无损检测常见的焊接缺陷
无损检测射线常见缺陷图集及分析RT射线检测部分
夹 纸 痕 迹
1、它们的表面现象是什么? 夹纸痕迹的表征为一块低密度区域,并几乎覆盖整张胶片。 2、它们产生的原因是什么? 如果胶片和铅箔增感屏之间存在一张纸,并产生了投影,则会出 现夹纸痕迹。 3、这些现象何时可能发生? 如果没有去掉衬纸,则会发生这种情况。 4、如何检测夹纸痕迹? 只需在有衬纸或无衬纸两种情况下进行曝光检测。 5、如何可以避免它们? 确保在曝光前去掉全部衬纸。
折 痕 曝 光 前
1、折痕的表面现象是什么? 折痕(曝光前)的表征为白月牙状显示,其密度低于邻近的胶片区域(黑度较低)。 2、它们产生的原因是什么? 曝光前弯曲胶片用力过大或过猛都会导致这种类型的折痕。 3、这些现象何时可能发生? 通常出现在从包装盒取出胶片或在曝光前装入暗袋时处理不当的情况下。 4、如何检验曝光前的折痕? 有意识地将某些胶片卷曲或扭折,使其曝光,然后按正常方法冲洗。检验胶片,这时您可 能会在胶片处理不当的地方风到一些颜色较淡的折痕。 5、如何可以避免它们? 严格遵守暗室操作规程,始终小心处理胶片,特别避免手指对胶片施以任何类型的压力。
一、常见缺陷及示意图
二、其他几种缺陷 三、常见伪缺陷
一、常见缺陷
1、圆形缺陷 定义:长宽比小于等于3的非裂纹、未焊透和未熔合缺陷。 圆形缺陷包括气孔、块状夹渣、夹钨等缺陷。气孔
气孔的成像:呈暗色斑点,中心黑度较大,边缘较浅平滑过渡,轮廓较清晰。 夹渣(非金属)的成像:呈暗色斑点,黑度分布无规律,轮廓不圆滑,小点 状夹渣轮廓较不清晰。 夹钨(金属夹渣)成像:呈亮点,轮廓清晰。
未融合
边缘未融合
注意:砂轮片磨伤痕迹(不是未融合)
5、裂纹
定义:裂纹是指材料局部断裂形成的缺陷。 影像特征:底片上裂纹和典型影像是轮廓分明的黑线或黑丝。其细节 特征包括:黑线或黑丝上有微小的锯齿,有分叉,粗细和黑度有时有 变化,有些裂纹影像呈较粗的黑线与较细的黑丝相互缠绕状;线的端 部尖细,端头前方有时有丝状阴影延伸。
《常见焊缺陷》课件
对焊缝进行机械加工,以去除不合格部分。
补焊
对存在的缺陷进行补充焊接,以消除缺陷。
热处理
对焊缝进行热处理,以改善其力学性能和消 除焊接残余应力。
05
案例分析
案例一:某机械零件的焊接缺陷分析
总结词:机械零件焊接缺陷 总结词:预防措施 总结词:修复方法
详细描述:该案例介绍了某机械零件在焊接过程中出现 的缺陷,如气孔、夹渣、未熔合等,并对其产生的原因 进行了深入分析,如焊接参数不当、操作不规范等。
详细描述
通过建立完善的焊接质量管理体系,制定合理的焊接工艺规范和质量控制标准,加强焊 接过程的监督和检测,可以有效地减少焊接缺陷的产生。同时,采用先进的无损检测技
术,如X射线检测、超声波检测等,可以及时发现和消除焊接缺陷,提高焊接质量。
04
焊接缺陷的检测与修复方法
焊接缺陷的检测方法
外观检测
通过肉眼或使用放大镜观察焊 缝表面,检查是否存在裂纹、
在此添加您的文本16字
总结词:加固措施
在此添加您的文本16字
总结词:修复技术
在此添加您的文本16字
详细描述:对于无法修复的缺陷,该案例采取了各种加固 措施,如增加支撑结构、粘贴钢板等,以提高结构的稳定 性和安全性。
THANKS
感谢观看
气孔与夹渣
气孔和夹渣是焊接过程中常见的缺陷,它们会影响焊接接头的质量。
气孔是由于焊接过程中熔池内的气体在金属冷却过程中未能及时逸出,残留在焊缝内部形成的孔洞。夹渣则是由于焊接过程 中熔池内存在杂质,在金属冷却过程中未能完全熔化或排除,残留在焊缝中的杂质颗粒。气孔和夹渣的存在会降低焊接接头 的致密度和强度。
咬边与烧穿
咬边和烧穿是焊接过程中常见的缺陷 ,它们会导致焊接接头的强度降低。
电力行业无损检测基础知识
无损检测基础知识一.无损检测的定义、方法及目的二.焊接接头的缺陷及防止措施三.焊接接头射线检测质量分级四.焊接缺陷在底片上的形貌(一)无损检测的定义、方法和目的1.无损检测是在不损坏和不破坏材料及设备的情况下,对它们进行检测的一种方法。
2.无损检测的方法主要有:射线探伤、超声波探伤、磁粉探伤、渗透探伤等。
3.无损检测的目的确保工件或设备的质量,保证设备的安全运行。
(二)焊接接头的缺陷及防止措施1.缺陷的分类焊接接头缺陷类型很多,按在接头中的位置可分为外部缺陷和内部缺陷两大类。
1)外部缺陷位于接头的表面,用肉眼就可看到,如咬边、焊瘤、弧坑、表面气孔和裂纹等。
2)内部缺陷位于接头内部,必须通过各种无损检测方法才能发现。
内部缺陷有未焊透、未熔合、夹渣、气孔、裂纹等。
2.内部缺陷产生的原因及防止措施(一)未焊透----焊接时接头根部未完全融透的现象叫未焊透。
未焊透缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险缺陷,这类缺陷一般是不允许存在的。
