【精品】液压传动课程设计液压系统设计举例
液压机液压系统设计
攀枝花学院学生课程设计说明书题目:液压传动课程设计——小型液压机液压系统设计学生姓名:学号:所在院系:机电工程学院专业:机械设计制造及其自动化班级:指导教师:职称:攀枝花学院教务处制攀枝花学院本科学生课程设计任务书注:任务书由指导教师填写。
摘要液压机是一种用静压来加工金属、塑料、橡胶、粉末制品的机械,在许多工业部门得到了广泛的应用。
液压传动系统的设计在现代机械的设计工作中占有重要的地位。
液体传动是以液体为工作介质进行能量传递和控制的一种传动系统。
本文利用液压传动的基本原理,拟定出合理的液压传动系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格。
确保其实现快速下行、慢速加压、保压、快速回程、停止的工作循环。
关键词:液压机、课程设计、液压传动系统设计AbstractHydraulic machine is a kind of static pressure to the processing of metal, plastic, rubber, the powder product of machinery, in many industrial department a wide range of applications. The design of the hydraulic drive system in modern mechanical design work occupies an important position. Transmission fluid is the liquid medium for the work carried out energy transfer and control of a transmission system.This paper using hydraulic transmission to the basic principle of drawing up a reasonable hydraulic system map ,and then after necessary calculation to determine the liquid pressure system parameters , Then according to the parameters to choose hydraulic components specification. To ensure the realization of the fast down, slow pressure, pressure maintaining, rapid return, stop work cycle.Key words:hydraulic machine, course design, hydraulic transmission system design.目录摘要 (I)Abstract (II)1 任务分析 (1)1.1技术要求 (1)1.2任务分析 (1)2 方案的确定 (2)2.1运动情况分析 (2)3 工况分析 (3)3.1工作负载 (3)3.2 摩擦负载 (3)3.3 惯性负载 (3)3.4 自重 (3)3.5 液压缸在各工作阶段的负载值 (3)4 负载图和速度图 (5)5 液压缸主要参数的确定 (6)5.1 液压缸主要尺寸的确定 (6)5.2 计算在各工作阶段液压缸所需的流量 (6)6 液压系统图 (9)6.1 液压系统图分析 (9)6.2 液压系统原理图 (9)7 液压元件的选择 (11)7.1液压泵的选择 (11)7.2 阀类元件及辅助元件 (11)7.3油箱的容积计算 (12)8 液压系统性能的运算 (13)8.1 压力损失和调定压力的确定 (13)8.2 油液温升的计算 (14)8.3 散热量的计算 (15)结论 (17)参考文献 (18)1 任务分析1.1技术要求设计一台小型液压压力机的液压系统,要求实现快速空程下行—慢速加压—保压—快速回程—停止的工作循环,快速往返速度为V=5.6 m/min,加压速度1V=70mm/min,其往复运动和加速(减速)时间t=0.02s,压制力为320000N,运2动部件总重为40000N,工作行程400mm,(快进380mm,工进20mm),静摩擦系数fs=0.2,动摩擦系数fd=0.1油缸垂直安装,设计该压力机的液压系统传动。
液压传动系统设计计算例题
液压传动系统设计计算例题1. 引言液压传动系统是一种常用的能量传递和控制系统,广泛应用于工程机械、航空航天、冶金、石油化工等领域。
本文将通过一个设计计算例题,介绍液压传动系统的设计过程和计算方法。
2. 设计要求设计一个液压传动系统,满足以下要求:•最大输出功率为100kW•最大工作压力为10MPa•最大转速为1500rpm•传动比为5:13. 功率计算根据设计要求,最大输出功率为100kW,转速为1500rpm,可以通过以下公式计算液压机的排量:功率(kW)= 排量(cm^3/rev) × 转速(rpm) × 压力(MPa) × 10^-6由于传动比为5:1,液压泵的排量为液压马达的5倍,因此液压泵的排量为:排量(cm^3/rev) = 功率(kW) / (转速(rpm) × 压力(MPa) × 10^-6 × 5)= 100 / (1500 × 10 × 10^-6 × 5)= 0.133 cm^3/rev4. 泵和马达的选择根据计算结果,液压泵的排量为0.133 cm^3/rev。
在实际中,可以选择一个接近或等于该排量的标准泵来满足需求。
假设我们选择了一台0.15 cm^3/rev的液压泵。
由于传动比为5:1,液压马达的排量为液压泵的1/5,因此液压马达的排量为:排量(cm^3/rev) = 液压泵排量 / 5= 0.15 / 5= 0.03 cm^3/rev同样地,我们可以选择一个接近或等于该排量的标准马达。
5. 油液流量计算油液流量可以通过以下公式计算:流量(L/min) = 排量(cm^3/rev) × 转速(rpm) / 1000液压泵的流量为:流量(L/min) = 0.15 × 1500 / 1000= 0.225 L/min液压马达的流量为:流量(L/min) = 0.03 × 1500 / 1000= 0.045 L/min6. 液压系统元件选择在设计液压传动系统时,除了液压泵和液压马达,还需要选择其他的液压元件,如油箱、油管、阀门等。
液压系统的设计计算举例
作缸的小腔,即从泵的出口到缸小腔之间的压力损失 Δp = 5.5×105 MPa ,于是小泵出
口压力 pp1 = 21.56×105 MPa (小泵的总效率 η 1 = 0.5 ),大泵出口压力 pp2 =
23.06×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率为
P pp1q1 pp2q2 21.56 105 0.167 103 W 23.06 105 0.267 103 W 1 951.5 W
= 0.5 ,大泵出口压力 pp2 = 15.18×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率
为
P1
pp1q1 1
pp 2 q2 2
