化工原理第四章第二节讲稿.ppt
合集下载
化工原理 第四章-干燥讨论课dry-discuss2概要
![化工原理 第四章-干燥讨论课dry-discuss2概要](https://img.taocdn.com/s3/m/c41e0e51fe4733687e21aa25.png)
有关临界含水量的一点讨论
已知0.3cm纸粕在常压空气中 干燥时的干燥速度曲线如 图所示. 当空气湿度和温度 均不变时, 试比较分别改变 空气流速和纸粕厚度时干 燥速度的变化: (1)流速分别为12m/s和4m/s时; (2)厚度改变为0.1cm时;
U 12 m/s, 0.3cm
0 0.1
X (kg水/kg干物料)
0.5
课堂讨论
(1)流速改变为4m/s 时 恒速阶段: 两者干燥速度的 差异在于传热和传质速度 U 12 12 0.8 ( ) 2.4 的差异. 空气流速越大 ,传 U4 4 热和传质系数越大 , 干燥速 度也就越大. 恒速阶段:N=Qr; N恒定,故Q恒定; Q=hA(T-Ts) 两种情况下Ts相同吗? 近似为Tw.
0.5
课堂讨论
U 12 m/s, 0.3cm
临界含水量是降速阶段和 恒速阶段的交点; 近似:恒速阶段干燥非结 合水. 但并非所有的结合 水都在此阶段干燥完毕; 按阻力串连估计Xc的变化。
0 0.1
Xc
0.5
X (kg水/kg干物料)来自课堂讨论(2) 厚度改变为0.1cm时; Xc改变的3种可能性, 哪 个合理? Xc是否会变厚或者不变 呢? 变薄之后, 任何一个X下U 均增加, 因此Xc变小.
U 12 m/s, 0.3cm
0 0.1
X (kg水/kg干物料)
0.5
课堂讨论
(1)流速改变为4m/s 时 终点: 仅与干燥用空气的条 件有关. 故相同. 临界含水量与降速阶段: 有5 种可能. 哪个合理呢呢?
U 12 m/s, 0.3cm
0 0.1
Xc
0.5
X (kg水/kg干物料)
(1)流速改变为4m/s 时
已知0.3cm纸粕在常压空气中 干燥时的干燥速度曲线如 图所示. 当空气湿度和温度 均不变时, 试比较分别改变 空气流速和纸粕厚度时干 燥速度的变化: (1)流速分别为12m/s和4m/s时; (2)厚度改变为0.1cm时;
U 12 m/s, 0.3cm
0 0.1
X (kg水/kg干物料)
0.5
课堂讨论
(1)流速改变为4m/s 时 恒速阶段: 两者干燥速度的 差异在于传热和传质速度 U 12 12 0.8 ( ) 2.4 的差异. 空气流速越大 ,传 U4 4 热和传质系数越大 , 干燥速 度也就越大. 恒速阶段:N=Qr; N恒定,故Q恒定; Q=hA(T-Ts) 两种情况下Ts相同吗? 近似为Tw.
0.5
课堂讨论
U 12 m/s, 0.3cm
临界含水量是降速阶段和 恒速阶段的交点; 近似:恒速阶段干燥非结 合水. 但并非所有的结合 水都在此阶段干燥完毕; 按阻力串连估计Xc的变化。
0 0.1
Xc
0.5
X (kg水/kg干物料)来自课堂讨论(2) 厚度改变为0.1cm时; Xc改变的3种可能性, 哪 个合理? Xc是否会变厚或者不变 呢? 变薄之后, 任何一个X下U 均增加, 因此Xc变小.
U 12 m/s, 0.3cm
0 0.1
X (kg水/kg干物料)
0.5
课堂讨论
(1)流速改变为4m/s 时 终点: 仅与干燥用空气的条 件有关. 故相同. 临界含水量与降速阶段: 有5 种可能. 哪个合理呢呢?