产生的原因:坡口钝边间隙太小,焊接电流太小或运条速度过快,坡口角度小,运条角度不对以及电弧偏吹等。
防止措施:合理选用坡口型式、对口间隙和采用正确的焊接工艺。
(二)未熔合----熔焊时,焊道于母材之间或焊道之间未完全熔化结合的部分,点焊时母材与母材之间未完全熔化结合的部分。
产生的原因:坡口不干净,焊速太快,电流过小或过大,焊条角度不对,电弧偏吹等。
预防措施:正确选用坡口和焊接电流,坡口清理干净,正确操作防止焊偏等。
(三)夹渣---是指焊后残留在焊缝中的熔渣、金属氧化物夹杂等。
夹钨---是指钨极局部气体保护焊时由于钨极局部熔化而坠入熔池留在焊缝的钨粒。
夹渣是焊缝常见的缺陷,其形状有条状和点状,外形不规则。
产生的原因:焊接电流太小,速度过快,熔渣来不及浮起,焊接坡口和各层焊缝清理不干净,基本金属和焊接材料化学成分不当,含硫、磷量较多等。
常见焊接缺陷及焊接质量检验资料
02
不同的焊接方法和应用领域有不同的质量检验标准,应选择适
用的标准进行检验。
焊接质量检验标准应定期更新,以适应技术发展和提高质量要
03
求。
焊接质量检验记录
焊接质量检验记录是对焊接质量进行跟踪和追溯的重 要手段,应详细记录检验时间、检验人员、检验方法、
检验结果等信息。
焊接质量检验记录应保持真实、完整、准确,以便对 焊接质量问题进行分析和改进。
05
结论
焊接缺陷对焊接质量的影响
01
焊接缺陷如气孔、夹渣、未熔合等会导致焊接接头的强度、塑 性和韧性下降,影响焊接结构的承载能力和使用寿命。
02
焊接缺陷会导致焊接接头的疲劳强度降低,增加疲劳断裂 的风险。
03
焊接缺陷会影响焊接结构的耐腐蚀性能,降低其耐腐蚀性。
焊接质量检验的重要性和作用
焊接质量检验是确保焊接结构安全可靠的重要手段,能够及时发现和消除 焊接缺陷,防止因焊接缺陷导致的安全事故。
焊接工艺评定
焊接工艺评定是确保焊接质量的重要环节,通 过对焊接工艺参数、焊接材料、焊接方法等进 行评估,确定焊接工艺的可行性和可靠性。
焊接工艺评定应遵循相关标准和规范,确保评 定的科学性和准确性。
焊接工艺评定结果应记录在评定报告中,并作 为后续焊接工作的依据。
焊接质量检验标准
01
焊接质量检验标准是衡量焊接质量的依据,规定了焊接接头的 外观质量、无损检测、力学性能等方面的要求。
详细描述
夹渣通常是由于焊接电流过小、焊接速度过快、坡口清理不干净等原因造成的。 在焊接过程中,熔渣未能及时浮出表面或被排除,就会残留在焊缝金属中形成夹 渣。夹渣可能导致焊接接头的强度下降,甚至引发断裂。
气孔
无损检测基础
5.再热裂纹
名称
特征
产生机理
防止措施
冷裂纹
a.成生于较低温度,且产生于焊后一段时间以后,故又称为延迟裂纹。 b.主要产生于热影响区,也有发生在焊缝区的。 c.冷裂纹可能是沿晶开裂,穿晶开裂或两者混合出现。 d.冷裂纹引起的构件破坏是典型的脆断。
1.坡口尺寸不合理; 2.坡口有污物; 3.多层焊时,层间清渣不彻底; 4.焊接线能量小; 5.焊缝散热太快,液态金属凝固过快; 6.焊条药皮,焊剂化学成分不合理,熔点过高,冶金反应不完全,脱渣性不好; 7.钨极惰性气体保护焊时,电源极性不当,电流密度大,钨极熔化脱落于熔池中。 8.手工焊时,焊条摆动不良,不利于熔渣上浮。
a.合金元素合杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区。使结晶裂纹的产生机会增多。 b.冷去速度的影响 冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会。 c.结晶应力与拘束力的影响 在脆性温度区内,金属的强度极低,焊接应力又使这部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。
a.再热裂纹的产生机理有多种解释,其中楔型开裂理论的解释如下:近缝区金属在高温热循环作用下,强化相碳化物(如碳化钛、碳化钒、碳化铌、碳化铬等)沉积在晶内的位错上,使晶内强化迁都大大高于晶界强化,尤其是当强化相弥散分别在晶粒内时,会阻碍晶粒内部的局部调整,又会阻碍晶粒的整体变形,这样由于应力松弛而带来的塑性变形就主要由晶界金属来承担,于是,晶界区金属会产生滑移,且在三晶粒交界处产生应力集中,就会产生裂纹,即所谓的楔型开裂。图2-30是楔型开裂的示意图。
焊接缺陷超声波探伤施工工艺
焊接缺陷超声波探伤施工工艺1. 简介超声波探伤是一种常用的无损检测方法,被广泛应用于焊接缺陷的检测。
本文档旨在介绍焊接缺陷超声波探伤的施工工艺,旨在帮助工程师和技术人员正确使用超声波探伤技术,准确检测焊接缺陷,确保焊接质量。
2. 焊接缺陷的常见类型在焊接过程中,常见的焊接缺陷包括焊接孔隙、夹渣、气体孔洞、裂纹等。
