高考数学模拟复习试卷试题模拟卷1221 2

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷

【考情解读】

1.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.

【重点知识梳理】

1.实际问题中的常用角

(1)仰角和俯角

在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在

水平视线下方叫俯角(如图1).

(2)方位角

从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).

(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.

(4)坡度:坡面与水平面所成的二面角的正切值.

【高频考点突破】

考点一考查测量距离

例1、如图所示,有两座建筑物AB和CD都在河的对岸(不知道它们的高度,且不能到达对

岸),某人想测量两座建筑物尖顶A、C之间的距离,但只有卷尺和测量仪两种工具.若此人在地面

上选一条基线EF,用卷尺测得EF的长度为a,并用测角仪测量了一些角度:∠AEF=α,∠AFE=β,

∠CEF=θ,∠CFE=φ,∠AEC=γ.请你用文字和公式写出计算A、C之间距离的步骤和结果.

【方法技巧】求距离问题时要注意

(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解;

(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.

【变式探究】

隔河看两目标A与B,但不能到达,在岸边选取相距 3 km的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.

考点二考查高度问题

例2、如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)()

A.2.7 mB.17.3 m

C.37.3 m D.373 m

【答案】C

【方法技巧】求解高度问题首先应分清

(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内视线与水平线的夹角;

(2)准确理解题意,分清已知条件与所求,画出示意图;

(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.

【变式探究】

如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A 的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是

________米.

【答案】106

考点三考查方位角

例3、如图,我国的海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其东北方向与它相距16海里的B处里一外国船只,且D岛位于海监船正东142海里处.

(1)求此时该外国船只与D岛的距离;

(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方向航行.为了将该船拦截在离D岛12海里处,不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:sin 36°52′≈0.6,sin 53°08′≈0.8)

【方法技巧】解决方位角问题其关键是弄清方位角概念.结合图形恰当选择正、余弦定理解三角形,同时注意平面图形的几何性质的应用.

【变式探究】如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m km后在B处测量该岛的方位角为北偏东β角,已知该岛周围n km范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件________时,该船没有触礁危险.

【答案】mcos αcos β>nsin(α-β)

考点四考查函数思想在解三角形中的应用

例4、如图所示,一辆汽车从O 点出发沿一条直线公路以50公里/小时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点O 点的距离为5公里、距离公路线的垂直距离为3公里的M 点的地方有一个人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少公里?

【方法技巧】函数思想在解三角形中常与余弦定理应用及函数最值求法相综合,此类问题综合性较强,能力要求较高,要求考生要有一定的分析问题解决问题的能力.

解答本题利用了函数思想,求解时把速度表示为时间的函数,利用函数最值求法完成解答,注意函数中以1

t 为整体构造二次函数,求最值.

【变式探究】如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面3

2米的C 处看此树,则该人离此树________米时,看A ,B 的视角最大.

【答案】6 【真题感悟】

【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.

【答案】1006.

.【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =;

(II) 若3

sin sin cos 4

C A B -=

,且B 为钝角,求,,A B C . 【答案】(I )略;(II)30,120,30.A B C ===

【高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与

(cos ,sin )n A B =平行.

(I)求A ; (II)若7,2a b =

=求ABC ∆的面积.

【答案】(I)3

A π

=

;(II)

33

.

相关文档
最新文档