13.68 105 0.167 103 0.5
W 15.18 105 0.267 103 0.5
W
1 267.5 W
(2)工进
小泵的出口压力 pp1 = p1 +Δp1 = 32.19×105 MPa ,大泵卸载,卸载压力取 pp2 =
液压传动
液压系统的设计计算举例
1.1 分析工况及主机工作要求,拟定液压系统方案 1.2 参数设计 1.3 选择元件 1.4 液压系统性能验算
液压系统的设计计算举例
1.1 液分析工况及主机工作要求,拟定液压系统方案
(一) 确定执行元件类型
(二) 确定执行元件的负载、速度变化范围
Fw 18 000 N
1
2
0.5
0.5
综合比较,快退时所需功率最大。据此查产品样本选用Y112M—6型异步电机,
电机功率2.2 kW,额定转速为940 r/min。
(三) 选择液压阀
根据液压阀在系统中的最高工作压力与通过该阀的最大流量,可选出这些元件的 型号及规格。选定的元件列于表中。
液压与气压传动液压系统设计实例
根据系统的工作环境和要求,选择合适的液压介质,如矿 物油、合成油、水等,并确定其清洁度和粘度等参数。
选择合适元件和连接方式
01
选择液压泵和液压马达
根据系统的负载和运动参数,选择合适的液压泵和液压马达,确保其能
够提供足够的流量和压力,并满足系统的效率和精度要求。
02
选择液压缸和阀门
其他常见问题及相应解决方案
气穴现象
产生原因是油液中溶解的气体在低压区析出并形成气泡。解决方案 是减小吸油管路的阻力,避免产生局部低压区。
压力冲击
产生原因是液压阀突然关闭或换向,导致系统内压力急剧变化。解 决方案是在液压阀前设置蓄能器或缓冲装置,吸收压力冲击。
爬行现象
产生原因是液压缸或马达摩擦阻力不均、油液污染等。解决方案是改 善液压缸或马达的润滑条件,使用干净的油液。
关键技术应用
节能环保措施
采用负载敏感技术、电液比例控制技术等 ,提高挖掘机液压系统的控制精度和响应 速度。
通过优化系统设计和选用高效节能元件,降 低挖掘机液压系统的能耗和排放,提高环保 性能。
压力机液压系统性能评估方法论述
评估方法介绍
采用实验测试、仿真分析等方法对压力机 液压系统进行性能评估,获取系统在不同
明确系统的设计目标和约束条件
根据实际需求,明确系统的设计目标,如高效率、 低能耗、高精度等,并考虑成本、空间、重量等 约束条件。
确定系统方案和布局
制定系统原理图
根据设计要求和目标,制定液压系统的原理图,包括液压 缸、液压马达、液压泵、油箱、阀门等元件的连接方式和 控制逻辑。
确定系统布局和安装方式
根据机械设备的结构和空间要求,确定液压系统的布局和 安装方式,包括元件的布置、管路的走向和固定方式等。
液压课程设计--设计一台卧式钻孔组合机床的液压系统
目录0.摘要 (1)1.设计要求 (2)2.负载与运动分析 (2)2.1负载分析 (2)2.2快进、工进和快退时间 (3)2.3液压缸F-t图与v-t图 (3)3.确定液压系统主要参数 (4)3.1初选液压缸工作压力 (4)3.2计算液压缸主要尺寸 (4)3.3绘制液压缸工况图 (5)4.拟定液压系统的工作原理图 (7)4.1拟定液压系统原理图 (7)4.2原理图分析 (8)5.计算和选择液压件 (8)5.1液压泵及其驱动电动机 (8)5.2阀类元件及辅助元件的选 (10)6.液压系统的性能验算 (10)6.1系统压力损失验算 (10)6.2系统发热与温升验算 (11)7.课设总结 (12)0.摘要液压传动技术是机械设备中发展最快的技术之一,特别是近年来与微电子、计算技术结合,使液压技术进入了一个新的发展阶段,机、电、液、气一体是当今机械设备的发展方向。
在数控加工的机械设备中已经广泛引用液压技术。
作为机械制造专业的学生初步学会液压系统的设计,熟悉分析液压系统的工作原理的方法,掌握液压元件的作用与选型是十分必要的。
液压传动在国民经济的各个部门都得到了广泛的应用,但是各部门采用液压传动的出发点不尽相同:例如,工程机械、压力机械采用液压传动的主要原因是取其结构简单、输出力大;航空工业采用液压传动的主要原因取其重量轻、体积小;机床上采用液压传动的主要原因则是取其在工作过程中能无级变速,易于实现自动化,能实现换向频繁的往复运动等优点。
关键词:钻孔组合机床卧式动力滑台液压系统1.设计要求设计一台卧式钻孔组合机床的液压系统,要求完成如下工作循环式:快进→工进→快退→停止。
机床的切削力为25000N ,工作部件的重量为9800N ,快进与快退速度均为7m/min ,工进速度为0.05m/min ,快进行程为150mm ,工进行程40mm ,加速、减速时间要求不大于0.2s ,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1 。
液压传动课程设计
【液压传动课程设计说明书设计题目:半自动液压专用铣床液压系统[工程技术系机械设计制造及其自动化4班。
设计者指导教师2016 年 12 月 1 日摘要、液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。
现以半自动液压专用铣床液压系统为例,介绍液压系统的设计计算方法。
设计一台多用途大台面液压机液压系统,适用于可塑材料的压制工艺,如冲压、弯曲翻边、落板拉伸等。
要求该机的控制方式:用按钮集中控制,可实现调整,手动和半自动,自动控制。
要求该机的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺要求进行调整。
主缸工作循环为:快降、工作行程、保压、回程、空悬。
顶出缸工作循环为:顶出、顶出回程(或浮动压边)。
关键字:液压; 快进; 工进; 快退{前言本课程是机械设计制造及其自动化专业的主要专业基础课和必修课,是在完成《液压与气压传动》课程理论教学以后所进行的重要实践教学环节。
本课程的学习目的在于使学生综合运用《液压与气压传动》课程及其它先修课程的理论知识和生产实际知识,进行液压传动的设计实践,使理论知识和生产实际知识紧密结合起来,从而使这些知识得到进一步的巩固、加深和扩展。
通过设计实际训练,为后续专业课的学习、毕业设计及解决工程问题打下良好的基础。
,(1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。
在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。
(2) 液压传动课程设计应在教师指导下独立完成。
教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查,学生必须发挥主观能动性,积极思考问题,而不应被动地依赖教师查资料、给数据、定方案。
(3) 设计中要正确处理参考已有资料与创新的关系。
任何设计都不能凭空想象出来,利用已有资料可以避免许多重复工作,加快设计进程,同时也是提高设计质量的保证。
《液压传动》课程教学设计
创新教育科技创新导报 Science and Technology Innovation Herald1441 课程性质、地位与作用我院城市轨道车辆专业主要面向轨道交通车辆生产及轨道交通运营行业企业,培养掌握城市轨道交通车辆的维修、运用、生产及调试技术,具有车辆机械部件装配,电气线路装配、车辆机械及电气故障检测与维修、车辆驾驶等能力,能从事城市轨道车辆维修、驾驶、生产及调试等工作的德、智、体、美等方面全面发展的高素质技能型专门人才。