这些缺陷会影响焊接接头的强度和密封性,因此需要通过超声波探伤进行及时检测和修复。
3. 焊接缺陷超声波探伤施工流程3.1 准备工作在进行焊接缺陷超声波探伤之前,需要进行以下准备工作:- 确定探测区域:根据焊接图纸和焊接工艺要求,确定需要检测的焊接接头和焊缝位置;- 确定超声波探测仪器:选择适合的超声波探测仪器,包括超声波传感器、探头和信号处理设备;- 准备工作场所:确保施工现场的清洁、安全,以保证探测结果的准确性。
3.2 实施探测按照以下步骤进行焊接缺陷超声波探测:1. 清洁焊接接头表面,确保无杂质干扰;2. 安装超声波探测仪器,根据焊接接头的形状和尺寸选择合适的超声波传感器和探头;3. 设置探测参数,包括超声波频率、脉冲宽度、增益等;4. 对焊接接头进行扫描,记录探测数据,并标记发现的缺陷位置;5. 根据探测数据分析缺陷类型和严重程度,判断是否需要修复。
4. 结果分析与修复根据焊接缺陷超声波探测的结果,进行以下分析和修复工作:- 分析缺陷类型和严重程度,确定是否影响焊接接头的强度和密封性;- 基于分析结果,制定修复方案,包括补焊、磨光等;- 完成修复后,进行二次超声波探测,确保缺陷得到有效修复。
5. 安全注意事项在进行焊接缺陷超声波探测施工时,需要注意以下安全事项:- 确保工作场所通风良好,避免超声波探测仪器的信号受到干扰;- 使用个人防护装备,如手套、护目镜等;- 遵循超声波探测仪器的使用说明,确保操作安全。
6. 结论焊接缺陷超声波探伤施工工艺是一种重要的无损检测方法,可帮助工程师和技术人员准确检测焊接缺陷,并进行及时修复。
焊缝内部缺陷的超声波探伤和射线探伤剖析
二.超声波探伤
➢ 直探头及斜探头示意图
Company Logo
二.超声波探伤
Company Logo
2.超声波探伤仪选择
❖ 探伤仪针对不同的检测对象、目的、方法、 速度等需要,其设计制造也不尽相同。按信 号的显示方式不同,可分为A、B、C型三种 探伤仪,即人们通常所说的A超、B超、C超。
二.超声波探伤
未熔合——坡口未熔合在底片上呈直线状的黑色条纹,位置偏离焊缝中心, 靠近坡口边缘一边的密度较大且直;层间未熔合在底片上呈黑色条纹, 但不很长,有时与非金属夹渣相似。
Company Logo
三.射线探伤
3.射线探伤的质量评定 按《钢熔化焊对接接头射线照相和质量分级》
(GB3323)的规定进行。根据缺陷性质和数量、 射线探伤焊缝质量分为四个等级: ①Ⅰ级焊缝内应无裂纹、未焊透、未熔合和条状夹渣; ②Ⅱ级焊缝应无裂纹、未熔合、未焊透; ③Ⅲ级焊缝内应无裂纹、未熔合及双面焊和加垫板的单
一.焊件内常见缺陷
Company Logo
❖4.未熔合:焊接时在焊缝金属与母材之间
或焊道金属和焊道金属之间未完全熔化结合 的部分,其主要类型是按其所在部位可分为坡 口未熔合(侧壁未熔合),层间未熔合(焊 道之间未熔合)和单面焊根部未熔合三种
一.焊件内常见缺陷
Company Logo
❖5.裂纹:主要是在熔焊冷却时因热力盈 利和相变应力而产生的,也有在校正或 疲劳过程中产生的。是危险性最大的一 种缺陷。
面焊中的未焊透; ④Ⅳ级焊缝是缺陷超过Ⅲ级的。
参考文献
Company Logo
➢ 大连理工大学,李孟喜主编.无损检测.机械工业出版 社,2001
二.超声波探伤
➢ 直探头探测钢材缺陷
射线检测-焊缝缺陷图谱
1.外部缺陷在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。
2.内部缺陷位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。
内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。
焊缝缺陷的危害性:1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。
2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。
3、缺陷可能穿透焊缝,发生泄漏,影响致密性。
焊缝纵向裂纹示意图一、焊缝纵向裂纹X光底片焊缝纵向裂纹1 焊缝纵向裂纹2焊缝纵向裂纹3 焊缝纵向裂纹4焊缝纵向裂纹5 焊缝纵向裂纹6焊缝纵向裂纹7 焊缝纵向裂纹8焊缝纵向裂纹9 焊缝纵向裂纹10焊缝纵向裂纹11 焊缝纵向裂纹12焊缝纵向裂纹13 焊缝纵向裂纹14焊缝纵向裂纹15 焊缝纵向裂纹16焊缝纵向裂纹17 焊缝纵向裂纹18焊缝纵向裂纹19 焊缝纵向裂纹20 纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。
纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。
