练习2大学物理习题及答案
大连理工大学大学物理作业2(静电场二)及答案详解
1.如图所示,把点电荷q +从高斯面外P 移到R 处()OP OR =,O 为S 上一点,则[ ].A 穿过S 的电通量e φ发生改变,O 处E变.B e φ不变,E 变。
.C e φ变,E 不变。
.D e φ不变,E不变。
答案:【B 】[解]闭合面外的电荷对穿过闭合面的电通量无贡献,或者说,闭合面外的电荷产生的电场,穿过闭合面的电通量的代数和为零;移动点电荷,会使电荷重新分布,或者说改变电荷的分布,因此改变了O 点的场强。
2.半径为R 的均匀带电球面上,电荷面密度为σ,在球面上取小面元S ∆,则S ∆上的电荷受到的电场力为[ ]。
.A 0 .B 22Sσε∆ .C2S σε∆ .D2204SRσπε∆答案:【B 】解:应用高斯定理和叠加原理求解。
如图所示。
面元S ∆上的电荷受到的库仑力是其他电荷在面元S ∆处产生的总电场强度1E与面元S ∆上的电荷量S Q ∆=∆σ的乘积:111E S E Q F∆=∆=σ。
面元S ∆处电场强度E是面元S ∆电荷在此产生的电场强度2E 与其他电荷在面元S∆处产生的总电场强度1E 的矢量和,21E E E+=。
首先,由高斯定理求得全部球面分布电荷在面元S ∆处产生的总电场强度 R E ˆ0εσ=其次,面元S ∆上的电荷量S Q ∆=∆σ对于面元S ∆来说,相当于无限大带电平面,因此,面元S ∆上的电荷量S Q ∆=∆σ在面元S ∆处产生的电场强度为R E ˆ202εσ=由叠加原理,其他电荷在面元S ∆处产生的总电场强度为 R E E E ˆ2021εσ=-=面元S ∆上的电荷量S Q ∆=∆σ受到的库仑力为RS R S E S E Q F ˆ2ˆ2020111εσεσσσ∆=∆=∆=∆= 注:本题可以用叠加原理直接进行计算,太麻烦。
3.如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于[ ]。
.A06q ε .B 012q ε .C24qε .D48q ε答案:【C 】[解] :如果以A 为中心,再补充上7个相同大小的立方体,则组成一个边长为小立方体边长2倍大立方体,点电荷q 位于大立方体的中心。
大学物理(二)练习册答案
1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
成都大学_大学物理(2)综合练习题及参考答案1(振动波光近代)
.一质点同时参与了两 个同方向的简谐振动, 它们的振动 9 0.05 cos(t 1 )( SI ),x2 0.05 cos(t )( SI ), 方程分别为 x1 4 12 其合成运动的运动方程 为x __________ __________ ____ .
8
解法三: 旋转矢量法
由旋转矢量图知, A1 A2 ,
A A1 A2 0.05 2 (m)
2 2
0
4
4
2
合振动方程x A cos(t 0 ) 即x 0.05 2 cos(t )( SI ) 2
光学
一、选择题
1.在双缝干涉实验中,屏幕E上的P点处是明纹.若将缝S 2盖住, 并在S1S 2连线的垂直平分面处放一高折射率介质反射面M,如图所示, 则此时( ).