其面向的就业岗位是轨道车辆电气线路组装、车辆机械部件装配、车辆电气系统调试、车辆售后服务(维修)、城市轨道交通车辆检修工、城市轨道交通车辆运行维护、轨道车辆驾驶、行车调度。
《液压传动》课程是针对车辆机械部件装配、车辆售后服务(维修)、城市轨道交通车辆检修工、城市轨道交通车辆运行维护岗位所开设的一门专业必修基础课程。
本课程所介绍的内容,是学生将来从事机械工程技术人员必须掌握的基础知识。
通过本课程的学习为后续课程通过本课程《城市轨道交通车辆》、《轨道车辆检修》、《轨道车辆装配》的学习奠定基础。
2 教学目标通过本课程的理论教学与实验探索,使学生了解液压传动的原理及组成,熟悉各元件的结构及功能,培养学生安装液压控制回路和分析液压系统功能的能力,具备一定的动手能力,为提高学生的职业能力和可持续性发展打下基础。
2.1 知识目标(1)了解流体力学的基本概念与基本方程。
(2)掌握液压回路的基本工作原理及应用。
(3)掌握液压元件的种类、工作原理、图形符号与功用。
(4)掌握液压传动基本回路的种类及工作原理、应用。
(5)掌握典型液压系统工作原理、系统安装调试和故障诊断的方法。
2.2 能力目标(1)能够正确选用、维护液压元件。
(2)能够安装液压基本控制回路并进行调试。
(3)能够分析液压系统原理,并进行系统与调试。
(4)能判断简单液压回路故障并制定维修方案。
(5)能够分析、排除一般液压系统故障。
机械毕业设计1560液压传动课程设计—全自动方便面压制机液压系统设计
摘要及关键词【摘要】《液压传动与控制》课程设计是机械设计制造及其自动化专业学生在学完《流体力学与液压传动》课程之后进行的一个重要的实践性教学环节。
液压系统一般由动力部分、执行部分、控制部分及辅件部分四部分组成,其最大特点就是元件单位重量传递的功率大、布局灵活,易实现远距离操作和自动控制,自润滑性好。
能够实现系统的过载保护与保压,动作迅速,可实现无级调节,被广泛应用于自动化设备上。
学生设计的全自动方便面压制机可以自动完成方便面的压制过程,即方便又实惠。
【关键词】油缸油泵系统图阀全自动方便面压制机《流体力学与液压传动》课程设计任务书图3-2 型号表示方法液压系统原理图如下图3-3,系统图中有一个齿轮泵,提供动力;一个滤油器;一个压力表,测量油路总压力;两个三位四通电磁换向阀,实现停、通及换向供油;一个二位三通电磁换向阀,实现快进;五个单向阀;四个溢流阀,溢流阀4起溢流阀的作用,保证油泵和回铁1Y A通电,液压缸15活塞上升,到达顶端时,油路继续供油,压力达到压力继电器11的调整值时发信,使电磁铁1Y A断电,3YA通电,液压缸16活塞右行,当到达最右端时,油路压力达到压力继电器13的调整值时发信,使电磁铁3YA断电,4Y A通电,液压缸16活塞左行,当到达最设计体会课程设计是培养学生综合运用所学知识,发现、提出、分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。
回顾起此次课程设计,我感慨颇多。
在整整两个星期的日子里,可以说得是苦多于甜,但是总体来讲,效果还是很好的,不仅巩固了以前所学的知识,还学到了很多在书本上无法学到的知识。
整个设计过程不能说是困难重重,难免会遇到过各种各样的问题,和前两次课程设计相比,力不从心的感觉不再那么强烈,但在设计的过程中还是发现了自己许多不足之处,使自己认识到对以前所学知识理解得不够深刻,掌握得不够牢固,比如说液压元件好多细节没有掌握,以致于错用,对溢流阀的危害没有很深了解,以致于系统图上用了太多的溢流阀,增大了沿程阻力损失,还有原系统图设计过于复杂,在老师的指导下,获得了很大的进步。
专业铣床液压系统课程设计
驻马店职业技术学院机电工程系液压传动课程设计设计题目:专用铣床的液压系统设计学生姓名:田瑞娟唐能胜张鹏学号:专业:机电一体化机电三班指导教师:晁红芬2012年6月引言一、设计题目及工况分析1运动参数分析2动力参数分析3液压缸在各阶段的负载及工况图二、计算液压缸尺寸和所需流量1、工作压力的确定2计算液压缸尺寸3、确定液压缸所需的流量三、确定液压系统方案,拟定液压原理图1、确定执行元件的类型2、换向阀确定3、调速方式的选择4、快进转工进的控制方式的选择5、终点转换控制方式的选择6、实现快速运动的供油部分设计四、液压系统工作原理五、液压泵的选择1、计算泵的压力2、计算泵的流量设计题目要求设计一台专用铣床的液压系统。
已知最大切削阻力9×10³N,切削过程要求实现“快进→工进→快退→原位停止”的自动循环。
采用液压缸驱动,工作台的快进速度为⒋5m/min,快进速度与快退速度相等。
进给速度范围为60~1000mm/min,要求无极调速,最大有效行程为400mm,工作台往复运动的加速﹑减速时间为0.5s,工作台自重为3×10³N,工作及夹具最大重量为10³N,采用平导轨,工作行程为200mm。
一工况分析1、运动参数分析动作循环图动作循环图速度循环图2、动力参数分析工作台的快进速度为4。
5m/s,工作进给速度范围为60~1000mm/min,要求无级调速,工作台往复的加速、减速时间为0。
05s,快退速度与快进速度相等。
(1)计算各阶段的负载启动和加速阶段的负载F qF q=Fj+F g+F mF1——静摩擦阻力Fg——惯性阻力Fm ——密封产生的阻力。
按经验可取Fm=0.1F qF q =F j +F g +F m =0.2×4000+ma+0.1F q =800+05.081.9605.44000⨯⨯⨯+0.1F qF q =956.85N快速阶段的负载F kj F kj =F dm +F m F dm ——动摩擦阻力F m ——密封阻力,取F m =0.1F dm F kj =F dm +F m =0.1×4000+0.1F kj F kj =444.44N 减速阶段F js F js =F dm +F m -F gF m ——密封阻力,取F m =0.1F jsF js =F dm +F m -F g =400+0.1F js -4000⨯5.081.960101000-5.43-⨯⨯⨯F js =391.59N④工进阶段F gjF gj =F dm +F qx +F m F qx ——切削力F gj =F dm +F qx +F m =0.1×4000+9000+0.1F gj F gj =10444.44N⑤制动F zdF zd =F m +F dm -F g =0.1×4000+0.1F zd -5.018.96010100040003-⨯⨯⨯⨯F zd =429.34N⑥反向启动F fgdF fgd =F m +F jm +F g =0.2×4000+0.1F fgd -5.018.96010100040003-⨯⨯⨯⨯F fgd =956.85N⑦快速上升F ktF kt =F m +F dm =0.1F kt +400 F kt =444.44N⑧反向制动F fzd =F m +F dm -F g =0.1F fzd +400-5.018.9605.44000⨯⨯⨯F fzd =376.49N3液压缸在各阶段的负载(2)绘制工况图(3)绘制工况图工况图二、计算液压缸尺寸和所需流量1、工作压力的确定工作压力可根据最大负载来确定,最大负载为10444.44N现按表1有关要求,取工作压力P=2.5MPa表1负载F/kN<55~1010~2020~3030~50>50工作压力0.8~1 1.5~2 2.5~33~44~5≥5~7p/MPa12、计算液压缸尺寸1)液压缸的有效面积A11A =ηP F =2646419.0105.244.10444mm ≈⨯⨯ 液压缸内径D D=mm 89.7614.346414A 41=⨯=π根据第4章有关要求取标准值D=80mm (表格如下)液压缸内径尺寸系列 mm(2)活塞杆直径要求快进与快退的速度相等,故用差动连接的方式。