U 12 m/s, 0.3cm
0 0.1
Xc
0.5
X (kg水/kg干物料)
(1)流速改变为4m/s 时
化工原理第四章传热4-2
![化工原理第四章传热4-2](https://img.taocdn.com/s3/m/78c49c6e8e9951e79b8927ca.png)
大。 一般换热流体都是在湍流形式下进行换热(或搅拌情
况进行换热)。 ②流体的对流状态:强制对流自然对流时a为大。
a
t
③流体的物理性质
如导热系数、热容、膨胀系数、密度和粘度等,其中导
热系数、热容、密度、膨胀系数增大对传热有利;而粘度大,
则滞流层厚,对流传热系数变小。
④传热的温度 温度对流体的物理性质有显著的影响。因此,壁面和流
四、无相变时对流传热系数的经验关联式
(一)流体在管内作强制对流
1. 圆形直管内的强制湍流 Nu C Rem Pr n
Nu 0.023Re0.8 Pr n 流体被加热 n=0.4
流体被冷却 n=0.3
a
0.023
d
Re0.8
Prm
0.023
d
dv 0.8
cp
m
(1)应用范围:Re >104, Pr=0.7~160, L/d >60, 气体或低粘度的液体(<2 水)
c. 格拉斯霍夫(Grashof)准数
Gr
gtl3 2 2
un2 2l 2 2
( Ren
)2
un gtl 自然对流的特征速度
格拉斯霍夫(Grashof)准数是雷诺准数的一种变形, 它表征着自然对流的流动状态。
d. 普兰特(Prandtl)准数
Pr cp
反映流体物性对对流传热的影响。
气体:小于1接近1 ,液体:大于1 。
对于液体
管内强制层流的给热过程由于下 列因素而趋于复杂。 1、流体物性(特别是粘度)受 到管内不均匀温度分布的影响, 使速度分布显著地偏离等温流动 时的抛物线。
2、自然对流造成了径向流动,强化了给热过程。(对于 高度湍流而言,自然对流影响无足轻重) 3、层流流动时达到定态速度分布的进口段距离一般较长 (约100d),在实用的管长范围内,加热管的相对长度 l/d将对全管平均的给热系数有明显影响。
化工原理第四章 1-2
![化工原理第四章 1-2](https://img.taocdn.com/s3/m/59c317a316fc700aba68fc9e.png)
③床层比表面
aB
=
S V床
=
S(1 Vp
e
)
=
a(1 - e )
3.流体通过固定床的压降
几何边界复杂,无法解析解,要靠实验 数学模型法主要步骤:
3.1 简化模型(数模思想) 过程特征: ①爬流,表面剪切力为主,
形体力(压差力)为次 ②空隙中实际速度与空隙大小有关
简化原则: 模型与原型①表面积要相等
e3
e
)2
µu
=
K
a2 (1 -
e3
e
)2
µu
DP L
=
a2 (1 -
5 e3
e
)2
µu
适用范围:Re’<2
床层雷诺数
4e
u
宽范围:
a(1 - e ) e
Re'= deu1r = ru 4µ a(1 - e )µ
细管
hf
=
DP
r
= l Le
de
u12 2
DP L
=
l
Le L
ru12
2de
=
l
Le a(1 -
第四章 流体通过颗粒层的流动
(1)
化工定床—由许多固体颗粒堆积成的静止颗粒层
1.2 固定床阻力的影响因素
①流体物性:ρ,µ ②操作因素: u ③设备因素: 颗粒直径,
颗粒大小分布, 空隙大小
2 颗粒床层的特性
2.1 单颗粒的特性
球形颗粒,只需一个参数dp
颗粒特性:体积
L
u=0.9m/s时 DP = 2300Pa / m 。
L
求:CO以u=0.5m/s通过时的 DP 。
L
电子教案与课件:《化工原理下册》 第4章萃取
![电子教案与课件:《化工原理下册》 第4章萃取](https://img.taocdn.com/s3/m/5ee373bb011ca300a7c390a1.png)
❖ 萃取剂的选择是萃取操作的关键
第4章 液—液萃取
❖ 萃取的基本流程
第4章 液—液萃取
❖ 下列情况下采用萃取比蒸馏更经济合理
1、组分间相对挥发度接近“1“或者形成恒沸物的混合液 2、溶质在混合液中的含量很低且为难挥发组分 。 3、有热敏性组分的混合液
第4章 液—液萃取
❖ 萃取相 萃余相
1、萃取相(E)含萃取剂(S)多;萃余相(R)含 原溶剂(B)多。
第4章 液—液萃取
4.2.2多级错流接触萃取的计算 若单级萃取所得的萃余相溶质含量较高,
未低于规定值,则需采用多级萃取。
多级错流接触萃取流程
(1)每级都加入新鲜溶剂 (2)前级的萃余相为后级的原料
第4章 液—液萃取