2 2 3 C. x2 A cos(t ) D. x2 A cos(t ) 2
由题意作两简谐振动的旋转矢量图如下 解:
要写出质点2的振动方程, 应先求出其初相 2
2 ( )
2
x2 A cos(t 2 ) A cos[t ( )] A cos(t ) 2 2 (选B)
t , 解: 由图可知, 2s时 x 0
2 2 v A A 6 3 (cm s 1 ) T 4
答案: 3cm.s 0;
1
7
.一弹簧振子系统具有 1.0 J的振动能量、 0.10 m的振幅和
×1的最大速率,则弹簧的 劲度系数为 _____ ,振子的振动 1.0 m s 频率为 _______ . 1 2 E 2 1.0 解: E kA2 , 得k 2 由 200( N .m 1 ), 2 A 0.12
大学物理2习题答案
解 以螺绕环的环心为圆心,以环的平均半 径r 为半径的圆周为积分路径,根据磁介质 中的安培环路定理 l I Hd
L ( 内 )
得
H 2 π rN Inr 2 π I
Hn I
B H n I n N / 21 r 0 匝 / c m 1 0 0 0 匝 / m 0 r 0 r
L1
I L2 a 2a I
r
a
O
d FI d l B
该力对O点的磁力矩为
方向
x
x
d M r d F
2 μ I μ I 4 a 0 0 d M r I B d( x = 4 a x ) I d x = ( 1 ) d x 2 x 2 x
济南大学泉城学院
11.2 填空题
(2) 矩形截面的螺绕环尺寸见图,则在截面中点处的磁感应 强度为 ;通过截面S 的磁通量为 。
I Hdl
L 内
有
H d l N I 其 中 , I 3 A
L
所以有
L 1
d l 3 6 1 8 A ; H d l 3 9 2 7 A ; H
L 2
L 3
d l 3 1 3 3 9 A ; H d l 3 A . H
L 4
济南大学泉城学院
济南大学泉城学院
第11章
恒定电流的磁场
11.1选择题
(1)有两条长直导线各载有5A的电流,分别沿x、y轴正 向流动。在 (40,20,0)cm处的 B 是[ ]。 z 解 视两长直导线为无限长。
沿x、y轴正向流动的电流分别用I1和I2表示。
则I1和I2在P点产生的磁感应强度分别为
I1
I2
大学物理(二)答案
大学物理(二)练习册 参考解答第12章 真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ; (7). -2³103V ; (8).⎪⎪⎭⎫ ⎝⎛-πb a r r q q 11400ε(9). 0,pE sin α ; (10). ()()j y x i xy40122482+-+-- (SI) ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i R E +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i R E +π=034ελ由场强叠加原理,O 点合场强为: ()j i RE E E E +π=++=03214ελBA∞O BA∞∞2. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85³10-12 C 2²N -1²m -2)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E²S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴() E E h1201-=ερ=4.43³10-13C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理⎰⎰E²S d =∑i1qε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9³10-10C/m 33. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RRE y 000208d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E y x008ελ-=+=(2)2(1)4. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E它沿x 、y 轴上的二个分量为: d E x =-d E cos φ =φφεσd s co 220π-d E y =-d E sin φ =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =2εσ0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==5. 一半径为R 的带电球体,其电荷体密度分布为4πRqr =ρ (r ≤R ) (q 为一正的常量)ρ = 0 (r >R )试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r Rq V Q rV===⎰⎰34d /4d ρ(2) 在球内作一半径为r 1的高斯球面,按高斯定理有4041241211d 414Rqr r r Rqr E r r εε=π⋅π=π⎰得402114R qr E επ=(r 1≤R),1E方向沿半径向外.在球体外作半径为r 2的高斯球面,按高斯定理有 0222/4εq E r =π得22024r q E επ=(r 2 >R ),2E方向沿半径向外.(3) 球内电势⎰⎰∞⋅+⋅=RR r r E r E U d d 2111⎰⎰∞π+π=RRr r rq r Rqrd 4d 4204021εε40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R qε ()R r ≤1 球外电势 2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεk S b x d x kSSE E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ='圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR xE E E 220212+=+=εσ该点电势为 ()220222d 2xR R xR x x U x+-=+=⎰εσεσ8.一真空二极管,其主要构件是一个半径R 1=5³10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-= 得到()120/ln 2R R UUAB-=πελ, 所以 ()rR R UUE AB1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U e R eE F A B ⋅-===4.37³10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 241rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大学物理课后习题2第二章答案
(B) aA>0 , aB<0.
(C) aA<0 , aB>0.
(D) aA<0 , aB=0. F
B
A
x
答案:(D)。
题 2.1(5)图
2.2 填空题 (1) 质量为 m 的小球,用轻绳 AB、BC 连接,如图所示,其中 AB 水平.剪断绳 AB 前后的瞬间,绳 BC 中的张力比 T : T′=____________.
说
法
中
:
()
(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
答案:(C)。
(4) 一质量为 M 的斜面原来静止于水平光滑平面上,将一质量为 m 的木块轻
轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将
()
(A) 保持静止.
(B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
受的合力为 F =( a bt )N( a,b 为常数),其中 t 以秒为单位:(1)假设子弹运行
到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的
冲量;(3)求子弹的质量.