二、热影响区纵向裂纹X光底片热影响区纵裂1 热影响区纵裂2 热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。
焊缝横向裂纹示意图三、焊缝横向裂纹X光底片焊缝横向裂纹1 焊缝横向裂纹25焊缝横向裂纹3 焊缝横向裂纹4焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。
当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。
四、母材裂纹X光底片母材裂纹1 母材裂纹2裂纹:材料局部断裂形成的缺陷。
裂纹的分类方法:按延伸方向可分为纵向裂纹、横向裂纹、辐射状裂纹;按发生部位可分为焊缝裂纹、热影响区裂纹、熔合区裂纹、焊趾裂纹、弧坑裂纹、母材裂纹;按发生条件和时机可分为热裂纹、冷裂纹、再热裂纹。
无损检测射线底片缺陷评定
15
16
17
18
⑷未熔合:可分为坡口未熔合、焊道之间未熔合、单面焊根部 未熔合。 ①坡口未熔合:按坡口型式可分为V型坡口和U型坡口未熔合: A.V型(X)型坡口未熔合:常出现在底片焊缝影像两侧边缘区 域,呈黑色条云状,靠母材侧呈直线状(保留坡口加工痕迹), 靠焊缝中心侧多为弯曲状(有时为曲齿状)。垂直透照时,黑 度较淡,靠焊缝中心侧轮廓欠清晰。沿坡口面方向透照时会获 得黑度大、轮廓清晰、近似于线状细夹渣的影像。在5×放大 镜观察仍可见靠母材侧具有坡口加工痕迹(直线状),靠焊缝 中心侧仍是弯曲状。该缺陷多伴随夹渣同生,故称黑色未熔合, 不含渣的气隙称为白色未熔合。垂直透照时,白色未熔合是很 难检出的。如图23所示。 B.U型(双U型)坡口未熔合:垂直透照时,出现在底片焊缝影 像两侧的边缘区域内,呈直线状的黑线条,如同未焊透影像, 在5X放大镜观察仍可见靠母材侧具有坡口加工痕迹(直线状), 而靠焊缝中心侧可见有曲齿状(或弧状),并在此侧常伴有点 状气孔。黑度均匀,轮廓清晰,也常伴有夹渣同生,倾斜透照 19 时,形态和V型的相同,如图24所示。
2
1.2缺陷在底片上成像的基本特征
1.2.1圆形缺陷 ⑴气孔:在焊缝中常见的气孔可分为球状气孔、条状气孔和 缩孔。 球状气孔:按其分布状态可分为均布气孔、密集气孔、链状 气孔、表面气孔。球孔,在底片上多呈现为黑色小圆形斑点, 外形较规则,黑度是中心大,沿边缘渐淡,轮廓清晰可见。 单个分散出现,且黑度淡,轮廓欠清晰的多为表面气孔。密 集成群(5个以上/cm2)叫密集气孔,大多在焊缝近表面, 是由空气中氮气进入熔池造成。平行于焊缝轴线成链状分布 (通常在1cm长在线有4个以上,其间距均≤最小的孔径)称 为链状气孔,它常和未焊透同生。一群均匀分布在整个焊缝 中的气孔,叫均布气孔,见图10示。
焊缝内部缺陷探伤,无损检测方法
焊缝内部缺陷探伤,无损检测方法焊接缺陷是指焊接接头部位在焊接过程中形成的缺陷。
焊缝的内部缺陷有:1、气孔气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴。
其气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。
2、夹渣夹渣是指焊后溶渣残存在焊缝中的现象。
3、裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。
4、未焊透未焊透指母材金属未熔化,焊缝金属没有进入接头根部的现象。
5、未熔合未熔合是指焊缝金属与母材金属,或焊缝金属之间未熔化结合在一起的缺陷。
按其所在部位,未熔合可分为坡口未熔合、层间未熔合、根部未熔合三种。
无损检测(NDT或无损探伤)是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。
1、超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
2、射线探伤是利用某种射线来检查焊缝内部缺陷的一种方法。
常用的射线有X射线和γ射线两种。
X射线和γ射线能不同程度地透过金属材料,对照相胶片产生感光作用。
利用这种性能,当射线通过被检查的焊缝时,因焊缝缺陷对射线的吸收能力不同,使射线落在胶片上的强度不一样,胶片感光程度也不一样,这样就能准确、可靠、非破坏性地显示缺陷的形状、位置和大小。
3、磁粉探伤利用工件缺陷处的漏磁场与磁粉的相互作用,它利用了钢铁制品表面和近表面缺陷(如裂纹,夹渣,发纹等)磁导率和钢铁磁导率的差异,磁化后这些材料不连续处的磁场将发生畸变,形成部分磁通泄漏处工件表面产生了漏磁场,从而吸引磁粉形成缺陷处的磁粉堆积——磁痕,在适当的光照条件下,显现出缺陷位置和形状,对这些磁粉的堆积加以观察和解释,就实现了磁粉探伤。
常见焊接缺陷及X射线无损检测.
