解析几何解答题点拨
近五年全国卷解析几何(小题)分析及解题规律总结
FM 的延长线交 y 轴于点 N 。若 M 为 FN 的中点,则 FN
。
【解析】 y2 8x 则 p 4 ,焦点为 F 2,0 ,准线 l : x 2,
如图, M 为 F 、 N 中点, 故易知线段 BM 为梯形 AFMC 中位线,
ly
∵ CN 2 , AF 4 ,
∴MB=3 又由定义,MB=MF
直线 l1 , l2 ,直线 l1 与 C 交于 A 、 B 两点,直线 l2 与 C 交于 D ,E 两点,
AB DE 的最小值为()A.1616
B.14C.12 D.10
设 AB 倾斜角为 .作 AK1 垂直准线, AK2 垂直 x 轴
AF AK1
cos AF
GF AK1 (几何关系) (抛物线特性)
1 2 5 sin 1 5 cos
5
5
2 ( 2 5 )2 ( 5 )2 sin( )
5
5
2 sin( ) ≤ 3
解决椭圆的离心率的求值及范围问题其关键就是确立一
个关于 a,b, c 的方程或不等式,再根据 a,b, c 的关系消掉 b 得到 a, c 的关系式,建立关于 a,b, c 的方程或不等式,要充分利用椭
22 2
结合 b =c -a 转化为 a,c 的齐次式,然后等式(不等式)两边分别
2
除以 a 或 a 转化为关于 e 的方程(不等式),解方程(不等式)即可得
e(e 的取值范围)。3 结合定义和正余弦定理。
考点三:椭圆的定义和简单性质
【2017
课标
3,理
10】已知椭圆
C
x2 a2
y2 b2
专题09解析几何热点问题-2024年高考数学六大题解满分解题技巧秘籍
解析几何热点问题的基本思路是通过分析图形的性质和给定条件,找出热点所具有的特点,从而推导出热点的位置或特征。
以下是解析几何热点问题的一般步骤和解题技巧:1.仔细阅读题目,理解问题。
明确给定的条件和要求,特别是热点所具有的性质。
2.分析图形的性质。
如果题目中给出了图形,先仔细观察几何图形的结构和特征,判断是否存在特殊的轴、对称关系等。
根据图形性质,可以推断出一些等值关系或类似三角形之间的比例关系。
3.利用给定条件,并结合所求的特征,运用几何定理和性质进行推理。
根据题目中给出的条件和已知的几何定理,可以得出一些等式或者比例关系。
根据热点的定义和特征,可以运用几何定理进行分析,进一步推出解的范围或唯一性。
4.运用代数方法进行推导。
有时候,解析几何热点问题可以用代数方法进行推导。
建立坐标系,设定未知数,并利用几何条件和已知条件得出方程或不等式。
通过求解方程组或优化问题,可以确定热点的位置或特征。
5.检查和验证。
在得到解后,要仔细检查解是否符合题目给定的条件和要求,特别是热点所具有的性质。
如果解不符合条件或性质,则需要重新分析和推导,找出问题所在。
在解析几何热点问题时,需要熟悉几何定理和性质,特别是与热点相关的定理和公式,如三角形的重心、外心、内心,四边形的重心、外心等。
此外,灵活运用代数方法和图像化方法,可以更好地推理和解决热点问题。
下面通过一个例子来说明解析几何热点问题的解题思路:例题:在直角三角形ABC(∠C=90°)中,D为BC边上一点,E为AC边上一点,连接AE、BD交于点F,若知BF=3FD,求证:EF⊥AB。
解题思路:1.明确问题:证明EF⊥AB,即EF与AB垂直。
2.分析图形:根据题目给出的直角三角形ABC以及点F的定义,我们可以发现三角形CDE与三角形ABC相似,且F是两个相似三角形的对应点。
3.利用相似三角形的性质:因为三角形CDE与三角形ABC相似,可以得出CE/AC=DE/BC。
(完整版)解析几何考点和答题技巧归纳
解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
解析几何考点梳理讲解总结,高考数学解析几何题型及答案解析
考点31直线的倾斜角与斜率、直线的方程【命题解读】直线的倾斜角与斜率以及直线的方程作为高考的一个知识点,主要是以基础题为主,在选择题中多有涉及,对于直线的方程更多的是与圆锥曲线相结合出题,难度以中高档题为主。
【命题预测】预计2021年的高考直线的倾斜角与斜率以及直线的方程出题还是以基础题为主,多出选择或者填空,与圆锥曲线的结合出现在解答题,单独出题可能性小。
【复习建议】1.理解直线的倾斜角与斜率的概念,会计算斜率并运用斜率判定直线的位置关系;2.掌握直线方程的各种形式。
考向一直线的倾斜角与斜率1.直线的倾斜角(1)定义:在平面直角坐标系中,当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫作直线l的倾斜角.当直l和x轴平行或重合时,直线l的倾斜角为0°.(2)范围:倾斜角α的取值范围是0°≤α<180°.2.直线的斜率(1)定义:一条直线的倾斜角α(α≠90°)的正切值叫作这条直线的斜率,该直线的斜率k= tan α..(2)过两点的直线的斜率公式:过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=y2-y1x2-x1若x1=x2,则直线的斜率不存在,此时直线的倾斜角为90°.1. 【2020350y --=的倾斜角为( ) A .6π B .3π C .23π D .56π 【答案】A350y --=的斜率为3,故倾斜角θ的正切值tan 3θ=,又[)0,θπ∈,故6πθ=.故选:A2. 若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2【答案】B【解析】由k =-3-2y -12-4=tan 3π4=-1, 得-4-2y =2,所以y =-3. 故选:B考向二 直线的方程名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x=x 0 斜截式 y=kx+b不含垂直于x 轴的直线两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x=x 1(x 1=x 2)和直线y=y 1(y 1=y 2) 截距式 x a +y b=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A 2+B 2≠0)平面内所有直线都适用1. 【2020全国课时练习】以(2,5)A -,(4,1)B -为端点的线段的垂直平分线方程是 A .290x y -+=B .230x y +-=C .290x y --=D .230x y ++=【答案】D【解析】由(2,5),(4,1)A B --,所以点,A B 中点坐标为(3,3)P -,又由斜率公式可得1(5)242ABk ---==-,所以垂直平分线的斜率为112AB k k =-=-,所以垂直平分线的方程为1(3)(3)2y x --=--,即230x y ++=. 故选D .2. 【2020全国课时练习】过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=【答案】C【解析】∵直线过点()3,2且斜率为23, 由直线方程的点斜式得:22(3)3y x -=-, 整理得:230x y -=. 故选:C.3. 【2020全国课时练习】已知ABC 的三个顶点都在第一象限,且(1,1),(5,1)A B ,45A ︒∠=,45B ︒∠=,求:(1)AB 边所在直线的方程; (2)AC 边和BC 边所在直线的方程. 【答案】见解析【解析】(1)因为(1,1),(5,1)A B ,所以直线AB 平行于x 轴,所以直线AB 的方程为1y =. (2)由题意知,直线AC 的倾斜角为A ∠,又45A ︒∠=,所以tan451AC k ︒==. 又直线AC 过点(1,1)A ,所以直线AC 的方程为11(1)y x -=⨯-,即y x =. 又直线BC 的倾斜角为180135B ︒︒-∠=,所以tan1351BC k ︒==-.又直线BC 过点(5,1)B ,所以直线BC 的方程为11(5)y x -=-⨯-,即6y x =-+.题组一(真题在线)1. 【2019山东淄博模拟】直线x +3y +1=0的倾斜角是( ) A .π6B .π3C .2π3D .5π62.【2020全国高二课时练习】直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .11,5⎛⎫- ⎪⎝⎭B .()1,1,2⎛⎫-∞⋃+∞ ⎪⎝⎭C .()1,,51⎛⎫-∞-+∞ ⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭3. 【2020全国课时练习】若直线l 的向上方向与y 轴的正方向成60角,则l 的倾斜角为( )A .30B .60C .30或150D .60或1204. 【2020全国课时练习】 已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为 ( ) A .y =-34x +5 B .y =34x -5 C .y =34x +5 D .y =-34x -5 5. 【2020全国课时练习】直线0(0)ax y a a ++=≠在两坐标轴上的截距之和为( ) A .1a -B .1a -C .1a +D .1a --6. 【2020全国课时练习】直线132y x =-+的斜率和在y 轴上的截距分别是( ) A .12-,3 B .3,12-C .12,3- D .3-,127. 【2020全国课时练习】若直线26(30)t x y -++=不经过第一象限,则t 的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭8. 【2020江苏建邺高一期中】下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α︒≤≤︒ B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有斜率, 但不一定有倾斜角D .任意一条直线都有倾斜角,但不一定有斜率9. 【2020全国课时练习】已知直线10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10,m x +=则l m ⊥C .点到直线l 的距离是2D .过与直线l 平行的直线方程是40y --=10. 【2020全国课时练习】已知直线L 过点(2,1)P 且倾斜角为135︒,则l 的点斜式方程为_______.11. 【2020全国课时练习】已知点(0,1)A ,点B 在直线:0l x y +=上运动则当线段AB 最短时,直线AB 的一般式方程为__________.12. 【2020全国高二课时练习】直线l 被两条直线1:430l x y ++=和2:3550l x y --=截得的线段的中点为(1,2)P -,则直线l 的方程为_________.题组一1.D【解析】将直线方程化为y =-33x -33,故其斜率k =-33,倾斜角为5π6. 故选:D .【解析】设直线的斜率为k ,则直线方程为y -2=k (x -1),令y =0,得直线l 在x 轴上的截距为21k -,则2313k -<-<,解得12k >或1k <-. 故选:D. 3. C【解析】直线l 的位置可能有两种情形,如图所示,故直线l 的倾斜角为30或150.故选:C. 4. C【解析】由直线2x ﹣y=0和x+ay=0垂直可得a=2, 则P (0,5),设()2112A 2B 2x x x x ⎛⎫- ⎪⎝⎭,,,, 于是有122102102x x x x +=⎧⎪⎨-=⎪⎩,解得1244x x =⎧⎨=-⎩. 于是A (4,8),B (﹣4,2), ∴AB 所在的直线方程为248244y x -+=-+,即y =34x +5. 故选C 5. D【解析】将方程0(0)ax y a a ++=≠化为截距式得11x ya+=--, 从而可知直线在x 轴,y 轴上的截距分别为1,a --, 故截距之和为1a --. 故选:D【解析】直线方程可化为132y x =-,因此该直线的斜率为3,在y 轴上的截距为12-. 故选:B 7. D【解析】直线方程可化为(32)6y t x =--,因为直线不经过第一象限,所以320t -,解得32t. 故选:D 8. BD【解析】对A ,若α是直线的倾斜角,则0180α︒≤<︒,故A 错误; 对B ,根据tan k α=,即正切函数的值域为实数,故B 正确; 对C ,因为倾斜角为90︒时没有斜率,故C 错误;对D ,由倾斜角的定义可得任意一条直线都有倾斜角,由直线的斜率定义可得,倾斜角为2π的直线,没有斜率,故D 正确; 故选:BD. 9. CD【解析】对于A.直线10l y -+=的斜率k =tanθ=l 的倾斜角是3π,故A 错误;对于B .因为直线10m x +=:的斜率k′=kk ′=1≠﹣1,故直线l 与直线m 不垂直,故B 错误;对于C.点)到直线l 的距离d==2,故C 正确;对于D .过()2与直线l 平行的直线方程是y ﹣2=x ﹣,整理得:40y --=,故D 正确.综上所述,正确的选项为CD . 故选:CD .10. 1(2)y x -=--.【解析】由题意知直线L 的斜率tan1351k ︒==-,所以l 的点斜式方程为1(2)y x -=--. 故答案为:1(2)y x -=--. 11. 10x y -+=【解析】当线段AB 最短时,AB l ⊥,所以1AB k =,所以直线AB 的方程为1y x =+, 化为一般式方程为10x y -+=. 故答案为:10x y -+=. 12. 310x y ++=【解析】设直线l 与1l 的交点为()00,A x y ,直线l 与2l 的交点为B.由已知条件,得直线l 与2l 的交点为00(2,4)B x y ---.联立()()0000430,325450,x y x y ++=⎧⎨-----=⎩即0000430,35310,x y x y ++=⎧⎨-+=⎩解得002,5,x y =-⎧⎨=⎩即(2,5)A -.所以直线l 的方程为2(1)522(1)y x ---=----,即310x y ++=. 故答案为:310x y ++=.考点32两直线的位置关系、直线的交点坐标与距离公式【命题解读】两直线位置关系及交点坐标、距离公式是高考中常考知识点,在近几年的高考中主要是以选择或者填空题的形式出现,题目难度以中低档题为主,主要是考查学生的计算能力和思维转化能力。
解析几何(二)含答案
1.双曲线 的左右顶点分别为 ,曲线 上的一点 关于 轴的对称点为 ,若直线 的斜率为 ,直线 的斜率为 ,则当 取到最小值时,双曲线离心率为( )
A. B.2C.3D.6
2.已知直线 与椭圆 恒有公共点,则实数m的取值范围()
A. B.
C. D.
3.已知抛物线C: 的焦点为F,过点F且倾斜角 的直线l与C交于A,B两点,O为坐标原点,若 的面积 ,则线段AB的中点M到y轴的距离是()
【详解】设 ,由 ,得 ,
因为 ,则由余弦定理可得
,
解得 ,
则 ,即 ①,
又 经过点 ,
所以 ②
联立①②,解得 ,则
所以 的虚轴长为
故选:C
7.D
【分析】抛物线 的准线为 ,焦点为 ,当 , , 三点共线时, 到点 的距离 与点 到抛物线的焦点距离 之和最小,从而 的最小值为 .
【详解】解:如图所示,
17.已知 , 分别是双曲线C: 的左右焦点,双曲线C的右支上一点Q满足 ,O为坐标原点,直线 与该双曲线的左支交于P点,且 ,则双曲线C的渐近线方程为______.
18.已知椭圆 的离心率为 , 分别是椭圆 的左、右焦点,点 在椭圆 上且在以 为直径的圆上.线段 与 轴交于点 , ,则椭圆 的长轴长为_____.
(1)证明:直线 的斜率为定值;
(2)在 中,记 , ,求 最大值.
22.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
(1)求 的值;
(2)求 面积的最大值.