液压传动课程设计设计---液压专用铣床的液压系统
液压传动课程设计设计---液压专用铣床的液压系统目前,液压技术广泛应用于生产高精度的金属组件,如汽车零件、机械工程零部件等。
液压专用铣床是液压系统的重要组成部分,能够实现传动驱动和控制。
本文旨在设计一种用于液压铣床的液压系统。
一、系统结构液压系统包括液压泵、液压调节器、启动装置、液压马达、液压电磁换向阀、油路调节装置、减压器、负荷检测系统等(图1)。
液压泵、液压调节器和启动装置组成液压源,提供泵腔内的高压油。
液压马达采用无丝螺母的逆止马达,可提供良好的控制和机械参数。
液压电磁换向阀用来控制马达的转轴力矩,改变其偏差方向,便于高效操作。
油路调节装置用于控制油路,可以连接到多个液压系统组件,并可以根据需要添加和减少油路组件,实现油路自动控制。
减压器的功能是将泵腔内的高压油转换为中高压,并通过控制阀门精确控制压力。
最后,负荷检测系统用于实时检测液压铣床的负荷,以保证减压器的工作和液压马达的正常运行。
![用于液压铣床的液压系统结构图,液压泵,液压调节器,启动装置,液压马达,液压电磁换向阀,油路调节装置,减压器,负荷检测系统](对象图片.jpg)图1 液压铣床液压系统结构二、系统运行原理1、液压泵工作原理液压泵作为流体液压系统的源头,负责将电能变换成液压能量。
运转过程中,它将泵腔内的液体空化,通过活塞的往复运动以及叶片的旋转将低压液体输送至泵腔内,释放对应的流体能量,形成高压油流,从而起到推动作用。
液压调节器是液压系统的重要组件,主要实现液压系统的振动消除和液压换向,使液压装置能够快速、精准响应信号,从而实现高精度操作。
液压调节器由精密制成的磁性控制阀和密封件组成,能够有效控制液压压力和方向,从而保证液压马达的精准操作。
液压马达是液压传动系统中的主要组件,它将液压能量转换成机械能量,支持传动装置实现高精度操作。
液压马达采用石墨制成的活塞和活塞杆及液压密封件,可以实现调节马达的旋转,同时支撑机械装置的操作。
液压系统设计计算举例
(9.20)
设计计算
步骤和内容
6
液压系统的发热功率
(3) 溢流阀的损失功率
k
Py
pYi qYi
式中
i 1
pYi ——各溢流阀的调整压力;
qYi ——各溢流阀的溢流量;
k——溢流阀数量。
(4) 节流功率损失
(9.21)
式中
k
Pj pji qji i 1
p ji ——各流量阀进出口压差;
q ji ——通过各流量阀的流量;
表9-5 液压缸在各工作阶段的负载值
工况 起动
负载组成 F= Ffs
负载值F/N 1962
推力 /N
F
2180 m
加速
F = Ffd + Fm 1564
1500
快进 工进 快退
F =Ffd F =Ffd + Ft F =Ffd
981 31449 981
1090 34943 1090
设计计算
设计实例
22
1 液压传动系统的设计计算步骤和内容
• 液压系统设计步骤如下: • (1) 明确液压系统的设计要求及工况分析; • (2) 主要参数的确定; • (3) 拟定液压系统原理图,进行系统方案论证; • (4) 设计、计算、选择液压元件; • (5) 对液压系统主要性能进行验算; • (6) 设计液压装置,编制液压系统技术文件。
设计计算
设计实例
19
负载分析
1. 工作负载
由切削原理可知,高速钢钻头钻铸铁孔时的轴向切削力Ft与钻头直径D(mm)、每转进给量s(mm/r) 和铸件硬度HB之间的经验计算式为
Ft 25.5Ds0.8 (HB)0.6 (9.27)
根据组合机床加工的特点,钻孔时的主轴转速n和每转进给量s
液压传动课程设计
设计题目第一组:设计一台专用铣床,工作台要求完成快进--工作进给--快退--停止的自动工作循环。
铣床工作台重量4000N,工件夹具重量为1500N,铣削阻力最大为9000N,工作台快进、快退速度为4.5m/min,工作进给速度为0.06~1m /min,往复运动加、减速时间为0.05s工作采用平导轨,静、动摩擦分别为fs =0.2,fd=0.1,•工作台快进行程为0.3m。
工进行程为0.1m,试设计该机床的液压系统。
第二组:设计一台校正压装液压机的液压系统。
•要求工作循环是快速下行→慢速加压→快速返回→停止。
压装工作速度不超过5mm/s•,快速下行速度应为工作速度的8~10倍,工件压力不小于10×103N。
第三组:设计一台卧式单面多轴钻孔组合机床液压系统,要求完成工件的定位与夹紧,所需夹紧力不得超过6000N。
该系统工作循环为:快进——工进——快退——停止。
机床快进快退速度约为6 m/min,工进速度可在30~120mm/min范围内无级调速, 快进行程为200mm,工进行程为50mm,最大切削力为25kN,运动部件总重量为15 kN,加速(减速)时间为0.1s,采用平导轨,静摩擦系数为0.2,•动摩擦系数为0.1。
第四组:设计一台小型液压机的液压系统,要求实现快速空程下行——慢速加压——保压——快速回程——停止的工作循环。
快速往返速度为3m/min,加压速度为40~250mm/min,压制力为200kN,运动部件总重量为20kN。
第五组:设计一卧式单面多轴钻孔组合机床动力滑台的液压系统,动力滑台的工作循环是:快进——工进——快退——停止。
液压系统的主要参数与性能要求如下:轴向切削力为用21000N,移动部件总重力为10000N,快进行程为 100mm,快进与快退速度均为 4.2m/min,工进行程为 20mm,工进速度为 0.05m/min,加速、减速时间为0.2s,利用平导轨,静摩擦系数为0.2,动摩擦系数为0.1,动力滑台可以随时在中途停止运动,试设计该组合机床的液压传动系统。
液压传动课程设计
液压传动课程设计1. 引言液压传动是一种基于液体介质的能量传递方式,广泛应用于各种工程领域,如机械、航空、船舶等。
在本次课程设计中,我们将学习液压传动的原理和应用,并通过实际案例进行设计和分析。
2. 实验目的本次课程设计的主要目的是让学生熟悉液压传动的基本原理和应用,通过设计和分析液压系统,提高学生的实际操作能力和问题解决能力。
3. 实验内容本次课程设计主要包括以下内容: - 液压传动系统的基本原理和构成; - 液压传动系统的性能参数和评价方法; - 液压元件的选择和安装; - 液压传动系统的实验设计和分析。
4. 实验步骤步骤一:了解液压传动系统的基本原理和构成在这个步骤中,学生需要掌握液压传动系统的基本工作原理,以及液压元件的种类和功能。
通过学习相关理论知识和实例分析,了解液压传动系统的构成和工作原理。
步骤二:确定液压传动系统的性能参数和评价方法在这个步骤中,学生需要根据设计要求和实际应用条件,确定液压传动系统的性能参数,如流量、压力、速度等。
并掌握相应的评价方法,如效率、稳定性、可靠性等。
步骤三:选择和安装液压元件在这个步骤中,学生需要根据设计要求和性能参数,选择合适的液压元件。
