数学阅读理解精彩试题

合集下载

数学试题阅读理解及答案

数学试题阅读理解及答案

数学试题阅读理解及答案
试题:
阅读下列材料,并回答以下问题。

材料一:
某工厂生产一批零件,原计划每天生产100个零件,预计30天完成。

实际生产过程中,由于技术改进,实际每天生产了120个零件。

问实
际用了多少天完成生产任务?
材料二:
小明和小华在公园里赛跑,小明每分钟跑120米,小华每分钟跑100米。

如果他们同时从同一起点出发,小明比小华多跑一圈(400米)后,再和小华同时到达终点。

问小明跑了多少分钟?
问题1:实际生产了多少天完成生产任务?
问题2:小明跑了多少分钟?
答案:
问题1:根据材料一,原计划生产零件总数为100个/天× 30天 = 3000个。

由于技术改进,实际每天生产120个零件,所以实际生产天
数为3000个÷ 120个/天 = 25天。

问题2:根据材料二,小明和小华的速度差为120米/分钟 - 100米/
分钟 = 20米/分钟。

小明比小华多跑400米,所以小明比小华多跑的
时间是400米÷ 20米/分钟 = 20分钟。

由于他们同时到达终点,所
以小明跑了20分钟 + 小华跑的时间。

小华跑的距离为20分钟×
100米/分钟 = 2000米,因此小华跑了2000米÷ 120米/分钟 =
16.67分钟(约等于16分钟40秒)。

所以小明跑了20分钟 + 16分
钟40秒 = 36分钟40秒(约等于37分钟)。

本题考查了基本的数学运算能力和阅读理解能力,通过分析材料中的数据和条件,可以得出问题的答案。

中考数学阅读题训练精选(2)

中考数学阅读题训练精选(2)

中考数学阅读题训练精选(2)1.数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律.譬如:数轴上点A、点B表示的数分别为a,b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.如图,数轴上点A表示的数为﹣2,点B表示的数为6(1)直接写出:线段AB的长度,线段AB的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+2|+|x﹣6|有最小值是,|x+2|﹣|x﹣6|有最大值是;(3)点C在数轴上对应的数为10,动点P从原点出发在数轴上运动,若存在某个位置,使得P A+PB=PC,则称点P是关于点A,B,C的“石室幸运点”,请问在数轴上是否存在“石室幸运点”?若存在,请直接写出所有“石室幸运点”.2.北师大版初中数学教科书七年级下册第126页告诉我们利用尺规作已知角的平分线的方法.请根据提供的材料完成以下问题:例2利用尺规,作∠AOB的平分线(图5﹣18).已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.做法:1.在OA和OB上分别截取OD,OE使OD=OE.2.分别以D,E为圆心,以大于的长为半径作弧,两弧在∠AOB内交于点C.3.作射线OC.OC就是∠AOB的平分线(图5﹣19)(1)连接EC,DC,可以说明△OCE≌△OCD的依据是(填序号).①ASA;②AAS;③SSS;④SAS.(2)求证:OC平分∠BOA.3.几何学的产生,源于人们对土地测量的需要,后来由实际问题抽象成为数学问题.初中数学常见的几何模型有很多,通过整理归纳,可以从这些基本模型中找到其所藻蕴含的规律.【提出问题】如图1,△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,△ADE绕点A旋转,连结BD、EC,小明通过探究得到∠ABD与∠BCE的大小存在某种数量关系,具体探究过程如下.【探究问题】小明先将上述问题“特值化”,如图1,令AB=1,AD=,∠ABD=100°,则可证明△ABD和△ACE相似,进而可求得∠BCE的度数.请你帮助小明完成解答过程.【解决问题】将问题“一般化”,如图2,在△ADE绕点A旋转过程中,∠ABD与∠BCE 满足的数量关系为.【拓展应用】如图3,过线段AB的端点B作射线BM⊥AB,Rt△ADE的直角顶点D在射线BM上运动,连结BE,若AB=4,=,则BE的最小值为.4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为6,点B表示的数为﹣4,点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度向右匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:A、B两点间的距离AB=,线段AB的中点C表示的数为;(2)求当t为何值时,PQ=2;(3)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请直接写出线段MN的长.5.【背景知识】数轴是初中数学的一个重要工具,如图①,若数轴上点A、点B表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为b﹣a.【问题情境】数轴上三点A,B,C表示的数分别为a,b,c,其中A在原点左侧,距原点4个单位,b是最大的负整数,C在原点右侧,且AC=9.如图②,动点M从A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,与此同时,过点N从点C出发,以每秒2个单位长度速度沿数轴向右匀速运动,一只电子狗Q从B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,设移动时向为t秒(t>0).【问题探究】(1)a=,b=,c=;(2)在运动过程中,4MN+aMQ的值不随t的变化而变化,请求出a的值;(3)如果在C处竖立一块挡板,当电子狗Q到达C时,被挡板弹回,以同样的速度向相反的方向运动.问:当t为何值时,电子狗Q到M,N的距离相等?并求出此时电子狗Q的位置.6.阅读理解:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m、k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2.(1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m、k的值;(2)已知在初中数学学习中,一个数的平方总是非负数,请问﹣x2+8x﹣17有最小值或者最大值吗?有的话,请说明是最小值还是最大值,并求出这个值,以及此时x的取值.7.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是人,补全统计图①;(2)图②中扇形C的圆心角度数为度;(3)若参加成果展示活动的学生共有2400人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.8.综合探究【背景知识】数轴是初中数学的一个重要⼯具,利⼯数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:如图①,若数轴上点A、点B表示的数分别为a,b (b>a),则线段AB的⼯(点A到点B的距离)可表示为b﹣a.请⼯上⼯材料中的知识解答下⼯的问题:【问题情境】如图②,一个点从数轴上的原点开始,先向左移动2个单位⼯度到达点A,再向右移动3个单位⼯度到达点B,然后再向右移动5个单位⼯度到达点C.(1)【问题探究】请在图②中表示出A、B、C三点的位置;(2)【问题探究】若点P从点A出发,以每秒1个单位⼯度的速度沿数轴向左匀速运动,同时点M、N从点B、点C分别以每秒2个单位⼯度、每秒3个单位⼯度速度沿数轴向右匀速运动.设移动时间为t秒(t>0).①A,B两点间的距离AB=,AC=;②若点D、E分别是线段AB,BC的中点,求线段DE的长;③⼯含t的代数式表示:t秒时,点P表示的数为,点M表示的数为,点N表示的数为.9.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为10,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:A、B两点间的距离AB=,线段AB的中点表示的数为;(2)当t为何值时,?(3)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.10.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律;若数轴上点A,点B表示的数分别为a,b,则A,B两点之间的距离为:AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】已知,点A、B、O在数轴上对应的数为a、b、0,且关于x的多项式﹣x3+8x2+ax2+24x ﹣2bx+3不含x2项和x的一次项,点M、N分别从O、B出发,同时向左匀速运动,M 的速度为1个单位长度每秒,N的速度为3个单位长度每秒,设运动的时间为t秒(t>0).【综合运用】(1)直接写出OA=;OB=;(2)①用含t的代数式表示:t秒后,点M表示的数为;点N表示的数为.②当t为何值时,恰好有AN=2AM?(3)若点P为线段AM的中点,Q为线段BN的中点,M、N在运动的过程中,PQ+MN 的长度会随着t的改变而改变,请直接写出当t满足什么条件时,PQ+MN有最小值,最小值是多少?11.图形变换是初中数学学习的重要内容,某兴趣学习小组的同学利用所学知识,进行了一系列的图形变换操作实践活动,让我们一起来体验他们的探究过程吧.(1)轴对称:将正方形纸片ABCD折叠,使边AD、AB都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1,求∠EAF的大小;(2)旋转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点H、G,连接GH,如图2,则线段BH、GH.DG之间存在的数量关系为,并证明你的结论;(3)计算:在图2中,连接正方形对角线BD,若∠GAH的两边AH、AG分别交对角线BD于点M、点N.如图3,若BM=3,DN=4,求正方形ABCD的面积.12.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB =|a﹣b|,若a>b,则可化简为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒2个单位的速度沿数轴向右匀速运动,点B以每秒3个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数;(2)用含t的式子填空:点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(3)按上述方式运动,A、B两点经过多少秒会相距5个单位长度.13.阅读下列材料:材料1:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数(整式)与一个真分数(式)的和(差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法.此法在处理分式或整除问题时颇为有效.如将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:设x+2=t,则x=t﹣2.∴原式==t﹣7+∴=x﹣5+材料2:配方法是初中数学思想方法中的一种重要的解题方法,配方法最终的目的就是配成完全平方式,利用完全平方式来求解,它的应用非常广泛,在解方程、求最值、证明等式、化简根式、因式分解等方面都经常用到.如:当a>0,b>0时,∵+=()2+()2=(﹣)2+2∴当=,即a=b时,+有最小值2.根据以上阅读材料回答下列问题:(1)将分式拆分成一个整式与一个分子为整数的分式的和的形式,则结果为;(2)已知分式的值为整数,求整数x的值;(3)当﹣1<x<1时,求代数式的最大值及此时x的值.14.安阳某初中数学小组在学习了“三角形外角和”后,就证明问题进行了探讨:已知:如图,∠4,∠5,∠6是△ABC的三个外角.求证:∠4+∠5+∠6=360°.(1)该小组的明明进行了如下的证明,请你补充完整:证法1:∵∠4是△ABC的一个外角,∴.同理,∠5=∠1+∠3.∠6=∠1+∠2.∴∠4+∠5+∠6=2(∠1+∠2+∠3).∵.∴∠4+∠5+∠6=2×180°=360°(2)事实上,还有另外一种证明方法,请你给该小组展示出来.15.平移和翻折是初中数学中两种重要的图形变化,阅读并回答下列问题:(一)平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(1)把笔尖放在数轴的原点处,先向左移动2个单位长度,再向右移动3个单位长度,这时笔尖的位置表示的数是;(2)一个机器人从数轴上表示﹣1的点出发,并在数轴上移动2次,每次移动3个单位后到达B点,则B点表示的数是;(3)数轴上点A表示的数为m.则点A向左移动n个单位长度所表示的数为;(二)翻折:将一个图形沿着某一条直线折叠的运动.(4)若折叠纸条,表示﹣2的点与表示1的点重合,则表示﹣4的点与表示的点重合;(5)若数轴上A、B两点之间的距离为8,点A在点B的左侧,A、B两点经折叠后重合,折痕与数轴相交于表示﹣2的点,则A点表示的数为;(6)在数轴上,点P表示的数为4,点Q表示的数为x,将点P、Q两点折叠后重合,折痕与数轴交于M点;将点P与点M折叠后重合,新的折痕与数轴交于N点,若此时点P与点N的距离为3,数x的值为.。