解: (1)由题意,子弹到枪口时,有
F (a bt) 0 ,得 t a b
(2)子弹所受的冲量
,
物体与水平面间的摩擦系数为
。
答案: v2 ; 2s
v2 . 2gs
(5) 在光滑的水平面内有两个物体 A 和 B,已知 mA=2mB。(a)物体 A 以一定的动
能 Ek 与 静 止 的 物 体 B 发 生 完 全 弹 性 碰 撞 , 则 碰 撞 后 两 物 体 的 总 动 能
大学物理习题答案02质点动力学
大学物理练习题二一、选择题1. 质量为m的小球在向心力作用下,在水平面内作半径为R、速率为v的匀速圆周运动,如下左图所示。
小球自A点逆时针运动到B点的半周内,动量的增量应为:(A )mv 2j (B )jmv2 (C )i mv 2 (D )i mv 2 [ B ]解: j mv j mv v m v m p A B)(j mv 2 ; 另解:取y 轴为运动正向,mv mv mv p 2)( , pj mv 22. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A ).2mv (B )22/2v R mg mv(C )v Rmg / (D )0。
[ C ]解: v /R 2T ,2/T t ,t mgd I T 20v /R mg(注)不能用0v m v m p I,因为它是合力的冲量。
3. 一质点在力)25(5t m F (SI )(式中m 为质点的质量,t 为时间)的作用下,0 t 时从静止开始作直线运动,则当s t 5 时,质点的速率为(A )s m /50 (B )s m /25 (C )0 (D )s m /50 [ C ]mvR解:F 为合力,00 v ,0525)25(5525t tt mt mt dt t m Fdt由mv mv mv Fdt tt 00可得0 v解2:由知)25(5t m F 知)25(5t a ,550)25(5dt t adt v v0)5(5520 t t v v , (00 v )4. 质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动,它们的总动量大小为(A ),22mE (B )mE 23, (C )mE 25, (D ) mE 2122 。
[ B ]解:由M p Mv E k 22122,有k ME p 2 ,mE 2p 1 ,12p 4)E 4)(m 4(2p ,1123)(p p p p 总m E 235. 一个质点同时在几个力作用下的位移为:k j i r654 (SI ) 其中一个力为恒力k j i F953 (SI ),则此力在该位移过程中所作的功为 (A) 67J (B) 91J (C) 17J (D) –67J [ A ]解:恒力作功,z F y F x F r F A z y x69)5()5(4)3()(67J6. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加。
大学物理2考试题及答案
大学物理2考试题及答案一、选择题(每题3分,共30分)1. 一个物体在水平面上以一定的初速度开始做匀减速直线运动,直到静止。
若物体在最后1秒内通过的位移为s,已知物体的初速度为v0,加速度为a,那么物体总共运动的时间为:A. (v0 - s) / aB. (v0 + s) / aC. (v0 + s) / 2aD. (v0 - s) / 2a答案:C2. 在静电场中,关于电场强度和电势的说法正确的是:A. 电场强度越大,电势一定越高B. 电场强度越小,电势一定越低C. 沿着电场线方向,电势一定降低D. 电势降低最快的方向一定是电场强度的方向答案:D3. 一个质量为m的物体从高度h处自由下落,假设空气阻力可以忽略不计,那么在落地时,物体的动能为:A. mghB. mgh / 2C. 0D. mgh / 4答案:A4. 根据热力学第一定律,一个封闭系统内能的增加量等于:A. 系统吸收的热量B. 系统对外做的功C. 系统吸收的热量与对外做的功之和D. 系统对外做的功与吸收的热量之差答案:C5. 一个弹簧振子的周期为T,振幅为A,那么在半个周期内,振子的位移大小为:A. AB. A/2C. A/√2D. 0答案:A6. 在理想气体状态方程PV=nRT中,如果温度T不变,气体的压强P 和体积V成:A. 正比关系B. 反比关系C. 对数关系D. 没有关系答案:B7. 根据麦克斯韦方程组,电场E和磁感应强度B在真空中的关系可以通过以下哪个方程表示:A. ∇·E = 0B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀∂E/∂t答案:B8. 一个点电荷q在电场中受到的电场力为F,那么该点的电场强度E 的大小为:A. E = F/qB. E = qFC. E = FqD. E = F/|q|答案:A9. 一个电子在垂直于磁场方向的平面内做匀速圆周运动,如果电子的运动半径为r,那么磁场的磁感应强度B为:A. B = mv/rB. B = mvrC. B = mv²/rD. B = mv/r^2答案:C10. 在波动光学中,光的干涉现象产生的条件是:A. 频率相同B. 相位相同C. 振幅相同D. 方向相同答案:A二、填空题(每题4分,共20分)11. 一个物体做简谐运动,其振动周期为2秒,那么该物体的振动频率为_______Hz。
