(4)(5)(2,0,0,0),(2,0,0,0),(2,0,0,0),(0,1,0,2),(0,0,2,2)T T T T Tx x x x x =====显然,(1)(2)(3),,x x x 均为退化的基本可行解,(4)(5),x x 是非退化的基本可行解.可行域有三个极点:(2,0,0,0)T ,(0,1,0,2)T ,(0,0,2,2)T .定理3 若(LP )有可行解,则它必有基本可行解. 证明 由定理2.2.1及定理4.1.2知结论成立.定理4 若(LP )的可行域K 非空有界,则(LP )必存在最优解,且其中至少有一个基本可行解为最优解.证明 根据推论2.2.6,(LP )的任一可行解x 都可表示为(LP )的全部基本可行解12,,,k x x x 的凸组合,即1,ki i i x x x K λ==∀∈∑,其中10(1,2,,),1ki i i i k λλ=≥==∑.设s x 是使(LP )中目标函数值达到最小的基本可行解,即 1min T T s i i kc x c x ≤≤=,则11,kkTTT T i i i s s i i c x c x c x c x x K λλ===≥=∀∈∑∑.这表明,基本可行解s x 为(LP )的最优解.定理5 设(LP )的可行域K 无界,则(LP )存在最优解的充要条件是对K 的任一极方向d ,均有0T c d ≥.证明 根据定理2.2.10,(LP )的任一可行解x 都可写成11kli i j j i j x x d λμ===+∑∑,其中12,,,k x x x 为(LP )的全部基本可行解,12,,,l d d d 为K 的全部极方向,且10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑.于是,(LP )等价于下面以0(1,2,,)0(1,2,,)i j i k j l λμ≥=≥=和为决策变量的线性规划问题111min ()();1,0,1,2,,,0,1,2,,.k lT T i i j j i j k i i i j c x c d i k j l λμλλμ===⎧+⎪⎪⎪⎪=⎨⎪⎪≥=⎪≥=⎪⎩∑∑∑s.t. 由于j μ可以任意大,因此若存在某个j d ,使0T j c d <,则上述问题的目标函数无下界,从而不存在最优解,从而(LP )不存在最优解.若1,2,,j l ∀=,均有0T j c d ≥,设1min T T s i i kc x c x ≤≤=,则11()(),k lTTT T i i j j s i j c x c x c d c x x K λμ===+≥∀∈∑∑.所以基本可行解s x 是(LP )的最优解.推论6 若(LP )的可行域K 无界,且(LP )存在最优解,则至少存在一个基本可行解为最优解.证明 由定理4.1.5的证明过程可知结论成立. 定理7 设在(LP )的全部基本可行解12,,,k x x x 中,使目标函数值最小者为12,,,s i i i x x x ;在K 的全部极方向12,,,l d d d 中,满足0T j c d =者为12,,,t j j j d d d .若(LP )存在最优解,则x 为(LP )的最优解的充要条件是存在10(1,2,,),1,0(1,2,,)pp q si i j p p s q t λλμ=≥==≥=∑使11p p q q sti i j j p q x x d λμ===+∑∑. (*)证明 因为(LP )存在最优解,所以由定理4.1.4和推论4.1.6及其证明知,基本可行解12,,,s i i i x x x 是(LP )的最优解.设x 具有(*)式的形式,则由推论2.2.6和定理2.2.10知,x 为(LP )的可行解,从而由(*)式知,111p p q q stTTT T i i j j i p q c x c x c d c x λμ===+=∑∑因此,x 为(LP )的最优解.反之,设x 为(LP )的任一最优解,则x 为可行解,于是由推论2.2.6和定理2.2.10知,存在 10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑,使 11kli i j j i j x x d λμ===+∑∑. (**)根据定理1.1.5,有 0,1,2,,T j c d j l ≥=, 且由1i x 为最优解知1,1,2,,T T i i c x c x i k ≥=.从而由上述两式容易用反证法证明:若(**)式中某个0i λ>,则i x 必为(LP )的最优解;若(**)式中某个0j μ>,则必有0T j c d =。