初中数学题阅读理解类练习

初中数学题阅读理解类练习

初中数学题阅读理解类1.【实践探索】某校数学综合实践活动课上利用三角形纸片进行拼图探究活动.(1)某小组用一幅三角板按如图①摆放,则图中∠1=;(2)某小组利用两块大小不同等腰直角三角板△ABC和△EBD按图②摆放,点A、C、E在一直线上,连接CD交BE于点F,经小组同学探索发现CD⊥AE,请你证明此结论;【拓展研究】(3)课后,某小组自制了两块三角形纸片△ABC和△DEF(如图③),其中∠A=∠D,AB=DE,∠C+∠F=180°,他们把两块三角形纸片的AB与DE重叠在一起(A与D重合,B与E重合),C、F在AB两侧,过点B作BM⊥AC,垂足为M(如图④),经实践小组探索发现,线段AC、CM、AF之间存在某种数量关系,请你探究此关系并加以证明.2.新定义:对非负数“四舍五入”到个位的值记为[x]即当n为非负整数时,若n-21≤x<n+21,则[x]=n;如:[0]= [0.48]=0,[0.64]=[1.493]=1,[2]=2,[3.5]=[4.12]=4试解决下列问题:(1)填空①[π]=________;②若[x]=3,则实x的取值范围为________;(2)在关于x、y的方程组⎩⎨⎧=++=+22312yxmyx中,若未知数x、y满足2725<+≤yx,求[m]的值(3)当[2x-1]=4时,若y=4x-9,求y的最小值;(4)求满足[x]= x23的所有非负实数x的值,请直接写出答案.13.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC ⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.4.(2015•黔西南州)求不等式0)3)(12(>+-xx的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧>+>-312xx或②⎩⎨⎧<+<-312xx.解①得21>x ;解②得3-<x.∴不等式的解集为21>x或3-<x.请你仿照上述方法解决下列问题:(1)求不等式0)1)(32(<+-xx的解集.(2)求不等式02131≥+-xx的解集.25.请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB=,PC=1.求∠BPC 度数的大小和等边三角形ABC 的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′P B是等边三角形,而△PP′A 又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=1500,而∠BPC=∠AP′B=150°.进而求出等边△ABC的边长为.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.6.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC 的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)375237.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断、是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若S△CME =1,求正方形ABCD的面积.8.(2020•北京)小云在学习过程中遇到一个函数y=|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x 0 1 2 3 …y 0 1 …结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.49.(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A 按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE =4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.5610.【教材呈现】下面是某数学教材中的部分内容例4:如图,在△ABC 中,D 是BC 的中点,过点C 画直线CE , 使CE ∥AB,交AD 的延长线于点E,求证:AD=ED. 证明:∵CE ∥AB (已知)∴∠ABD=∠ECD, ∠BAD=∠CED(两直线平行,内错角相等)在△ABD 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BD BD CED BAD ECD ABD∴△ABD ≌△ECD(AAS)∴AD=ED(全等三角形的对应边相等)【方法运用】在△ABC 中,AB=4,AC=2,点D 在边BC 上. (1)(2分)如图①,当点D 是BC 的中点时,AD 的取值范围是 ;(2) (6分)如图②,若BD:DC=1:2,求AD 的取值范围.【拓展提升】(4分)如图③,在△ABC 中,点D ,F 分别在边BC ,AB 上,线段AD ,CF 相交于点E ,且BD:DC=1:2,AE:ED=3:5,若△ACF 的面积为2,则△ABC 的面积为11.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是 ;(填序号) ①平行四边形; ②矩形; ③菱形; ④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.12.(2020•齐齐哈尔)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST 于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.713.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP 面积的最大值.14.已知,在△ABC中,∠BAC=900,∠ABC=900,D为直线BC上一动点(不与点B、C重合),以AD为边作正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时, BC,CD,CF三条线段之间的数量关系为;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请写出CF,BC,CD三条线段之间的关系,并证明;(3)如图③,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;求CF,BC,CD三条线段之间的关系.8参考答案1.2.93. 【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.10114.(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ② ⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分) ∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x<-2……………………………………………………(4分)∴原不等式的解集为x ≥3或x<-2…………………………………………(6分)5. 如图,将△BPC 绕点B 逆时针旋转90°, 得△BP ′A ,则△BPC ≌△BP ′A . ∴AP ′=PC =1,BP =BP ′=. 连结PP ′,在Rt △BP ′P 中, ∵ BP =BP ′=,∠PBP ′=90°, ∴ PP ′=2,∠BP ′P =45°. 在△AP ′P 中, AP ′=PC =1,PP ′=2,AP =,∵ 12 +22 =(5) 2 ,即AP ′2 +PP ′2 =AP 2 .∴ △AP ′P 是直角三角形,即∠AP ′P =90°. ∴∠AP ′B =∠AP ′P +∠BP ′P =135°. ∴ ∠BPC =∠AP ′B =135°.过点B 作BE ⊥AP ′交AP ′的延长线于点E . 则∠EP ′B =45°,∴ EP ′=BE =BP ′=1,∴AE =2.6.【分析】性质探究:如图1中,过点C 作CD ⊥AB 于D .解直角三角形求出AB (用AC 表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA =CB =m ,则AB =m ,构建方程求出m 即可解决问题.②如图2中,连接FH .求出FH ,利用三角形中位线定理解决问题即可. 类比拓展:利用等腰三角形的性质求出AB 与AC 的关系即可. 【解答】解:性质探究:如图1中,过点C 作CD ⊥AB 于D . ∵CA =CB ,∠ACB =120°,CD ⊥AB , ∴∠A =∠B =30°,AD =BD , ∴AB =2AD =2AC •cos30°=AC ,∴AB :AC =:1. 故答案为:1.理解运用:(1)设CA =CB =m ,则AB =m ,由题意2m +m =4+2,∴m =2,∴AC =CB =2,AB =2,∴AD =DB =,CD =AC •sin30°=1,∴S △ABC =•AB •CD =.故答案为.(2)如图2中,连接FH . ∵∠FGH =120°,EF =EG =EH , ∴∠EFG =∠EGF ,∠EHG =∠EGH ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.7.【分析】(1)连接DE,利用相似三角形证明,运用勾股定理求出AD 的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解;(3)①证明△CME∽△ABM,得,再运用勾股定理求出BE的长即可解决问题;②分别求出S△BMC和S△ABM即可求得正方形ABCD的面积.【解答】解:(1)连接DE,如图,∵点O是△ABC的重心,∴AD,BE是BC,AC边上的中线,∴D,E为BC,AC边上的中点,∴DE为△ABC的中位线,∴DE∥AB,DE=AB,∴△ODE∽△OAB,∴=,∵AB=2,BD=1,∠ADB=90°,∴AD=,OD=,∴,=;(2)由(1)可知,,是定值;点O到BC的距离和点A到BC的距离之比为1:3,则△OBC和△ABC的面积之比等于点O到BC的距离和点A到BC的距离之比,故=,是定值;(3)①∵四边形ABCD是正方形,∴CD∥AB,AB=BC=CD=4,∴△CME~△AMB,∴,12∵E为CD的中点,∴,∴,∴,∴,即;②∴S△CME=1,且,∴S△BMC=2,∵,∴,∴S△AMB=4,∴S△ABC=S△BMC+S△ABM=2+4=6,又S△ADC=S△ABC,∴S△ADC=6,∴正方形ABCD的面积为:6+6=12.【点评】本题是一道相似形综合题目,主要考查的是三角形重心的性质、全等三角形的判定与性质、勾股定理及相似三角形的判定与性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【分析】(1)利用一次函数或二次函数的性质解决问题即可.(2)利用描点法画出函数图象即可.(3)观察图象可知,x=﹣2时,m的值最大.【解答】解:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,观察图象可知,x=﹣2时,m的值最大,最大值m=×2×(4+2+1)=,故答案为【点评】本题考查二次函数与不等式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9【分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD =90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB 交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM =2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP=∠P AE=90°,连接EG,BD,由勾股定理可求出答案.【解答】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,13理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠P AE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【点评】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.10. (1)1<AD<3;(2) 2<AD<310;(3)711.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;14(3)如图,过点O作OE⊥BD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24,∴AC•BD=24,解得,AC=BD=4,又∵∠BCD=60°,∴∠DOE=60°,设半径为r,根据垂径定理可得:在△ODE中,OD=r,DE=,∴r===4,∴⊙O的半径为4.【点评】本题是一道圆的综合题,主要考查了平行四边形的性质、菱形的性质、矩形的性质、正方形的性质、新定义、圆周角定理、垂径定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用新定义解答问题.12.【分析】(1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM 垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;(2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;(3)由折叠的性质可得AO=A'O,AA'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;(4)先求出AT的范围,即可求解.【解答】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN﹣∠ABG=15°,故答案为:15°;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A'T>BT,∴AT>10﹣AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.【点评】本题是四边形综合题,考查了矩形的性质,菱形的判定,全等三角形的判定和性质,旋转的性质,等边三角形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.1513.【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.14.(1)证明:如图1,∵在△ABC中,∠BAC=90°,∠ABC=45°,∴∠ACB=45°,∴∠ACB=∠ABC,∴AB=AC.∵四边形ADEF为正方形,∴AD=DE=EF=AF,∠FAD=90°,∴∠BAC=∠FAD,∴∠BAC-∠DAC=∠FAD-∠DAC,∴∠BAD=∠CAF....(1)由等腰直角三角形和正方形的性质可以得出△ABD ≌△ACF ,就可以得出BD=CF,就可以得出结论;(2)如图2,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CF=BC+CD;(3)如图3,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CD=BC+CF.16。