2014-2015-1-大学物理(二)练习题及-答案
大学物理(二)练习题第八章(一) 真空中的恒定磁场1.某电子以速率410/v m s =在磁场中运动,当它沿x 轴正向通过空间A 点时,受到的力沿y 轴正向,力的大小为178.0110F N -=⨯;当电子沿y 轴正向再次以同一速率通过A 点时,所受的力沿z 轴的分量161.3910z F N -=⨯。
求A 点磁感应强度的大小和方向。
2.真空中有两根相互平行的无限长直导线1L 和2L ,相距10.0cm ,通有相反方向的电流,120I A =,210I A =。
求在两导线所在平面内、且与导线2L 相距5.0cm 的两点的磁感应强度大小。
3.无限长直导线折成V 形,顶角为θ,置于x y -平面内,其一边与x 轴重合,如图所示,通过导线的电流为I 。
求y 轴上点(0,)P a 处的磁感应强度。
4.如图所示,用两根相互平行的半无限长直导线1L 和2L 把半径为R 的均匀导体圆环联到电源上,已知通过直导线的电流为I 。
求圆环中心o 点的磁感应强度。
5.将通有电流I 的长导线中部弯成半圆形,如图所示。
求圆心o 点的磁感应强度。
6.将同样的几根导线焊成立方体,并将其对顶角A 、B的电流在其中心处所产生的磁感应强度等于。
7.如图所示,半圆形电流在xoz 平面内,且与两半无限长直电流垂直,求圆心o 点的磁感应强度。
8.在一通有电流I 的长直导线旁,放置一个长、宽分别为a 和b 的矩形线框,线框与长直导线共面,长边与直导线平行,二者相距d ,如图所示。
求通过线框的磁通量φ=。
9.在匀强磁场中,取一半径为R 的圆,圆面的法线n 与磁xnB感应强度B 成o 60角,如图所示,则通过以该圆周为边线的任意曲面S 的磁通量φ=。
10.在真空中,有两个半径相同的圆形回路1L 、2L ,圆周内都有稳恒电流1I 、2I ,其分布相同。
在图(b)中,回路2L 外还有稳恒电流3I ,1P 、2P 为两圆形回路上的对应点,如图所示,则下列表达式正确的是(A) 12L L B dl B dl ⋅=⋅⎰⎰,12PP B B =; (B)12L L B dl B dl ⋅≠⋅⎰⎰,12PP B B =;(C)12L LB dl B dl ⋅=⋅⎰⎰,12P P B B ≠;(D)12L L B dl B dl ⋅≠⋅⎰⎰,12PP B B ≠.[ ]11.如图所示,在圆形电流I 所在平面内,选取一同心圆形闭合回路L ,则由安培环路定理看出,以下结论正确的是(A)0LB dl ⋅=⎰,且环路L 上任一点,0B =;(B) 0LB dl ⋅=⎰,且环路L 上任一点,0B ≠;(C)0LB dl ⋅≠⎰,且环路L 上任一点,0B ≠;(D)0LB dl ⋅≠⎰,且环路L 上任一点,B =常量。
大学物理2习题参考答案
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理练习题2(动力学)
大学物理练习题2:“力学—动力学”一、填空题1、一质量为m 的小球,当它以速率ν做匀速直线运动时,受到的合力大小等于 0 ;当它以加速度a做匀变速直线运动时,受到的合力大小等于ma ;当它做自由落体运动时,受到的合力大小等于mg 。
2、质量为m 的汽车,驶过曲率半径为R 的拱桥时速率为v ,当汽车驶过如右图所示的位置时,它对桥面的压力大小为=N F R m v m g 2-。
3、质量为m 的子弹以速率0v 水平射入沙土中。
若子弹所受阻力与速率成正比(比例系数为k ),忽略子弹重力的影响,则:(1)子弹射入沙土后,=)(t v t m k ev -0;(2)子弹射入沙土的深度=)(t x kmv e k mv t m k 00+--。
4、一质量为m 、半径为R 的均匀圆盘,以圆心为轴的转动惯量为221mR ,如以和圆盘相切的直线为轴,其转动惯量为223mR 。
5、一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω。
设它所受阻力矩与转动角速度成正比,即ωk M -=(k 为正的常数),则圆盘的角速度为20ω时其角加速度α=J k 20ω-;圆盘的角速度从0ω变为20ω时所需的时间为2ln k J 。
二、选择题 1、汽车急转弯时人往往要向外倾倒,从地面上的观察者看来,是何种缘故造成的?(C )。
A 、离心力;B 、离心惯性力;C 、惯性;D 、无法确定。
2、下述说法中,正确的是( D )。
A 、在两个相互垂直的恒力作用下,物体可以作匀速直线运动;B 、在两个相互垂直的恒力作用下,物体可以作匀速率曲线运动;C 、在方向和大小都随时间变化的力的作用下,物体作匀速直线运动;D 、在方向和大小都不随时间变化的力的作用下,物体作匀加速运动。
3、一个人在平稳地行驶的大船上抛篮球,则( D )。
A 、向前抛省力;B 、向后抛省力;C 、向侧抛省力;D 、向哪个方向都一样。
4、完全相同的甲乙二船静止于水库中,一人从甲船跳到乙船上,不计水的阻力,则( C )。
吉林大学大学物理练习册综合练习二答案
c′
V
8.1mol刚性双原子分子理想气体,当温度为 时,其 . 刚性双原子分子理想气体, 刚性双原子分子理想气体 当温度为T时 内能为
3 A . RT 2 3 B . kT 2
5 C . RT 2
5 D . kT 2
4