前言船舶制造业自20世纪初开始研究焊接应用技术,并于1920年以英国船厂首次采用焊接技术建造远洋船为标志,焊接技术逐渐在船厂得到推广应用,并迅速取代铆接技术。
由于焊接过程中各种参数的影响,焊缝中有时候不可避免地会出现裂纹、气孔、央渣、未熔合和未焊透等缺陷。
为了保证焊接构件的产品质量,必须对其中的焊缝进行有效的检测和评价,尤其是在船舶压力管道、分段大接缝、外板及水密与强力接点等部位进行质量检测是十分必要的。
众所周知,船舶结构件发生焊接裂纹对结构强度和航行安全危害极大,特别是一些隐性裂纹不易发现,一旦船舶出厂,这些隐性裂纹后患无穷。
因此,船舶在建造焊接过程中产生的裂纹一经发现,就必须立即查明原因并采取果断的措施彻底根除。
焊接质量的检验方法,一般分无损检验和破坏检验两大类,采用何种方法,主要根据产品的技术要求和有关规范的规定。
无损探伤分渗透检验、磁粉探伤、超声波探伤和射线照相探伤。
破坏检验方法是用机械方法在焊接接头(或焊缝)上截取一部分金属,加工成规定的形状和尺寸,然后在专门的设备和仪器上进行破坏试验。
依据试验结果,可以了解焊接接头性能及内部缺陷情况,判断焊接工艺正确与否。
经检验,船体结构焊缝超过质量允许限值时,应首先查明产生缺陷的原因,确定缺陷在工件上的部位。
在确认允许修补时,再按规定对焊缝进行修补。
一、船舶焊接缺陷及无损探伤技术简介1、船舶焊接中的常见缺陷分析船舶焊接是保证船舶密性和强度的关键,是保证船舶质量的关键,是保证船舶安全航行和作业的重要条件。
如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起船舶沉没。
因此,在船舶建造中焊接质量是重点验收工作之一,规范也明确规定,焊缝必须进行外观检查,外板对接焊缝必须进行内部检查。
船体焊缝内部检查,可采用射线探伤与超声探伤等办法。
射线探伤能直接判断船体焊缝中存在的缺陷的种类、大小、部位及分布情况,直观可靠,重复性好,容易保存,当前船厂普遍采用X射线探伤来进行船体焊缝的内部质量检查。
《常见焊接缺陷》课件
焊接环境:温度、湿度、风 速等环境因素影响
操作人员:操作技能不足, 操作不当
焊接缺陷对结构性能的影响
强度降低:焊接缺陷可能导致结构强度降低,影响其承载能力 刚度下降:焊接缺陷可能导致结构刚度下降,影响其稳定性 疲劳寿命缩短:焊接缺陷可能导致结构疲劳寿命缩短,影响其使用寿命 耐腐蚀性降低:焊接缺陷可能导致结构耐腐蚀性降低,影响其耐久性
选择合适的焊接材料,如不锈钢、铝合金等 控制焊接材料的质量,如化学成分、机械性能等 控制焊接材料的厚度,如薄板、厚板等 控制焊接材料的表面处理,如打磨、清洗等
焊接过程监控与检验
焊接前检查:确保 焊接设备、材料、 工艺参数等符合要 求
焊接中监控:实时 监测焊接过程中的 温度、电流、电压 等参数
焊接后检验:对焊 接质量进行检验, 包括外观检查、无 损检测等
热处理修复:通过热处理技术修复缺 陷
复合修复:结合多种修复方法进行修 复
预防性修复:通过预防措施避免缺陷 产生
总结与展望
本次课件内容回顾总结
焊接缺陷的定义和分类
焊接缺陷产生的原因和影 响
焊接缺陷的预防和检测方 法
焊接缺陷的修复和补救措 施
焊接缺陷的案例分析和经 验分享
焊接缺陷的未来发展趋势 和展望
无损检测法
超声波检测:利用超声波 在金属中的传播和反射特 性,检测金属内部的缺陷
射线检测:利用X射线或γ 射线穿透金属,检测金属 内部的缺陷
磁粉检测:利用磁粉在金 属表面的吸附和显示特性, 检测金属表面的缺陷
渗透检测:利用渗透剂在 金属表面的渗透和显示特 性,检测金属表面的缺陷
涡流检测:利用涡流在金 属中的传播和反射特性, 检测金属内部的缺陷
无损检测技术中的焊接缺陷检测方法
无损检测技术中的焊接缺陷检测方法在工业领域中,焊接是一项常见且关键的技术。
然而,焊接过程中可能会产生各种焊接缺陷,这对产品质量和安全性造成了潜在威胁。
因此,针对焊接缺陷的快速、准确的检测方法至关重要。
无损检测技术作为一种非破坏性的检测方法,在焊接缺陷检测中起着重要的作用。
本文将介绍几种常用的无损检测技术中的焊接缺陷检测方法。
首先,常用的一种方法是超声波检测。
超声波检测通过将高频声波传播到焊接接头内部,利用声波的传播和反射特性来检测缺陷。
超声波检测可以检测出焊接中的孔洞、夹杂物、裂纹等缺陷。
它具有技术可行性高、检测效果好和操作相对简单等优点。
然而,超声波检测对设备和人员的要求较高,且对材料的传导性能有一定要求。
其次,涡流检测也是一种常用的无损检测方法。
涡流检测是通过在焊接接头上施加交变电磁场,利用焊接缺陷产生的涡流信号进行检测。
涡流检测主要用于检测表面缺陷,如焊缝错边、裂纹、包气孔等。
该方法对于高导电性材料的检测效果较好,但对于低导电性材料的检测能力较弱。
另外,磁粉检测也是焊接缺陷检测的一种常用方法。
磁粉检测通过在焊接接头上施加磁场,使得磁性颗粒集聚在缺陷处,从而通过观察颗粒呈现的形态和位置来判断缺陷的存在与否。