七年级数学上学期阅读理解题(整合版)

七年级数学上学期阅读理解题(整合版)

七年级数学上学期阅读理解题1.阅读材料:规定一种新的运算:a c =b ad bc d-.例如:1214-23=-2.34××=(1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值.2.对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=3(35)123-⨯---=.(1)求(2)-⊙132的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n =(用含m ,n 的式子表示).3.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x)来表示.例如f (x)=x 2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x 2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x 2-3x+1,分别求出g(-1)和g(-2)值.(2)已知()14223--+=x x ax x h ,a h =)21(,求a 的值.(3)若g(x)=-2x 2-3x+1,h(x)=ax 3+x 2-x-10,当h(2)=0时,求g(a)的值。

4.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc-ad.例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)=;(2)若有理数对(-3,2x-1)★(1,x+1)=7,则x=;(3)当满足等式(-3,2x-1)★(k,x+k)=5+2k的x是整数时,求整数k的值.5.阅读下面计算1111+++133557911+⨯⨯⨯⨯L的过程,然后填空.解:∵1111=13213-⨯(),1111=35235-⨯(),…,1111=9112911-⨯(,∴1111+++ 133557911+⨯⨯⨯⨯L=111111111111 +++) 2132352572911 ---+-L()(((=111111111 ++ 2133557911 --+-+-L(=111 2111-(=511.以上方法为裂项求和法,请参考以上做法完成:(1)11+2446⨯⨯=;(2)当111613355713x++++=⨯⨯⨯L时,最后一项x=.6.阅读材料:我们知道,2)1(321+=++++n n n ,那么12+22+32+…+n 2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为n+n+n+…+n,即n 2.这样,该三角形数阵中共有2)1(+n n 个圆圈,所有圆圈中数的和为12+22+32+…+n 2.规律探究:将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)=,因此,12+22+32+…+n 2=.解决问题:根据以上发现,计算:10321103212222++++++++ 的结果为.7.阅读下面材料并完成填空,你能比较两个数20072008和20082007的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n 的大小(n≥1的整数),然后,从分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论。

小学生数学阅读理解练习题

小学生数学阅读理解练习题

小学生数学阅读理解练习题题目:小学生数学阅读理解练习题作为小学数学教育的重要组成部分,数学阅读理解在培养学生数学思维和解决实际问题能力方面起着重要作用。

本文将介绍一些适合小学生的数学阅读理解练习题,帮助他们提升数学能力。

1. 阅读理解题目一小明今天参加数学竞赛,他答对了比赛中的75%的题目,共答对15道题。

那么,这个竞赛一共有多少道题?解答:设比赛一共有x道题,则75%可以表示为75/100,即75/100 * x = 15。

通过简单运算可得,x = 20。

所以,这个竞赛一共有20道题。

2. 阅读理解题目二小明去水果店买苹果,他买了苹果的三分之二,共5个。

那么,水果店里一共有多少个苹果?解答:设水果店里一共有y个苹果,则三分之二可以表示为3/2,即3/2 * y = 5。

通过简单运算可得,y = 10。

所以,水果店里一共有10个苹果。

3. 阅读理解题目三小华和小红共有20元钱,他们一共买了8只笔,每只笔的价格相同。

如果小华付了10元,那么小红付了多少元?解答:设每只笔的价格为x元,则小红付的钱可以表示为20 - 10 = 10元。

由于小红和小华共买了8只笔,所以8 * x = 10。

通过简单运算可得,x = 1.25。

所以,小红付了1.25元。

通过以上三个数学阅读理解练习题,我们可以锻炼小学生的逻辑思维和计算能力。

这些题目通过日常生活中的场景,使学生能够更好地理解和应用数学知识。

通过这样的练习,小学生不仅可以提高他们的数学成绩,还可以培养他们解决实际问题的思维能力。

数学阅读理解题目的设置需要贴近小学生的实际生活,以便引发他们的兴趣和思考。

同时,解答过程也要注重启发学生思考,培养他们独立解决问题的能力。

除了上述提到的题目外,教师和家长还可以根据学生的实际情况设计更多的数学阅读理解练习题,以帮助他们在数学学习中取得更好的成绩。

注意,设计题目时要避免过于复杂或难度过高,要根据学生的年级和能力水平来设计相应的题目。

中考数学阅读理解型问题试题(附答案)

中考数学阅读理解型问题试题(附答案)

以下是查字典数学网为您推荐的中考数学阅读理解型问题试题(附答案),希望本篇文章对您学习有所帮助。

中考数学阅读理解型问题试题(附答案)21.(2016四川达州,21,8分)(8分)?问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为,面积为,则与的函数关系式为:﹥0),利用函数的图象或通过配方均可求得该函数的最大值.提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?分析问题若设该矩形的一边长为,周长为,则与的函数关系式为:( ﹥0),问题就转化为研究该函数的最大(小)值了.解决问题借鉴我们已有的研究函数的经验,探索函数( ﹥0)的最大(小)值.(1)实践操作:填写下表,并用描点法?画出函数 ( ﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当= 时,函数 ( ﹥0)有最值(填大或小),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数﹥0)的最大值,请你尝试通过配方求函数( ﹥0)的最大(小)值,以证明你的猜想. 〔提示:当 0时,〕解析:对于(1)按照画函数图象的列表、描点、连线三步骤进行即可;对于(2),由结合图表可知有最小值为4;对于(3),可按照提示,用配方法来求出。