9.对于室温下的双原子分子理想气体,在等压 .对于室温下的双原子分子理想气体, 膨胀的情况下, 膨胀的情况下,系统对外所作的功与从外界吸 收的热量之比 A/Q 等于 A. 1/3 B. 1/4 C. 2/5 D. 2/7 10.一定量的理想气体向真空作绝热自由膨 . 体积由V 增至V 胀,体积由 1增至 2,在此过程中气体的 A. 内能不变,熵增加 内能不变, B. 内能不变,熵减少 内能不变, C. 内能不变,熵不变 内能不变, D. 内能增加,熵增加 内能增加,
m mg µl M f = 2∫ ⋅ dr ⋅ gµr = 0 2l 2
l
M f ⋅ ∆t = 0 − Iω 0 ⇒ 2 lω 0 ∆t = 3 µg
8
5. 如图所示 , 质点 的质量为 . 如图所示, 质点P的质量为 的质量为2kg, 位置矢量 , r r r 的作用。 为 r ,速度为 υ ,它受到力 F 的作用。这三个 −1 量均在xOy平面内,且r = 3m, = 4.0m ⋅ s , 平面内, 量均在 平面内 , υ r F=2N。 则该质点对 点的角动量 12kkgm2s−1, 点的角动量=_________, 。 则该质点对O点的角动量 r 作用在质点上的力对O点的力矩 点的力矩=___________。 作用在质点上的力对 点的力矩 3kNm 。
角动量(动量矩) 角动量(动量矩)
r r r L = r × mυ
r r r M = r ×F
大学物理2课后习题答案.docx
解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。
为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。
大学物理二考试题及答案
大学物理二考试题及答案一、选择题(每题3分,共30分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100 m/sB. 300 m/sC. 1000 m/sD. 3×10^8 m/s答案:D2. 一个电子在垂直于其运动方向的磁场中做匀速圆周运动,其半径与什么因素有关?A. 电子质量B. 电子速度C. 电子电荷D. 磁场强度答案:D3. 下列哪个公式描述了光电效应?A. E = mc^2B. hν = Φ + E_kC. F = maD. qE = mv^2/r答案:B4. 波粒二象性中,粒子的波动性与哪个参数有关?A. 质量B. 动量C. 速度D. 电荷答案:B5. 根据热力学第二定律,下列哪种说法是正确的?A. 热量可以从低温物体自发地传递到高温物体B. 任何能量转化过程都有一定的效率限制C. 第二类永动机是可能实现的D. 熵是一个状态量,与系统的历史无关答案:B6. 理想气体状态方程为:A. PV = nRTB. PV = P1V1C. P1V1/T1 = P2V2/T2D. V/T = nR答案:A7. 一个物体的动能和动量,下列哪个说法是正确的?A. 动能和动量总是成正比B. 动能和动量总是成反比C. 动能与速度的平方成正比,动量与速度成正比D. 动能与速度成正比,动量与速度的平方成正比答案:C8. 根据狭义相对论,下列哪个说法是错误的?A. 真空中的光速是恒定的B. 质量与能量是等价的C. 一个物体的长度在所有参考系中都是相同的D. 时间膨胀和长度收缩是相对论效应答案:C9. 根据量子力学,海森堡不确定性原理表明:A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的能量和时间可以同时准确测量D. 粒子的能量和频率可以同时准确测量答案:B10. 一个电路中,电阻R1和R2串联,总电阻R等于:A. R1 + R2B. R1 * R2C. 1/R1 + 1/R2D. R1 / (R1 + R2)答案:A二、填空题(每题4分,共20分)11. 一个物体的动量定义为_______。
大学物理练习二
练习二 电磁学(静电学、稳恒磁场、电磁感应)一、选择题:1.真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力F(A)大小不变,方向改变. (B)大小改变,方向不变. (C)大小和方向都不变. (D)大小和方向都改变.2.在一个带有正电荷的均匀带电球面外,放置一个电偶极子,其电矩p的方向如图所示,当释放后,该电偶极子的运动主要是:(A)沿逆时针方向旋转,直至电矩p沿径向指向球面而停止.(B)沿顺时针方向旋转,直至电矩p沿径向朝外而停止.(C)沿顺时针方向旋转至电矩p沿径向朝外,同时沿电力线远 离球面移动.(D)沿顺时针方向旋转至电矩p沿径向朝外,同时逆电力线方向向着球面移动. 3.当一个带电导体达到静电平衡时:(A)表面上电荷密度较大处电势较高. (B)表面曲率较大处电势较高.(C)导体内部的电势比导体表面的电势高.(D)导体内任一点与其表面上任一点的电势差等于零.4.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化: (A)12U 减小,E 减小,W 减小. (B)12U 增大,E 增大,W 增大. (C)12U 增大,E 不变,W 增大. (D)12U 减小,E 不变,W 不变.5.在磁感应强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为α,则通过半球面S 的磁通量为(A) B r 2π (B) B r 2π2 (C) B r 2π-αsin (D) B r 2π-αcos6.如图,边长为a 的正方形的四个角上固定有四个电量均为q 的点电荷。