4.2.2多级错流接触萃取的计算
已知条件:相平衡数据、原料液F的量、组成 xF及其各级S的用量,同时规定最终萃余相要 达到的组成为xn
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
1、溶解度曲线和联结线
•实验获取溶解度曲线
•联结线的意义
●★
★ ★●
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
2、临界混溶点和辅助曲线
•临界混溶点 •临界混溶点是萃取相 与萃余相的分界点。
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
2、临界混溶点和辅助曲线
最小用量
➢ 原料一定,萃取剂S用量越
小,混合点M越靠近F点,但
不能超过溶解度线上的RC点
RC
对应RC点的萃取剂用量为 其最小用量Smin
第4章 液—液萃取
4.2.1.4单级萃取的最大萃取液组成及相应的萃取剂 用量
➢ 从S点作溶解度曲线的切线 与AB边相交,交点是单级 萃取所能得到的最大萃取 液组成。
第4章 液—液萃取
❖ 萃取的基本流程
第4章 液—液萃取
❖ 下列情况下采用萃取比蒸馏更经济合理
1、组分间相对挥发度接近“1“或者形成恒沸物的混合液 2、溶质在混合液中的含量很低且为难挥发组分 。 3、有热敏性组分的混合液
第4章 液—液萃取
❖ 萃取相 萃余相
1、萃取相(E)含萃取剂(S)多;萃余相(R)含 原溶剂(B)多。
第4章 液—液萃取
4.2.2多级错流接触萃取的计算 若单级萃取所得的萃余相溶质含量较高,
未低于规定值,则需采用多级萃取。
多级错流接触萃取流程
(1)每级都加入新鲜溶剂 (2)前级的萃余相为后级的原料
第4章 液—液萃取
4.2.2多级错流接触萃取的计算
已知条件:相平衡数据、原料液F的量、组成 xF及其各级S的用量,同时规定最终萃余相要 达到的组成为xn
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
1、溶解度曲线和联结线
•实验获取溶解度曲线
•联结线的意义
●★
★ ★●
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
2、临界混溶点和辅助曲线
•临界混溶点 •临界混溶点是萃取相 与萃余相的分界点。
第4章 液—液萃取
➢ 三角形相图上的相平衡关系
2、临界混溶点和辅助曲线
最小用量
➢ 原料一定,萃取剂S用量越
小,混合点M越靠近F点,但
不能超过溶解度线上的RC点
RC
对应RC点的萃取剂用量为 其最小用量Smin
第4章 液—液萃取
4.2.1.4单级萃取的最大萃取液组成及相应的萃取剂 用量
➢ 从S点作溶解度曲线的切线 与AB边相交,交点是单级 萃取所能得到的最大萃取 液组成。
化工原理第四章对流传热41页PPT
![化工原理第四章对流传热41页PPT](https://img.taocdn.com/s3/m/456a23b9f705cc1754270904.png)
Re
lu
普兰德数 (Prandtl number)
Pr c p
表示惯性力与粘性力之比, 是表征流动状态的准数
表示速度边界层和热边界层 相对厚度的一个参数,反映
与传热有关的流体物性
影响 较大的物性常数有:,, Cp ,。 (1)的影响 ; (2)的影响 Re ;
(3)Cp的影响 Cp 则单位体积流体的热容量大,
则较大; (4)的影响 Re 。
2020/3/29
3、流动型态 【层流】主要依靠热传导的方式传热。由于流体的
导热系数比金属的导热系数小得多,所以热阻大。
【湍流】由于质点充分混合且层流底层变薄,较大
2020/3/29
2、有效膜模型
(1)流体与固体壁面之间存在一个厚度为bt的虚拟 膜(流体层),称之为有效膜; (2)有效膜集中了传热过程的全部传热温差的以及 全部热阻,在有效膜之外无温差也无热阻存在(所 有的热量传递均产生在有效膜内); (3)在有效膜内,传热以热传导的方式进行。
2020/3/29
2020/3/29
二、对流传热速率方程 1、什么是模型法
【定义】把复杂问题简单化、摒弃次要的条件,抓 住主要的因素,对实际问题进行理想化处理,构建 理想化的物理模型,获得某一过程的有关规律。具 体方法为: (1)对过程进行合理的简化; (2)获得物理模型(构象); (3)对物理模型进行数学描述,获得有关规律。
过程的因素都归结到了当中。
2020/3/29
三、影响对流传热系数的因素