答案:(1)..(1分).(3分)(2)1、小、4..(5分)?(3)证明:(7分)28.(2016江苏省淮安市,28,12分)阅读理解如题28-1图,△ABC中,沿BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称BAC是△ABC的好角.小丽展示了确定BAC是△ABC的好角的两种情形.情形一:如题28-2图,沿等腰三角形ABC顶角BAC的平分线AB1折叠,点B与点C重合;情形二:如题28-3图,沿△ABC的BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿B1A1C的平分线 A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,B=2C,经过两次折叠,BAC 是不是△ABC的好角? .(填:是或不是).(2)小丽经过三次折叠发现了BAC是△ABC的好角,请探究B与C(不妨设C)之间的等量关系.根据以上内容猜想:若经过n次折叠BAC是△ABC 的好角,则B与C(不妨设C)之问的等量关系为 .应用提升(3)小丽找到一个三角形,三个角分别为15,60,l05,发现60和l05的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【解析】(1)利用三角形外角的性质和折叠对称性即可解决;(2)根据第(1)问的结论继续探索;(3)利用好角的定义和三角形内角和列出方程解之.具体过程见以下解答.【答案】解: (1) 由折叠的性质知,AA1B1.因为AA1B1=A1B1C+C,而B=2C,所以A1B1C=C,就是说第二次折叠后A1B1C与C重合,因此BAC是△ABC的好角.(2)因为经过三次折叠BAC是△ABC的好角,所以第三次折叠的A2B2C=C.如图12-4所示.图12-4因为ABB1=AA1B1,AA1B1=A1B1C+C,又A1B1C=A1A2B2,A1A2B2=A2B2C+C,所以ABB1=A1B1C+A2B2C+C=3C.由上面的探索发现,若BAC 是△ABC的好角,折叠一次重合,有C;折叠二次重合,有B=2折叠三次重合,有B=3由此可猜想若经过n次折叠BAC是△ABC的好角,则B=nC.(3)因为最小角是4是△ABC的好角,根据好角定义,则可设另两角分别为4m,4mn(其中m、n都是正整数).由题意,得4m+4mn+4=180,所以m(n+1)=44.因为m、n都是正整数,所以m与n+1是44的整数因子,因此有:m=1,n+1=44;m=2,n+1=22;m=4,n+1=11;m=11,n+1=4;m=22,n+1=2.所以m=1,n=43;m=2,n=21;m=4,n=10;m=11,n=3;m=22,n=1.所以4m=4,4mn=172;4m=8,4mn=168;4m=16,4mn=160;4m=44,4mn=132;4m=88,4mn=88.所以该三角形的另外两个角的度数分别为:4,1728,16816,16044,13288,88.【点评】本题主要考查轴对称图形、等腰三角形、三角形形的内角和定理及因式分解等知识点的理解和掌握,本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.23.(2016湖北咸宁,23,10分)如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且, .理解与作图:(1)在图2、图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.【解析】(1)根据网格结构,作出相等的角得到反射四边形;(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后可得周长;图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,得知四边形EFGH的周长是定值;(3)证法一:延长GH交CB的延长线于点N,再利用角边角证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,从而得到MN=2BC,再证明GM=GN,过点G作GKBC于K,根据等腰三角形三线合一的性质求出MK= MN=8,再利用勾股定理求出GM的长度,然后可求出四边形EFGH的周长;证法二:利用角边角证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,再根据角的关系推出HEB,根据同位角相等,两直线平行可得HE∥GF,同理可证GH∥EF,所以四边形EFGH是平行四边形,过点G作GKBC于K,根据边的关系推出MK=BC,再利用勾股定理列式求出GM的长度,然后可求出四边形EFGH的周长.【答案】(1)作图如下: 2分(2)解:在图2中,,四边形EFGH的周长为 . 3分在图3中,, .四边形EFGH的周长为 . 4分猜想:矩形ABCD的反射四边形的周长为定值. 5分(3)如图4,证法一:延长GH交CB的延长线于点N.∵,,.而,Rt△FCE≌Rt△FCM., . 6分同理:, .. 7分∵,,. . 8分过点G作GKBC于K,则 . 9分.四边形EFGH的周长为 . 10分证法二:∵,, .而, Rt△FCE≌Rt△FCM., . 6分∵,,而, .HE∥GF. 同理:GH∥EF.四边形EFGH是平行四边形.. 而,Rt△FDG≌Rt△HBE. .过点G作GKBC于K,则.四边形EFGH 的周长为 .【点评】本题主要考查了应用与设计作图,全等三角形的判定与性质,勾股定理的应用,矩形的性质,读懂题意理解反射四边形EFGH特征是解题的关键.25.(2016贵州黔西南州,25,14分)问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得:y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为换根法.请用阅读材料提供的换根法求新方程(要求:把所求方程化成一般形式):(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数.(2)已知关于x的一元二次方程ax2+bx+c=0(a0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【解析】按照题目给出的范例,对于(1)的根相反,用y=-x作替换;对于(2)的根是倒数,用y=1x作替换,并且注意有不等于零的实数根的限制,要进行讨论.【答案】(1)设所求方程的根为y,则y=-x,所以x=-y.(2分)把x=-y 代入已知方程x2+x-2=0,得(-y)2+(-y)-2=0.(4分)化简,得:y2-y-2=0.(6分)(2)设所求方程的根为y,则y=1x,所以x=1y.(8分)把x=1y 代如方程ax2+bx+c=0得.a(1y)2+b1y+c=0,(10分)去分母,得,a+by+cy2=0.(12分)若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意.c0,故所求方程为cy2+by+a=0(c0).(14分)【点评】本题属于阅读理解题,读懂题意,理解题目讲述的方法的基础;在实际解题时,还要灵活运用题目提供的方法进行解题,实际上是数学中转化思想的运用.八、(本大题16分)26.(2016贵州黔西南州,26,16分)如图11,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0)抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴.(2)设点P为抛物线(x5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数.请你直接写出点P的坐标.(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出N的坐标;若不存在,请说明理由.【解析】(1)已知抛物线上三点,用待定系数法确定解析式;(2)四边形AOMP中,AO=4,OM=3,过A作x轴的平行线交抛物线于P点,这个P点符合要求四条边的长度为四个连续的正整数(3)使△NAC的面积最大,AC确定,需要N点离AC的距离最大,一种方法可以作平行于AC的直线,计算这条直线与抛物线只有一个交点时,这个交点即为N;另一种方法,过AC上任意一点作y轴的平行线交抛物线于N点,这样△NAC被分成两个三角形,建立函数解析式求最大值.【答案】(1)根据已知条件可设抛物线对应的函数解析式为y=a(x―1)(x―5),(1分)把点A(0,4)代入上式,得a=45.(2分)y=45(x―1)(x―5)=45x2―245x+4=―45(x―3)2―165.(3分)抛物线的对称轴是x=3.(4分)(2)点P的坐标为(6,4).(8分)(3)在直线AC下方的抛物线上存在点N,使△NAC的面积最大,由题意可设点N的坐标为(t,45t2―245t+4)(0如图,过点N作NG∥y 轴交AC于点G,连接AN、CN.由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=―45x+4.(10分)把x=t代入y=―45x+4得y=―45t+4,则G(t,―45t+4).(11分)此时NG=―45t+4―(45t2―245t+4)=―45t2+205t.(12分)S△NAC=12NGOC=12(-45t2+205t)5=―2t2+10t=―2(t-52)2+252.(13分)又∵0当t=52时,△CAN的面积最大,最大值为252 .(14分)t=52时,45 t2-245t+4=-3.(15分)点N的坐标为(52,-3).(16分)【点评】本题是一道二次函数、一次函数、三角形的综合题,其中第(3)问也是一道具有难度的存在性探究问题.本题主要考查二次函数、一次函数的图象与性质的应用.专项十阅读理解题19. (2016山东省临沂市,19,3分)读一读:式子1+2+3+4++100表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里是求和符号,通过以上材料的阅读,计算 = .【解析】式子1+2+3+4++100的结果是,即 = ;又∵,,,= + ++ =1- ,= = + ++ =1- = .【答案】【点评】本题是一道找规律的题目,要求学生的通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.此题重点除首位两项外,其余各项相互抵消的规律.23. (2016浙江省嘉兴市,23,12分)将△ABC绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得△AB C ,即如图①,BAB =, ,我们将这种变换记为.(1)如图①,对△ABC作变换得△AB C ,则 : =_______;直线BC与直线BC所夹的锐角为_______度;(2)如图② ,△ABC 中,BAC=30ACB=90 ,对△ABC作变换得△AB C ,使点B、C、在同一直线上,且四边形ABBC为矩形,求和n的值;(3)如图③ ,△ABC中,AB=AC,BAC=36 ,BC=1,对△ABC作变换得△ABC ,使点B、C、B在同一直线上,且四边形ABBC为平行四边形,求和n的值.【解析】(1) 由题意知, 为旋转角, n为位似比.由变换和相似三角形的面积比等于相似比的平方,得 : = 3, 直线BC与直线BC所夹的锐角为60(2)由已知条件得=CAC=BAC-BAC=60.由直角三角形中, 30锐角所对的直角边等于斜边的一半得n= =2.(3) 由已知条件得=CAC=ACB=72.再由两角对应相等,证得△ABC∽△BBA,由相似三角形的性质求得n= = .【答案】(1) 3;60.(2) ∵四边形ABBC是矩形,BAC=90.=CAC=BAC-BAC=90-30=60.在Rt△ABB中,ABB=90BAB=60,n= =2.(3) ∵四边形ABBC 是平行四边形,AC∥BB,又∵BAC=36=CAC=ACB=72CAB=ABB=BAC=36,而B,△ABC∽△BBA,AB2=CBBB=CB(BC+CB),而CB=AC=AB=BC, BC=1, AB2=1(1+AB)AB= ,∵AB0,n= = .【点评】本题是一道阅读理解题.命题者首先定义了一种变换,要求考生根据这种定义解决相关的问题. 读懂定义是解题的关键所在.本题所涉及的知识点有相似三角形的面积比等于相似比的平方,黄金比等.27.(2015江苏省无锡市,27,8)对于平面直角坐标系中的任意两点 ,我们把叫做两点间的直角距离,记作 .(1)已知O为坐标原点,动点满足 =1,请写出之间满足的关系式,并在所给的直角坐标系中出所有符合条件的点P所组成的图形;(2)设是一定点,是直线上的动点,我们把的最小值叫做到直线的直角距离,试求点M(2,1)到直线的直角距离。