23.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
高三数学一轮复习解析几何知识点突破训练含答案解析
第九章⎪⎪⎪解析几何 第一节 直线与方程突破点(一) 直线的倾斜角与斜率、两直线的位置关系基础联通 抓主干知识的“源”与“流” 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α≠π2,则斜率k =tan_α.(2)两点式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 考点贯通 抓高考命题的“形”与“神”直线的倾斜角与斜率1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:斜率k k =tan α>0 k =0 k =tan α<0 不存在 倾斜角α锐角0°钝角90°本节主要包括3个知识点:1.直线的倾斜角与斜率、两直线的位置关系; 2.直线的方程;3.直线的交点、距离与对称问题.2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k =tan α的单调性,如图所示:当α取值在⎣⎡⎭⎫0,π2内,由0增大到π2⎝⎛⎭⎫α≠π2时,k 由0增大并趋向于正无穷大;当α取值在⎝⎛⎭⎫π2,π内,由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π (2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.[解析] (1)因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. (2)如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为⎣⎡⎦⎤-23,12. [答案] (1)B (2)⎣⎡⎦⎤-23,12 [易错提醒]直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).两直线的位置关系两直线平行或垂直的判定方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.(3)已知两直线的一般方程设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.该方法可避免对斜率是否存在进行讨论.[例2] (1)若直线ax +2y -6=0与x +(a -1)y +a 2-1=0平行,则a =________. (2)已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.[解析] (1)因为两直线平行,所以有a (a -1)-2=0,且2(a 2-1)+6(a -1)≠0,即a 2-a -2=0,且a 2+3a -4≠0,解得a =2或a =-1.(2)l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .因为l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa =-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0),B (1,0),直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. [答案] (1)2或-1 (2)1或0[易错提醒]当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.能力练通 抓应用体验的“得”与“失”1.[考点一]直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3解析:选B 直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3, 所以12≤cos α≤32,因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.2.[考点一]直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.3.[考点二]若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为( )A .-1B .0C .1D .2解析:选C ∵直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,∴⎩⎪⎨⎪⎧-m +(2-m )=0,m +2(2-m )≠0,解得m =1.故选C. 4.[考点二]已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( )A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.5.[考点一]直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析:如图,∵k AP =1-02-1=1, k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 答案:(-∞,- 3 ]∪[1,+∞)6.[考点二](2016·苏北四市一模)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)-2b =0, 即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号, 故2a +3b 的最小值为25. 答案:25突破点(二) 直线的方程基础联通 抓主干知识的“源”与“流”直线方程的五种形式 形式 几何条件 方程 适用范围 点斜式 过一点(x 0,y 0),斜率k y -y 0=k (x -x 0) 与x 轴不垂直的直线 斜截式 纵截距b ,斜率k y =kx +b 与x 轴不垂直的直线 两点式过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线 截距式 横截距a ,纵截距bx a +y b =1 不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0,A 2+B 2≠0平面直角坐标系内所有直线考点贯通 抓高考命题的“形”与“神”求直线方程[例1] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. (3)求过A (2,1),B (m,3)两点的直线l 的方程.[解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (3)①当m =2时,直线l 的方程为x =2; ②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0.[易错提醒](1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).与直线方程有关的最值问题[例2] 过点P (4,1)作直线l 分别交x ,y 轴正半轴于A ,B 两点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程. [解] 设直线l :x a +yb =1(a >0,b >0), 因为直线l 经过点P (4,1), 所以4a +1b =1.(1)4a +1b =1≥24a ·1b =4ab, 所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,S △AOB =12ab 最小,此时直线l 的方程为x 8+y 2=1,即x +4y -8=0.(2)因为4a +1b =1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫4a +1b =5+a b +4b a≥5+2 a b ·4ba=9, 当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y -6=0.[方法技巧]1.给定条件求直线方程的思路(1)考虑问题的特殊情况,如斜率不存在的情况,截距等于零的情况. (2)在一般情况下准确选定直线方程的形式,用待定系数法求出直线方程. (3)重视直线方程一般形式的应用,因为它具有广泛的适用性. 2.与直线有关的最值问题的解题思路 (1)借助直线方程,用y 表示x 或用x 表示y . (2)将问题转化成关于x (或y )的函数. (3)利用函数的单调性或基本不等式求最值.能力练通 抓应用体验的“得”与“失” 1.[考点一]倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0D .x +y +1=0解析:选D 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.2.[考点一]已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A .4x -3y -3=0B .3x -4y -3=0C .3x -4y -4=0D .4x -3y -4=0解析:选D 由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.3.[考点二]若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·a b =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.4.[考点二]若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0),B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0. 根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:165.[考点一]△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点, 由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点, 由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.突破点(三) 直线的交点、距离与对称问题基础联通 抓主干知识的“源”与“流” 1.两条直线的交点2.三种距离类型 条件距离公式两点间的距离点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2 点到直线的距离点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2两平行直线间的距离 两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2考点贯通 抓高考命题的“形”与“神”直线的交点问题[例1] (1)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)已知直线l 经过点P (3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,则直线l 的方程为________.[解析] (1)由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.(2)若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别为A ′(3,-4),B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧ y =k (x -3)+1,x +y +1=0,得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1, 解方程组⎩⎪⎨⎪⎧y =k (x -3)+1,x +y +6=0,得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1.由|AB |=5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k -1k +1+9k -1k +12=52.解得k =0,即所求的直线方程为y =1.综上可知,所求直线l 的方程为x =3或y =1. [答案] (1)B (2)x =3或y =1 [方法技巧]1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.距离问题[例2] (1)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295(2)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.[解析] (1)因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(2)设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [答案] (1)C (2)(1,-4)或⎝⎛⎭⎫277,-87 [易错提醒](1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; (2)利用两平行线间的距离公式要先把两直线方程中x ,y 的系数化为相等.对称问题1.中心对称问题的两种类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的两种类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:①若直线与对称轴平行,则在直线上取一点,求出该点关于轴的对称点,然后用点斜式求解.②若直线与对称轴相交,则先求出交点,然后再取直线上一点,求该点关于轴的对称点,最后由两点式求解.[例3] (1)点P (3,2)关于点Q (1,4)的对称点M 为( ) A .(1,6) B .(6,1) C .(1,-6)D .(-1,6)(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0(3)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.[解析](1)设M (x ,y ),则⎩⎨⎧3+x2=1,2+y2=4,∴x =-1,y =6, ∴M (-1,6).(2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.(3)设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.[答案] (1)D (2)A (3)6x -y -6=0[方法技巧]解决两类对称问题的关键点解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.能力练通 抓应用体验的“得”与“失”1.[考点三](2016·东城期末)如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A .x -y +1=0B .x +y +1=0C .x -y -1=0D .x +y -1=0解析:选A 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0.选A.2.[考点二]若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.3.[考点一]已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( )A.⎝⎛⎭⎫12,12B.⎝⎛⎭⎫22,22C.⎝⎛⎭⎫32,32D.⎝⎛⎭⎫52,52 解析:选A 因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,设直线AB 的方程为x +y +m =0,将A 点代入,解得m =-1,所以直线AB 的方程为x +y -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝⎛⎭⎫12,12.4.[考点三]若m >0,n >0,点(-m ,n )关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +4n的最小值等于________.解析:由题意知(-m ,n )关于直线x +y -1=0的对称点为(1-n,1+m ).则1-n -(1+m )+2=0,即m +n =2.于是1m +4n =12(m +n )⎝⎛⎭⎫1m +4n =12×⎝⎛⎭⎫5+n m +4m n ≥12×(5+2×2)=92,当且仅当m =23,n =43时等号成立. 答案:925.[考点一]经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). ∵l ⊥l 3,直线l 3的斜率为34,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=0 6.[考点二]已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程.(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,因为k OP =-12,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax+y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.2.(2013·新课标全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎦⎤1-22,13 D.⎣⎡⎭⎫13,12解析:选B 法一:(1)当直线y =ax +b 与AB ,BC 相交时,如图①所示.易求得:x M =-ba ,y N =a +b a +1.由已知条件得:⎝⎛⎭⎫1+b a ·a +b a +1=1,∴a =b 21-2b.∵点M 在线段OA 上,∴-1<-ba <0,∴0<b <a .∵点N 在线段BC 上,∴0<a +ba +1<1,∴b <1.由⎩⎨⎧b 21-2b>b ,b21-2b >0,b >0,解得13<b <12.(2)当直线y =ax +b 与AC ,BC 相交时,如图②所示.设MC =m ,NC =n ,则S △MCN =12mn =12,∴mn =1.显然,0<n <2,∴m =1n >22.又0<m ≤2且m ≠n .∴22<m ≤2且m ≠1.