线性规划的方法论

线性规划的方法论

线性规划的方法论线性规划(Linear Programming, LP)是一种运筹学方法,用于解决线性约束条件下的优化问题。

它的目标是找到一个最优的决策方案,使得目标函数值最大化或最小化。

线性规划在经济、管理、工程、决策科学等领域得到广泛应用,是运筹学的重要分支之一。

线性规划的方法论主要包括六个基本步骤:问题建模、目标函数的确定、约束条件的建立、单纯形法求解、解的解释和灵敏度分析。

下面我将逐一介绍这些步骤。

1. 问题建模问题建模是线性规划的第一步,需要将实际问题转化为数学模型。

首先需要明确决策变量,即需要进行决策的变量。

然后确定目标函数,即需要最大化或最小化的函数。

最后建立约束条件,即限制决策变量取值的条件。

2. 目标函数的确定目标函数是衡量决策结果优劣的函数,可以是最大化利润、最小化成本等。

目标函数的形式可以是线性函数、多项式函数或指数函数等,但在线性规划中,目标函数通常是线性函数。

3. 约束条件的建立约束条件是限制决策变量取值的条件,它们可以是等式约束或不等式约束。

线性规划中的约束条件是由给定的问题决定的,比如资源约束、技术约束等。

约束条件的形式需要与目标函数形式匹配,即线性约束条件与线性目标函数相匹配。

4. 单纯形法求解单纯形法是一种求解线性规划问题的算法,它通过不断迭代来找到最优解。

单纯形法的基本思想是从可行解中找到一个改进的方向,然后沿该方向进行移动,直到找到最优解为止。

单纯形法的求解过程中,需要对角度表和单纯形表进行操作,通过选择基本变量和非基本变量进行迭代计算。

5. 解的解释线性规划求解得到的解需要进行解释和分析。

解的解释是对最优解的实际意义进行解释,包括各个决策变量的取值以及目标函数的值。

解的分析是对解进行灵敏度分析,分析最优解的变化情况对问题的影响。

6. 灵敏度分析灵敏度分析是对线性规划解进行分析,分析结果对问题的解释和应用。

灵敏度分析可以分为参数变化分析和解的变化分析两个部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
f ( X k ) 0
m
1
-5
1
0
0
0
1
0
k 目标函数及检验数 ZQ
-10 0
K k ZQ CQ Cik aiQ
i 1
14
武汉理工大学
能源与动力工程学院
0 0 由于Z Q 不全大于0,所以 X 不是最优解
(以检验数较小进行计算)
xi l min 0 k al 2 0 a i2
aij
k 1
aij
k
alQ
k a iQ k
i 1,2,...,l 1, l 1,...,m j 1,2,...,n
1 l min 1 7
L=1
0
1
1 12
8 7 1
用x2去替换第1个基本变量
15
武汉理工大学
能源与动力工程学院
基本变 量序号 i
基 本 变 量
基 本 向 量
Cik
-10
CQ -5
列向量 基本变量值
-10 0
0
0
P1 P2
1 2 17 168 1 2
P3 P4 P5 7
17 84
2 0
2
f ( X k ) 70
-14 0 70 0
k 目标函数及检验数 ZQ
K k ZQ CQ Cik aiQ
i 1
18
m
最优解x*=(2 6 0 3/14 0)T
武汉理工大学
能源与动力工程学院
单纯形方法的计算步骤及框图
(1)将约束条件变换成等式,形成m阶n维的线性规划问题,求得基本可行解. 0 0 0 0 0 0 T
5
换出:x1=0,
X2
x3,x4,x5,x6?
武汉理工大学
能源与动力工程学院
3 1 z 2 x1 3x2 2 x1 3 3 x6 9 2 x1 x6 4 4 x1 x6 0, z 9, x 0,3,6,2,16,0
1 T
三个关键问题:
(1)初始顶点(初始的基本可行解)如何确定? (2)怎样使最优搜索从一个顶点移到另一个顶点? (3)如何判断所找到的顶点是不是最优点?
2
武汉理工大学
能源与动力工程学院
例:求解线性规划问题 max z’=2x1+3x2 2x1+2x2≤12 x1+2x2 ≤8
解:化为标准型 2x1+2x2+x3
2)若约束条件均为“≥”,或等式约束的系数矩阵不存在m阶单位阵为子 矩阵的情况.这时需引入“人为变量”.
9
武汉理工大学
能源与动力工程学院
2)作初始单纯形表,确定初始基本可行解
c→
s
cBi xB bi b1 b2 … bm cn+1 xn+1 cn+2 xn+2
c1 c2 … c n
x1 a11 a21 … am1 x2 a12 a22 … am2 … … … … … xn a1n a1n … amn
x 2,3,2,0,8,0
2 4 5
T 3 T
x 0, x 0 x 4,2,0,0,0,4 min z 2 4 3 2 14 max z 14 14
'
6
武汉理工大学
能源与动力工程学院
x2 6 2x1+2x2=12 4x1=16
x 0,3,6,2,16,0 Q4
0 P5 0 1
1 P3 0 0 1 B 1 8
0 P4 1 0
8
武汉理工大学
能源与动力工程学院
§2.2单纯形法的计算步骤
1、化一般的线性规划为标准形式,构造一个初始可行基
K
输出X k 及f X K