七年级初中数学阅读理解专题训练

七年级初中数学阅读理解专题训练

七年级初中数学阅读理解专题训练本文档旨在提供一系列七年级初中数学阅读理解专题训练题,以帮助学生提高对数学问题的理解和解决能力。

题目一阅读下面的问题,并完成相关计算。

问题:小明有10支铅笔,小红有3支铅笔。

如果他们把铅笔都放在一起,那么总共有多少支铅笔?解答:小明有10支铅笔,小红有3支铅笔。

所以他们总共有10+3=13支铅笔。

题目二根据下面的信息,回答问题。

问题:一家商店正在举行打折活动,所有衣服的价格降低了30%。

如果一件衣服原价是120元,那么现在的价格是多少?解答:如果一件衣服原价是120元,那么降价后的价格为120 * (1-30%) = 120 * 0.7 = 84元。

题目三根据下面的图表,回答问题。

问题:以下图表表示了某班级学生的身高分布情况,共有32名学生。

请问身高在150-160cm之间的学生有多少人?解答:根据图表,身高在150-160cm之间的学生有12人。

题目四根据下面的信息,回答问题。

问题:一个长方形花坛的长是6米,宽是4米。

如果要在该花坛周围修建一圈围墙,请计算需要多少米的围墙木材。

解答:该长方形花坛的周长为2 * (6 + 4) = 20米。

因此,需要20米的围墙木材。

题目五根据下面的问题,回答问题。

问题:有一辆汽车从A市开往B市,全程480公里。

在一次加油站,它加满油后继续行驶。

如果这辆车每升汽油可以行驶12公里,那么加满一箱油需要多少升?解答:根据题目,这辆车每升汽油可以行驶12公里,全程为480公里。

所以加满一箱油需要480 / 12 = 40升。

以上是七年级初中数学阅读理解专题训练的一些例题,希望能帮助同学们提高数学解题能力。

祝大家学业进步!。

中考数学专题复习新定义阅读理解题(一)

中考数学专题复习新定义阅读理解题(一)
106();111();400();2015().
(2)在所有的四位数中,最大的“本位数”是,最小的“本位数”是.
(3)在所有三位数中,“本位数”一共有多少个?
4.阅读下列材料解决问题:
材料一:完全平方数是指可以写成某个整数的平方的数,即其平方根为整数的数.例如, 是一个完全平方数.
材料二:对一个四位数,我们可以记为 ,即 ,若一个四位数的千位数字与百位数字相同,十位与个位数字相同,记为 ,我们称之为和谐四位数.
4.(1)3;(2)证明见解析;(3)7744
【解析】
【分析】
(1)对12进行分解,即可得到n为3时,12n成为完全平方数的最小正整数;
(2)将 用整式表示出来,再对整式进行因式分解即可;
(3)由题意易知100x+y要被11整除,且 ,可得x+y=11,再对x、y逐一进行检验即可.
【详解】
解:(1)∵n是使12n成为完全平方数的最小正整数,
2.(1)0;25,(2)证明见详解;(3)满足条件s的最大值 .
【解析】
【分析】
(1)根据定义即可求出;
(2)对任意一个四位数n= ,m= 根据定义求 ,由 均为整数, 也为整数,可得对任意一个四位数n, 均为整数;
(3)由定义可得 = ,由 是一个完全平方数,满足条件s的最大值只要 最大即可,可求 最大=9,可得9b-11为平方数,9b-11=25,解方程即可.
12=2×2×3,
∴n=3.
(2)∵ ,
∴任意一个和谐四位数都是 的倍数.
(3)∵四位数 是一个完全平方数, 是一个完全平方数,
能被 整除,

能被 整除,而 ,
只有 ,经检验 ,
故这个四位数为 .

八年级数学阅读理解练习题

八年级数学阅读理解练习题

八年级数学阅读理解练习题1. 一家餐馆每天都会提供两种套餐供顾客选择。

今天,餐馆提供了A套餐和B套餐。

其中,A套餐的价格为12元,B套餐的价格为15元。

某顾客购买了5份A套餐和3份B套餐,总共花费了多少元?2. 玛丽每天骑自行车上学。

她发现自己上学所需的时间与她骑车的速度成反比。

如果她以10公里/小时的速度骑车,她需要20分钟到达学校。

那么,以15公里/小时的速度骑车,她到学校需要多长时间?3. 一块蛋糕被等分成了8份。

小明吃了其中的3份,小红吃了其中的1份。

还剩下多少份蛋糕?4. 某公司一批产品中有72个次品。

如果这批产品总数的20%是次品,那么这批产品的总数是多少?5. 一个矩形花坛的长是12米,宽是8米。

花坛的周长上围绕着一条边长相等的石子路,石子路的宽度为1米。

那么,石子路的面积是多少平方米?6. 黄先生在一个月内每天都步行同样的距离上班。

他发现自己每天步行花费的时间与他的步行速度成正比。

如果他以5公里/小时的速度步行,他需要30分钟到达办公室。

那么,以6公里/小时的速度步行,他需要多长时间?7. 一家超市每袋糖果的重量不完全相同。

今天,小明购买了2袋糖果。

第一袋重量为0.3千克,第二袋重量为0.5千克。

那么,两袋糖果的总重量是多少千克?8. 某图书馆的图书总量为15000本。

其中,小说类图书占总量的20%,其余为非小说类图书。

那么,非小说类图书的数量是多少本?9. 某班级有40名同学,其中男生占总人数的35%。

那么,女生的人数是多少?10. 甲、乙两个人开始进行一场马拉松比赛。

甲每小时的速度为10公里,乙每小时的速度为12公里。

如果他们同时起跑,那么他们何时能够相遇?注意:以上每题都可以使用计算器进行计算。

精彩纷呈的中考数学阅读理解题

精彩纷呈的中考数学阅读理解题
的 结论 .
三、 二次 函数 系数上的体 现 【 5 设二次函数 _ ) +如 +fn ) 例 】 厂 一口 ( (>O , 方程 _ z 一z 厂 ) —O的两个根 z , 满 足 0) ( 一 , ‘口 o6 0 ・Ⅱ 2 . > ,> , ‘ ≤ . ・

解 答 问题 : ( ) 述解 题 过 程 , 由原 方 程 得 到 方 程 ① 的 过 1上 在
程中 , 利用 法达 到 了解 方程 的 目的, 体现 了转化 的数学思想 ; () 2 请利用 以上 知识解方程 一 一6 . 一O 解 :1换元法. () ( ) z 一 那么原方程可化为 一 一6 , 2 设 。 , 一O
解 : ‘ 一日 一 , ( -盘c—6 . A)
。 .
. 一5 .z . . '. =± , . 故原方 程的解为 z 一 , 一

, 3一 z
, 4= z



. 口 ~ 6 ) ( 6 ) n 一 6 ) ( c ( 2 一 口 + ( , B) .。 口 + 6 . c一 ( C)
(√ ) 一26・ b ・ { =1即a — 2k一 一 √ { 一6 (b。 , z q)
≤ l .一 1 厂 ≤ 1 ,. ≤ ( ) . ‘
< < 上 2
.6一 】

必要性 : 对任意 ∈R都有 j ( )≤1 .,( ≥ , - J , ) z .