设D 到AC ,BC 的距离为t ,则t m =DN MN ,t n =DM MN ,∴t m +t n =DN MN +DM MN =1.∴t =mn m +n ,∴1t =1m +1n =1m +m .而f (m )=m +1m ⎝⎛⎭⎫22<m ≤2且m ≠1的值域为⎝⎛⎦⎤2,322,即2<1t ≤322,∴23≤t <12.∵b =1-CD =1-2t ,∴1-22<b ≤13.综合(1)、(2)可得:1-22<b <12. 法二:由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.直线x +3y +1=0的倾斜角是( ) A.π6 B.π3 C.2π3D.5π6解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.2.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠1解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.4.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.175C .8D .2解析:选D ∵63=m 4≠14-3,∴m =8,直线6x +8y +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.5.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析:由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.答案:-9[练常考题点——检验高考能力]一、选择题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意可知a ≠0.当x =0时,y =a +2.当y =0时,x =a +2a .故a +2a =a +2,解得a =-2或a =1.2.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0同时经过第一、第二、第四象限,所以直线斜率存在,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.3.两直线x m -y n =a 与x n -ym =a (其中a 是不为零的常数)的图象可能是( )解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号,故选B.4.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522 B .5 2 C.1522D .15 2解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =|-10|2=52,即P 到原点距离的最小值为5 2. 5.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为( ) A .11 B .10 C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎨⎧x -2y2=0,2x +y2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),∴|AB |=(4+4)2+(8-2)2=10. 6.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0解析:选D 由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,所以直线PB 的方程为x +y -7=0.二、填空题7.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________. 解析:因为l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12.答案:128.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=09.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]10.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4), ∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞)三、解答题11.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离 d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 12.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)由已知可得l 2的斜率存在, ∴k 2=1-a .若k 2=0,则1-a =0,a =1. ∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在. ∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a )=-1.① 又∵l 1过点(-3,-1), ∴-3a +b +4=0.②由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.第二节 圆的方程突破点(一) 圆的方程基础联通 抓主干知识的“源”与“流” 1.圆的定义及方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 标准方程(x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ) 半径:r 一般方程 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2 半径:r =D 2+E 2-4F22.点与圆的位置关系点M (x 0,y 0),圆的标准方程(x -a )2+(y -b )2=r 2.理论依据点与圆心的距离与半径的大小关系 三种情况(x 0-a )2+(y 0-b )2=r 2⇔点在圆上(x 0-a )2+(y 0-b )2>r 2⇔点在圆外 (x 0-a )2+(y 0-b )2<r 2⇔点在圆内考点贯通 抓高考命题的“形”与“神”本节主要包括2个知识点: 1.圆的方程;2.与圆的方程有关的综合问题.求圆的方程1.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的三种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[例1] (1)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.(2)已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.(3)经过三点(2,-1),(5,0),(6,1)的圆的一般方程为________________. [解析] (1)依题意,设圆心坐标为C (a,0), 则|CA |=|CB |,即(a -5)2+(0-1)2=(a -1)2+(0-3)2,则a =2. 故圆心为(2,0),半径为10, 所以圆C 的方程为(x -2)2+y 2=10.(2)过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8.(3)设所求圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧22+(-1)2+2D -E +F =0,52+02+5D +0+F =0,62+12+6D +E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-8,F =-5,故所求圆的一般方程为x 2+y 2-4x -8y -5=0.[答案] (1)(x -2)2+y 2=10 (2)(x -1)2+(y +4)2=8 (3)x 2+y 2-4x -8y -5=0 [方法技巧]1.确定圆的方程必须有三个独立条件不论圆的标准方程还是一般方程,都有三个字母(a ,b ,r 或D ,E ,F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a ,b ,r (或D ,E ,F )的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程.2.几何法在圆中的应用在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.3.A (x 1,y 1),B (x 2,y 2),以AB 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.与圆有关的对称问题1.圆的轴对称性圆关于直径所在的直线对称. 2.圆关于点对称(1)求已知圆关于某点对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某点对称,则此点为两圆圆心连线的中点. 3.圆关于直线对称(1)求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线.[例2] 已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1[解析] 圆C 1的圆心坐标为(-1,1),半径为1, 设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1. [答案] B能力练通 抓应用体验的“得”与“失”1.[考点一]已知点A (-1,3),B (1,-3),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选D 由题意知,AB 的中点为(0,0), 即所求圆的圆心坐标为(0,0), 设圆的方程为x 2+y 2=r 2,因为|AB |=[1-(-1)]2+(-3-3)2=4, 所以圆的半径为2, 所以圆的方程为x 2+y 2=4.2.[考点一]若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1. 3.[考点二]已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫-14,0 D.⎣⎡⎭⎫-14,+∞ 解析:选A 将圆的方程化成标准形式得(x +1)2+(y -2)2=4,若圆关于已知直线对称,则圆心(-1,2)在直线上,代入整理得a +b =1,故ab =a (1-a )=-⎝⎛⎭⎫a -122+14≤14,故选A. 4.[考点二]若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得,点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=15.[考点二]若圆(x +1)2+(y -3)2=9上的相异两点P ,Q 关于直线kx +2y -4=0对称,则k的值为________.解析:圆是轴对称图形,过圆心的直线都是它的对称轴.已知圆的圆心为(-1,3),由题设知,直线kx+2y-4=0过圆心,则k×(-1)+2×3-4=0,解得k=2.答案:26.[考点一]求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程.解:设点C为圆心,因为点C在直线x-2y-3=0上,所以可设点C的坐标为(2a+3,a).又该圆经过A,B两点,所以|CA|=|CB|,即(2a+3-2)2+(a+3)2=(2a+3+2)2+(a+5)2,解得a=-2,所以圆心C的坐标为(-1,-2),半径r=10.故所求圆的方程为(x+1)2+(y+2)2=10.突破点(二)与圆的方程有关的综合问题圆的方程是高中数学的一个重要知识点,高考中,除了圆的方程的求法外,圆的方程与其他知识的综合问题也是高考考查的热点,常涉及轨迹问题和最值问题.解决此类问题的关键是数形结合思想的运用.考点贯通抓高考命题的“形”与“神”与圆有关的轨迹问题[例1]已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.[解](1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,。
解析几何法(含答案)
解析几何法消参:t 为参数:代入法; 22cos sin 1θθθ+=为参数:; 考点一。
参数方程化普通方程(1)求普通方程:(1)⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数); (2)⎩⎨⎧x =sin α,y =cos α+1(α为参数);解:(1)的普通方程为2x +y -6=0; (2)曲线C :x 2+(y -1)2=1。
(2)若斜率为1的直线过C :28,8.x t y t ⎧=⎨=⎩的焦点,且与圆()2224x y r -+=相切,求r 。
解:抛物线的方程为x y 82=,焦点坐标是)0,2(F ,所以直线的方程是2-=x y ,圆心到直线的距离为r=2.(3)直线⎩⎪⎨⎪⎧ x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,求直线的倾斜角α。
解:直线y =x tan α=kx ,圆:(x -4)2+y 2=4,则214d 2=+=k k ,即33k ±=,∴α=π6或5π6.(4)圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=22,设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.由⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2.考点二.普通方程化参数方程直线:上任意点的向量)与)(过倾斜角,l :t ,P :(sin cos t x P b a l t b y a θθθ⎩⎨⎧+=+= 圆:⎩⎨⎧+=+=θθsin cos r x r b y a 椭圆:⎩⎨⎧==θθsin cos x b y a 双曲线:⎪⎩⎪⎨⎧==θθtan cos x b y a 抛物线:⎩⎨⎧==pt y t 2p 2x 2 (1)求参数方程: (1)x 24+y 29=1; (2)设直线经过点(1,5),倾斜角为 ; (3)x=1;解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数);(2)直线的参数方程为( t 为参数);(3)点p )(0,1,2πα=,则参数方程为:⎪⎩⎪⎨⎧∙+=∙+=ty t 2sin 02cos 1x ππ,即为参数)t t y (1x ⎩⎨⎧==。
高中数学解析几何解答题(有答案)
高中数学解析几何解答题(有答案)解析几何解答题1、椭圆G:的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为(1)求此时椭圆G的方程;(2)设斜率为k(k0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.解:(1)根据椭圆的几何性质,线段F1F2与线段B1B2互相垂直平分,故椭圆中心即为该四点外接圆的圆心…………………1分故该椭圆中即椭圆方程可为………3分设H(x,y)为椭圆上一点,则…………… 4分若,则有最大值…………………5分由(舍去)(或b2+3b+927,故无解)…………… 6分若…………………7分由所求椭圆方程为………………… 8分(1)设,则由两式相减得……③又直线PQ直线m直线PQ方程为将点Q()代入上式得,……④…………………11分由③④得Q()…………………12分而Q点必在椭圆内部,由此得 ,故当时,E、F两点关于点P、Q的直线对称14分2、已知双曲线的左、右顶点分别为,动直线与圆相切,且与双曲线左、右两支的交点分别为 .(Ⅰ)求的取值范围,并求的最小值;(Ⅱ)记直线的斜率为,直线的斜率为,那么,是定值吗?证明你的结论.解:(Ⅰ)与圆相切, ……①由 ,得 ,,故的取值范围为 .由于,当时,取最小值 .6分(Ⅱ)由已知可得的坐标分别为,由①,得,为定值.12分3、已知抛物线的焦点为F,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点A关于轴的对称点为D.(1)求抛物线的方程。
(2)证明:点在直线上;(3)设,求的面积。
.解:(1)设,,,的方程为.(2)将代人并整理得,从而直线的方程为,即令所以点在直线上(3)由①知,因为,故,解得所以的方程为又由①知故4、已知椭圆的中心在坐标原点,焦点在轴上,离心率为,点(2,3)、在该椭圆上,线段的中点在直线上,且三点不共线.(I)求椭圆的方程及直线的斜率;(Ⅱ)求面积的最大值.解:(I)设椭圆的方程为,则,得, .所以椭圆的方程为.…………………3分设直线AB的方程为 (依题意可知直线的斜率存在),设,则由,得,由,得,,设,易知,由OT与OP斜率相等可得,即,所以椭圆的方程为,直线AB的斜率为 (6)分(II)设直线AB的方程为,即,由得,,.………………8分点P到直线AB的距离为 .于是的面积为……………………10分设,,其中 .在区间内,,是减函数;在区间内,,是增函数.所以的最大值为 .于是的最大值为18.…………………12分5、设椭圆的焦点分别为、,直线:交轴于点,且.(Ⅰ)试求椭圆的方程;(Ⅱ)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),若四边形的面积为,求的直线方程.解:(Ⅰ)由题意, -------1分为的中点------------2分即:椭圆方程为 ------------3分(Ⅱ)当直线与轴垂直时,,此时,四边形的面积不符合题意故舍掉;------------4分同理当与轴垂直时,也有四边形的面积不符合题意故舍掉;------------5分当直线,均与轴不垂直时,设 : ,代入消去得: ------------6分设 ------------7分所以,------------8分所以,------------9分同理 ------------11分所以四边形的面积由,------------12分所以直线或或或 ---------13分6、已知抛物线P:x2=2py(p0).(Ⅰ)若抛物线上点到焦点F的距离为.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点到焦点F的距离与到准线距离相等,即到的距离为3;,解得.抛物线的方程为.4分(ⅱ)抛物线焦点,抛物线准线与y轴交点为,显然过点的抛物线的切线斜率存在,设为,切线方程为.由,消y得,6分,解得.7分切线方程为.8分(Ⅱ)直线的斜率显然存在,设:,设,,由消y得.且.∵ ,直线:,与联立可得,同理得.10分∵焦点,,,12分以为直径的圆过焦点.14分7、在平面直角坐标系中,设点,以线段为直径的圆经过(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论. 解:(I)由题意可得,2分所以,即 4分即,即动点的轨迹的方程为 5分(II)设直线的方程为 , ,则 .由消整理得,6分则,即 .7分.9分直线12分即所以,直线恒过定点 .13分8、已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.解:(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周所以,1分又椭圆的离心率为,即,所以,2分所以, .4分所以,椭圆的方程为 .5分(Ⅱ)方法一:不妨设的方程,则的方程为 . 由得,6分设,,因为,所以,7分同理可得,8分所以,,10分,12分设,则,13分当且仅当时取等号,所以面积的最大值为 .14分方法二:不妨设直线的方程 .由消去得,6分设,,则有,.①7分因为以为直径的圆过点,所以 .由,得 .8分将代入上式,得 .将①代入上式,解得或(舍).10分所以(此时直线经过定点,与椭圆有两个交点),所以.12分设,则 .所以当时,取得最大值 .14分9、过抛物线C: 上一点作倾斜角互补的两条直线,分别与抛物线交于A、B两点。