磁粉检测适用于铁磁材料的检测,对于裂纹和夹杂物等缺陷具有较高的敏感性。
然而,该方法在应用过程中需要密封环境,并且对于焊接接头的表面清洁度要求较高。
此外,X射线检测也是一种常用的无损检测技术。
X射线检测可以通过透射X射线或散射X射线来检测焊接接头的缺陷。
透射X射线检测可以检测较大的缺陷,如包气孔、夹杂物等,而散射X射线检测可以检测出较小的缺陷,如微裂纹。
X射线检测仪器的成本较高,且需要密封防护措施,对操作人员的辐射安全要求也较高。
最后,热红外检测是一种新兴的无损检测技术,也可用于焊接缺陷的检测。
热红外检测通过红外热像仪来检测焊接接头表面的温度分布,从而判断是否存在缺陷。
热红外检测具有操作简单、实时性好和对材料无特殊要求等优点。
缺陷种类及产生原因分析
焊接缺陷及其特征 4.裂纹(焊接裂纹):
在焊接应力及其它致脆因素共同作用下,焊接接头中局部 地区的金属原子结合力遭到破坏而形成的新界面而产生缝隙, 称为焊接裂纹。 按其尺寸分为宏观、微观、超显微裂纹 按其方向可分为纵向裂纹、横向裂纹,辐射状(星状)裂纹 按发生的部位可分为根部裂纹、弧坑裂纹,熔合区裂纹、焊 趾裂纹及热响裂纹。 按产生的条件和时机可分为热裂纹(如结晶裂纹、液化裂纹 等)、冷裂纹(如氢致裂纹、层状撕裂等)以及再热裂纹。
焊接缺陷及其特征
3,夹渣:指焊后熔渣残留于焊缝中的现象。 夹渣又分金属夹渣和非金属夹渣两种。
焊接缺陷及其特征
产生原因: (1)坡口尺寸不合理。 (2)坡口有污物。 (3)焊接线能量过小。 (4)多层焊时,层间清渣不彻底。 (5)焊缝散热太快,液态金属凝固过快。 (6)药皮,焊剂化学成分不合理,熔点过高,冶金反应不完全 ,脱渣性不好等。 (7)钨极焊时电流过大,钨极融化脱落焊缝内。 (8)手工焊时焊条摆动不真确,熔渣不利于上浮。 夹渣危害:点状夹渣与气孔相同,带有尖端夹渣易形成应力集中 ,可能形成裂纹,危害比较大。
3.无坡口未焊透
焊接缺陷及其特征
焊接缺陷及其特征
焊接缺陷及其特征
焊接缺陷及其特征
二,铸件中常见缺陷 铸件是承压类特种设备中较少的工件,所以对常见 缺陷在这里只是简单介绍: 其常见缺陷有: 1. 气孔 2. 夹渣 3. 夹砂 4. 密集气孔 5. 冷隔 6. 缩孔和疏松 7. 裂纹。
焊接缺陷及其特征
第七章
缺陷种类及产生原因
缺陷种类及产生原因 无损检测最主要的用途是探测缺陷。了解材料 和焊逢中的缺陷种类和产生原因,有助于正确的 选择无损检测方法,正确判断和分析检测结果。
缺陷种类及产生原因
无损检测常见的焊接缺陷
无损检测常见的焊接缺陷A外部缺陷一、焊缝成型差1、现象焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。
2、原因分析焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。
3、防治措施⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。
⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。
⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。
⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。
4、治理措施⑴加强焊后自检和专检,发现问题及时处理;⑵对于焊缝成型差的焊缝,进行打磨、补焊;⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊;⑷加强焊接验收标准的学习,严格按照标准施工。
二、焊缝余高不合格1、现象管道焊口和板对接焊缝余高大于3㎜;局部出现负余高;余高差过大;角焊缝高度不够或焊角尺寸过大,余高差过大。
2、原因分析焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。
3、防治措施⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数;⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢;⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀;⑷注意保持正确的焊条(枪)角度。
4、治理措施⑴加强焊工操作技能培训,提高焊缝盖面水平;⑵对焊缝进行必要的打磨和补焊;⑶加强焊后检查,发现问题及时处理;⑷技术员的交底中,对焊角角度要求做详细说明。
三、焊缝宽窄差不合格1、现象焊缝边缘不匀直,焊缝宽窄差大于3㎜。
2、原因分析焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。
焊接缺陷及焊接质量检验
焊接缺陷及焊接质量检验1. 焊接缺陷:按焊接缺陷在焊缝中的位置,可分为外部缺陷和内部缺陷两大类。