1 厂 1 ≥ 一 1 即 n ≥ 一1 '() , 一6 ,
() 2 充分性 :. > l口 —1 对任意 z∈[ ,] ’6 , ≥6 , 0 1
可 推 出 : 一6 6 —L ) ≥ 一z ~ 1 即 n 一 口 z ≥ ( z 一z ≥ , z 妇 一1 又 ‘6 1Ⅱ 2 6 ≥ ; . > ,≤ √ , ‘

初一数学阅读试题及答案

初一数学阅读试题及答案

初一数学阅读试题及答案一、选择题1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 163. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 都不是二、填空题4. 一个数的相反数是-8,这个数是________。

5. 如果一个数的立方是-27,那么这个数是________。

三、解答题6. 一个数列的前三项是2,5,8,这个数列是等差数列吗?如果是,请给出第四项的值。

四、应用题7. 某班有30名学生,其中男生人数是女生人数的2倍。

请问这个班有多少名男生?答案:一、选择题1. 答案:B(最小的正整数是1)2. 答案:C(一个数的平方是16,这个数可以是4或-4)3. 答案:C(一个数的绝对值是5,这个数可能是5或-5)二、填空题4. 答案:8(一个数的相反数是-8,那么这个数是8)5. 答案:-3(一个数的立方是-27,那么这个数是-3)三、解答题6. 答案:是等差数列,第四项的值为11。

(等差数列的公差为3,所以第四项为8+3=11)四、应用题7. 答案:这个班有20名男生。

(设女生人数为x,则男生人数为2x,x+2x=30,解得x=10,男生人数为2*10=20)结束语:通过本试题的练习,同学们可以更好地理解和掌握初一数学中的基本概念和运算规则,希望同学们能够认真复习,不断提高自己的数学能力。

初中数学专题复习阅读理解题型专题测试题(含答案)

初中数学专题复习阅读理解题型专题测试题(含答案)

阅读理解题型测试题(满分;100分;考试时间:100分钟)1、(9分)阅读下列题目的计算过程:)1)(1()1(2)1)(1(312132-+---+-=+---x x x x x x x x x ① =x-3-2(x-1)………………………② =x-3-2x+2…………………………③ =-x-1………………………………④(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号: 。

(2)错误的原因: 。

(3)本题目正确的结论为: 。

2、(9分)如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点, 且k k HDAHGC DG FC BF EB AE (====>0),阅读下段材料,然后回答后面问题:连结BD. ∵HD AHEB AE =, ∴EH ∥BD,∵GCDGFC BF =, ∴FG ∥BD ,∴FG ∥EH 。

(1)连结AC ,则EF 与GH 是否一定平行? 答: 。

(2)当k 值为 时,四边形EFGH 为平行四边形。

(3)在(2)的情形下,AC 与BD 只需满足 条件时,四边形EFGH 为矩形。

(4)在(2)的情形下,AC 与BD 只需满足 条件时,四边形EFGH 为菱形。

3、(9分)阅读下列内容:矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角为直角的特殊菱形,因此,我们可以利用矩形、菱形的性质来确定正方形的有关问题,请回答下列问题;(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系图中(如图);(2)要证明一个四边形是正方形,可以先证明四边形是矩形,再证明这个矩形的相等或者先证明四边形是菱形,再证明这个菱形有一个角是。

4、(9分)先阅读下列一段文字,然后解答问题。

一个批发与零售的文具店规定:凡一次购买铅笔301支以上(包括301支),可以按批发价付款,购买300支以下(包括300支),只能按零售价付款。

小学三年级数学阅读训练试题及答案

小学三年级数学阅读训练试题及答案

小学三年级数学阅读训练试题及答案
试题一:
Tom 有 12 个糖果,他把其中的一半给了他的朋友,还剩下几个糖果?
答案: Tom 剩下 6 个糖果。

试题二:
一共有 15 只小鸟,其中有 7 只是红色的,其余的是蓝色的。

请问红色小鸟和蓝色小鸟的数量之差是几只?
答案: 红色小鸟和蓝色小鸟的数量之差是 8 只。

试题三:
一本书有 56 页,小明已经读完了其中的三分之一。

还有几页小明没有读?
答案: 小明还有 37 页没有读。

试题四:
小华家里有24 颗苹果,他把其中的四分之一分给了他的妹妹。

小华还剩下几颗苹果?
答案: 小华还剩下 18 颗苹果。

试题五:
在果园里,小杰采摘了 36 个苹果,小强采摘了其中的四分之一,小强采摘了几个苹果?
答案: 小强采摘了 9 个苹果。

试题六:
班级有 30 个学生,其中 12 个是男生,其余是女生。

请问男生
和女生的人数之差是几个?
答案: 男生和女生的人数之差是 18 个。

以上是小学三年级数学阅读训练的试题及答案。

希望大家能够
顺利解答。

中考数学复习《阅读理解问题》经典题型及测试题(含答案)

中考数学复习《阅读理解问题》经典题型及测试题(含答案)

中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。

(完整版)中考数学阅读理解题试题练习题

(完整版)中考数学阅读理解题试题练习题

中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。

新部编版三年级下册数学下册课外阅读训练含答案

新部编版三年级下册数学下册课外阅读训练含答案

新部编版三年级下册数学下册课外阅读训
练含答案
本文档旨在为三年级下册学生提供数学课外阅读训练材料,并附带答案。

以下是数学下册的阅读训练内容及其答案。

阅读训练一
题目:
小明有5块苹果,他把苹果分给了他的两个朋友。

每个朋友分得几个苹果?小明自己还剩几个苹果?
答案:
每个朋友分得2个苹果,小明自己还剩1个苹果。

阅读训练二
题目:
小寒家有9个蛋糕,她要把蛋糕平均分给她的三个朋友。

每个人分得几个蛋糕?
答案:
每个人分得3个蛋糕。

阅读训练三
题目:
小明家里的桔子树结了12个桔子,他要把桔子平均分给他的四个邻居。

每个邻居分得几个桔子?
答案:
每个邻居分得3个桔子。

阅读训练四
题目:
小华买了15支铅笔,他要把铅笔平均分给他的五个同学。

每个同学分得几支铅笔?
答案:
每个同学分得3支铅笔。

阅读训练五
题目:
小明家里养了18只小鸟,他要把小鸟分给他的六个朋友。

每个朋友分得几只小鸟?
答案:
每个朋友分得3只小鸟。

以上是新部编版三年级下册数学下册课外阅读训练及其答案。

希望同学们通过这些训练能够更好地理解分数和平均数的概念。

祝愿大家学习进步!。

数学试题阅读理解及答案

数学试题阅读理解及答案

数学试题阅读理解及答案阅读下列数学材料,回答后面的问题。

材料:设函数f(x)在区间[a, b]上连续,且满足f(a) = f(b)。

证明:存在至少一个实数c,使得0 < c < 1且f'(c) = 0。

证明:假设f(x)在区间[a, b]上单调递增,则f'(x) ≥ 0对所有x∈ [a, b]成立。

由于f(a) = f(b),根据罗尔定理,存在至少一个实数c ∈ (a, b),使得f'(c) = 0。

若f(x)在区间[a, b]上单调递减,则同理可得f'(x) ≤ 0,同样根据罗尔定理,存在至少一个实数c ∈ (a, b),使得f'(c) = 0。

若f(x)在区间[a, b]上不单调,则存在x1, x2 ∈ [a, b],使得f(x1) < f(x2)且f(x1) > f(x2)。

不妨设x1 <x2,则根据介值定理,存在x3 ∈ (x1, x2),使得f(x3) = f(a) =f(b)。

此时,根据罗尔定理,存在至少一个实数c ∈ (x3, b),使得f'(c) = 0。

综上,无论f(x)在区间[a, b]上单调与否,总存在至少一个实数c,使得0 < c < 1且f'(c) = 0。

1. 根据材料,函数f(x)在区间[a, b]上满足什么条件?答案:f(a) = f(b)。

2. 罗尔定理在材料中是如何被应用的?答案:罗尔定理被用来证明在区间(a, b)内存在一个实数c,使得f'(c) = 0。

3. 材料中提到的介值定理是如何被使用的?答案:介值定理被用来证明在区间(x1, x2)内存在一个实数x3,使得f(x3) = f(a) = f(b)。

4. 材料中提到的函数f(x)在区间[a, b]上单调递增或递减的情况是如何考虑的?答案:材料中考虑了函数f(x)在区间[a, b]上单调递增或递减的情况,并分别根据这些情况应用罗尔定理证明了存在至少一个实数c,使得f'(c) = 0。