并学习液压元件的安装和调试方法,确保系统的正常运行。
步骤四:设计和分析液压传动系统在这个步骤中,学生需根据给定的实例或自行设计,完成液压传动系统的设计和分析。
包括系统的工作原理、液压元件的选择和布局、系统的性能评价等。
5. 实验结果分析学生需要通过实际搭建和测试液压传动系统,记录实验数据,并进行结果分析。
分析实验结果与设计要求的接近程度,找出存在的问题,并提出改进方案。
6. 结论通过本次课程设计,学生深入了解和掌握了液压传动系统的基本原理和应用。
通过设计和分析,提高了学生的实际操作能力和问题解决能力。
7. 参考文献[1] 李某某,液压传动理论与设计,XXX出版社,2010。
[2] 张某某,液压传动系统设计与应用,XXX出版社,2012。
液压传动系统设计计算例题
液压传动系统设计计算例题假设需要设计一套液压传动系统,用于控制某个机械臂的运动,以下是一些基本参数:- 机械臂负载重量:1000kg- 最大工作半径:5m- 液压驱动装置:某品牌的双泵式液压站,额定流量为100L/min,工作压力为20MPa,每个泵的负载能力为50kW。
- 液压缸的直径:100mm- 液压缸的行程:1m- 液压油:ISOVG46或ISOVG32- 管道直径:32mm下面是设计液压传动系统的步骤和计算:1. 计算机械臂所需的扭矩机械臂在运动时需要产生一定的扭矩,根据所需的工作半径和负载重量,可以计算出最大扭矩:Maximum torque = Load weight x Max. working radius= 1000kg x 5m= 5000kg-m2. 计算液压驱动装置的功率需求液压驱动装置需要产生足够的功率来带动机械臂运动,可以从率定流量和压力计算功率:Pump power = Pump flow rate x Pressure / 600= 100L/min x 20MPa / 600= 3.33kW由于每个泵的负载能力为50kW,因此液压传动系统的功率需求不超过这个限制。
3. 计算液压缸的负载力和推力液压传动系统需要输出足够的力量,以移动机械臂。
通过液压缸的直径和压力,可以计算出负载力和推力:Load force = Piston area x Pressure= π (D/2)^2 x P= π (0.1/2)^2 x 20MPa= 3141.59NPiston thrust = Load force x Stroke= 3141.59N x 1m= 3141.59N-m4. 计算液压油的流量和速度液压传动系统需要足够的液压油流量,以提供运动所需的功率和力量。
根据液压缸的直径和管道直径,可以计算出液压油的流速和流量:Fluid velocity = 4 x Flow rate / π x (pipe diameter)^2= 4 x 100L/min / π x (0.032m)^2= 127.323m/sFluid flow rate = π x (pipe diameter)^2 / 4 x Fluid velocity x 60= π x (0.032m)^2 / 4 x 127.323m/s x 60= 0.303L/s5. 设计液压管路液压系统的管路设计需要保证液压油流动的稳定和防止过度的压力损失。
液压传动课程设计设计液压专用铣床的液压系统
液压与气压传动课程设计题目名称:设计液压专用铣床的液压系统系别:机械与汽车工程学院专业:机械设计制造及其自动化班级:机制0811班目录一.1.负载与运动分析 (4)工作负载 (4)1)夹紧缸 (5)1)夹紧缸 (6)1)夹紧缸 (8)设计任务书I、设计的目的和要求:㈠设计的目的液压传动课程设计是本课程的一个综合实践性教学环节,通过该教学环节,要求达到以下目的:1.巩固和深化已学知识,掌握液压系统设计计算的一般方式和步骤,培育学生工程设计能力和综合分析问题、解决问题能力;2.正确合理地肯定执行机构,选用标准液压元件;能熟练地运用液压大体回路、组合成知足大体性能要求的液压系统;3.熟悉并会运用有关的国家标准、部颁标准、设计手册和产品样本等技术资料。
对学生在计算、制图、运用设计资料和经验估算、考虑技术决策、CAD 技术等方面的大体技术进行一次训练,以提高这些技术的水平。
㈡设计的要求1.设计时必需从实际动身,综合考虑实用性、经济性、先进性及操作维修方便。
若是可以用简单的回路实现系统的要求,就没必要过度强调先进性。
并非是越先进越好。
一样,在安全性、方便性要求较高的地方,应不吝多用一些元件或采用性能较好的元件,不能单独考虑简单、经济;2.独立完成设计。
设计时可以搜集、参考同类机械的资料,但必需深切理解,消化后再借鉴。
不能简单地剽窃;3.在课程设计的进程中,要随时温习液压元件的工作原理、大体回路及典型系统的组成,踊跃思考。
不能直接向老师索取答案。
4.液压传动课程设计的题目均为中等复杂程度液压设备的液压传动装置设计。
具体题目由指导老师分派,题目附后;5.液压传动课程设计一般要求学生完成以下工作:⑴设计计算说明书一份;⑵液压传动系统原理图一张(3号图纸,包括工作循环图和电磁铁动作顺序表)。
II、设计的内容及步骤㈠设计内容1. 液压系统的工况分析,绘制负载和速度循环图;2. 进行方案设计和拟定液压系统原理图;3. 计算和选择液压元件;4. 验算液压系统性能;5. 绘制正式工作图,编制设计计算说明书。
液压与液力传动课程设计-多用途大台面液压机液压系统
液压传动课程设计
学校:徐州工程学院班级:0 8机制
姓名:吴明宽张建明
指导老师:张元越
目录
一设计目的及内容 (2)
二液压机与液压系统的工况分析 (3)
三工作原理 (5)
四确定液压缸参数 (8)
五液压元、辅件的选择 (11)
六液压系统主要性能验算 (15)
七设计心得 (18)
八参考文献 (19)
20活塞能随液压缸16活塞驱动动模一同下行对薄板进行拉伸,4YA通电,电液压换向阀21右位工作,6YA通电,电磁阀24工作,溢流阀25调节液压缸20无杆腔油垫工作压力。
进油路:主泵1→电液换向阀9的M型中位→电液换向阀21→液压缸20无杆腔
吸油路:大气压油→电液压换向阀21→填补液压缸20有杆腔的负压空腔
四确定液压缸参数
1.初选液压缸工作压力
按照液压缸工作时的作用力F工参考课本270页表9~1,初定工作压力P1=20~25mpa ,取P1=25mpa;选用A1/2=A2差动液压缸. 2.计算液压缸结构尺寸
主缸的内径: 1.主液压泵(恒功率输出液压泵)
2.齿轮泵
3.电机
4.滤油器
5.7.8.22..25.溢流阀
6.18.24.电磁换向阀
9.21、电液压换向阀
10.压力继电器
11.单向阀
12.电接触压力表
13.19、液控单向阀
14.液动换向阀
15.顺序阀
16.上液压缸
17.顺序阀
20.下液压缸
23.节流器
26.行程开关。
液压系统课程设计
液压传动系统课程设计指导老师:设计者:班级:机电08级学号:同组人:目录一.设计目标及参数1.设计目标2.设计要求及参数二.液压系统方案设计1、确定液压泵类型及调速方式2、选用执行元件3、快速运动回路和速度换接回路4、换向回路的设计5、组成液压系统绘原理图三.主要参数的选择设定1. 定位液压缸主要参数的确定2. 夹紧缸的主要参数设计3.主控缸主要参数确定4.液压泵的参数计算5.电动机的选择四.液压元件和装置的选择1.液压阀及过滤器的选择2.油管的选择3.油箱容积的确定五.验算液压系统的性能。