2023年全国卷解析几何解答题解法荟萃
2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。
解析几何例题和知识点总结
解析几何例题和知识点总结解析几何是数学中的一个重要分支,它通过坐标和方程来研究几何图形的性质和关系。
在学习解析几何的过程中,掌握典型的例题和重要的知识点是非常关键的。
接下来,让我们一起深入探讨一些常见的解析几何例题,并对相关知识点进行总结。
一、直线的方程直线是解析几何中最基本的图形之一。
直线的方程有多种形式,如点斜式、斜截式、两点式、一般式等。
例如:已知直线经过点$(1,2)$,斜率为$3$,求直线方程。
我们可以使用点斜式:$y y_1 = k(x x_1)$,其中$(x_1, y_1)$是已知点的坐标,$k$是斜率。
代入可得:$y 2 = 3(x 1)$,化简得到:$y = 3x 1$直线方程的一般式为$Ax + By + C = 0$,其中$A$、$B$不同时为$0$。
知识点总结:1、掌握直线斜率的计算方法,若两点坐标为$(x_1, y_1)$,$(x_2, y_2)$,则斜率$k =\frac{y_2 y_1}{x_2 x_1}$。
2、熟练运用各种直线方程的形式,根据已知条件选择合适的形式来求解直线方程。
二、圆的方程圆的标准方程为$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$是圆心坐标,$r$是半径。
例题:求以点$(2, -1)$为圆心,半径为$3$的圆的方程。
答案为:$(x 2)^2 +(y + 1)^2 = 9$圆的一般方程为$x^2 + y^2 + Dx + Ey + F = 0$,通过配方可以转化为标准方程。
知识点总结:1、理解圆的标准方程和一般方程的形式及特点。
2、能根据已知条件求出圆的方程,包括圆心和半径的确定。
三、椭圆椭圆的标准方程有两种形式:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$(焦点在$x$轴上)和$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$(焦点在$y$轴上),其中$a$和$b$分别表示长半轴和短半轴的长度。
专题05 解析几何中的最值问题 (解析版)
专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。
解答题题型归纳之解析几何(解析版)
专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b 2+y 2a 2=1,由已知条件推导出a 2=b 2+50,6b 2a 2+9b 2=12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b 2+y 2a 2=1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k 3−2>3,即有(k 2+1)(k−2)k 3−2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m 2(3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =√1+m 2=√1+m 2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a 2+1b 2=1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k 2,x 1x 2=−21+2k 2 ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k 2=21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|√12+(−1)2=√2,即|−1+p2|√2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)m 2−4,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =√1+12√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a 2+12b 2=1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。
专题06 解析几何(解析版)
一、单选题1.过点(1,0)-,且与直线1153x y ++=-有相同方向向量的直线的方程为 A .3530x y +-= B .3530x y ++= C .3510x y +-= D .5350x y -+=【答案】B【解析】由1153x y ++=-可得,3x +5y +8=0,即直线的斜率35-, 由题意可知所求直线的斜率k 35=-,故所求的直线方程为y 35=-即3x +5y +3=0.故选:B .2.以抛物线24y x =的焦点为右焦点,且长轴为4的椭圆的标准方程为A .2211615x y +=B .221164x y +=C .22143x y +=D .2214x y +=【答案】C【解析】有已知抛物线24y x =的焦点为(1,0),设椭圆方程为22221x y a b+=,则221a b -=,又由已知2a =,所以23b =,故椭圆方程为22143x y +=,故选:C.3.明代数学家程大位所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二。
试问羊绳几丈长”意思是“一条绳索系着一只羊,羊踏坏一块面积为3.2亩的圆形庄稼,试求绳的长度” . A .6丈 B .8丈 C .12丈D .16丈【答案】B【解析】由题得面积为3.2亩,即3.2240768⨯=平方步,由圆的面积设半径r 步,则2768r π=, 取3π=则2256r =,16r =步,又1丈=10尺, 1步=5尺,故1丈=2步,故16r =步8=丈, 故选:B4.若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是 A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为2+2=25+k , 则k >﹣25, 圆C 1:x 2+y 2=1的圆心坐标为,半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点, 则|C 1C 2|1或|C 1C 2|1, 即51或51,解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是∪.故选:D .5.已知22(2)9x y -+=的圆心为C .过点(2,0)M -且与x 轴不重合的直线l 交圆C 于A 、B 两点,点A 在点M 与点B 之间.过点M 作直线AC 的平行线交直线BC 于点P ,则点P 的轨迹为. A .圆的一部分 B .椭圆的一部分 C .双曲线的一部分 D .抛物线的一部分【答案】C【解析】可得圆2+y 2=9的圆心为C ,半径为R =3. 如图,∵CB =CA =R =3,∴∠CBA =∠CAB , ∵AC ∥MP ,∴,∴∠CBA =∠CAB =∠PMA , ∴PM =PB =PC +BC⇒PM ﹣PC =BC =3,且3<MC . ∴点P 的轨迹是双曲线的一部分,故选C .6.设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x →∞-=-A .1-B .12-C .1D .2【答案】A 【解析】由题意得:因为21x y -=与圆222x y +=在第一象限的交点为1,1(),所以lim =1lim =1n n n n x y →∞→∞,,1limlim 1n n n n n n y y x x →∞→∞'-='∴-,又由222n n x y +=得220n n n nn n n ny xx x y y x y +=⇒=-''''lim 1lim lim lim() 1.1lim n n n nn n n n n nn n n x y y x x x y y →∞→∞→∞→∞→∞-∴='=-=-=--'选A. 7.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PF PA的最小值是A .12B.2C.2D.3【答案】B 【解析】由题意可知,抛物线的准线方程为x=﹣1,A , 过P 作PN 垂直直线x=﹣1于N ,由抛物线的定义可知PF=PN ,连结PA ,当PA 是抛物线的切线时,PF PA有最小值,则∠APN 最大,即∠PAF 最大,就是直线PA 的斜率最大,设在PA 的方程为:y=k ,所以214y k x y x ()=+⎧⎨=⎩,解得:k 2x 2+x+k 2=0,所以△=2﹣4k 4=0,解得k=±1,所以∠NPA=45°,PF PA=cos ∠NPA=2.故选B . 8.已知1x 、2x 是关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,则经过两点()211,A x x 、()222,B x x 的直线与双曲线2214x y -=的交点个数为A .0B .1C .2D .根据m 的值来确定【答案】B【解析】关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,所以44(21)8(2)0,2m m m ∆=--=->∴<,1212221212112,2AB x x x x k x x x x -+=∴===-+ 双曲线2214x y -=渐近线方程曲线12y x =±,∴直线AB 与双曲线的渐近线平行或重合,若()211,A x x 或()222,B x x 在直线12y x =得1x ,2x 的值为0或2,此时1210,2m m -==, m Z ∈Q ,不合题意,直线AB 不与双曲线重合,∴直线AB 与双曲线一定平行,所以有一个交点.故选:B9.如图,平面直角坐标系中,曲线的方程可以是.A .()()22110x y x y--⋅-+=B()2210x y -+=C .()10x y --= D0=【答案】C【解析】因为曲线表示折线段的一部分和双曲线,A 选项等价于10x y --=或2210x y -+=,表示折线y 1x =-的全部和双曲线, 故错误;B 选项,等价于221010x y x y ⎧--≥⎨-+=⎩或10x y --=,又10x y --=表示折线y 1x =-的全部,故错误;C 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或2210x y -+=,∴221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分,2210x y -+=表示双曲线2x -21y =,符合题中的图象,故C 正确.D 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或221010x y x y ⎧--≥⎨-+=⎩, 221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分, 和221010x y x y ⎧--≥⎨-+=⎩表示双曲线在x 轴下方的部分,故错误. 故选C.10.已知双曲线22221(00)x y b a a b-=>>,的两条渐近线与抛物线y 2=2px 的准线分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB p = A .1 B .32C .2D .3【答案】C 【解析】∵双曲线的方程为22221(00)x y b a a b-=>>,∴双曲线的渐近线的方程为b y x a =±∵抛物线22(0)y px p =>的准线方程是2px =-∴双曲线的渐近线与抛物线准线相交的A ,B 两点的纵坐标分别是2pby a=±∵双曲线的离心率为2∴2c a =∴b a ===∴A ,B 两点的纵坐标分别是2y p =±又∵AOB ∆x 轴是AOB ∠的平分线∴122p⨯=2p =故选C.11.已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且4PF =,则椭圆C 的方程为A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知, ∠PFF′=∠FPO ,∠OF′P=∠OPF′, 所以∠PFF′+∠OF′P=∠FPO+∠OPF′, 由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知, ∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得8==,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36, 于是 b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=.故选B .12.若点A 的坐标为()3,2,F 是抛物线22y x =的焦点,点M 在抛物线上移动时,使||||MA MF +取得最小值的M 的坐标为A .()0,0B .1,12⎛⎫ ⎪⎝⎭C .(D .()2,2【答案】D【解析】如图所示,过M 作准线的垂线,垂足为B .MF MA MB MA +=+,当M 、B 、A 三点共线时,MB MA +最小,即M 运动到'M 时,即()2,2M ,故选D13.已知数列{}n a 的通项公式为()()*11n a n N n n =∈+,其前n 项和910n S =,则双曲线2211x y n n-=+的渐近线方程为A .3y x =±B .4y x =±C .10y x =±D .3y x =±【答案】C 【解析】 由()11111n a n n n n ==-++得1111111 (11223111)n n S n n n n =-+-++-=-=+++.又910n S =即9110n n =+,故9n =,故双曲线221109x y -=渐近线为10y x ==±故选:C 14.已知点P 为椭圆221916x y +=上的任意一点,点12,F F 分别为该椭圆的上下焦点,设1221,PF F PF F αβ=∠=∠,则sin sin αβ+的最大值为A B C .98D .32【答案】D【解析】设|1PF |=m ,|2 PF |=n ,|12F F |=2c ,A ,B 为短轴两个端点, 由正弦定理可得()2m n csin sin sin βααβ==+,即有()2m n csin sin sin αβαβ+=++,由椭圆定义可得e ()22sin c a sin sin αβαβ+===+,∴()sin sin αβαβ+=+. 在三角形21F PF 中,由m+n=2a,cos222222221242444122224m n c m n mn c b b F PF m n mn mn mn+-+--∠===-≥+⨯()()-1=22412b a-,当且仅当m=n 时,即P 为短轴端点时,cos 21F PF ∠最小,21F PF ∠最大, ∴()21sin sin F AF αβ+≤∠=8,∴3sin sin 82αβ+≤=,故选:D . 15.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-uuu r uuu u r uuu r 的最小值为 A.B .4C.D .以上都不对【答案】B【解析】由题意,设O 为12,F F 的中点,根据向量的运算,可得122222MF MF MN MO MN NO +-=-=uuu r uuu u r uuu r uuu r uuu r uuu r, 又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥uuu r , 所以122224MF MF MN NO a +-=≥=uuu r uuu u r uuu r uuu r, 即122MF MF MN +-uuu r uuu u r uuu r的最小值为4.故选:B.16.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为①圆的面积为4π;;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为5. A .1个 B .2个C .3个D .4个【答案】B 【解析】①Q 点M 是母线的中点, ∴截面的半径2r =,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为==,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)4代入可得242p =,解得p =∴抛物线中焦点到准线的距离p ,④不正确,故选B .17.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若V OMN 为直角三角形,则|MN |=A .32B .3C .D .4【答案】B【解析】根据题意,可知其渐近线的斜率为3±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和y =联立,求得3(,2M N ,所以3MN ==,故选B. 18.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一.给出下列三个结论:①曲线C 恰好经过6个整点;②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔,所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过,,,, ,六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.19.在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为()3,1,M -、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为A .0个B .2个C .4个D .无数个【答案】D【解析】如图所示,任取圆2C 上一点Q ,以AQ 为直径画圆,交圆1C 与,M N 两点,设(),Q m n ,则AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭, 有2214m n +=,以AQ 为直径的圆的方程为()(3)()(1)0x m x y n y --+-+=, 即22(3)(1)3x m x y n y n m -++--=-,用1C 的方程减去以AQ 为直径的圆的方程,可得公共弦MN 所在的直线方程, 即(3)(1)123m x n y n m ++-=-+,将AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭代入上式得: 左边=22316921(3)(1)222m n m m n n m n +-+++-+⎛⎫++-⋅= ⎪⎝⎭62243122m n m n -+==-+=右边,所以公共弦MN 也是以AQ 为直径的圆的直径, 则MN AQ =,根据对角线互相平分且相等的四边形是矩形即可得出四边形AMQN 是矩形, 由Q 的任意性知,四边形AMQN 能构成无数个矩形, 故选:D 。