中考数学复习阅读理解专题试题

中考数学复习阅读理解专题试题

阅读理解专题阅读理解型问题一般文字表达较长,信息量较大,各种关系错综复杂,往往是先给一个材料,或者介绍一个新的知识点,或者给出针对某一种题目的解法,然后再给合条件出题.解决这类题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含的数学知识、结论,或者提醒的数学规律,或者暗示的解题方法,然后展开联想,如何从题目给定的材料获得新信息、新知识、新方法进展迁移,建模应用,解决题目中提出的问题.一、新定义型例1 对于实数a ,b ,定义运算“*〞:a*b =22()().a ab a b ab b a b ⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2=42-4×2=8.假设x 1,x 2是一元二次方程x 2-5x +6=0的两个根,那么x 1*x 2=_________________.分析:用公式法或者因式分解法求出方程的两个根,然后利用新定义解之.解:可以用公式法求出方程x 2-5x +6=0的两个根是2和3,可能是x 1=2,x 2=3,也可能是x 1=3,x 2=2,根据所给定义运算可知原题有两个答案3或者-3..此题容易无视讨论思想,会少一种情况.评注:此题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考察了学生观察问题,分析问题,解决问题的才能. 跟踪训练:1.假设定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,那么((2,3))g f -等于〔 〕A .〔2,-3〕B .〔-2,3〕C .〔2,3〕D .〔-2,-3〕2.对于实数x,我们规定【x 】表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,假设5104=⎥⎦⎤⎢⎣⎡+x ,那么x 的值可以是〔 〕 A .40 B .45 C .51 D .56二、类比型例2 阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:01-x 3x 2 01x 2-x <,>++等 .那么如何求出它们的解集呢?根据我们学过的有理数除法法那么可知,两数相除,同号得正,异号得负,其字母表达式为:〔1〕假设a >0 ,b >0 ,那么b a >0,假设a <0 ,b <0,那么b a>0; 〔2〕假设a >0 ,b <0 ,那么b a <0 ,假设a <0,b >0 ,那么ba<0.反之,〔1〕假设b a>0,那么⎩⎨⎧⎩⎨⎧;<,<或,>,>0b 0a 0b 0a 〔2〕假设ba<0 ,那么__________或者_____________. 根据上述规律,求不等式 ﹙A ﹚ ,>012x +-x ﹙B ﹚2x 2-3x+2021<2021的解集. 分析:对于〔2〕,根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后解一元一次不等式组即可.对于〔A 〕,据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;对于〔B 〕,将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可. 解:〔2〕假设<0,那么或者故答案为或者;由上述规律可知,不等式﹙A ﹚转化为或者所以x >2或者x <﹣1.不等式﹙B ﹚即为2x 2-3x+1<0.∵2x 2-3x+1=﹙x -1﹚〔2x-1〕,∴2x 2-3x+1<0可化为﹙x -1﹚〔2x-1〕<0.由上述规律可知①10230x x ->⎧⎨-<⎩或者②10230x x -<⎧⎨->⎩解不等式组①,无解, 解不等式组②,得21<x<1. ∴不等式2x 2-3x+2021<2021的解集为21<x<1. 评注:此题本质是一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题关键.例4 阅读材料:关于三角函数还有如下的公式:sin 〔α±β〕=sinαcosβ±cosαsinβ;tan 〔α±β〕=tan tan 1tan tan αβαβ± .利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan〔45°-30°〕=tan 45-tan 301tan 45tan 30︒︒+︒︒=1==根据以上阅读材料,请选择适当的公式解答下面问题 〔1〕计算:sin15°;〔2〕一铁塔是标志性建筑物之一〔图1〕,小草想用所学知识来测量该铁塔的高度,如图2,小草站在与塔底A 相距7米的C 处,测得塔顶的仰角为75°,小草的眼睛离地面的间隔DC ,〕.分析:〔1〕把15°化为〔45°-30°〕以后,再利用公式sin 〔α±β〕=sinαcosβ±cosαsinβ计算,即可求出sin15°的值;〔2〕先根据锐角三角函数的定义求出BE 的长,再根据AB=AE+BE 即可得出结论. 解:﹙1﹚sin15°=sin〔45°-30°〕=sin45°cos30°-232162622-==〔2〕在Rt △BDE 中,∵∠BED=90°,∠BDE=75°,DE=AC=7米, ∴BE=DEtan ∠BDE=DEtan75°. ∵tan75°=tan〔45°+30°〕=tan 45tan 301tan 45tan 30︒+︒-︒︒=31(33)(33)126333(33)(33)1+++==+--3∴BE=7〔333≈27.7〔米〕. 答:乌蒙铁塔的高度约为.评注:此题考察了特殊角的三角函数值和仰角的知识,此题难度中等,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.例5阅读材料:小艳在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=〔1+〕2.擅长考虑的小艳进展了以下探究:设a+b=〔m+n〕2〔其中a,b,m,n均为正整数〕,那么有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小艳就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小艳的方法探究并解决以下问题:〔1〕当a,b,m,n均为正整数时,假设a+b=,用含m,n的式子分别表示a,b,得:a= ,b= ;〔2〕利用所探究的结论,找一组正整数a,b,m,n填空: + =〔 + 〕2;〔3〕假设a+4=,且a,m,n均为正整数,求a的值.分析:〔1〕根据完全平方公式的运算法那么,即可得出a,b的表达式;〔2〕首先确定m,n的正整数值,然后根据〔1〕的结论即可求出a,b的值;〔3〕根据题意,4=2mn,首先确定m,n的值,通过分析m=2,n=1或者者m=1,n=2,然后即可确定a的值.解:〔1〕∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn.〔2〕设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4,2,1,1.〔3〕由题意,得a=m2+3n2,b=2mn.∵4=2mn,且m,n为正整数,∴m=2,n=1或者者m=1,n=2.∴a=22+3×12=7,或者a=12+3×22=13.评注:此题主要考察二次根式的混合运算,完全平方公式,关键在于纯熟运算完全平方公式和二次根式的运算法那么.例6 阅读:大家知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图3-①.观察图①可以得出,直线x=1与直线y=2x+1的交点P 的坐标(1,3)就是方程组⎩⎨⎧=+-=012,1y x x 的解,所以这个方程组的解为⎩⎨⎧==.3,1y x 在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧局部,如图3-②. y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的局部,如图3-③.(5) 图3答复以下问题:(1)在如图3-④所示直角坐标系中,用作图象的方法求出方程组⎩⎨⎧+-=-=22,2x y x 的解;(2)用阴影表示不等式组⎪⎩⎪⎨⎧≥+-≤-≥0,22,2y x y x 所围成的区域.分析:通过阅读材料可知,要解决第(1)小题,只要画出函数x=-2和y=-2x+2的图象,找出它们的交点坐标即可;第(2)小题,该不等式组表示的区域就是直线x=-2及其右侧的局部,直线y=-2x+2及其下方的局部和y=0及其上方的局部所围成的公一共区域.解:〔1〕如图3-⑤所示,在坐标系中分别作出直线x=-2和直线y=-2x+2,观察图象可知,这两条直线的交点是P(-2,6). 所以⎩⎨⎧=-=6,2y x 是方程组⎩⎨⎧+-=-=22,2x y x 的解. 〔2〕如图3-⑤所示.评注:此题给出了一个全新的知识情景,通过阅读材料,可知材料中给出一种解决问题的方法,即方程组的解就是两个函数图象的交点坐标;不等式或者不等式组的解集可以用坐标系中图形区域直观地表示出来,不仅要掌握这种方法,还能在原解答的根底上,用这种方法解决类似的问题.解答这类问题的关键是弄清解题原理,详细分析解题思路,梳理前后的因果关系以及每一步变形的理论根据,然后给出问题的解答.通过该题的解答,我们理解了用函数的图象来解方程组或者不等式组,是解方程组或者不等式组的一种特殊方法. 跟踪训练:3.先阅读理解下面的例题,再按要求解答以下问题:解一元二次不等式x 2-4>0. 解:不等式x 2-4>0可化为 〔x+2〕〔x-2〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得 ①2020x x +>⎧⎨->⎩②2020x x +<⎧⎨-<⎩解不等式组①,得x >2,解不等式组②,得x <-2.∴〔x+2〕〔x-2〕>0的解集为x >2或者x <-2,即一元二次不等式x 2-4>0的解集为x >2或者x <-2.〔1〕一元二次不等式x 2-16>0的解集为 ; 〔2〕分式不等式103x x ->-的解集为 ;材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为23326A =⨯=.一般地,从n 个不同的元素中选取m 个元素的排列数记作mn A .(1)(2)(3)(1)m n A n n n n n m =---⋅⋅⋅-+ 〔m ≤n 〕.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个不同的元素中选取2个元素的组合,组合数为2332321C ⨯==⨯. 例:从6个不同的元素选3个元素的组合数为3665420321C ⨯⨯==⨯⨯.阅读后答复以下问题:〔1〕从5张不同的卡片中选出3张排成一列,有几种不同的排法? 〔2〕从某个学习小组8人中选取3人参加活动,有多少种不同的选法? 答案:1. 解:由题意,得f(2,-3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),应选B . 2 .C3.解:〔1〕不等式x 2-16>0可化为 〔x+4〕〔x-4〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得①4040x x +>⎧⎨->⎩或者②4040x x +<⎧⎨-<⎩解不等式组①,得x>4,解不等式组②,得x<-4.∴〔x+4〕〔x-4〕>0的解集为x>4或者x<-4,即一元二次不等式x2-16>0的解集为x>4或者x<-4.〔2〕∵13xx->-,∴1030xx->⎧⎨->⎩或者1030xx-<⎧⎨-<⎩解得x>3或者x<1.4.解:〔1〕3554360A=⨯⨯=;〔2〕3887656 321C⨯⨯==⨯⨯.励志赠言经典语录精选句;挥动**,放飞梦想。