1、引起流动的原因 【自然对流】由于流体内部存在温差引起密度差形
成的液体内部环流,一般u较小,也较小。
【强制对流】在外力作用下引起的流动运动,一般u
较大,故较大。因此:
化工原理4PPT课件
![化工原理4PPT课件](https://img.taocdn.com/s3/m/aa81901e8bd63186bdebbc25.png)
d' PC
1 N d PC
可沉降出更细的颗粒。
第20页/共86页
4.沉降室的计算
由层流区的计算式
d pc
18 p
g ut c
18 qVs ( p )g WL
可分为三类计算问题: (1) 已知气体处理量qVs, 物性数据(ρ, μ, ρp ), 临界粒径 dpc ,
求底面积WL; (2) 已知底面积WL, 物性数据, 临界粒径 dpc , 求气体处理
6
d
p 3 r
2
p
4
d
2 p
u
2
2
0
第27页/共86页
此时,颗粒在径向上相对于流体的速度,就是它在这个
位置上的离心沉降速度
dr
d
ur
4d p p r2 3
比较,重力沉降速度
ut
4dP ( p)g 3
g r 2
在一定的条件下,重力沉降速度是一定的,而离心 沉降速度随着颗粒在半径方向上的位置不同而变化。
量qVs ; (3) 已知气体处理量qVs, 物性数据 , 底面积WL, 求临界粒
径 dpc ;
第21页/共86页
例3-2 用高2m 、宽2.5m、长5m的重力降尘室分离空气中的粉尘。 在操作条件下空气的密度为0.779kg/m3,黏度为2.53×10-5Pa.s, 流量为5.0×104m3/h。粉尘的密度为2000 kg/m3。试求粉尘的临界 粒径。
悬浮液 — 含有颗粒直径较大的液体; 溶胶 — 含有颗粒直径小于1 μ m的液体。
为了促进细小颗粒絮凝成较大颗粒以增大沉降速度, 可往溶胶中加入少量电解质。
絮凝剂---凡能促进溶胶中微粒絮凝的物质。 常用的有:明矾(KAl(SO4).12H2O),三氧化铝,
化工原理第四章第一、二节(第13次课)精品文档39页
![化工原理第四章第一、二节(第13次课)精品文档39页](https://img.taocdn.com/s3/m/496695664431b90d6c85c7f1.png)
特点:物质间没有宏观位移,只发生在静止物质内的一种
传热方式。 微观机理因物态而异
原子 分子 电子
2020/1/13
2、对流传热
流体中冷、热不同部位质点发生相对位移而引起的热量 传递,称为热对流 。 特点:对流只能发生在流体中。
强制对流 用机械能(泵、风机、搅拌等)使流体发生 对流而传热。
自然对流 由于流体各部分温度的不均匀分布,形成 密度的差异,在浮升力的作用下,流体发 生对流而传热。
温度差时,热量由高温处向低温处传递的现象。 三传理论:传热、传质、动力传递。 动量传递推动力:速度差 传热推动力:温度差
2020/1/13
1、化工与传热 1)物料的加热与冷却:绝大多数化学反应过程都要求在 一定的温度下进行,为了使物料达到并保持指定的温度, 就要预先对物料进行加热或冷却,并在过程中及时取出放 出的热量或补充需要吸收的热量。
2020/1/13
四、两种流体热交换的基本方式
1、直接接触式传热
直接接触式传热的特点是冷、热两流体在传热器中 以直接混合的方式进行热量交换,也称混合式换热。
2、蓄热式换热
蓄热式换热器是由热容量较大的蓄热室构成。室中充 填耐火砖作为填料,当冷、热流体交替的通过同一室时, 就可以通过蓄热室的填料将热流体的热量传递给冷流体, 达到两流体换热的目的。
稳态传热:物体内各点温度不随时间变化的热量传递(例 如连续生产时);
注:稳态传热时,同一热流方向上的传热速率Q为常数 (Q1=Q2=Q3=……Qn)。
2020/1/13
传热速率
传热温差(推动力) 热阻(阻力)
传热温差以△t表示,热阻通常以R表示,则:
传热推动力:温差沿传热管长度在不同位置数值不同。
化工原理第四章讲稿PPT课件
![化工原理第四章讲稿PPT课件](https://img.taocdn.com/s3/m/c60620ed804d2b160b4ec0e4.png)
2020/9/30
17
3、间壁式换热
间壁式换热的特点是冷、热流体被一固体隔开,分别在壁 的两侧流动,不相混合,通过固体壁进行热量传递。 传热过程可分为三步: •热流体将热量传给固体壁面(对流传热) •热量从壁的热侧传到冷侧(热传导) •热量从壁的冷侧面传给冷流体(对流传热) 壁的面积称为传热面,是间壁式换热器的基本尺寸。
q t1 t3
b1
1
r0
b2
2