备战高考数学解答题高分宝典专题05解析几何(核心考点)理(new)
核心考点三圆锥曲线中的最值、范围问题 以直线与圆锥曲线为载体,结合其他条件求某些量的最值与范围,一般常出现在解答题第二问 中,最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法 灵活多变,
模拟训练
3.已知椭圆 M:错误!+错误!=1(a>0)的一个焦点为 F(-1,0),左、右顶点分别为 A, B。经过点 F 的直线 l 与椭圆 M
ቤተ መጻሕፍቲ ባይዱ
交于 C,D 两点. (1)当直线 l 的倾斜角为 45°时,求线段 CD 的长; (2)记△ABD 与△ABC 的面积分别为 S1 和 S2,求|S1-S2|的最大值.
模拟训练
1.已知点 P 是圆 O:x2+y2=1 上任意一点,过点 P 作 PQ⊥y 轴于点 Q,延长 QP 到点 M,使错误! =错误!.
(1)求点 M 的轨迹 E 的方程; (2)过点 C(m,0)作圆 O 的切线 l,交(1)中曲线 E 于 A,B 两点,求△AOB 面积的最大 值.
(2)由题意可知直线 l 不与 y 轴垂直, 故可设 l:x=ty+m,t∈R,A(x1,y1),B(x2,y2). ∵l 与圆 O:x2+y2=1 相切,∴错误!=1,即 m2=t2+1。①
求解此类问题一般把所求量表示为某些量的函数,转化为函数求值域或利用基本不等式求最值, 此类问题一般运算量较大,要注意运算的准确性. 【经典示例】已知△ABP 的三个顶点都在抛物线 C:x2=4y 上,F 为抛物线 C 的焦点,点 M 为 AB 的中点, PF =3 FM 。 (1)若|PF|=3,求点 M 的坐标; (2)求△ABP 面积的最大值.
高考理数精华复习审题答题(五)解析几何热点问题含答案优质
@《创新设计》
目录
热点一 定点定值问题(教材VS高考)
命题角度 1 圆锥曲线中定点问题 [例 1-1] (满分 12 分)(2017·全国Ⅰ卷)已知椭圆 C:xa22+yb22=1(a>b>0),四点 P1(1, 1),P2(0,1),P3-1, 23,P41, 23中恰有三点在椭圆 C 上.(1)求 C 的方程; (2)设直线 l 不经过 P2 点且与 C 相交于 A,B 两点.若直线 P2A 与直线 P2B 的斜率 的和为-1,证明:l 过定点.
y
l
P3A
P2
P1
P4
F2
O
F1
x
B
故不满足. ………………………6 分 (得分点 4)
@《创新设计》
目录
热点一 定点定值问题(教材VS高考)
从而可设 l:y=kx+m(m≠1). 将 y=kx+m 代入x42+y2=1 得(4k2+1)x2+8kmx+4m2-4=0.
…7 分 (得分点 5)
由题设可知 Δ=16(4k2-m2+1)>0.
教材探源 本题第(1)问源于教材选修2-1P40例1, 主要考查利用待定系数法及方程思想求曲线方程. 本题第(2)问源于教材选修2-1P41例3,主要考查利 用坐标法研究几何问题,充分考查学生解决综合问 题的能力.
y
P3
P2
P1
P4
F2
O
F1
x
@《创新设计》
目录
热点一 定点定值问题(教材VS高考)
设 A(x1,y1),B(x2,y2),
则 x1+x2=-48k2k+m1,x1x2=44mk22+-14.8 分 (得分点 6)
l
y
则 k1+k2=y1x-1 1+y2x-2 1=kx1+xm1 -1+kx2+xm2 -1
专题05 解析几何(解答题10种考法)讲义(解析版)2024届高三数学二轮复习《考法分类》专题训练
专题05 解析几何(解答题10种考法)考法一 定点【例1-1】(2023·山西运城·山西省运城中学校校考二模)已知点()4,3P 为双曲线2222:1(0,0)x y E a b a b -=>>上一点,E 的左焦点1F(1)求双曲线E 的标准方程;(2)不过点P 的直线y kx t =+与双曲线E 交于,A B 两点,若直线PA ,PB 的斜率和为1,证明:直线y kx t =+过定点,并求该定点的坐标.【答案】(1)22143x y -=(2)证明见解析,定点为(2,3)-.【解析】(1)设1(,0)F c -(0)c >到渐近线by x a=,即0bx ay -=222+=a b c得b =,又(4,3)P 在双曲线22213x ya -=上,所以216913a -=,得24a =,所以双曲线E 的标准方程为22143x y -=.(2)联立22143y kx tx y =+⎧⎪⎨-=⎪⎩,消去y 并整理得()2223484120k x ktx t ----=,则2340k -≠,2222644(34)(412)0k t k t ∆=+-+>,即2234t k +>,设11(,)A x y ,22(,)B x y ,则122834kt x x k +=-,212241234t x x k+=--,则12123344PA PB y y k k x x --+=+--12123344kx t kx t x x +-+-=+--()()()()()()122112343444kx t x kx t x x x +--++--=--()()121212122438244()16kx x t k x x t x x x x +--+-+=-++1=,所以()()1212243824kx x t k x x t +--+-+12124()16x x x x =-++,所以()()()12122141880k x x t k x x t -+-++-+=,所以()()()222214124188803434k t t k kt t k k -+-+⋅-+-+=--,整理得22626890t k kt t k -+--+=,所以22(3)2(3)80t k t k -+--=,所以()()32340t k t k ---+=,因为直线y kx t =+不过(4,3)P ,即34k t ≠+,340t k -+≠,所以320t k --=,即23t k =+,所以直线23y kx t kx k =+=++,即3(2)y k x -=+过定点(2,3)-.【例1-2】(2023·全国·统考高考真题)已知椭圆2222:1(0)C b b x a a y+>>=()2,0A -在C上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】(1)由题意可得2222b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段MN 的中点是定点()0,3.【例1-3】(2023·江西九江·统考一模)已知过点(2,0)P 的直线l 与抛物线2:2(0)E y px p =>交于,A B 两点,过线段AB 的中点M 作直线MN y ⊥轴,垂足为N ,且PM PN ⊥.(1)求抛物线E 的方程;(2)若C 为E 上异于点,A B 的任意一点,且直线,AC BC 与直线2x =-交于点,D R ,证明:以DR 为直径的圆过定点.【答案】(1)24y x =(2)证明见解析【解析】(1)由题意,可设直线l 的方程为2x my =+,将2x my =+代入22y px =,消去x 得2240y pmy p --=,设11(,)A x y ,22(,)B x y ,则122y y pm +=,124y y p =-,M 是线段AB 的中点,21212(42)22M x x m y y x pm +++∴===+,122M y y y pm +==,即2(2,)M pm pm +, 又MN y ⊥轴,∴垂足N 的坐标为(0,)pm ,则2(,)PM pm pm = ,(2,)PN pm =-,PM PN ⊥ ,22220PM PN pm p m ∴⋅=-+=对任意的R m ∈恒成立,220p p ∴-+=,又0p >,解得2p =,故抛物线E 的方程为24y x =.(2)设2(,)4t C t ,211(,)4y A y ,222(,)4y B y ,由(1)可知,124y y m +=,128y y =-,则12211444AC y t k y t y t -==+-,直线AC 的方程为214()4t y t x y t -=-+,令2x =-,则211184(24ty t y t y t y t -=+--=++,118(2,ty D y t -∴-+,同理228(2,)ty R y t--+,由抛物线的对称性可知,若以线段DR 为直径的圆过定点,则定点必在x 轴上,设该点坐标为(,0)T a ,则118(2,ty DT a y t -=+-+ ,228(2,)ty RT a y t -=+-+ ,且0DT RT ⋅= ,2121288(2)0ty ty a y t y t--∴++⋅=++,22212121222121212888()6483264(2)8()48ty ty t y y t y y t mt a y t y t y y t y y t t mt ---++--+∴+=-⋅=-=-=++++++-,2a ∴=或2a=--,∴以DR为直径的圆过定点2,0)和(2,0)--.【变式】1.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)-【解析】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T +,由MT TH =得到(5,H -+.求得HN方程:(22y x =-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-2.(2023·福建泉州·统考模拟预测)已知椭圆()2222:10x y E a b a b +=>>,上、下顶点分别为A ,B .圆22:2O x y +=与x 轴正半轴的交点为P ,且1PA PB ⋅=- .(1)求E 的方程;(2)直线l 与圆O 相切且与E 相交于M ,N 两点,证明:以MN 为直径的圆恒过定点.【答案】(1)22163x y +=(2)证明见解析【解析】(1)由已知得()0,A b ,()0,B b -,)P.则()PA b =,()PB b =- ,221PA PB b ⋅=-=-,所以23b =.因为c e a ==222b c a +=,所以23c =,26a =.故E 的方程为22163x y +=.(2)当直线l 的斜率存在时,设l 的方程为y kx m =+,即0kx y m -+=.因为直线l 与圆O=2222m k =+.设()11,M x y ,()22,N x y ,则11y kx m =+,22y kx m =+.由22,1,63y kx m x y =+⎧⎪⎨+=⎪⎩化简,得()222214260k x kmx m +++-=,由韦达定理,得12221224212621km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以()()()2212121212y y kx m kx m k x x km x x m =++=+++222222222646212121m km m k k km m k k k --=⋅-⋅+=+++,所以()2222212122223222660212121m k m m k x x y y k k k ----+=+==+++,故OM ON ⊥,即以MN 为直径的圆过原点O .当直线l 的斜率不存在时,l的方程为xx =.这时M,N或(M,(N .显然,以MN 为直径的圆也过原点O .综上,以MN 为直径的圆恒过原点O .3(2023·河南·校联考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,圆224x y +=与椭圆C 恰有两个公共点.(1)求椭圆C 的标准方程;(2)已知结论:若点()00,x y 为椭圆22221x y a b+=上一点,则椭圆在该点处的切线方程为00221x x y y a b +=.若椭圆C的短轴长小于4,过点(8,)T t 作椭圆C 的两条切线,切点分别为,A B ,求证:直线AB 过定点.【答案】(1)22154x y +=或22143x y +=(2)证明见解析【解析】(1)设椭圆C 的半焦距为c .当圆224x y +=在椭圆C 的内部时,2222,1,5b c a b c ===+=,椭圆C 的方程为22154x y +=.当圆224x y +=在椭圆C 的外部时,2222,1,3a c b a c ===-=,椭圆C 的方程为22143x y +=.(2)证明:设()()1122,,,A x y B x y .因为椭圆C 的短轴长小于4,所以C 的方程为22143x y +=.则由已知可得,切线AT 的方程为111,43x x y yBT +=的方程为22143x x y y +=,将(8,)T t 代入,AT BT 的方程整理可得,1122630,630x ty x ty +-=+-=.显然,A B 的坐标都满足方程630x ty +-=,故直线AB 的方程为630x ty +-=,令0y =,可得12x =,即直线AB 过定点1,02⎛⎫⎪⎝⎭.考法二 定值【例2】(2023·四川南充·四川省南充高级中学校考三模)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,离心率为12.点P 是椭圆C 上不同于顶点的任意一点,射线1PF 、2PF 分别与椭圆C 交于点A 、B ,1PF B △的周长为8.(1)求椭圆C 的标准方程;(2)若111PF F A λ= ,222PF F B λ=,求证:12λλ+为定值.【答案】(1)22143x y +=(2)证明见解析【解析】(1)∵1PF B C V 1212224PF PF BF BF a a a =+++=+=,∴48a =,2a =由离心率为12得1c =,从而b =,所以椭圆C 的标准方程为22143x y +=.(2)设()()0011,,,P x y A x y ,()22,B x y ,则2200143x y +=,可设直线PA 的方程为1x my =-,其中001x m y +=,联立221143x my x y =-⎧⎪⎨+=⎪⎩,化简得()2234690m y my +--=,则0122009934134y y m x y --==+⎛⎫++ ⎪⎝⎭,同理可得,022009134y y x y -=⎛⎫-+ ⎪⎝⎭.因为111PF F A λ= ,222PF F B λ=.所以001212012121211y y PF PF y AF BF y y y y λλ⎛⎫+=+=+=-+ ⎪--⎝⎭()()222000222000001134343131899x x y y y x x y ⎡⎤⎛⎫⎛⎫+-⎢⎥+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭++-+⎣⎦==220068624610993x y +++===,所以12λλ+是定值103.【变式】1.(2023·河北保定·统考二模)已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为短轴长的2倍,若椭圆C 经过点()2,2P ,(1)求椭圆C 的方程;(2)若,A B 是椭圆上不同于点P 的两个动点,直线,PA PB 与x 轴围成底边在x 轴上的等腰三角形,证明:直线AB 的斜率为定值.【答案】(1)221205x y +=(2)证明见解析【解析】(1)设椭圆的方程为()222210x ya b a b +=>>根据题意得222441a ba b =⎧⎪⎨+=⎪⎩,解得22205a b ⎧=⎨=⎩故所求椭圆方程为221205x y +=(2)如下图所示:设直线:l y kx m =+交该椭圆221205x y +=与()()1122,,,A x y B x y 两点.将y kx m =+代入221205x y+=得()2221484200k x kmx m +++-=所以()()2221222122(8)41442081442014km k mkm x x k m x x k ⎧-+->⎪⎪⎪+=-⎨+⎪⎪-=⎪+⎩由直线,PA PB 能与x 轴共同围成底边在x 轴上的等腰三角形,可得0PA PB k k +=,即()()()()()()122112121222222202222y x y x y y x x x x --+----+==----整理得()()()()()()()12211212222222242kx m x kx m x kx x m k x x m +--++--=+--+--,即()()22242082224201414m km k m k m k k-⋅---⋅--=++即()24181020k m k k -+-+=,所以当14k =时,不论m 为何值时()24181020k m k k -+-+=都成立,所以直线,PA PB 与x 轴共同围成底边在x 轴上的等腰三角形时直线AB 的斜率为定值142.(2023·四川南充·四川省南充高级中学校考三模)已知椭圆()2222:10x y C a b a b +=>>的左、右焦点为12,F F ,离心率为12.