外部缺陷位于焊缝区的外表面,用肉眼或低倍放大镜。
例如:焊缝尺寸不符合要求、咬边、焊瘤、弧坑、烧穿、下塌、表面气孔、表面裂纹等。
内部缺陷位于焊缝内部,需用破坏性实验或无损探伤方法来发现。
例如:未焊透、未熔合、夹渣、内部气孔、内部裂纹等。
2. 常见电焊缺陷:(1) 焊缝尺寸不符合要求主要指焊缝宽窄不一、高低不平、余高不足或过高等。
焊缝尺寸过小会降低焊接接头强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。
(2) 咬边由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。
咬边使母材金属的有效截面减少,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。
(3) 焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤。
焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。
(4) 烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷称为烧穿。
烧穿常发生于打底焊道的焊接过程中。
(5) 未焊透焊接时接头根部未完全熔透的现象称为未焊透。
未焊透常出现在单面焊根部和双面焊的中部。
未焊透不仅使焊接接头的机械性能降低,而且在未焊透处的缺口和端部形成应力集中点,承载后会引起裂纹。
(6) 未熔合未熔合指焊接时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;或指点焊时母材与母材之间未完全熔化结合的部分。
未熔合的危害大致与未焊透相同。
(7) 凹坑凹坑、塌陷及未焊满凹坑指在焊缝表面或焊缝背面形成的低于母材表面的局部低洼部分。
塌陷指单面熔化焊时,由于焊接工艺不当,造成焊缝金属过量透过背面,使焊缝正面塌陷,背面凸起的现象。
由于填充金属不足,在焊缝表面形成的连续或断续的沟槽,这种现象即未焊满。
上述缺陷削弱了焊缝的有效截面,容易造成应力集中,并使焊缝的强度严重减弱。
焊接缺陷
焊接缺陷#11、底切2、大多数的结构损害来自于焊缝,原因是不连续或者是有缺口。
最容易目测到的的缺陷是底切,如图1所示。
底切通常是由于电弧焊的过载电流。
过载电流由于熔化带在基底金属但是不能够全部覆盖缺口。
焊接速度快也会形成焊接缺陷。
为了避免造成缺口,焊接工和检测员必须观察初始焊圈是否设置成合适的电流。
焊接检验会变得棘手还来自于焊接工使用低品质的焊条和弱电流来焊接。
底切是很危险的,因为它放大应力流致使减少截面面积和应力集中在凹口处。
图1.底切和焊瘤2、未充满和未焊透另一个明显的焊接缺陷是未充满和未焊透,如图2所示。
未充满就可以很容易发现和处理。
未焊透也是很明显的,如果焊接工和检查员检查背后的焊缝。
问题出现在焊接一个闭式组织结构或者狭窄部位时,检查员不能检查板上的焊接质量和狭窄部位的内部。
这就需要小心地深思熟虑地设计和准备制造流程。
如果可以的话,提供内部检查口,就像留检查孔给焊接工使其可以双面焊接,特别是焊接厚板的时候。
图2 未充满和未焊透3、不完全熔合第三个焊接缺陷是不完全熔合,起因于低电流。
电弧焊利用集中高温电弧来熔化基底金属和焊条。
这些熔化了的基底金属和焊条混合熔合在焊池,然后与基底金属凝固在一起。
如果焊接电流设定得太低,不能获得理想的熔解温度,基底金属就不能完全地熔化。
此外,焊池材料不充分和在相邻的基底金属之间形成间隙都是不适当的。
这样会留下空洞在焊缝里面或外面,如图3所示。
图3 不完全熔合4、检测缺陷:无损检测大多数的不完全焊透在内部和极细微的,眼睛难以察觉的。
因此,我们需要无损检测来检测焊接质量。
现在有很多种的无损检测,每一种都有各自的优势和局限性。
图4所示的是一位技师在展示磁粉探伤法来检测焊缝。
无损检测是基于鉴定焊缝,无损检测的花费,探测精度,探测深度,等等。
图4 磁粉探伤法5、设计中的焊接缺陷在很多时候,我们应该承认一个事实,焊接缺陷存在于它的结构。
这是需要小心的经过深思熟虑的在设计阶段就应该把缺陷覆盖。
无损检测试题库
无损检测试题库一、是非题 (每题 1.5 分)无损检测基础1 .《特种设备安全监察条例》规定,从事本条例规定的监督检验、定期检验、型式试验和无损检测的特种设备检验检测人员应当经国务院特种设备安全监督管理部门组织考核合格,取得检验检测人员证书,方可从事检验检测工作。
( √ )2.《特种设备安全监察条例》规定,特种设备检验检测人员从事检验检测工作,必须在特种设备检验检测机构执业,但不得同时在两个以上检验检测机构中执业。
( √ )3.《蒸汽锅炉安全技术监察规程》规定,焊缝用超声波和射线两种方法进行探伤时,按其中一种标准合格者,可认为焊缝探伤合格。