接触热阻与接触面的材料,表面 粗糙度及接触面上压强等因素有 关。
2020/9/30
42
2020/9/30
39
2、多层平壁的稳定热传导
Q
1S
t1
t2 b1
t1 b1
1S
t1 R1
2S
t2 b2
t3
t2 b2
t2 R2
2S
3S
t3
t4 b3
t3 b3
t3 R3
3S
2020/9/30
40
t1 QR1,t2Q2R,t3 QR3
Qt1t2 t3 R1R2 R3
b1
SdLn
d——管径可分别用管内径di,管外径d0或平均直径dm来表示。 则对应的传热面积分别为管内侧面积Si,外侧面积S0或平均面 积Sm
2020/9/30
25
六、传热速率与热通量
传热速率(热流量 )Q :
单位时间内通过传热面的热量,单位为w。
热通量(又称为热流密度或传热速度)q :
单位传热面积的传热速率。单位为w/m2
35
2、固体的导系数
纯金属的导热系数一般随温度的升高而降低, 金属的导热系数大都随纯度的增加而增大。 非金属的建筑材料或绝热材料的导热系数随密度增加而增 大,也随温度升高而增大。
化工原理课件PPT
![化工原理课件PPT](https://img.taocdn.com/s3/m/bc9c8aec0740be1e640e9a89.png)
物理量的基本量的量纲为其本身。
SI量制中7个基本量的量纲符号:
L(长度) 、 M(质量) 、 T(时间) 、 I(电流) 、 (热力学温度) 、N(物质的量) 、J(发光强度) 。
导出量 的量纲表达式:
dQ im L M T I N J
dim—量纲符号 ,; ,—量纲指数或因次。
华东交大化工原理电子课件
表0-1 国际单位制的基本单位
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
华东交大化工原理电子课件
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
华东交大化工原理电子课件
一、物质的量浓度与物质的量分数
1.物质的量浓度
ci
ni V
2.物质的量分数
对于液体混合物: 其中,
xi
ni n
nn 1n 2 n i
x 1x2 xi 1
华东交大化工原理电子课件
二、物质的质量浓度与物质的质量分数
1.物质的质量浓度 2.物质的质量分数
i
mi V
对于液体混合物:
i
mi m
其中,
最终状态就是体系的平衡状态。
四、传递速率
传递速率
推动力 阻力
五、 经济核算
为生产定量的某种产品所需要的设备,根据设备的型式和
材料的不同,可以有若干设计方案。对同一台设备,所选用
的操作参数不同,会影响到设备费与操作费。因此,要用经
济核算确定最经济的设计方案。
SI量制中7个基本量的量纲符号:
L(长度) 、 M(质量) 、 T(时间) 、 I(电流) 、 (热力学温度) 、N(物质的量) 、J(发光强度) 。
导出量 的量纲表达式:
dQ im L M T I N J
dim—量纲符号 ,; ,—量纲指数或因次。
华东交大化工原理电子课件
表0-1 国际单位制的基本单位
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
华东交大化工原理电子课件
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
华东交大化工原理电子课件
一、物质的量浓度与物质的量分数
1.物质的量浓度
ci
ni V
2.物质的量分数
对于液体混合物: 其中,
xi
ni n
nn 1n 2 n i
x 1x2 xi 1
华东交大化工原理电子课件
二、物质的质量浓度与物质的质量分数
1.物质的质量浓度 2.物质的质量分数
i
mi V
对于液体混合物:
i
mi m
其中,
最终状态就是体系的平衡状态。
四、传递速率
传递速率
推动力 阻力
五、 经济核算
为生产定量的某种产品所需要的设备,根据设备的型式和
材料的不同,可以有若干设计方案。对同一台设备,所选用
的操作参数不同,会影响到设备费与操作费。因此,要用经
济核算确定最经济的设计方案。
41化工原理第4章PPT.ppt
![41化工原理第4章PPT.ppt](https://img.taocdn.com/s3/m/6189d3072af90242a895e5b7.png)
5.2.2 静止流体中颗粒的自由沉降
(1)沉降的加速段
将一个表面光滑的球形颗粒置于静止的流体中,若,颗粒在重力
的作用下沿重力方向作沉降运动,此时颗粒受到哪些力的作用呢?