点P 是椭圆C 上不同于顶点的任意一点,射线12,PF PF 分别与椭圆C 交于点,A B ,1PF B △的周长为8.(1)求椭圆C 的标准方程;(2)设12PF F △,1PF B △,PAB V 的面积分别为123,,S S S .求证:213221S S S S S S +--为定值.【答案】(1)22143x y +=(2)证明见解析【解析】(1)解:因为1PF B △的周长为8,即1212228PF PF BF BF a a +++=+=所以48a =,可得2a =,由椭圆的离心率12c e a ==,可得1c =,从而2223b a c =-=,所以椭圆C 的标准方程为22143x y +=.(2)证明:设001122(,),(,),(,)P x y A x y B x y ,则2200143x y +=,可设直线PA 的方程为1x my =-,其中001x m y +=,联立方程221143x my x y =-⎧⎪⎨+=⎪⎩,整理得22(34)690m y my +--=,则0122009934134y y m x y --==+⎛⎫++ ⎪⎝⎭,同理可得,022009134y y x y -=⎛⎫-+ ⎪⎝⎭.因为112112111212212132211112122111sin sin 2211sin sin 22∠∠+=+=+--∠∠V V V V PF B PF F AF B BF F PF F B PF B PF F F PF F S S S S S S S S S S AF F B AF B BF F F BF F 1212PF PF AF BF =+,所以213221S S S S S S +=--1212PF PF AF BF +0012y y y y =+--01211y y y ⎛⎫=-+ ⎪⎝⎭222000001134349x x y y y ⎡⎤⎛⎫⎛⎫+-⎢⎥+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2220003(1)3(1)89x x y ++-+=220068624610993x y +++===,所以213221S S S S S S +--是定值.3.(2023·湖北武汉·华中师大一附中校考模拟预测)已知抛物线T 的顶点在原点,对称轴为坐标轴,且过()2,1-,11,4⎛⎫⎪⎝⎭,()2,2--,()3,2-四点中的两点.(1)求抛物线T 的方程:(2)已知圆()2223xy +-=,过点()(,1P m m -≠作圆的两条切线,分别交抛物线T 于()11,A x y ,()22,B x y 和()33,C x y ,()44,D x y 四个点,试判断1234x x x x 是否是定值?若是定值,求出定值,若不是定值,请说明理由.【答案】(1)24x y =(2)是定值16.【解析】(1)抛物线T 的顶点在原点,对称轴为坐标轴,且过()2,1-,11,4⎛⎫⎪⎝⎭,()2,2--,()3,2-四点中的两点,由对称性,点()2,1-和点()2,2--不可能同时在抛物线T 上,点()2,2--和点()3,2-也不可能同时在抛物线T 上,则抛物线只可能开口向上或开口向右,设()2:20T x py p =>,若过点()2,1-,则42p =,得2p =,∴24x y =,抛物线过点11,4⎛⎫⎪⎝⎭,∴24x y =符合题意;设()2:20T y px p =>,若过点11,4⎛⎫ ⎪⎝⎭,则1216p =,得132p =,∴2116y x =,但抛物线不过点()3,2-,不合题意.综上,抛物线T 的方程为24x y =.(2)(),1P m -,设直线()1:1AB y k x m =--,即1110k x y k m ---=,由AB∴()22113660m k mk -++=,设()2:1CD y k x m =--,同理可得()22223660m k mk -++=,∴12,k k 是方程()223660m k mk -++=的两根,12122266,33m k k k k m m -+==--.联立()1214y k x m x y ⎧=--⎨=⎩,消y 得2114440x k x k m -++=,∴12144x x k m =+,同理34244x x k m =+,∴()()()212341212124444161x x x x k m k m k k m k k m ⎡⎤=++=+++⎣⎦2222661611633m m m m ⎛⎫=-+= ⎪--⎝⎭所以1234x x x x 为定值16.考法三 定直线【例3】(2023·全国·统考高考真题)已知双曲线C的中心为坐标原点,左焦点为()-,离心率为(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.【答案】(1)221416x y -=(2)证明见解析.【解析】(1)设双曲线方程为()222210,0x y a b a b -=>>,由焦点坐标可知c =,则由ce a==可得2a =,4b ==,双曲线方程为221416x y -=.(2)由(1)可得()()122,0,2,0A A -,设()()1122,,,M x y N x y ,显然直线的斜率不为0,所以设直线MN 的方程为4x my =-,且1122m -<<,与221416x y -=联立可得()224132480m y my --+=,且264(43)0m ∆=+>,则1212223248,4141m y y y y m m +==--,直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =--,联立直线1MA 与直线2NA 的方程可得:()()()()()2121121211212121222222266y x y my my y y y y x x y x y my my y y +--+++==--=--112221122483216222141414148483664141m mm y y m m m m m y y m m -⋅-⋅++---===-⨯----,由2123x x +=--可得,即,据此可得点P 在定直线上运动.【变式】1.(2023·湖南永州·统考一模)已知点A 为圆上任意一点,点B 的坐标为,线段AB 的垂直平分线与直线AC 交于点D .(1)求点D 的轨迹E 的方程;(2)设轨迹E 与x 轴分别交于两点(1A 在2A 的左侧),过的直线l 与轨迹E 交于,M N 两点,直线与直线的交于P ,证明:P 在定直线上.【答案】(1)(2)证明见解析【解析】(1)由得,其半径为4,因为线段AB的垂直平分线与直线AC交于点D,故,则,而,故点D的轨迹E为以,B C为焦点的双曲线,则,故点D的轨迹E的方程为.(2)证明:由题意知,若直线l斜率为0,则其与双曲线的交点为双曲线的两顶点,不合题意;故直线l的斜率不能为0,故设其方程为,联立,得,,故,设,则直线的方程为,直线的方程为,故,则,即,解得,故直线与直线的交点P 在定直线上.2.(2023·江苏常州·校考一模)已知椭圆C :()222210x y a b a b +=>>的短轴长为.(1)求椭圆C 的方程;(2)过点的动直线l 与椭圆C 相交于不同的,A B 两点,在线段AB 上取点,满足,证明:点总在某定直线上.【答案】(1)(2)证明见解析【解析】(1)由题意可知,因为,所以解得2a =,.所以所求椭圆的方程为(2)设()11,A x y ,()22,B x y ,,,直线AB 的斜率显然存在,设为,则AB 的方程为.因为A ,P ,B ,四点共线,不妨设,则,,,,由,可得,化简得.(*)联立直线和椭圆的方程,得,消去y ,得,,得,由韦达定理,得,.代入(*)化简得,即.又,代入上式,得,化简得.所以点总在一条定直线上.考法四 最值【例4】(2023·全国·统考高考真题)已知直线与抛物线交于,A B 两点,且.(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,,求面积的最小值.【答案】(1)2p =(2)【解析】(1)设,由可得,,所以,所以,即,因为0p >,解得:2p =.(2)因为,显然直线MN 的斜率不可能为零,设直线MN :,()()1122,,,M x y N x y ,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线MN 的距离为,所以,,所以的面积,而或,所以,当时,的面积.【变式】1.(2023·浙江·模拟预测)我国著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”事实上,很多代数问题可以转化为几何问题加以解决,已知曲线C 上任意一点满足.(1)化简曲线C 的方程;(2)已知圆(O 为坐标原点),直线l 经过点且与圆O 相切,过点A 作直线l 的垂线,交C 于,M N 两点,求面积的最小值.【答案】(1);(2)【解析】(1),由得.所以曲线C的方程是;(2)设,直线MN方程是,则直线l方程为,即,直线l与已知圆相切,所以,则,由得,,由题意(∵),,,∴或,,又原点O到直线MN的距离为,∴,由或得,设,,当且仅当时等号成立,,当且仅当时等号成立,∴时,,∴,即时,.2.(2023·浙江·模拟预测)已知椭圆,点,斜率不为0的直线l 与椭圆C 交于点,A B ,与圆N 相切且切点为为AB 中点.(1)求圆N 的半径的取值范围;(2)求的取值范围.【答案】(1)(2)【解析】(1)如图所示,由题意知,直线l 的斜率存在且不为0,设直线l 方程为y kx m =+(),11(,)A x y ,22(,)B x y ,设圆N的半径为r ,,,,,所以,又因为M 为AB 的中点,所以,又因为圆N与直线l相切于点M,所以,且,所以,所以,解得,所以,,解得:,所以(),所以,即,所以圆N的半径r的取值范围为.(2)由(1)知,,所以(),令,则(),所以,显然在上单调递减,所以,所以,即,故的取值范围为.3.(2023·河北秦皇岛·校联考二模)已知双曲线实轴的一个端点是P,虚轴的一个端点是,直线PQ与双曲线的一条渐近线的交点为.(1)求双曲线的方程;(2)若直线与曲线C有两个不同的交点是坐标原点,求的面积最小值.【答案】(1)(2)【解析】(1)设点,点,则直线PQ的方程为,与渐近线by x a=联立,得,解之得,即直线PQ 与双曲线的一条渐近线交点为,又直线PQ 与双曲线的一条渐近线的交点为,所以,即,因此双曲线方程为.(2)设()()1122,,,A x y B x y ,把代入,得,则 ,,,点O 到直线的距离,所以的面积为,令,所以,令,则,因为,所以,由,得,由,得,由,得,即当时,等号成立,此时满足,所以面积的最小值为.考法五轨迹问题【例5】(2023·湖南·校联考二模)已知12,F F为双曲线的左右焦点,且该双曲线离心率小于等于,点和是双曲线上关于轴对称非重合的两个动点,为双曲线左右顶点,恒成立.(1)求该双曲线C的标准方程;(2)设直线和的交点为P,求点P的轨迹方程.【答案】(1)221 43x y-=(2)【解析】(1)设双曲线C的焦距为,由及双曲线的定义,得,解得,由可得,又恒成立,所以,解得.因为该双曲线离心率小于等于,所以,即,解得,所以,则,所以双曲线C的标准方程为221 43x y-=.(2)因为,所以点只能在双曲线的右支上,设,则,因为在双曲线上,所以,易得,所以直线的斜率为,直线的方程为①,同理可求得直线的方程为②,由①×②得③,将代入③得,化简得,令①=②即,化简得,因为,所以,即点P的轨迹方程为.【变式】1(2023·湖北武汉·华中师大一附中校考模拟预测)已知过右焦点的直线交双曲线于两点,曲线C的左右顶点分别为,虚轴长与实轴长的比值为.(1)求曲线C的方程;(2)如图,点关于原点的对称点为点P,直线与直线交于点,直线与直线交于点,求的轨迹方程.【答案】(1)(2)【解析】(1)由题意得,又222a b c,则,曲线C的方程为;+=,k k,直线为,(2)设直线的斜率分别为12由,得,,,则,,由于点关于原点的对称点为点P,,则直线为,直线为,显然,由,得,即,则直线的方程为,由得,即,当时,由对称性可知在y轴上,此时直线平行于直线,不符合题意,故的轨迹方程为.,x y作椭圆C的切线,则切线2.(2023·江西·校联考二模)已知过曲线上一点()00的方程为.若P为椭圆上的动点,过P作的切线交圆于,过分别作的切线,直线交于点.(1)求动点的轨迹E的方程;(2)已知R为定直线上一动点,过R的动直线与轨迹E交于两个不同点,A B,在线段上取一点,满足,试证明动点的轨迹过定点.【答案】(1)(2)证明见解析【解析】(1)设点,由题意知切线的方程为,同理,设点,则切线的方程分别为:,又点Q在直线上,所以,所以直线的方程为:,和比较可得,又在曲线上,即,所以,即点Q的轨迹E的方程为;(2)设点,则由知,设,则且,则:,即,,整理可得且,又在曲线E 上,则,故,所以,所以,即,由于,故时,,所以动点T 的轨迹过定点.3.(2023·湖南长沙·雅礼中学校考一模)已知椭圆C :,直线l 与椭圆C 交于A ,B 两点.(1)点为椭圆C 上的动点(与点A ,B 不重合),若直线PA ,直线PB 的斜率存在且斜率之积为,试探究直线l 是否过定点,并说明理由;(2)若.过点O 作,垂足为点Q ,求点Q 的轨迹方程.【答案】(1)直线l 过定点;(2)【解析】(1)直线过定点,下面证明:设()11,A x y ,,,又,,∴,∴直线过原点满足.又当PA 两点固定时为定值,有且仅有一个斜率值与之相乘之积为,则直线重合,则重合,∴直线l 过定点.(2)设,,,不妨设,∴,,又点A,B在椭圆上,∴,,∴,,两式相加得,由,得,∴点Q的轨迹是以点O为半径的圆,∴点Q的轨迹方程为.考法六长度比值【例6】(2023·上海杨浦·复旦附中校考模拟预测)贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比p 为一给定的实数.例的结论.如图所示,抛物线,其中0(1)写出抛物线的焦点坐标及准线方程;(2)若直线与抛物线只有一个公共点,求实数k的值;(3)如图,A,B,C是H上不同的三点,过三点的三条切线分别两两交于点D,E,F,证明:.【答案】(1),(2)(3)证明见解析【解析】(1)焦点为,准线为;(2)将代入,化简得(*),方程(*)的判别式,化简得,解得;(3)设,设抛物线在A点处的切线方程为,由,消去y并化简得,,,,解得,故切线方程为,,,即,同理可求得抛物线上过点B,C的切线方程分别为:,,联立,解得,即,同理可得,,因为,,,所以.【变式】1.(2023·云南·校联考三模)如图,已知椭圆的上、下顶点为,右顶点为P和相交于点A,过N作直线交x轴的正半轴于B点,交椭圆于C 点,连接交于点D.(1)求的方程;(2)求证:.【答案】(1)(2)证明见解析【解析】(1)依题意可得,,又,解得,所以的方程为.(2)在椭圆中,,所以,,设直线(),直线(),因为直线与直线相交于点C,由,解得,所以,又点C在椭圆上,所以,整理得,y=得,即,因为直线交x轴正半轴于B点,令0又因为,所以,,所以,因为直线交于点D,令2x=得,故,又,所以,,所以,又,所以,所以,所以.2.(2023·河南·校联考模拟预测)已知双曲线的左、右焦点分别为1F,2F.过2F的直线l交C的右支于M,N两点,当l垂直于x轴时,M,N到C的一条渐近线的距离之和为.(1)求C的方程;(2)证明:为定值.【答案】(1)(2)证明见解析【解析】(1)根据题意有,C的一条渐近线方程为,将代入C的方程有,,所以M ,N 到直线的距离之和为,所以,C 的方程为.(2)方法1:当l 垂直于x 轴时,由(1)可知,,且由双曲的定义可知,故.当l 不垂直于x 轴时,由双曲线的定义可知,,故.设,代入C 的方程有:,设()11,M x y ,()22,N x y ,则,,所以,所以.综上,的值为6.方法2:当l 垂直于x 轴时,由(1)可知,,且由双曲的定义可知,故.当l 不垂直于x 轴时,设,代入C 的方程有:.设()11,M x y ,()22,N x y ,则,,所以.综上,的值为6.考法七 存在性【例7】(2023·陕西西安·陕西师大附中校考模拟预测)已知椭圆经过点,过点的直线交该椭圆于P ,两点.(1)求面积的最大值,并求此时直线PQ 的方程;(2)若直线PQ 与x 轴不垂直,在x 轴上是否存在点使得恒成立?若存在,求出的值;若不存在,说明理由.【答案】(1)PQ 的方程为或;(2)存在,【解析】(1)将代入椭圆方程,得到,故,故椭圆方程为22143x y +=.当直线PQ 的斜率为0时,此时三点共线,不合要求,舍去;当直线PQ 的斜率不为0时,设直线PQ 的方程为,与椭圆方程22143x y+=联立,得,设,则,则,当且仅当,即时,等号成立,故此时直线PQ的方程为或.(2)在x轴上存在点使得恒成立,理由如下:因为,所以,即,整理得,即,所以,则,解得,故在x轴上存在点,使得恒成立.【变式】1.(2023·吉林长春·东北师大附中校考一模)椭圆2222:1(0)x y C a b a b +=>>且垂直于长轴的弦长度为1.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相交于A ,B 两点,与y 轴相交于点,若存在实数m ,使得,求m 的取值范围.【答案】(1)(2)【解析】(1,在方程22221x y a b+=中,令,解得,因为过椭圆焦点并且垂直于长轴的弦长度为1,所以有,由可得:,所以椭圆的方程为;(2)当直线l 不存在斜率时,由题意可知直线与椭圆有两个交点,与纵轴也有两个交点不符合题意;当直线l 存在斜率时,设为,所以直线l 的方程设为y kx m =+,于是有,因为该直线与椭圆有两个交点,所以一定有,化简,得,设()()1122,,,A x y B x y ,于是有,因为,所以,代入中,得,于是有,化简,得,代入中,得.2.(2023·辽宁抚顺·校考模拟预测)已知动点M 到定点的距离与动点M 到定直线2x =的距离之比为(1)求点M 的轨迹C 的方程;(2)对,曲线C 上是否始终存在两点A ,B 关于直线对称?若存在,求实数的取值范围;若不存在,请说明理由.【答案】(1)(2)存在,【解析】(1)设,则,即,整理得,所以点M 的轨迹C 的方程为.(2)假设曲线C 上始终存在两点A ,B 关于直线对称,当时,设直线AB 方程为,()11,A x y ,()22,B x y ,联立,整理得,则,所以,.设AB的中点为()00,x y,则,,将()00,x y代入,则,所以,所以对恒成立,即对恒成立,因为,所以,则.易知当时,曲线C上存在两点,关于直线0y=对称.所以的取值范围为.3.(2023·四川成都·模拟预测)已知椭圆2222:1(0)x yC a ba b+=>>的中心为O,左、右焦点分别为1F,2F,M为椭圆C上一点,线段与圆相切于该线段的中点N,且的面积为4.(1)求椭圆C的方程;(2)椭圆C上是否存在三个点A,B,P,使得直线AB过椭圆C的左焦点1F,且四边形是平行四边形?若存在,求出直线AB的方程;若不存在.请说明理由.