此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为1B ;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为2B ,则1B 与2B 间的关系为(A) 1B =2B (B) 1B =22B (C) 1B =212B (D) 1B =412B7.图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是(A)Oa (B)Ob (C)Oc (D)Od8.一根长度为L 的铜棒,在均匀磁场B 中以匀角速度ω旋转着,B的方向垂直铜棒转动的平面,如图.设0=t 时,铜棒与Ob 成θ角,则在任一时刻t这根铜棒两端之间的感应电动势是(A))cos(2θωω+t B L (B)t B L ωωcos 221 (C))cos(22θωω+t B L (D)B L 2ω (E)B L 221ω二、填空题:1.如图所示,真空中两个正点电荷,带电量都为Q ,相距R 2.若以其中点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=Φ______________;若以0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为_______________________.2.真空中一半径为R 的均匀带电球面,总电量为Q (Q >0),今在球面上挖去一很小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小=E ______________,其方向为_______________.3.在一个带负电荷的金属球附近,放一个带正电的点电荷0q ,测得0q 所受的力为F ,则F /0q 的值一定_______________于不放0q 时该点原有的场强大小.(填大、等、小)4.如图所示,两块很大的导体平板平行放置,面积都是S ,有一定厚度,带电量分别为1Q 和2Q .如不计边缘效应,则A 、B 、C 、D 四个表面上的电荷面密度分别为________________, __________________, __________________, ____________________.5.用力F 把电容器中的电介质(介电常数为r ε)板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量之比b a W W 为_________。
大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解
2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。
B.它的动量不变,对圆心的角动量不断改变。
C.它的动量不断改变,对圆心的角动量不变。
D.它的动量不断改变,对圆心的角动量也不断改变。
答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。
B.系统的总动量。
C.系统的总动能。
D.系统的总角动量。
答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。
不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.①、②是正确的。
B.②、③是正确的。
C.只有②是正确的。
D.只有③是正确的。
答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。
< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。
大学物理II练习册答案6
大学物理练习 六一、选择题:1.理想气体经历如图所示的a b c 平衡过程,则系统对外做功A ,从外界吸收的热量Q 和内能的增量E ∆的正负情况如下: [ ] (A) 0>∆E ,.0,0<>A Q (B) .0,0,0>>>∆A Q E (C) .0,0,0><>∆A Q E (D) .0,0,0><<∆A Q E解: c b a →→,则A >0,另外c T >a T ,故温度升高内能增加。
据热一律E A Q ∆+=,Q >0。
选[ B ]2.一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循环过程中,气体从外界吸热的过程是 [ ](A) A →B (B) B →C (C) C →A (D) A →B 和B →C解: [ A ] B →C 等容降温过程(放热)C →A 等温压缩过程(放热)A →B 等压膨胀过程(吸热)3.有人设计了一台卡诺热机(可逆的).每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J .同时对外做功1000 J ,这样的设计是 (A) 可以的,符合热力学第一定律. (B) 可以的,符合热力学第二定律. (C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.(D) 不行的,这个热机的效率超过理论值. [ ]解:[ D ]00136.5518001000180080011==-=-=QQη 00.254140030011==-=-=g d T T 卡η 4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功。