Fg
mg
6
dP3P g
Fb
6
dP3
g
FD
AP
1 2
u 2
4
dP2
1 u 2
2
5.2.2 静止流体中颗粒的自由沉降
(2)沉降的等速阶段
时
随 du
d
u
,Fd ,到某一数值 u t 时,式(5-16)右边等于零,此 0,颗粒将以恒定不变的速度 ut 维持下降。此 ut 称为颗粒的沉
降速度或造端速度。对小颗粒,沉降的加速段很短,加速度所经历的距
离也很小。因此,对小颗粒沉降的加速度可以忽略,而近似认为颗粒始
旋风分离器的内旋气流在底部旋转上升时,会在锥底成升力。即使在常 压下操作,出口气体直接排入大气,也会在锥底造成显著的负压。如果锥底 集尘室密封不良,少量空气串入器内将使分离效率严重下降。故出灰口的密 封问题非常重要。
5.3.2离心沉降设备
下面介绍旋风分离器的改型问题: 底部旋转上升会将已沉下的部分颗粒重新卷起,这 是影响旋风分离器分离效率的重要因素之一。为抑制这 一不利因素而设计了一种扩散式旋风分离器,它具有上 小下大的外壳,这种分离器底部设有中央带孔的锥形分 割屏,气流在分割屏上部转向排气管,少量气体在分割 屏与外锥体之间的环隙进入底部集尘斗,再从中央小孔 上升。这样就减少了已沉下的粉粒重新被卷起的可能性。 因此,扩散式旋风分离器分离效率提高,宜用于净化颗 粒浓度较高的气体。
化工原理第四章第二三节第14次课.ppt
![化工原理第四章第二三节第14次课.ppt](https://img.taocdn.com/s3/m/615310ac915f804d2a16c113.png)
3、应用特征数关联式应注意的问题
1)应用范围:关联式中Re、Pr、Nu、Gr等特征数的数值
范围以及常数K、指数a、b、c,一般根据 实验确定,使用时不能超出该范围。
2)特征尺寸:Nu、Re、Gr数中l应如何选定。
3)定性温度:各特征数中的各物理参数按什么温度确定。
2020/4/2
五、流体无相变时的对流传热系数的经 验关联式
2020/4/2
4、流体在非圆形管中作强制对流 对于非圆形管内对流传热系数的计算,前面有关的经
验式都适用,只是要将圆管内径改为当量直径de。
(二)流体在管外作强制对流传热
流体在管外垂直流过
单管 管束
2020/4/2
1、流体在管束外强制垂直流动
直列
错列
第一排管子的流动情况相同,错列α>直列α 。
2020/4/2
上次课内容复习
1、传热的三种基本方式: 热传导、对流传热、热辐射。
2、冷热两流体热交换的三种方式: 直接接触式换热、蓄热式换热、间壁式换热。
3、传热速率(热流量)与传热速度(热通量)的关系为:
Q q
A
4、稳态传热时,同一热流方向上的传热速率Q为常数 (Q1=Q2=Q3=……Qn)。
2020/4/2
上次课内容复习
P129 例4-5 2、对流传热系数
对流传热系数α定义式: Q At
表示单位温度差下,单位传热面积的对流传热速率。 反映了对流传热的快慢,对流传热系数大,则传热快。
2020/4/2
三、对流传热系数α的影响因素
1、流体的物性
1)导热系数 λ 层流内层的温度梯度一定时,流体的热导率 ,对流
传热系数α 。 2)黏度 μ
流体的黏度μ ,流动阻力越大,对流传热系数α 。 3)比热容 CP和密度 ρ( CP 单位 J/kg·K)
1)应用范围:关联式中Re、Pr、Nu、Gr等特征数的数值
范围以及常数K、指数a、b、c,一般根据 实验确定,使用时不能超出该范围。
2)特征尺寸:Nu、Re、Gr数中l应如何选定。
3)定性温度:各特征数中的各物理参数按什么温度确定。
2020/4/2
五、流体无相变时的对流传热系数的经 验关联式
2020/4/2
4、流体在非圆形管中作强制对流 对于非圆形管内对流传热系数的计算,前面有关的经
验式都适用,只是要将圆管内径改为当量直径de。
(二)流体在管外作强制对流传热
流体在管外垂直流过
单管 管束
2020/4/2
1、流体在管束外强制垂直流动
直列
错列
第一排管子的流动情况相同,错列α>直列α 。
2020/4/2
上次课内容复习
1、传热的三种基本方式: 热传导、对流传热、热辐射。
2、冷热两流体热交换的三种方式: 直接接触式换热、蓄热式换热、间壁式换热。
3、传热速率(热流量)与传热速度(热通量)的关系为:
Q q
A
4、稳态传热时,同一热流方向上的传热速率Q为常数 (Q1=Q2=Q3=……Qn)。
2020/4/2
上次课内容复习
P129 例4-5 2、对流传热系数
对流传热系数α定义式: Q At
表示单位温度差下,单位传热面积的对流传热速率。 反映了对流传热的快慢,对流传热系数大,则传热快。
2020/4/2
三、对流传热系数α的影响因素
1、流体的物性
1)导热系数 λ 层流内层的温度梯度一定时,流体的热导率 ,对流
传热系数α 。 2)黏度 μ