【答案】(1)(2)【解析】(1)连接,则,因为N为的中点,O为的中点,所以,故,,,解得,由椭圆定义可知,,解得,由勾股定理得,即,解得,故,故椭圆方程为;x=-,(2)由题意得,当直线AB的斜率不存在时,即2此时,解得,设,=,由对称性可知,P为椭圆左顶点D,但,故不合要求,舍去,由于OA OB当直线AB的斜率存在时,设为,联立得,,,设()()1122,,,A x y B x y ,则,,则AB 中点坐标为,假设存在点P ,使得四边形是平行四边形,则,将代入椭圆中,得,解得,此时直线AB 的方程为.考法八 角度关系转斜率【例8】(2022·全国·统考高考真题)已知点在双曲线上,直线l 交C 于P ,Q两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若,求的面积.【答案】(1)1-;(2).【解析】(1)因为点在双曲线上,所以,解得,即双曲线.=+,,易知直线l的斜率存在,设:l y kx m联立可得,,所以,,且.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)[方法一]:【最优解】常规转化不妨设直线的倾斜角为,因为,所以,由(1)知,,当,A B均在双曲线左支时,,所以,即,解得(负值舍去)此时PA与双曲线的渐近线平行,与双曲线左支无交点,舍去;当,A B均在双曲线右支时,因为,所以,即,即,解得(负值舍去),于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点A到直线PQ的距离,故的面积为.[方法二]:设直线AP的倾斜角为,,由,得,由,得,即,联立,及得,,同理,,,故,而,,由,得,故【变式】1.(2023·陕西宝鸡·校考模拟预测)已知点P是平面直角坐标系异于O的任意一点过点P作直线及的平行线,分别交x轴于M,N两点,且.(1)求点P的轨迹C的方程;(2)在x轴正半轴上取两点,且,过点A作直线l与轨迹C交于E,F两点,证明:.【答案】(1)(2)证明见解析【解析】(1)由题意,设点P坐标为()00,x y,则根据题意,得,由得:,化简得:2200143x y+=,所以轨迹C的方程为:(2)由题意,当直线l的斜率不存在时,根据椭圆的对称性,成立.当直线l的斜率存在,由题意,设直线l的方程为:、、,由得:,有得:,且,,则,又,因为,所以,则.综上所述,.2.(2023·贵州毕节·校考模拟预测)已知椭圆2222:1(0)x yC a ba b+=>>的三个顶点所确定的三角形的面积为(是C的离心率)是C上一点.(1)求C的方程;(2)若直线与C交于,P Q两点,设,直线与C分别交于,M N(不同于,P Q)两k>时,记直线的倾斜角分别为,,求的最大值.点,当0【答案】(1)(2)【解析】(1)依题意可得,得,得,得,得,得,得26a=,则,所以椭圆C的方程为.(2)设,,联立,消去y并整理得,因为在椭圆内,所以判别式恒大于,,,当时,直线:,联立,消去y并整理得,因为,即,所以,所以,因为B在椭圆内,所以判别式恒大于,,,,所以,当11x =时,直线:1x =,易得,也满足,故,同理可得,所以,所以,因为0k >,所以,当且仅当,又0k >,即时,等号成立,所以的最大值为.考点九 三点共线【例9】(2023·贵州毕节·校考模拟预测)已知是抛物线的焦点,过点的直线交抛物线C 于,A B 两点,当AB 平行于y 轴时,.(1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线于点D ,过点A 作直线的垂线与抛物线C 的另一交点为的中点为,证明:三点共线.【答案】(1)(2)证明见解析【解析】(1)抛物线C 的焦点为,当AB 平行于y 轴时,设直线AB 的方程为,设点、,,解得,所以,抛物线C 的方程为.(2)设直线AB 的方程为,设点()11,A x y 、()22,B x y ,联立可得,由韦达定理可得,,又因为直线的方程为,将代入直线的方程可得,可得,即点,所以,,因为,则,所以,直线的方程为,联立可得,则,故,则,由的中点为,可得,故、B、D三点共线.【变式】1.(2022秋·云南昆明)过抛物线:24上一动点P作x轴的垂线,记垂足为H,设线段的中点y x为M,动点M的轨迹为曲线C,设O为坐标原点(1)求曲线C的方程;(2)过抛物线的焦点作直线与曲线C交于,A B两点,设抛物线的准线为l,过点A作直线l的垂线,记垂足为D,证明:B、D、O三点共线,【答案】(1)(2)证明见解析【解析】(1)解:设,则,,因为M是的中点,所以,即,所以,即,所以曲线C的方程;(2)证明:由题意得,准线,设点,,则设过抛物线的焦点的直线为当时,则,,,所以直线的方程为,即,因为过原点O ,所以B 、D 、O 三点共线;当时,联立方程,化简得,则,且,直线的方程为,将代入的方程,即当成立时,B 、D 、O 三点共线.下面证明成立:因为,欲证成立,只需证成立,即证成立,即证成立,又,所以所以成立,所以B 、D 、O 三点共线.2.(2023·江苏镇江)已知过抛物线的焦点,斜率为的直线交抛物线于两点()11,A x y 、()22,B x y ,其中,且.(1)求该抛物线的方程;(2)设O 为坐标原点,过点A 作抛物线的准线的垂线,垂足为C ,证明:B 、O 、C 三点共线.【答案】(1);(2)证明见解析.【解析】(1)依题意可知抛物线的焦点坐标为,故直线AB 的方程为,联立,可得.∵,0p >,,解得.∴经过抛物线焦点的弦,解得.∴抛物线方程为;(2)由(1)知A点的坐标为,B点的坐标为,过点A作抛物线的准线的垂线,垂足为C,则C点的坐标为,,又直线与直线有一个公共点O,所以B、O、C三点共线.3.(2023·江苏南京)在平面直角坐标系中,已知抛物线E:的准线方程为l:.(1)求抛物线E的方程;(2)过抛物线E的焦点作直线与抛物线相交于A,B两点,过点B作直线l的垂线,交l于点C,求证:A,O,C三点共线.【答案】(1);(2)证明见详解.【解析】(1)因为抛物线的准线方程为l:,故可得,解得.故抛物线方程为.(2)由(1)中抛物线方程可得,设坐标分别为,故可设直线方程为,联立抛物线方程可得:,;又根据抛物线定义可知C点坐标为,。
高三数学解析几何拔高训练含解析
xyo P A F 1F 2《解析几何》一、选择1.已知j i ,是y x ,轴正方向的单位向量,设a =j y i x +-)2(, b =j y i x ++)2(,且满足|a|+|b |=4.则点),(y x P 的轨迹是. ( ) (A)椭圆 (B)双曲线 (C)线段 (D)射线2、在直二面角AB αβ--中,PAB ∆在平面α内,四边形ABCD 在平面β内,且α⊥AD ,α⊥BC ,4=AD ,8=BC ,6=AB .若tan 2tan 1ADP BCP ∠=∠+,则动点P 在平面α内的轨迹是( ).椭圆的一部分 .线段 .双曲线的一部分.以上都不是3、已知抛物线m x 2=2(0)y nx n = <(0<m )与椭圆ny x 229+=1有一个相同的焦点,则动点),(n m 的轨 迹是( )A .椭圆的一部分 B .双曲线的一部分 C .抛物线的一部分 D .直线的一部分4、如图,在四棱锥P-ABCD 中,侧面PAD 为正三角形,底面为正方 形,侧面PAD 与底面ABCD 垂直,M 为底面内的一个动点, 且满足MP=MC ,则动点M 的轨迹为( ) A .椭圆B .抛物线 C .双曲线 D .直线5、已知抛物线24,y x =焦点为F ,ABC ∆三个顶点均在抛物线上,若0FA FB FC ++= 则FA FB FC ++=( ).8 .6 .3 .06、椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是( )A .4a B .2()a c - C .2()a c + D .以上答案均有可能7、设F 1、F 2为椭圆两焦点,点P 是以F 1,F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆离心率为( ). A 、32 B 、36 C 、22D 、238、双曲线的虚轴长为4,离心率26=e ,F 1、F 2分别是它的左,右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB|是|AF 2|与|BF 2|的等差中项,则|AB|为 ( ) A 、28 B 、24C 、22D 、89、已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF21tan 21=∠F PF ,则椭圆的离心率为 ( )(A )21 (B )32(C )31 (D )3510、方程|2|)1(2)1(222-+=+++y x y x 表示的曲线是( )A 、椭圆B 、双曲线C 、抛物线D 、不能确定11、如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点.若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -与b a -的大小关系为( )A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定12、双曲线12222=-by a x 的左焦点为1F ,顶点为21,A A ,P 是该双曲线右支上任意一点,则分别以线段211,A A PF 为直径的两圆一定( )A .相交 B .内切 C .外切 D .相离13、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有( )条.A .1B .2C .3D .414、若在抛物线)0(2>=a ax y 的上方可作一个半径为r 的圆与抛物线相切于原点O ,且该圆与抛物线没有别的公共点,则r 的最大值是( ) A .a 21 B .a1C .aD .a 2 二填空题 15、椭圆+=1的离心率e=,则m=___________。
2019名师点拨高考数学解析几何解题路径精品教育.doc.doc
名师点拨高考数学解析几何解题路径每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,解析几何又是难中之难。
其实不然,解析几何题目自有路径可循,方法可依。
只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。
我们先来分析一下解析几何高考的命题趋势:(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。
(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:① 求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点问题(含切线问题);③与曲线有关的最(极)值问题;④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数量特征;(3)能力立意,渗透数学思想:如2019年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。
一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。
加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。
加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;②对称问题(包括关于点对称,关于直线对称)要熟记解法;③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.以及其他“标准件”类型的基础题。
第12讲解析几何解答题点拨答案版
解析几何解答題1 .在直角坐标系 xOy 中,点 A x i , y i , B X2 , y ,则 OA OB -x i X 22 .当A, O , B^共线的时候,AOB 为直角― OA OB - 0 ; AOB 为锐角 —钝角…OA OB 0■—1 N —旳3■: 快 一一 APB 90 PA PB 0 ,相切 AB 中点到直线的距离等于 AB 长的一半.经典精讲<教师备案 >圆锥曲线综合 :这一讲是圆锥曲线的大题综合.众所周知,圆锥曲线一直是高中数学里面 的重难点和易错点.圆锥曲线的难点,在于两方面: ⑴计算准确性;⑵ 转化的思路,尤其是关键条件的解读与核心条件的转化.相对来说,后者可能更加重要:思路是第一位的,如果解题时没有良好清晰的思路,单纯 的认为圆锥曲线只是匚第12讲解析几何 解答题占拨」知识结构图■■ r即 x iy i y y 0 - k x X 0,特殊地,当直线过3 .向量 OA - x i , y i 与 OB — X 2 , y 2 - 0 共线-存在勢,使得 0A - • 0B ,4 .若直线过定点P x o , y o ,我们一般设直线方程为点a,0时,我们一般设直线方程为 X 2 . y 2X 轴上的定5.直线y i.kx b 被圆锥曲线所截得的弦x - ty 卅a ,注意此时斜率为0的直线需单独讨论; AB 的垂直平分线方程为y y i y 2 -2x iX 2 2、I ■、、八,汪意知识梳理y i y 2 .OA OB 0 ; AOB 为垂直平分线的两种关系:垂直,过中点; 6.点P X 0 , y 0在以AB 为直径的圆周上 以AB为直径的圆与直线I : y - kx算,那么很容易陷入盲目计算的误区.下面我们就结合一些比较常见的问题类型来说明圆锥曲线问题中的关键条件解读与转化,这也是本讲的主旨. 解析几何的实质,是几何问题的代数化:用代数方法来解决几何问题.那么,拿到一个解析几何题目时候,既要明白题干中的几何条件,怎么转化成代数条件,也要明白代数条件, 怎么转化成几何条件.我们把一些常见的问题类型的通常转化方式列成了下表: 解析几何中的考查问题 平面几何中的度量 涉及到的代数运算 坐标与长度长度两点间距离公式; 弦长公式;向量之加法与数乘点的位置关系(角度与长度) 坐标运算向量内积的坐标运算内积坐标运算公式向量内积的定义 角度内积坐标运算公式 位置关系判断[距离与角度点到直线距离公式第一列是实际问题中的考查形式;第二列是牵涉到的平面度量转化;第三列是需要用到的代 数运算.实际问题中的考查形式是很多变的,但是牵涉到的平面度量转化实际上非常有限,充其量就是长度、角度、距离三种;例如点 P 在以AB 为直径的圆上,实际上就是说PA PB .考查形式千变万化,但只要抓住其涉及的平面度量,就能抓住问题的实质,明白如何去合理的转化.接下来,我们结合具体的例题来说明这些考查形式是如何进行典型 转化的.【备注】本讲难度与计算量偏大,如果班上学生程度较好,本讲可以讲一讲半的时间,下两讲《复数、算法与推理证明》、《概率与统计》相对比较简单,可以压缩一下时间,作个均衡与调整.尖子班学案1【铺1】已知直线I : y 以AOB 90,贝U k >T 6【解析】——考点:向量处理角度问题―x 22与椭圆C :■ y 2_1交于不同的两点 4A 和B , O 为坐标原点,若【例1】 椭圆的长轴长为,且点 ,一3在4 1 2设A , B 分别为椭圆a 2b 2 1( a b 0)的左、右顶【解析】该椭圆上.⑴求椭圆的方程;⑵设P为直线x -4上不同于点(4 , 0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△ MBP为钝角三角形.⑴椭圆方程为X2y 2-1 .4⑵由⑴知:A( 2 , 0) , B(2 , 0).依题意知直线PA斜率存在且不为6 设直线PA的方程为:x 一ty - 2 (t - 0).则点P坐标为P 4,. -Vt2t 2 8则 X M ty M 2t 2 +4 •所以点坐标为 M 2t 2 -8 , 4t jM(t 2 + 4 t2^4丿从而 B^ -16,4t -1 - 2, 6 ' •飞2 * 4 t2 + [ 7 - 4/ \ 141 t / 所以 琵二…32224 二一 2 80 •又M , B , P 三点不共线,所以 MBP 为钝角. 所以△ MBP 为钝角三角形.【点评】 两直线夹角公式的知识点不再作要求以后,涉及到平面几何中的角度问题(包括立体几何也4 b亠宀是),解析几何中只有一种工具来处理,这就是利用向量内积的定义:co 电丁^片(余弦定理与其等价)•本题中要证明 △ MBP 为钝角三角形,实质上就是要在平面几何中证明某两条边所夹的角为钝角,也就是在解析几何中证明这两条边构成的向量的内积为负.具体是哪两 条边可以通过观察法和特殊值法先判断.考点:向量内积的坐标运算 【例2】(2012海淀二模文19 )已知椭圆C : X 2 . y 2 _ ( a b 0 )的右焦点为a 2b 21-1,2在椭圆C 上.k 2丿⑴求椭圆C 的标准方程;【解析】 ⑴椭圆C 的标准方程为 X 2 y 2 =1 •2⑵当直线l 的斜率为 0时,A 2 , 0 , B 「2,0 •TT 了严 5_ 5 A v贝》QA QB = 一 , 0—。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何解答题点拨1.在直角坐标系xOy 中,点()11,A x y ,()22,B x y ,则1212OA OB x x y y ⋅=+.2.当,,A O B 不共线的时候,AOB ∠为直角⇔0OA OB ⋅=;AOB ∠为锐角⇔0OA OB ⋅>;AOB ∠为钝角⇔0OA OB ⋅<3.向量()11,OA x y =与()22,0OB x y =≠共线⇔存在λ∈R ,使得OA OB λ=,即1212x x y y λλ=⎧⎨=⎩.4.若直线过定点()00,P x y ,我们一般设直线方程为()00y y k x x -=-,特殊地,当直线过x 轴上的定点(),0a 时,我们一般设直线方程为x ty a =+,注意此时斜率为0的直线需单独讨论; 5.直线y kx b =+被圆锥曲线所截得的弦AB 的垂直平分线方程为1212122y y x x y x k ++⎛⎫-=-- ⎪⎝⎭,注意垂直平分线的两种关系:垂直,过中点;6.点()00,P x y 在以AB 为直径的圆周上⇔90APB ∠=︒0PA PB ⇔⋅=,以AB 为直径的圆与直线:l y kx b =+相切⇔AB 中点到直线的距离等于AB 长的一半.<教师备案> 圆锥曲线综合:这一讲是圆锥曲线的大题综合.众所周知,圆锥曲线一直是高中数学里面的重难点和易错点.圆锥曲线的难点,在于两方面:⑴ 计算准确性;⑵ 转化的思路,尤其是关键条件的解读与核心条件的转化.经典精讲知识梳理相对来说,后者可能更加重要:思路是第一位的,如果解题时没有良好清晰的思路,单纯的认为圆锥曲线只是算,那么很容易陷入盲目计算的误区.下面我们就结合一些比较常见的问题类型来说明圆锥曲线问题中的关键条件解读与转化,这也是本讲的主旨.解析几何的实质,是几何问题的代数化:用代数方法来解决几何问题.那么,拿到一个解析几何题目时候,既要明白题干中的几何条件,怎么转化成代数条件,也要明白代数条件,怎么转化成几何条件.