1.沿程压力损失计算∑2.局部压力损失r p∆六液压系统发热和温升验算七电气控制系统设计1.PLC控制编程图八实验报告1 实验目的2 试验设备3 试验原理4 实验步骤5 实验数据及处理九分析思考题十设计总结十一参考文献一设计目标及参数设计一专用双行程铣床。
工件安装在工作台上,工作台往复运动由液压系统实现。
双向铣削。
工件的定位和夹紧由液压实现,铣刀的进给由机械步进装置完成,每一个行程进刀一次。
机床的工作循环为:手工上料——按电钮——工件自动定位,夹紧——工作台往复运动铣削工件若干次——拧紧铣削——夹具松开——手工卸料(泵卸载)定位缸的负载200N ,行程100mm ,动作时间1s ; 夹紧缸的负载2000N ,行程15mm ,动作时间1s ; 工作台往复运动行程(100-270)mm 。
方案:单定量泵进油路节流高速,回油有背压,工作台双向运动速度相等,但要求前四次速度为01υ,然后自动切换为速度02υ,再往复运动四次。
设计参数:前四次速度为01υ,切削负载(N )为15000N ,工作台(液压缸)复复运动速度(m/min)为:0.8~8。
后四次速度为02υ,切削负载(N )为7500N,工作台(液压缸)往复运动速度(m/min)为0.4~4,结构设计为:往复运动液压缸设计二 液压系统方案设计1、确定液压泵类型及调速方式参考一般机床液压系统,选用双作用叶片泵单泵供油。
哈工大液压传动课程大作业-动力滑台-铣床液压系统设计
双面铣削液压专用铣床液压系统设计设计一台采用端面铣刀同时双面铣削柴油机连杆大小头平面液压专用铣床的液压系统。
该机床采用四个动力头,同时铣削连杆大、小头四个侧面。
工件材料为42CrMo,硬度HB200,毛坯类型为模锻件。
选用CD型硬质合金可转位铣刀,大铣刀盘直径为360mm,刀齿数为20;小铣刀盘直径为200mm,刀齿数为10。
加工余量均为5mm,一次进给,属于粗加工;夹具和工件安装在工作台上,工作台由单活塞杆液压缸驱动,完成进给运动。
机床示意图见图1.1。
图1.1 柴油机连杆加工铣床示意图1-工作台进给液压缸;2-夹紧液压缸;3-工件;4-小铣削动力头和小刀盘(两台);5-大铣削动力头和大刀盘(两台);6-定位液压缸1 明确液压系统设计要求专用铣床的工作循环为:手工上料→定位缸定位→夹紧缸夹紧→定位缸退回→工作台快进→工作台工进→工作台快退→夹具松开→手工卸料。
(1)技术参数(a)工作行程:快进行程S1 = 800mm,工作行程S2 = 750 mm。
(b)工作台轴向切削力:工作行程I(0~400 mm范围内),F t1 = 8400N (大小铣刀盘同时铣削);工作行程II(400~750 mm范围内),F t2 = 3600N (仅小铣刀盘铣削)。
(c)垂直于工作台导轨的切削分力:工作行程I,F n1 = 19000N,工作行程II,F n2 = 8000N(d)工作台运动部件质量:m = 1361kg(e)工作台快进、快退速度:v1 = v3 =400 mm/min(f)工作台工作速度:v2 = 40~80 mm/min可调(g)工作台导轨型式及摩擦系数:平导轨:静摩擦系数f s = 0.2,动摩擦系数f d = 0.1(h)工作台加速减速时间:∆t ≤ 0.2s(i)夹紧缸负载力:F c = 4000N(j)夹紧时间:t c =(1~2)s(k)夹紧缸行程:S c = 20 mm(l)定位缸负载力:F s = 500N(m)定位缸行程:S s = 100 mm(时间<5s)(n)上、卸料时间:t s = 30s(2)设计要求(a)由于切削时切削力有脉动,要求进给速度随负载的变化小。
液压传动课程设计--组合机床液压系统设计
液压传动课程设计--组合机床液压系统设计课程设计(论文)[立式组合机床的液压系统设计]本科学生课程设计任务书接注:任务书由指导教师填写。
摘要目前,液压系统被广泛应用在机械、建筑、航空等领域中,成为一种新型的动力源。
由于液压元件的制造精度越来越高,再配合电信号的控制,使液压系统在换向方面可以达到较高的频率。
不管是在重型机械和精密设备上都能满足要求。
液压系统本身有较多的优点,比如:在同等的体积下,液压装置产生的动力更大;由于它的质量和惯性小、反映快,使液压装置工作比较平稳;能够实现无级调速,特别是在运动中进行调速;液压装置自身能实现过载保护;实现直线运动远比机械传动简单。
但是液压传动对温度的变化比较敏感,不宜在很高或很低的温度下工作。
液压系统应用在机床上,实现对工作台和夹紧工件的循环控制起着重要的作用。
对铣削类组合机床,运用液压来控制运动循环,结构简单,所占空间小,而且能满足较大的切削负载要求。
关键词:液压系统,组合机床,运用ABSTRACTAt present, the hydraulic system are widely used in machinery, construction, aviation, etc, become a kind of new type of power supply. Because the manufacturing precision of the hydraulic element more and more high, combined with electrical signal control, hydraulic system in the reversing of the higher frequency. Whether in heavy machinery and precision equipment can meet the requirements.Hydraulic system itself has more advantages, such as: in the same volume, hydraulic device the power generated larger; Because of its quality and the inertia small, reflecting the quickly, make hydraulic equipment work smoothly; Can realize stepless speed regulation, especially in the movement speed; Hydraulic device itself can realize overload protection; Realize the linear motion than simple mechanical transmission. But hydraulic transmission is more sensitive to temperature changes, not in very high or very low temperatures. Hydraulic system used in the machine, and to realize the clamping workpiece table and the cycle control play an important role. Of milling class combination machine