流体的黏度μ ,流动阻力越大,对流传热系数α 。 3)比热容 CP和密度 ρ( CP 单位 J/kg·K)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 传热
第二节 热传导
一、基本概念和傅立叶定律 二、导热系数 三、平壁的稳定热传导 四、圆筒壁的稳定热传导
2020/12/9
一、基本概念和傅立叶定律
1、温度场和等温面
温度场 物体或系统内部的各点温度分布的总和
温度场的数学表达式为 t f (x, y, z, )
稳定温度
2020/12/9
2、固体的导热系数
纯金属的导热系数一般随温度的升高而降低, 金属的导热系数大都随纯度的增加而增大。 非金属的建筑材料或绝热材料的导热系数随密度增加而增 大,也随温度升高而增大。
0 1 kt
3、液体的导热系数 在非金属液体中,水的导热系数最大。除水和甘油外, 绝大多数液体的导热系数随温度的升高而略有减小,
2lr1
A1
——圆筒壁的内外表面的对数平均面积,m2
当r2/r1≤2时可用算术平均值代替对数平均值
2020/12/9
2、多层圆筒壁的热传导
与多层平壁的稳定热 传导计算类似,可导 出:
Q t1 t2 t3 R1 R2 R3
t1 t4
b1 b2 b3
1 Am1 21Am2 3 Am3
ln r2 r1
t1 t4 ln r3 ln r4 r2 r3
2l1 2l2 2l3
2020/12/9
2020/12/9
纯液体的导热系数比溶液的导热系数大。
3、气体的导热系数
气体的导热系数很小,不利于导热,但有利于保温。 气体的导热系数随温度升高而加大 。 在相当大的压强范围内,气体的导热系数随压强变化极小 注意:在传热过程中,物质内不同位置的温度可能不相同, 因而导热系数也不同,在工程计算中常取导热系数的算术平 均值。
2020/12/9
2、多层平壁的稳定热传导
Q
1
A
t1
t2 b1
t1 b1
t1 R1
1 A
2
A
t
2
b2
t3
t2 b2
t2 R2
2 A
3
A
t
3
b3
t
4
t3 b3
t3 R3
3 A
2020/12/9
t1 QR1 , t2 QR2, t3 QR3
Q t1 t2 t3 R1 R2 R3
Q dA t n
2020/12/9
Q dA t
n
——付立叶定律
λ——比例系数, 称为导热系数。w/m·k 负号表示热流方向与 温度梯度方向相反。 t / n
2020/12/9
二、导热系数
1、导热系数的定义
Q dA t
n
在数值上等于单位温度梯度下的热通量 ,是物质的物 理性质之一 。
一般,金属的导热系数最大,非金属的固体次之,液 体的较小,气体的最小。
b1
t1 t4 b2
b3
1 A 2 A 3 A
推广到n层平壁有:
Q
t1 tn1
n
Ri
i1
t1 tn1
n
bi
i1 i A
多层平壁导热是一种串联的导热过程,串联导热过程
的推动力为各分过程温度差之和,即总温度差,总热阻为
各分过程热阻之和,也就是串联电阻叠加原则。
2020/12/9
3、接触热阻
若以r0表示单位传热面的接触热阻, 通过两层平壁的热通量变为 :
q t1 t3
b1
1
r0
b2
2
接触热阻与接触面的材料,表面 粗糙度及接触面上压强等因素有 关。
2020/12/9
四、圆筒壁的稳定热传导
1、单层圆筒壁的热传导
仿照平壁热传导公式,通过该圆筒壁的导热速率可以表示为:
Q A dt 2rl dt
t f (x, y, z)
温度场中各点的温度随时间而改变
等温面:温度场中温度相同的点组成的面
2020/12/9
2、温度梯度
温度梯度 :等温面法线方向上的温度变化率,用gradt表示 。
gradt
lim
n0
t n
t
n
温度梯度是向量,正方向指向温度增加的方向。
对于一维稳定的温度场,温度梯度可表示为 :gradt dt dx 3、付立叶定律
2020/12/9
rm
r2 r1
ln r2 r1
b r2 r1
2rml
t1
b
t2
Am
t1
b
t2
t1 t2 b
Am
其中:b r2 r1 圆筒壁的厚度, m;
rm
r2 r1 圆筒壁的对数平均半径
ln r2
Am
r1
2rml
2 r2 r1
ln 2lr2
A2 A1 ln A2
2020/12/9
三、通过平壁的稳定热传导
1、单层平壁的稳定热传导
Q dAdt dx
边界条件为:
x=0时,t=t1 x=b时,t=t2
Q A t1 t2
b
2020/12/9
Q t1 t2 b
t R
A
qQ A
t b
t r
R——导热热阻,K/W ;
r——单位面积的导热热阻 。
传导距离b越大,传热面积和导热系数越小,传导热阻越大
dr
dr
2020/12/9
分离变量积分:
Q 2lt1 t2 t1 t2 t1 t2
ln r2
ln r2
R
r1
r1
ln r2 R r1
2 l
2 l
——圆筒壁的导热热阻
这个式子也可以写成与平壁传导速率方程类似的形式