我们把一些常见的问题类型的通常转化方式列成了下表:第一列是实际问题中的考查形式;第二列是牵涉到的平面度量转化;第三列是需要用到的代数运算.实际问题中的考查形式是很多变的,但是牵涉到的平面度量转化实际上非常有限,充其量就是长度、角度、距离三种;例如点P 在以AB 为直径的圆上,实际上就是说PA PB ⊥.考查形式千变万化,但只要抓住其涉及的平面度量,就能抓住问题的实质,明白如何去合理的转化.接下来,我们结合具体的例题来说明这些考查形式是如何进行典型转化的.【备注】本讲难度与计算量偏大,如果班上学生程度较好,本讲可以讲一讲半的时间,下两讲《复数、算法与推理证明》、《概率与统计》相对比较简单,可以压缩一下时间,作个均衡与调整.尖子班学案1【铺1】 已知直线:l y kx =22:14x C y +=交于不同的两点A 和B ,O 为坐标原点,若90AOB ∠=︒,则k =________.【解析】考点:向量处理角度问题【例1】 设A ,B 分别为椭圆22221(0)x y a b a b +=>>的左、右顶点,椭圆的长轴长为4,且点1⎛ ⎝⎭在该椭圆上.⑴ 求椭圆的方程;⑵ 设P 为直线4x =上不同于点(40),的任意一点,若直线AP 与椭圆相交于异于A 的点M ,证明:MBP △为钝角三角形.【解析】 ⑴ 椭圆方程为2214x y +=.⑵ 由⑴知:(20)A -,,(20)B ,.依题意知直线PA 斜率存在且不为0,设直线PA 的方程为:2x ty =-(0)t ≠.则点P 坐标为64,P t ⎛⎫⎪⎝⎭.由22244x ty x y =-⎧⎨+=⎩,消去x 得22(4)40t y ty +-=.所以点M 的纵坐标244M t y t =+, 则222824M M t x ty t -=-=+.所以点M 坐标为22228444t t M t t ⎛⎫- ⎪++⎝⎭,. 从而2216444t BM t t -⎛⎫= ⎪++⎝⎭,,62,BP t ⎛⎫= ⎪⎝⎭.所以222322480444BM BP t t t ⋅=-+=-<+++. 又,,M B P 三点不共线,所以MBP ∠为钝角. 所以△MBP 为钝角三角形.【点评】 两直线夹角公式的知识点不再作要求以后,涉及到平面几何中的角度问题(包括立体几何也是),解析几何中只有一种工具来处理,这就是利用向量内积的定义:cos a b a bθ⋅=(余弦定理与其等价).本题中要证明△MBP 为钝角三角形,实质上就是要在平面几何中证明某两条边所夹的角为钝角,也就是在解析几何中证明这两条边构成的向量的内积为负.具体是哪两条边可以通过观察法和特殊值法先判断.考点:向量内积的坐标运算【例2】 (海淀二模文19)已知椭圆C :22221x y a b +=(0a b >>)的右焦点为()1,0F ,且点1,⎛- ⎝⎭在椭圆C 上.⑴ 求椭圆C 的标准方程;⑵ 已知点5,04Q ⎛⎫⎪⎝⎭,动直线l 过点F ,且直线l 与椭圆C 交于A 、B 两点,证明:QA QB ⋅为定值.【解析】 ⑴ 椭圆C 的标准方程为2212x y +=.⑵ 当直线l 的斜率为0时,)0A,()0B .则5572,0,04416QA QB ⎛⎫⎛⎫⋅=⋅=- ⎪ ⎪⎭⎝⎭.当直线l 的斜率不为0时,设直线l 的方程为:1x ty =+,()11,A x y ,()22,B x y . 由22121x y x ty ⎧+=⎪⎨⎪=+⎩可得:22(2)210t y ty ++-=. 显然0∆>.12222t y y t +=-+,12212y y t =-+ 所以112212125511,,4444QA QB x y x y ty ty y y ⎛⎫⎛⎫⎛⎫⎛⎫⋅=-⋅-=--+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()21212111416t y y t y y =+-++2221121(1)24216t t t t t =-+++++22222172(2)1616t t t --+=+=-+. 综上:即716QA QB ⋅=-为定值. 目标班学案1【拓2】 (崇文二模文19)已知椭圆的中心在原点,焦点在x 轴上,经过点)1P 且离心率e =.过定点(10)C -,的直线与椭圆相交于A ,B 两点. ⑴ 求椭圆的方程;⑵ 在x 轴上是否存在点M ,使MA MB ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由.【解析】 ⑴ 椭圆的方程为22142x y +=.⑵ 设11()A x y ,,22()B x y ,,(0)M m ,当直线AB 斜率不为0时,设直线AB 的方程为1x ty =-. 22221(2)230142x ty t y ty x y =-⎧⎪⇒+--=⎨+=⎪⎩, 于是12222t y y t +=+,12232y y t -=+,而11221212()()(1)(1)MA MB x m y x m y ty m ty m y y ⋅=-⋅-=----+,,22121212(1)()(1)t y y t m y y m y y =-+++++22222232(1)3(1)222t t m m t t t -+-=-++++++ 222(25)3(1)2t m m t ---=+++222(25)325(1)2m m m t +-=--+++ 因为MA MB ⋅是与t 无关的常数,所以2(25)30m +-=,即74m =-.即704M ⎛⎫- ⎪⎝⎭,.此时,1516MA MB ⋅=-. 当直线AB 斜率为0时,则点A ,B 的坐标分别为()20-,,()20, 当74m =-时,亦有1516MA MB ⋅=-.综上,在x 轴上存在定点704M ⎛⎫- ⎪⎝⎭,,使MA MB ⋅为常数.尖子班学案2【铺1】 已知F 是椭圆C 的一个焦点,B 是短轴的一个顶点,线段BF 的延长线交椭圆C 于点D ,且2BF FD =,则C 的离心率为________.考点:向量共线问题【例3】 (丰台二模文19)在平面直角坐标系xOy 中,椭圆C 的中心在原点,焦点1F ,2F 在x 轴上,焦距为P 是椭圆上一动点,12PF F △的面积最大值为2.⑴ 求椭圆的标准方程;⑵ 过点()1,0M 的直线l 交椭圆C 于,A B 两点,交y 轴于点N ,若1NA AM λ=,2NB BM λ=,求证:12λλ+为定值.【解析】 ⑴ 椭圆方程为22142x y +=.⑵ 依题意,直线l 斜率存在,若直线l 的斜率为0,则(20)(20)(00)A B N -,,,,,,于是有12223λλ=-=-,,于是1283λλ+=-.当l 斜率不为0时,设直线方程为l :1x ty =+(0)t ≠.11(,)A x y ,22(,)B x y 则点(1,0)M ,点10,N t ⎛⎫- ⎪⎝⎭,11(1,)AM x y =--,111,NA x y t ⎛⎫=+ ⎪⎝⎭,且1NA AM λ=,则1111111y t y ty λ+==---, 同理可得2222111y t y ty λ+==---, 所以121212121122y y ty ty ty y λλ++=---=-- 联立222401x y x ty ⎧+-=⎨=+⎩ 消x 得 22(2)230t y ty ++-=.显然0∆>,且12222t y y t -+=+,12232y y t -=+,即121223y y t y y +=. 所以12128233t t λλ⎛⎫+=--⋅=- ⎪⎝⎭.综上:即12λλ+为定值83-.考点:相关直线斜率问题【例4】 (朝阳一模文19)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为()10F,)20F ,点(1,0)M 与椭圆短轴的两个端点的连线相互垂直.⑴ 求椭圆C 的方程;⑵ 过点(1,0)M 的直线l 与椭圆C 相交于A ,B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,求证:12k k +为定值.【解析】 ⑴ 椭圆的方程为2213x y +=.⑵ 当直线l 的斜率为0时,得(0)A,0)B ,则122k k +==当直线l 的斜率不为0时,设直线l 的方程为:1x my =+. 依题意,直线l 与椭圆C 必相交于两点,设11(,)A x y ,22(,)B x y ,所以1212121212212121212222222(1)()833222()4y y y y my y m y y k k x x my my m y y m y y -----++++=+=+=-----++ 把直线方程代入2213x y +=整理化简,得22(3)220m y my ++-=.则1212y y my y +=.(或12223m y y m +=-+,12223y y m -=+直接代入) 即21212121222212121222(1)8282244my y m m y y m y y k k m y y m y y m y y -++-++===-+-+ 综上得12k k +为常数2.尖子班学案3【铺1】 (昌平二模文19)已知椭圆:C 22221(0)x y a b a b+=>>的左焦点为(10)F -,,过点F 的直线与椭圆C 交于A 、B 两点.⑴ 求椭圆C 的方程;⑵ 设过点F 不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【解析】 ⑴ 椭圆的方程为2212x y +=.⑵ 点G 横坐标的取值范围为102⎛⎤- ⎥⎝⎦,.考点:中垂线问题【例5】 (朝阳二模文19)在平面直角坐标系xOy 中,点E 到两点()110F -,,()210F ,的距离之和为点E 的轨迹为曲线C . ⑴ 写出C 的方程;⑵ 设过点()210F ,的斜率为k (0k ≠)的直线l 与曲线C 交于不同的两点M ,N ,点P 在y 轴上,且PM PN =,求点P 纵坐标的取值范围.【解析】 ⑴ C 的方程为2212x y +=.⑵ 点P纵坐标的取值范围是44⎡⎢⎣⎦. 目标班学案2【拓2】 (西城一模文)已知椭圆C :22221x y a b+=(0a b >>()0F .⑴ 求椭圆C 的方程;⑵ 设直线l :52y kx =-交椭圆C 于A 、B 两点,若点A 、B 都在以点()0,3M 为圆心的圆上,求k 的值.【解析】 ⑴ 椭圆方程为221124x y +=;⑵k =.尖子班学案4【铺1】 直线1y kx =+与抛物线2y x =交于A 、B 两点,设以AB 为直径的圆为圆C ,则坐标原点O 在_______.(圆C 上,圆C 内还是圆C 外)【解析】 圆C 上考点:位置关系的判断【例6】 (朝阳一模文19)已知(2, 0)A -,(2, 0)B 为椭圆C 的左右顶点,(1, 0)F 为其右焦点.⑴ 求椭圆C 的标准方程及离心率;⑵ 过点A 的直线l 与椭圆C 的另一个交点为P (不同于A ,B ),与椭圆在点B 处的切线交于点D .当直线l 绕点A 转动时,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.【解析】 ⑴ 椭圆C 的方程为22143x y +=,离心率为12.⑵ 以BD 为直径的圆与直线PF 相切.证明如下:由题意可设直线l 的方程为2x my =-(0)m ≠, 则点D 坐标为42m ⎛⎫ ⎪⎝⎭,,BD 中点E 的坐标为22,m ⎛⎫ ⎪⎝⎭.由222143x my x y =-⎧⎪⎨+=⎪⎩消去x 得22(34)120m y my +-=.所以点P 的纵坐标为21234P my m =+,设直线PF 方程为1x m y '=+, 则222113(34)4124p P p p my x m m m m y y m m---+-'===-=, 所以直线PF 方程为2414m x y m-=+点E 到直线PF的距离22242244m m d m m m+===+. 又因为4BD m =所以12d BD =. 故以BD 为直径的圆与直线PF 相切.【点评】 判断以BD 为直径的圆与直线PF 的位置关系,本质即判断圆心到直线的距离与半径的大小.目标班学案3【拓2】(丰台一模文18)已知椭圆E 的焦点在x 轴上,离心率为12,对称轴为坐标轴,且经过点312⎛⎫ ⎪⎝⎭,.⑴ 求椭圆E 的方程;⑵ 直线2y kx =-与椭圆E 相交于A ,B 两点,在OA 上存在一点M ,OB 上存在一点N ,使得12MN AB =,若原点O 在以MN 为直径的圆上,求直线斜率k 的值. 【解析】 ⑴ 椭圆的方程为22143x y +=.⑵=k ±【点评】 12MN AB =实际上是说MN 是OAB △的中位线;原点O 在以MN 为直径的圆上实际上是说OM ON ⊥,即OA OB ⊥.这时候如用斜率乘积为1-判断垂直必须讨论斜率不存在的情形,所以用内积为0来判断更加简洁.考点:相交直线过对称点问题【例7】 (东城一模文19)已知椭圆C :22221x y a b+=(0a b >>)过点()0,1.⑴ 求椭圆C 的方程;⑵ 1A 、2A 为椭圆C 的左、右顶点,直线l:x =x 轴交于点D ,点P 是椭圆C 上异于1A 、2A 的动点,直线1A P 、2A P 分别交直线l 于E 、F 两点.证明:DE DF ⋅恒为定值.【解析】 ⑴ 椭圆方程为2214x y +=;⑵ 设点()00,P x y,()1,E y,()2F y ,1(2,0)A -,2(2,0)A ,则由点P 在椭圆上有2020144y x =-- 直线1A P :()0022y y x x =++,2A P :()0022yy x x =--,∴()01022y y x =+,()02022y y x =-于是20122044y DE DF y y x ⋅=-=--1=为定值.【点评】当椭圆的两条相交弦一个端点重合,另一个端点关于原点对称时,我们的处理办法一般是设交点的坐标,进而通过对称的形式去处理斜率的问题.事实上,如右图,点11(,)A x y ,11(,)B x y --在椭圆22221x y a b+=上,点00(,)P x y 为椭圆上一点(保证直线PA ,PB 斜率存在),即有2211221x ya b +=,① 2200221x y a b+=,② 2201010122010101AP BPy y y y y y k k x x x x x x -+-⋅=⋅=-+-, 而由②-①得22220101220x x y y a b --+=,即22AP BP b k k a⋅=-.(西城一模文18)椭圆2222:1(0)x y C a b a b+=>>,且过(2,0)点.⑴ 求椭圆C 的方程;⑵ 设直线:l y x m =+与椭圆C 交于,A B 两点,O 为坐标原点,若OAB △为直角三角形,求m 的值.【解析】 ⑴ 椭圆C 的方程为2214x y +=.⑵ m的值为【点评】 直角三角形意味着有两条边垂直,具体是哪两条边垂直,一定要分情形讨论,不然会造成漏解.(北京文19) 已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥. ⑴ 当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积;⑵ 当90ABC ∠=︒,且斜边AC 的长最大时,求AB 所在直线的方程.【解析】 ⑴AB =122ABC S AB h ∆=⋅=. ⑵ AB 所在直线的方程为1y x =-.【演练1】已知两点(10)A ,,(0)B b ,,若抛物线24y x =上存在点C 使ABC △为等边三角形,则b =_________.【解析】 5或13- 【演练2】已知F 是焦点在x 轴上的双曲线C 的右焦点,B 是虚轴的一个端点,线段BF 交C 于点D ,且3BD DF =,则C 的离心率为 .【解析】【演练3】已知抛物线2:C y ax =,直线2y x =+交抛物线C 于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交抛物线C 于点N ,⑴ 证明:抛物线C 在N 点处的切线l 与AB 平行;⑵ 是否存在实数a ,使得0NA NB ⋅=.若存在,求出a 的值;若不存在,说明理由.【解析】 ⑴ 依题意知0a >,由22y x y ax=+⎧⎨=⎩得220ax x --=,设()11A x y ,,()22B x y , 则121x x a +=,122x x a =-,∴12122N M x x x x a+===实战演练 真题再现对2y ax =求导得2y ax '=,由此知,抛物线C 在点N 处的切线l 的斜率11212k a a=⋅= 因此,抛物线C 在点N 处的切线与直线AB 平行.⑵ 假设存在实数a ,使得0NA NB ⋅=,则NA NB ⊥由M 是线段AB 的中点,∴12MN AB =; 由MN x ⊥轴,1222M M y x a =+=+,214N N y ax a==,知11122244MN a a a =+-=+;又∵12AB x x =-= ∴2211182244a aa ⎛⎫⎛⎫+=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭ 解得78a =或18a =-(舍去) ∴存在实数78a =,使得0NA NB ⋅=. 【演练4】设1F 、2F 分别是椭圆2219x y +=的左、右焦点. ⑴ M 是该椭圆上的一个动点,求12MF MF ⋅的最大值和最小值;⑵ 过定点(02),的直线l 与椭圆交于不同两点A 、B ,且AOB ∠为钝角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【解析】 ⑴ 12MF MF ⋅有最小值为7-,有最大值为1.⑵ 直线l 的斜率k 的取值范围k >k <.【演练5】(北京房山一模文19)已知椭圆22221x y a b+=(0)a b >>的长轴长为()2,1P 在椭圆上,平行于OP (O 为坐标原点)的直线l 交椭圆于,A B 两点,l 在y 轴上的截距为m . ⑴ 求椭圆的方程;⑵ 求m 的取值范围;⑶ 设直线,PA PB 的斜率分别为1k ,2k ,那么1k +2k 是否为定值,若是求出该定值,若不是请说明理由.【解析】 ⑴椭圆方程为22182x y +=. ⑵ m 的取值范围是()()2,00,2-.⑶ 是定值,120k k +=.(清华自主招生考试) 已知椭圆22221x y a b+=,过椭圆左顶点(0)A a -,的直线l 与椭圆交于Q ,与y 轴交于R ,过原点与l 平行的直线与椭圆交于P .求证:AQ、AR 成等比数列.【解析】 由题可知直线l 的斜率存在且不为0,设直线l 的解析式为()y k x a =+,则R 点为(0)ka ,. 联立22221()x y a b y k x a ⎧+=⎪⎨⎪=+⎩消去y 可得:2222232422()20b k a x k a x k a a b +++-=, ∵A x a =-,∴232222Q ab a k x b a k-=+;∴Q A AQ x =-=联立22221x y a b y kx ⎧+=⎪⎨⎪=⎩消去y 可得:222222P a b x b a k =+.而AR =,p OP , ∴2222222222(1)22(1)Pa b k OP k x AQ AR b a k +=+==⋅+.大千世界。