tools, using hydraulic pressure to control movement cycle, simple structure, accounting for the space is little, and can meet the requirements of the larger cutting load.Keywords: hydraulic system, combination machine tools, use目录摘要…………………………………………………………………………………3 ABSTRACT……………………………………………………………………………31 方案的确定………………………………………………………………………71.1整体性分析 (7)1.2拟定方案 (7)1.3比较方案并确定方案 (8)2工况分析 (8)2.1运动参数分析 (8)2.2动力参数分析 (8)2.3负载图和速度图的绘制 (9)3液压缸尺寸和所需流量…………………………………………………………10 3.1液压缸尺寸计算 (10)3.2确定液压缸所需流量 (10)3.3夹紧缸的有效面积、工作压力和流量的确定……………………………………1 1 4拟定液压系统图…………………………………………………………………1 2 4.1确定执行元件类型 (12)4.2换向方式确定 (13)4.3调速方式的选择 (13)4.4快进转工进、一工进转二工进控制方式的选择.......................................1 3 4.5终点转位控制方式 (13)4.6快速运动的实现和供油部分的设计...................................................1 3 4.7夹紧回路的确定 (14)4.7.1 调压回路 (14)4.7.2 调速回路 (15)4.7.3 平衡回路 (16)4.7.4换向回路 (16)4.7.5 卸荷回路 (16)4.8拟定液压传动系统原 (17)5选择液压元件的确定辅助装置 (19)5.1选择液压泵 (19)5.2电机的选择 (20)5.3选择阀类元件 (20)5.4确定油管尺寸...........................................................................21油箱的设计 (22)6.1油箱容量的确定 (22)6.2估算油箱的长、宽、高...................................................2 2 6.3确定油箱壁厚 (22)6.4确定液位计的安装尺寸 (22)6.5隔板尺寸的计算 (23)6.6油箱结构的设计 (23)6.7辅助元件的选择 (25)6.8油箱其他元件的选择 (25)7液压系统的性能验算……………………………………………………………2 6 7.1验算系统压力损失和确定压力阀调定值.............................................2 6 7.2确定泵的工作压力 (28)7.3液压系统的效率 (30)7.4油液温升验算 (31)结论.............................................................................................32参考文献 (33)题目五:组合机床液压系统设计试设计立式组合机床的液压系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压系统设计计算举例液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。
现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。
1设计要求及工况分析1。
1设计要求要求设计的动力滑台实现的工作循环是:快进工进快退停止。
主要性能参数与性能要求如下:切削阻力F L=30468N;运动部件所受重力G=9800N;快进、快退速度υ1=υ3=0.1m/s,工进速度υ2=0.88×10—3m/s;快进行程L1=100mm,工进行程L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。
液压系统执行元件选为液压缸。
1.2负载与运动分析(1)工作负载工作负载即为切削阻力F L =30468N 。
(2)摩擦负载摩擦负载即为导轨的摩擦阻力:静摩擦阻力N 196098002.0s fs =⨯==G F μ动摩擦阻力N 98098001.0d fd =⨯==G F μ(3)惯性负载N 500N 2.01.08.99800i =⨯=∆∆=t g G F υ(4)运动时间快进s1s 1.0101003111=⨯==-υL t工进s 8.56s 1088.0105033222=⨯⨯==--υL t快退s5.1s 1.010)50100(33213=⨯+=+=-υL L t设液压缸的机械效率ηcm =0。
9,得出液压缸在各工作阶段的负载和推力,如表1所列。
表1液压缸各阶段的负载和推力启动加速快进工进反向启动加速快退fsFF=ifdFFF+=fdFF=LfdFFF+=fsFF=ifdFFF+=fdFF=19601480980314481960148098021801650109034942218016501090根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F—t和速度循环图υ-t,如图1所示。
2确定液压系统主要参数2.1初选液压缸工作压力所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸的工作压力p1=4MPa.2。
2计算液压缸主要尺寸鉴于动力滑台快进和快退速度相等,这里的液压缸可选用单活塞杆式差动液压缸(A1=2A2),快进时液压缸差动连接。
工进时为防止孔钻通时负载突然消失发生前冲现象,液压缸的回油腔应有背压,参考表4选此背压为p2=0。
6MPa。
表2按负载选择工作压力负载/KN <5 5~10 10~20 20~30 30~50 >50工作压力/MPa 〈0.8~11。
5~2 2.5~3 3~4 4~5 ≥5 表3各种机械常用的系统工作压力机械类型机床农业机械小型工程机械建筑机械液压凿岩机液压机大中型挖掘机重型机械起重运输机械磨床组合机床龙门刨床拉床图1 F-t与υ-t图表4执行元件背压力表5按工作压力选取d/D表6按速比要求确定d/D注:1—无杆腔进油时活塞运动速度;υ2—有杆腔进油时活塞运动速度.由式得242621cm 1m 1094m 10)26.04(9.031448)2(-⨯=⨯-⨯=-=p p FA η则活塞直径mm109m 109.0m 10944441==⨯⨯==-ππA D参考表5及表6,得d ≈0。
71D =77mm ,圆整后取标准数值得D =110mm ,d =80mm 。
由此求得液压缸两腔的实际有效面积为242221m 1095m 411.04-⨯=⨯==ππD A 24222222m 107.44m )8.011.0(4)(4-⨯=-⨯=-=ππd D A根据计算出的液压缸的尺寸,可估算出液压缸在工作循环中各阶段的压力、流量和功率,如表7所列,由此绘制的液压缸工况图如图2所示。