a K
lQ
xl k
打印

k xik 1 xik l aiQ
i 1,2,...,l 1, l 1,...,m xik 1 l
k 1 k k alj alj / alQ k alj
7 12
1 2 3
x2 P2
7
5 7
1 0 0
0 1
0 0 1
x4 P4 0 x5 P5 0
1
f ( X k ) 70
m
-7 0
目标函数及检验数 Z k Q
0
0
70 0
0
K k ZQ CQ Cik aiQ
i 1
16
武汉理工大学
能源与动力工程学院
由于非基本变量所对应的列,还有检验数等于0的(第 一列),故说明还有一个顶点是最优解.所以还可以第 一列所对应的非基本变量x1去替换基本变量x5.
X
x1 , x2 ,..., xm , xm 1 ,..., xn
m


(2)对系数阵的每一列计算检验数:
Z
(k ) Q
k CQ Cik aiQ , Q 1,2,...,n
i 1
对于初始基本可行解k=0,若每一列的检验数全部大于等于零,则 X k 即 k 为最优解,迭代结束.若某个Q列的 Z ( k ) 0 且全部元素 aiQ , 0 Q 则此问题无解.
k (k ) (3)若某个Q列的 ZQ 0且某些元素 I 有 aiQ 0 ,则选定Q列所对 应的变量XQ作为替换的非基本变量,求新的基本可行解.
(4)再计算每一列的检验数,再判断,如此迭代直至找到最优解.
19
武汉理工大学
能源与动力工程学院
输入:初始基本可行解x(0)及相应的约束、方程组系数矩阵、目标函数系数阵C
1)若约束条件均为“≤”情况,则引入非负松弛变量xn+i,以形成一个m 阶单位阵(称为初始可行基).
n aij x j xn i b(i 1,2,...,m) j 1 x j 0( j 1,2,...,n) x 0(i 1,2,...,m) n i
1/4 (-1/4) 0 0 1 0
4
12
j2 c j z j 2
0 -2

x3 x1 x6 x2
0 4 4 2
0 -3
j3 c j z j 3
0
0
0
12
3/2
1/8
0
武汉理工大学
能源与动力工程学院
单纯形法例题
目标函数:f(x)=-5x1-10x2
x1 x2 x3 1 14 7 x1 x2 x4 1 约束方程: 7 12 x1 x2 x5 8 x1 , x2 .....x5 0

0,0,12,8,16,12
z=0 ?? 最优解?
T
初始基本可行解 x0代入目标函数 基变换
4
武汉理工大学
能源与动力工程学院
x3 12 2 x1 2 x2 x 8 x 2x 4 1 2 x1 x2 0 z 2 x1 3 x2 0 0 x5 16 4 x1 x6 12 4 x2
2)基变换 换入:将式中系数为负、且为最小的那个非基变量换入,作 为基变量。x2 基变量
x3 12 2 x2 x 8 2x 4 12 8 12 2 x2 min , , /, 3 x2 x6 4 2 2 x5 16 x6 12 4 x2
x1+2x2 s.t. 4x1 4x2
求初始基本可行解 = 12
+x4 +x5 =8 =16 +x6 =12
min z’= - 2x1- 3x2
s.t. 4x1 ≤16 4x2 ≤12
x1,x2≥0
2 1 A 4 0 2 2 0 4 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
P1x1+P2x2+P3x3+P4x4+P5x5=B
x1 x2 x3 1 14 7 x1 x2 x4 1 7 12 x1 x2 x5 8 x1 , x2 .....x5 0
1 P1 7 1
1 14

1 7 1 P2 12 1
cn+1
xn+1 1 0 0 0 0
cn+2
xn+2 0 1 0 0 0

cn+m
xn+m 0 0 0 1 0
… … … … … …
i
bi aik
1 2

0


j0 c j z j 0
cn+m xn+m
0 0 0 1 2 ... n
m
z j cBi aij
j0 c j z j 0
0 6
3

0
Ⅰ 0 -3
x4
x5 x2
2
16 3
[1]
4 0
0
0 1
0
0 0
1
0 0
0
1 0
-1/2
0 1/4
2
4 /
j1 c j z j 1
(-2)
0
0
0
0
3/4
11
武汉理工大学
能源与动力工程学院
c→
-2
bi x1
-3
x2
0
x3
0
17
相关文档
最新文档