”对此说法,有如下几种评论,哪种是正确的? [ ] (A) 不违反热力学第一定律,但违反热力学第二定律。
pOV a b c(B) 不违反热力学第二定律,但违反热力学第一定律。
(C) 不违反热力学第一定律,也不违反热力学第二定律。
大学物理2习题答案
一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C )(A) eL P π; (B)eL P π4; (C) eLP π2; (D) 0。
2. 在磁感应强度为B 的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I , 电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B )(A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202r I B πμ=; (D) 202RI B πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A )(A) 频率不变,光速变小; (B) 波长不变,频率变大;(C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变;(C) 通过S 面的电通量和P 点的电场强度都不变;(D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂A C直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动;(B) 干涉条纹间距减小,并向B 方向移动;(C) 干涉条纹间距减小,并向O 方向移动;(D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E = B ,E 沿z 轴正向; (B) E =v B ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
大学物理II练习册答案
大学物理练习八一、选择题:1.有两个点电荷电量都是+q ,相距为2 a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为s Φ,则[D ](A)s ΦΦ>Φ,21=0/εq (B)021/2,εq s =ΦΦ<Φ(C)021/,εq s =ΦΦ=Φ(D)021/,εq s =ΦΦ<Φ解∶通过S 1的电场强度通量分别为1Φ,有穿进又有穿出;但通过S 2的电场强度通量分别为2Φ,只有穿出.故,21Φ<Φ据高斯定理通过整个球面的电场强度通量为s Φ只与面内电荷有关。
2.图示为一具有球对称性分布的静电场的E~r 关系曲线。
请指出该静电场是由下列哪种带电体产生的?[](A) 半径为R 的均匀带电球面。
(B) 半径为R 的均匀带电球体。
(C) 半径为R 、电荷体密度Ar =ρ(A 为常数)的非均匀带电球体。
(D) 半径为R 、电荷体密度r A /=ρ(A 为常数)的非均匀带电球体。
解∶(D )3.关于高斯定理的理解有下面几种说法,其中正确的是:[D ] (A)如果高斯面上E ϖ处处为零,则该面内必无电荷. (B)如果高斯面内无电荷,则高斯面上E ϖ处处为零.(面外有电荷) (C)如果高斯面上E ϖ处处不为零,则高斯面内必有电荷.(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.4.在磁感应强度为B ϖ的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n ϖ与B ϖ的夹角为α,则通过半球面S 的磁通量为[D ](A).2B r π(B)2.2B r π(C)απsin 2B r -.(D)απcos 2B r -.0=∑i q5.如图示,直线MN 长为2 L ,弧OCD 是以点N 为中心,L 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角动量守恒
2mVl (1 ml 2 2ml 2 )
3
6V
7l
Ek
1 2
J '
2
1 2
7 3
ml
2
36V 2 49l 2
6 mV 2 7
Ek0
1 mV 2
2
1 2
mV
2
mV
2
m
lol
V
V m
3题图
解:
N1
1
T3
T1' a1 T1 M1g
m1 g
T3'
2 N2
M2g
T2'
T2 a2
m2 g
分析受力,设定各物的加速度方向,如 图
物块: 滑轮:
m2g T2 m2a2 T1 m1g m1a1
T3r T1'r J1
T2'r T3'r J1
N1
1
T3
T1' a1 T1 M1g
m1 g
3. 如图,一均匀细杆长为l,质量为m,平放在摩擦系数为的水平桌面上,设开始时杆以角速 度0绕过中心O且垂直于桌面的轴转动,试求:⑴作用在杆上的摩擦力矩; ⑵经过多长时间 杆才停止转动。