表7液压缸在各阶段的压力、流量和功率值cm 2211ηFA p A p =-快进启动2180 —0。
43 ——2121AAPAFp-∆+=121)(υAAq-=qpP1=加速1650 p1+Δp0.77 ——恒速1090 p1+Δp0.66 0。
5 0。
33工进34942 0。
6 3.96 0.84×10—20。
0331221AApFp+=21υAq=qpP1=快退启动2180 —0.49 ——2121AApFp+=32υAq=qpP1=加速1650 0.5 1。
43 ——恒速1090 0。
5 1。
31 0.45 0。
59注:1.Δp为液压缸差动连接时,回油口到进油口之间的压力损失,取Δp=0。
5MPa。
2.快退时,液压缸有杆腔进油,压力为p1,无杆腔回油,压力为p2。
3拟定液压系统原理图3。
1选择基本回路(1)选择调速回路由图2可知,这台机床液压系统功率较小,滑台运动速度低,工作负载为阻力负载且工作中变化小,故可选用进口节流调速回路。
为防止孔钻通时负载突然消失引起运动部件前冲,在回油路上加背压阀。
由于系统选用节流调速方式,系统必然为开式循环系统。
(2)选择油源形式从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。
最大流量与最小流量之比q max/q min=0。
5/(0.84×10—2)≈60;其相应的时间之比(t1+t3)/t2=(1+1。
5)/56。
8=0。
044.这表明在一个工作循环中的大部分时间都处于高压小流量工作。
从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。
考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案,如图2a所示。
(3)选择快速运动和换向回路本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。
考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。
由于要实现液压缸差动连接,所以选用三位五通电液换向阀,如图2b所示。
图2液压缸工况图(4)选择速度换接回路由于本系统滑台由快进转为工进时,速度变化大(υ1/υ2=0。
1/(0。
88×10-3)≈114),为减少速度换接时的液压冲击,选用行程阀控制的换接回路,如图2c 所示。
(5)选择调压和卸荷回路在双泵供油的油源形式确定后,调压和卸荷问题都已基本解决.即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。
在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸荷,但功率损失较小,故可不需再设卸荷回路。
3。
2组成液压系统将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如图3所示。
在图3中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀6。
为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀13.考虑到这台机床用于钻孔(通孔与不通孔)加工,对位置定位精度要求较高,图中增设了一个压力继电器14.当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。
4计算和选择液压件4。
1确定液压泵的规格和电动机功率(1)计算液压泵的最大工作压力小流量泵在快进和工进时都向液压缸供油,由表7可知,液压缸在工进时工作压力最大,最大工作压力为p 1=3.96MPa ,如在调速阀进口节流调速回路中,选取进油路上的总压力损失∑∆p =0。
6MPa ,考虑到压力继电器的可靠动作要求压差∆p e =0.5MPa ,则小流量泵的最高工作压力估算为()MPa 06.5MPa 5.06.096.3e 11p =++=∆+∆+≥∑p p p p 大流量泵只在快进和快退时向液压缸供油,由表7可见,快退时液压缸的工作压力为p 1=1。
43MPa ,比快进时大。
考虑到快退时进油不通过调速阀,故其进油路压力损失比前者小,现取进油路上的总压力损失∑∆p =0.3MPa ,则大流量泵的最高工作压力估算为图3整理后的液压系统原理图图2选择的基本回路()MPa 73.1MPa 3.043.112p =+=∆+≥∑p p p(2)计算液压泵的流量由表7可知,油源向液压缸输入的最大流量为0。
5×10—3 m 3/s ,若取回路泄漏系数K =1。
1,则两个泵的总流量为L/min 33/s m 1055.0/s m 105.01.133331p =⨯=⨯⨯=≥--Kq q 考虑到溢流阀的最小稳定流量为3L/min ,工进时的流量为0.84×10-5 m 3/s =0.5L/min,则小流量泵的流量最少应为3。
5L/min.(3)确定液压泵的规格和电动机功率根据以上压力和流量数值查阅产品样本,并考虑液压泵存在容积损失,最后确定选取PV2R12—6/33型双联叶片泵。
其小流量泵和大流量泵的排量分别为6mL/r 和33mL/r,当液压泵的转速n p =940r/min 时,其理论流量分别为5.6 L/min 和31L/min ,若取液压泵容积效率ηv =0。
9,则液压泵的实际输出流量为()()L/min33L/min 9.271.5L/min 1000/9.0940331000/9.094062p 1p p =+=⨯⨯+⨯⨯=+=q q q 由于液压缸在快退时输入功率最大,若取液压泵总效率ηp =0。
8,这时液压泵的驱动电动机功率为KW 19.1KW 108.06010331073.1336ppp =⨯⨯⨯⨯⨯=≥-ηq p P 根据此数值查阅产品样本,选用规格相近的Y100L —6型电动机,其额定功率为1.5KW ,额定转速为940r/min.4。
2确定其它元件及辅件(1)确定阀类元件及辅件根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表8所列。
其中,溢流阀9按小流量泵的额定流量选取,调速阀4选用Q —6B 型,其最小稳定流量为0。
03 L/min ,小于本系统工进时的流量0.5L/min 。
表8液压元件规格及型号*注:此为电动机额定转速为940r/min时的流量.(2)确定油管在选定了液压泵后,液压缸在实际快进、工进和快退运动阶段的运动速度、时间以及进入和流出液压缸的流量,与原定数值不同,重新计算的结果如表9所列。
表9各工况实际运动速度、时间和流量表10允许流速推荐值由表9可以看出,液压缸在各阶段的实际运动速度符合设计要求。
根据表9数值,按表10推荐的管道内允许速度取υ=4 m/s ,由式πυqd 4=计算得与液压缸无杆腔和有杆腔相连的油管内径分别为mm2.18mm 10414.360103.624433=⨯⨯⨯⨯⨯==--πυqd mm3.19mm 10414.36010704433=⨯⨯⨯⨯⨯==--πυqd为了统一规格,按产品样本选取所有管子均为内径20mm 、外径28mm 的10号冷拔钢管。