(×)4.《蒸汽锅炉安全技术监察规程》规定,受压管道和管子对接接头做探伤抽查时,如发现有不合格的缺陷,应做抽查数量的双倍数目的补充探伤检查。
如补充检查仍不合格,应对该焊工焊接的全部对接接头做探伤检查。
( √ )5.《电力工业锅炉压力容器监察规程》规定,从事受压元件焊接质量检验的无损检测人员,按部颁《电力工业无损检测人员资格考核规则》和劳动部《锅炉压力容器无损检测人员资格考核规则》进行考试。
经取得相应技术等级的资格证书后,方可进行该技术等级的检验工作。
( √ )6.《电力工业锅炉压力容器监察规程》规定,受压元件焊接接头的分类方法、各类别焊接接头的检验项目和抽检百分比及质量标准,按 DL5007 《电力建设施工及验收技术规范》 (火力发电厂焊接篇)(现已修订为《火力发电厂焊接技术规程》) 执行。
但对超临界压力锅炉的受热面和一次门内管子的Ⅰ类焊接接头,应进行100%无损探伤,其中超声波检测不少于 50% 。
(×)7.《电力工业锅炉压力容器监察规程》规定,无损探伤检查不合格的焊缝,除对不合格的焊缝返修外,在同一批焊缝中应加倍抽查。
若仍有不合格者,则该批焊缝以不合格论。
应在查明原因后返工。
( √ )8.《火力发电厂焊接技术规程》规定,对修复后的焊接接头,应 100% 进行无损检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无损检测常见的焊接缺陷
A外部缺陷
一、焊缝成型差
1、现象
焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。
2、原因分析
焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。
3、防治措施
⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。
⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。
⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。
⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。
4、治理措施
⑴加强焊后自检和专检,发现问题及时处理;
⑵对于焊缝成型差的焊缝,进行打磨、补焊;
⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊;
⑷加强焊接验收标准的学习,严格按照标准施工。
二、焊缝余高不合格
1、现象
管道焊口和板对接焊缝余高大于3㎜;局部出现负余高;余高差过大;角焊缝高度不够或焊角尺寸过大,余高差过大。
2、原因分析
焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。
3、防治措施
⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数;
⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢;
⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀;
⑷注意保持正确的焊条(枪)角度。
4、治理措施
⑴加强焊工操作技能培训,提高焊缝盖面水平;
⑵对焊缝进行必要的打磨和补焊;
⑶加强焊后检查,发现问题及时处理;
⑷技术员的交底中,对焊角角度要求做详细说明。
三、焊缝宽窄差不合格
1、现象
焊缝边缘不匀直,焊缝宽窄差大于3㎜。
2、原因分析
焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。
3、防治措施
⑴加强焊工焊接责任心,提高焊接时的注意力;
⑵采取正确的焊条(枪)角度;
⑶熟悉现场焊接位置,提前制定必要焊接施工措施。
4、治理措施
⑴加强练习,提高焊工的操作技术水平,提高克服困难位置焊接的能力;
⑵提高焊工质量意识,重视焊缝外观质量;
⑶焊缝盖面完毕,及时进行检查,对不合格的焊缝进行修磨,必要时进行补焊。
四、咬边
1、现象
焊缝与母材熔合不好,出现沟槽,深度大于0.5㎜,总长度大于焊缝长度的10%或大于验收标准要求的长度。
2、原因分析
焊接线能量大,电弧过长,焊条(枪)角度不当,焊条(丝)送进速度不合适等都是造成咬边的原因。
3、治理措施
⑴根据焊接项目、位置,焊接规范的要求,选择合适的电流参数;
⑵控制电弧长度,尽量使用短弧焊接;
⑶掌握必要的运条(枪)方法和技巧;
⑷焊条(丝)送进速度与所选焊接电流参数协调;
⑸注意焊缝边缘与母材熔化结合时的焊条(枪)角度。
4、治理措施
⑴对检查中发现的焊缝咬边,进行打磨清理、补焊,使之符合验收标准要求;
⑵加强质量标准的学习,提高焊工质量意识;
⑶加强练习,提高防止咬边缺陷的操作技能。
五、错口
1、现象
表现为焊缝两侧外壁母材不在同一平面上,错口量大于10%母材厚度或超过4㎜。