解:⑴
在距轴为r处取一微元dr
则其质量为:
dm = m/L ·dr
此微元所受的摩擦力矩元为:
dN
O r dr 0 l dm g
由转动,转动惯量为J,开始时平台和小孩均静止,当小孩突然以相对地面为V的速率在台
边缘沿顺时针转向走动时,此平台相对地面旋转的角速度和旋转方向分别为 :
(A)
,逆时针
mR2 (V ) JR
角动量守恒
3.光滑的水平桌面上,有一长为2L质量为m的匀质细杆,可绕过其中点且垂直于杆的竖直光滑 固定轴O自由转动,其转动惯量为mL2/3,起初杆静止,桌面上有两个质量均为m的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率V相向运动,当两小球同时与杆的两个端点
,
啮合过程中机械能的损失为
。
0 /17
4 17
m02r
2
J1
1 2
mr
2
J2
1 2
mr 2
8mr 2
角动量守恒 J10 J2
E1
1 2
J102
又:
E2
1 2
J
2
2
E E2 E1
B A
0 r 2r
6题图
三、计算题:
1.以30N·m的恒力矩作用在有固定轴的飞轮上,在10s内飞轮的转速由零增大到5rad/s,此 时移去该力矩,飞轮因摩擦力矩的作用经90s而停止,试计算此飞轮对其固定轴的转动惯 量。
增大到 =15rad/s,则Mr=
。
10N M
M Mr J t
4.如图,一静止的均匀细杆,长为L质量为M,可绕通过杆的端点且垂直于杆长的光滑固定
轴O在水平面内转动,转动惯量为ML2/3,一质量为m、速率为v的子弹在水平面内沿与杆
垂直的方向射入并穿出杆的自由端,设刚穿出杆时子弹的速率
为v/2,则此时杆的角速度为
连带条件:
T3'
2 N2
M2g
T2'
T2 a2
m2 g
a1 r1 a2 r2
且 : a1 a2 a T1 T1' T2 T2' T3 T3'
物块: 滑轮:
m2g T2 m2a2 T1 m1g m1a1
T3r T1'r J1 T2'r T3'r J2
a1g
4
T3
11 mg 8
l o•
60
M=
,角加速度 = 。
2题图
3 4
ml
2
m
J miri2
2g
1 2
mgl
m(
l 2
)2
2m(
l 2
)2
3l
M J
M Fr (2mg mg)R
3.一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩Mr外,还受到恒定外力矩M的作
用,若M=40N·m,轮子对固定轴的转动惯量为J=20Kg·m2,在t=10s内,轮子的角速度由0=0
工科大学物理练习 之二
一、选择题:
1.一圆盘绕过盘心且与盘面垂直的轴O以角速度按图示方向转动,若如图所示情况,将两
个大小相等方向相反但不在同一直线的力F沿盘面同时作用到盘上,则盘的角速度 : (A) 必然增大
F
F
O 1题图
M J M 0
2.质量为m的小孩站在半径为R的水平平台边缘上,平台可以绕通过其中心的竖直光滑轴自
解: t 0 t
1
5 10
0.5rad/s
2
2
5 90
1 18
rad/s 2
M Mr J1
Mr J2
J 54Kg m2
2. 一轻绳跨过两个质量均为m半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为 2m和m的重物,如图,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为 mr2/2,将由两个定滑轮以及质量为2m和m的重物组成的系统从静止释放,求重物的加速 度和两滑轮之间绳内的张力
.
1 2
v
3mv
o
M
2 ML
v
4题图
角动量守恒
5.在一水平放置的质量为m长度为l的均匀细棒上,套着一质量也为m的钢珠B(可看作质
点),钢珠用不计质量的细线拉住,处于棒的中点位置,棒和钢珠所组成的系统以角速度
0绕OO’轴转动,如图,若在转动过程中细线被拉断,在钢珠沿棒滑动过程中,该系统转动
的角速度与钢珠离轴的距离x的函数关系为
Ek
Ek
Ek0
1 mV 7
2
二、填空题:
1.飞轮绕中心垂直轴转动,转动惯量为J,在t=0时角速度为0,此后飞轮经历制动过程,阻力矩
M的大小与角速度的平方成正比,比例系数为大于零的常数K,当 = 0/2时,飞轮的角加速
度 =
,从开始制动到所经历的时间t =
.
k02 / 4J
J / k0
M J
k2 J 0 / 2
k 2 J d
dt
2.一长为l的轻质细棒,两端分别固定质量为m和2m的小球如图,
2m
此系统在竖直平面内可绕过中点O且与棒垂直的水平光滑固定轴(O
轴)转动。开始时棒与水平成60°角并处于静止状态。无初转速地
释放以后,棒、球组成的系统绕O轴转动,系统绕O轴转动惯量
J=
,释放后,当棒转到水平位置时,系 2 3x2 )
o' 0
o
1 2
l
l
m
m
B
5题图
J0 J '
J
1 3
ml
2
m(2l )2
J
'
1 3
ml
2
mx 2
6.圆盘形飞轮A的质量为m半径为r,最初以角速度0转动,与A共轴的圆盘形飞轮B的质量
为4m半径为2r,最初静止,如图.若两飞轮啮合后,以同一角速度转动,则: =
dM f
dm g r
m dr g r
l
mg rdr
l
作用在细杆上的总摩擦力矩为:
Mf
0LdM f
20L /
2
mg
l
rdr
1 mgl
4
方向: 与初始角速度方向相反
⑵
M f J
Mf J