六年级我超级喜欢的趣味数学阅读测试题及答案

六年级我超级喜欢的趣味数学阅读测试题及答案

六年级我超级喜欢的趣味数学阅读测试题及答案1甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款9600×(1-40%)=5760(元)5760÷2+120=3000(元)3000÷(1-40%)=5000(元)2小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?4*1/6=2/3 4-2/3=3又1/3(份)3+2/3=3又2/3(份)3*2=6(个)4*6=24(个)3搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?60 ×2÷(6+ 5+ 4)= 8(小时)(60- 6×8)÷4= 3(小时)(60- 5×8)÷4= 5(小时)4一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?5/6-1/3=1/2 1/2÷8=1/16,1/16×4=1/4 1/3-1/4=1/12 [1/12-1/72×3]/2=1/48 1/16-1/72-1/48=1/36 [1-5/6]÷1/36=6天答:还需要6天5股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元) 0.1386+0.2772=0.415813.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元) 答:老王卖出这种股票一共赚了3.3063元.6一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人?解: 设需要增加x人(40+x)(15-3)=40*15 x=10答:所以需要增加10了7仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学阅读理解题1 例1 将纯循环小数化成分数0.3化成分数.解:设x =0.3=0.333333……,则10x =3.333333……, 两式相减,9x =3,所以x =13.例2 将混循环小数化成分数0.13化成分数. 解:设x =0.13=0.1333333……,则10x =1.333333……,100x =13.333333……, 两式相减,100x -10x =12, 即90x =12,所以x =122=9015. 我们还可以总结出现下面的规律:⑴ 把纯循环小数化分数时,这个分数的分子是一个循环节表示的数,分母各位上的数都是9,9的个数与循环节的位数相同,最后再约分;⑵ 把混循环小数化分数时,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的头几位数是9,末几位是0,9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同.2定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2013= . 解:根据差倒数定义可得:2111311413a a ===-+, 321143114a a ===--431111143a a ===---.3 若分式b a 满足11b a a =+,则称11a +是b a 的 “带分式”,记作《11a 》.(1)分式1x x+的“带分式”是_______________________.(2)计算:《111x -》221xx --4 人们经常利用图形的规律来计算一些数的和. 如在边长为1的网格图1中,从左下角开始,相邻的黑折线围成的面积分别是1,3,5,7,9,11,13,15,17,它们有下面的规律:1+3=22 ; 1+3+5=32 ; 1+3+5+7=42 ; 1+3+5+7+9=52 ;……(1)请你按照上述规律,计算1+3+5+7+9+11+13的值,并在图1中画出能表示该算式的图形; (2)请你按照上述规律,计算第n 条黑折线与第1n -条黑折线所围成的图形面积;(3)请你在边长为1的网格图21+8=32 ; 1+8+16=52 ; 1+8+16+24=72 ;1+8+16+24+32=92 .答案:(1)1+3+5+7+9+11+13=72. 算式表示的意义如图(1).(2)第n 条黑折线与第1n -条黑折线所围成的图形面积为21n -. (3)算式表示的意义如图(2)、(3)等.1579(1) (2) (3)5 类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+(2-)=1.若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”;“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,. 解决问题: (1)计算:{3,1}+{1,-2};(2)①动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A ,再按照“平移量”{1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量”{3,1}平移,最后的位置还是点B 吗? 在图1中画出四边形OABC 。

②证明四边形OABC 是平行四边形。

(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头 Q (5,5),最后回到出发点O . 请用“平移量”加法算式表示它的航行过程.解:(本小题满分5分)(1){3,1}+{1,2}={4,3}.…………1分(2)①画图 …………2分 最后的位置仍是B . …………3分②由①知,A (3,1),B(4,3),C (1,2)∴OC=AB =2221+=5,OA=BC =2213+=10, ∴四边形OABC 是平行四边形. …………4分 (3){2,3}+{3,2}+{-5,-5}={0, 0}. …………5分6 法国的“小九九”从“一一得一” 到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。

右面两个图框是用法国“小九九”计算7×8和8×9的两个示例。

若用法国“小九九”计算7×9,左右手依次伸出手指的个数是( )图1A、2,3B、3,3C、2,4D、3,4分析:根据示例得知伸出手指的个数应该是原数字减5,即可得出答案。

选C点拨:此题基于每个同学都知道的“小九九”的基础上,介绍了一种新的方法,令人耳目一新.7 在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c,,,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号1xy+=;当明码对应的序号x为偶数时,密码对应的序号13xy=+.按上述规定,将明码“love”译成密码是()A.gawq B.shxc C.sdri D.love分析:求解本题的关键是要弄清楚明码对应的序号x为奇数还是偶数,这取决于选用对应的函数关系式,从而才能正确求解.答案:选择B点拨:以密码学为背景,实际上用到了函数一一对应思想.设计意图:引导学生认识到这是一道跟函数紧密联系的问题,也就是说x与y是一一对应的,如果有时间,不妨让学生做一个游戏,利用这张表,破译密码“wqatf“.类似的,可以让学生互相出题,再进一步思考,明码和密码不变的字母有哪些?考查学生对函数知识的灵活运用.8利用图形可以计算正整数的乘法,请根据以下四个算图所示规律在右图中画出232312⨯的算图(标出相应的数字和曲线) .9阅读以下材料并填空。

平面上有n 个点(n ≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线? ( 1 )分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线;。

(2)归纳:考察点的个数n 和可连成直线的条数S n ,发现(表一):(3)推理:平面上有n 个点,两点确定一条直线,取第一个点A 有n 种取法,取第二个点B 有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 与BA 是同一条直线,故应除以2,既S n =2)1(-n n (4)结论:S n =2)1(-n n .试探究以下问题:平面上有n 个点( n ≥3),任意三点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形? (1)分析: 当有3个点时,可作__________个三角形;当有4个点时,可作__________个三角形;当有5个点时,可作__________个三角形;(2)归纳:考察点的个数和可作出三角形的个数S n 发现(表二): (3)推理:________________________ ; (4)结论:_______________________. 10 先阅读下列材料,然后解答问题:如果一个正整数能表示为两个连续偶数的平分差,那么称这个正整数为“神秘数”.表一表二如:22440=- 221242=- 222064=-, 因此4,12,20都是“神秘数”(1)28和2 012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么? (3)两个连续奇数的平方数(取正数)是神秘数吗?为什么?11 读一读,想一想,做一做国际象棋、中国象棋和围棋号称世界三大棋种. 国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q ”能控制图中虚线所经过的每一个小方格.①在如图乙的小方格棋盘中有一“皇后Q ”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q ”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q ”,使这四个“皇后Q ”之间互不受对方控制(在图丙中的某四个小方格中标出字母Q 即可).分析:本题的叙述稍复杂,但只要抓住其中的关键点,把数学要素抽象出来,最终化为点的坐标的问题.答案:① (1,1) ,(3,1) ,(4,2) ,(4,4). ②设计意图:结合引入,让学生联想自己生活的经验,对研究策略选择问题产生兴趣. 12阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m 种不同的方法,在第二类方案中有n 种不同的方法.那么甲行乙3 丙丙完成这件事共有N = m + n 种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m 种不同的方法,做第二步有n 种不同的方法.那么完成这件事共有N =m×n 种不同的方法,这就是分步乘法计数原理.”如完成沿图1-1所示的街道从A 点出发向B 点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A 点出发到某些交叉点的走法数已在图1-2填出.(1)根据以上原理和图1-2的提示,算出从A 出发到达其余交叉点的走法数,将数字填入图1-2的空圆中,并回答从A 点出发到B 点的走法共有多少种?(2)运用适当的原理和方法算出从A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种?(3)现由于交叉点C 道路施工,禁止通行.求如任选一种走法,从A 点出发能顺利开车到达B 点(无返回)概率是多少?分析:利用图上所给示例,再结合题目叙述,可以顺利求出第一问,第二问需要学生仔细分析,找出适当方法解决问题.答案: (1)从A 点到B 点的走法共有35种.(2)从A 点到B 点但不经过C 点的走法数为35-18=17种.(3)P(顺利开车到达B 点)= .点拨:将抽象的问题具体化是一种很好的思维方式,做完题后学生会有所收获.设计意图:这是一道很好的体现“策略选择”的类型题,而题目的本身也是在教学生如何进行策略选择,这对于学生以后的学习生活都会有帮助.11 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着密切的联系,在一定条件下,数和形之间可以相互转化。

相关文档
最新文档