Q 2lr2 r1 t1 t2 r2 r1 ln r2 r1
第二节 热传导
一、基本概念和傅立叶定律 二、导热系数 三、平壁的稳定热传导 四、圆筒壁的稳定热传导
2020/12/9
一、基本概念和傅立叶定律
1、温度场和等温面
温度场 物体或系统内部的各点温度分布的总和
温度场的数学表达式为 t f (x, y, z, )
稳定温度
2020/12/9
2、固体的导热系数
纯金属的导热系数一般随温度的升高而降低, 金属的导热系数大都随纯度的增加而增大。 非金属的建筑材料或绝热材料的导热系数随密度增加而增 大,也随温度升高而增大。
0 1 kt
3、液体的导热系数 在非金属液体中,水的导热系数最大。除水和甘油外, 绝大多数液体的导热系数随温度的升高而略有减小,
2lr1
A1
——圆筒壁的内外表面的对数平均面积,m2
当r2/r1≤2时可用算术平均值代替对数平均值
2020/12/9
2、多层圆筒壁的热传导
与多层平壁的稳定热 传导计算类似,可导 出:
Q t1 t2 t3 R1 R2 R3
t1 t4
b1 b2 b3
1 Am1 21Am2 3 Am3
ln r2 r1
t1 t4 ln r3 ln r4 r2 r3
2l1 2l2 2l3
2020/12/9
2020/12/9
纯液体的导热系数比溶液的导热系数大。
3、气体的导热系数
气体的导热系数很小,不利于导热,但有利于保温。 气体的导热系数随温度升高而加大 。 在相当大的压强范围内,气体的导热系数随压强变化极小 注意:在传热过程中,物质内不同位置的温度可能不相同, 因而导热系数也不同,在工程计算中常取导热系数的算术平 均值。
2020/12/9
2、多层平壁的稳定热传导
Q
1
A
t1
t2 b1
t1 b1
t1 R1
1 A
2
A
t
2
b2
t3
t2 b2
t2 R2
2 A
3
A
t
3
b3
t
4
t3 b3
t3 R3
3 A
2020/12/9
t1 QR1 , t2 QR2, t3 QR3
Q t1 t2 t3 R1 R2 R3
Q dA t n
2020/12/9
Q dA t
n
——付立叶定律
λ——比例系数, 称为导热系数。w/m·k 负号表示热流方向与 温度梯度方向相反。 t / n
2020/12/9
二、导热系数
1、导热系数的定义
Q dA t
n
在数值上等于单位温度梯度下的热通量 ,是物质的物 理性质之一 。
一般,金属的导热系数最大,非金属的固体次之,液 体的较小,气体的最小。
b1
t1 t4 b2
b3
1 A 2 A 3 A
推广到n层平壁有:
Q
t1 tn1
n
Ri
i1
t1 tn1
n
bi
i1 i A
多层平壁导热是一种串联的导热过程,串联导热过程
的推动力为各分过程温度差之和,即总温度差,总热阻为
各分过程热阻之和,也就是串联电阻叠加原则。
2020/12/9
3、接触热阻
若以r0表示单位传热面的接触热阻, 通过两层平壁的热通量变为 :
q t1 t3
b1
1
r0
b2
2
接触热阻与接触面的材料,表面 粗糙度及接触面上压强等因素有 关。
2020/12/9
四、圆筒壁的稳定热传导
1、单层圆筒壁的热传导
仿照平壁热传导公式,通过该圆筒壁的导热速率可以表示为:
Q A dt 2rl dt
t f (x, y, z)
温度场中各点的温度随时间而改变
等温面:温度场中温度相同的点组成的面
2020/12/9
2、温度梯度
温度梯度 :等温面法线方向上的温度变化率,用gradt表示 。
gradt
lim
n0
t n
t
n
温度梯度是向量,正方向指向温度增加的方向。
对于一维稳定的温度场,温度梯度可表示为 :gradt dt dx 3、付立叶定律
2020/12/9
rm
r2 r1
ln r2 r1
b r2 r1
2rml
t1
b
t2
Am
t1
b
t2
t1 t2 b
Am
其中:b r2 r1 圆筒壁的厚度, m;
rm
r2 r1 圆筒壁的对数平均半径
ln r2
Am
r1
2rml
2 r2 r1
ln 2lr2
A2 A1 ln A2
2020/12/9
三、通过平壁的稳定热传导
1、单层平壁的稳定热传导
Q dAdt dx
边界条件为:
x=0时,t=t1 x=b时,t=t2
Q A t1 t2
b
2020/12/9
Q t1 t2 b
t R
A
qQ A
t b
t r
R——导热热阻,K/W ;
r——单位面积的导热热阻 。
传导距离b越大,传热面积和导热系数越小,传导热阻越大
dr
dr
2020/12/9
分离变量积分:
Q 2lt1 t2 t1 t2 t1 t2
ln r2
ln r2
R
r1
r1
ln r2 R r1
2 l
2 l
——圆筒壁的导热热阻
这个式子也可以写成与平壁传导速率方程类似的形式
Q 2lr2 r1 t1 t2 r2 r1 ln r2 r1