指数函数知识点归纳

合集下载

指数函数知识点归纳总结(精华版)

指数函数知识点归纳总结(精华版)

指数函数知识点归纳总结一、指数的性质 (一)整数指数幂1.整数指数幂概念: ()010a a =≠ ()10,n na a n N a-*=≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +⋅=∈(2)()(),nm mn a a m n Z =∈(3)()()n n n ab a b n Z =⋅∈其中m n m nm n a a a a a --÷=⋅=, ()1nn n n nn a a a b a b b b --⎛⎫=⋅=⋅= ⎪⎝⎭.3.a 的n 次方根的概念一般地,如果一个数的n 次方等于a ()*∈>N n n ,1,那么这个数叫做a 的n 次方根,即: 若a x n =,则x 叫做a 的n 次方根, ()*∈>N n n ,1说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0<n a ;②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±)③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④()*∈>=N n n n ,100 0=;⑤式子na 叫根式,n 叫根指数,a 叫被开方数。

∴na =.(二)分数指数幂1.分数指数幂:()10250a a a ==>()12430a a a ==>即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质()nk kn aa =对分数指数幂也适用,例如:若0a >,则3223233a a a ⨯⎛⎫== ⎪⎝⎭,4554544a a a ⨯⎛⎫== ⎪⎝⎭, ∴23a =45a =.即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

指数函数知识点归纳

指数函数知识点归纳

指数函数知识点归纳一、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

需要注意的是,指数函数的底数\(a\)必须满足\(a > 0\)且\(a ≠ 1\)。

当\(a = 1\)时,\(y = 1^x = 1\),是一个常函数,不是指数函数;当\(a < 0\)时,比如\(a =-2\),那么当\(x =\frac{1}{2}\)时,\((-2)^{\frac{1}{2}}\)在实数范围内无意义。

二、指数函数的图像当\(a > 1\)时,指数函数\(y = a^x\)的图像是上升的,经过点\((0, 1)\)。

因为\(a > 1\),所以当\(x\)的值越来越大时,\(y\)的值增长得越来越快。

当\(0 < a < 1\)时,指数函数\(y = a^x\)的图像是下降的,同样经过点\((0, 1)\)。

此时,当\(x\)的值越来越大时,\(y\)的值越来越趋近于\(0\)。

例如,\(y = 2^x\)和\(y =(\frac{1}{2})^x\)的图像就分别呈现出上升和下降的趋势。

三、指数函数的性质1、定义域:\(R\)(即实数集)2、值域:\((0, +∞)\)这是因为对于任何实数\(x\),\(a^x\)的值总是大于\(0\)的。

3、过定点:\((0, 1)\)无论\(a\)的值是多少,当\(x = 0\)时,\(a^0 = 1\)。

4、单调性:当\(a > 1\)时,函数在\(R\)上单调递增;当\(0 < a < 1\)时,函数在\(R\)上单调递减。

四、指数运算的性质1、\(a^m × a^n = a^{m + n}\)例如:\(2^3 × 2^2 = 2^{3 + 2} = 2^5\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))比如:\(\frac{3^5}{3^2} = 3^{5 2} = 3^3\)3、\((a^m)^n = a^{mn}\)举例:\((2^2)^3 = 2^{2×3} = 2^6\)4、\(a^0 = 1\)(\(a ≠ 0\))任何非零数的\(0\)次幂都等于\(1\)。

指数函数知识点

指数函数知识点

指数函数一、指数与指数幂的运算1、根式(1)定义:如果x n=a,那么x叫做a的n次方根,其中为大于1的整数,a的n次方根用根式表示,这里n叫做根指数,a叫做被开方数。

(2)根式的性质a、当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,即:,例如,当n为偶数时,正数的n次方根有两个,这两个数互为相反数,即:,例如,b、负数没有偶次方根;c、零的任何正n次方根都是零。

记做:根据n次方根式的意义,可得:例如:例题1、求下列各式的值:2、分数指数幂二、 指数函数的图像及性质 1、 指数函数的定义2、 一般地,函数x y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数定义域是R .练习:判断下列函数是否为指数函数。

①2y x = ②8x y = ③(21)x y a =-(12a >且1a ≠)④(4)x y =-⑤x y π= ⑥1225+=xy ⑦x y x = ⑧10x y =-.2.指数函数x y a =(0a >且1a ≠)的图象:例1.画2x y =的图象(图(1)).解:列出,x y 的对应表,用描点法画出图象例2.画1()xy =的图象(图(1)).3.指数函数在底数及这两种情况下的图象和性质:1a > 01a <<(1)定义域:R 2x y =1()2x y = 图(1)4、底数的平移:对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

即“上加下减,左加右减”底数与指数函数图像:指数函数(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要内容之一。

它是以底数为常数、指数为自变量的函数,具有独特的性质和应用。

本文将从定义、性质、图像和应用四个方面对指数函数进行总结。

一、定义指数函数是具有形式f(x) = a^x的函数,其中a为大于0且不等于1的常数。

指数函数是一种通过指数幂运算的方式获得函数值的数学函数。

二、性质1. 底数大于1时,指数函数是增函数;底数在0和1之间时,指数函数是减函数。

这意味着指数函数的图像可以分为两种情况:斜上升和斜下降。

2. 指数函数有定义域为全体实数,值域为正实数。

3. 指数函数的图像经过点(0,1),即a^0 = 1。

4. 指数函数的平行于x轴的渐近线为y = 0。

这是因为指数函数在负无穷大时趋于0。

5. 指数函数的性质可以推广到负指数,即f(x) = a^(-x)。

相同的性质适用于负指数函数。

三、图像指数函数的图像特点很明显。

当底数a大于1时,指数函数的图像会从左下方无限趋近于x轴。

当底数a在0和1之间时,指数函数的图像会从左上方无限趋近于x轴。

指数函数的图像在逼近x轴时变得非常陡峭。

这是因为随着指数不断增加,函数的增长速度越来越快。

四、应用指数函数在现实世界中有许多应用。

以下是一些常见的应用领域:1. 金融领域:指数函数在复利计算中发挥着重要作用。

复利是指在计算利息时将利息加入到本金中,进而计算下一阶段的利息。

指数函数可用于计算定期存款或贷款的未来价值或余额。

2. 自然科学:指数函数在自然科学中广泛应用,尤其是在物理学和化学方面。

例如,放射性衰变是一个指数运动,指数函数可用于描述放射性物质的衰变过程。

3. 经济学:指数函数在经济学中用于描述人口增长、市场价格和物品生产等。

经济学家常常使用指数函数来分析和预测经济趋势。

4. 生物学:指数函数在生物学中用于描述生物种群的增长。

当环境资源充足时,生物种群的增长可以被指数函数描述。

总结:指数函数是一种重要的数学函数,在各个领域都有重要的应用。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要内容,也是数学课本上的一个章节。

本文将从定义、性质、图像、运算等方面对指数函数的知识点进行总结,以帮助读者更好地理解和掌握指数函数的相关内容。

一、定义指数函数是以一个正常数b(b>0,b≠1)为底的幂函数,函数公式为f(x)=b^x,其中b称为底数,x称为指数,f(x)称为指数函数。

指数函数在生活中的例子有人口增长、细菌繁殖等。

二、性质1.定义域:指数函数的定义域是所有实数。

2.值域:对于b>1的指数函数,值域为(0,+∞);对于0<b<1的指数函数,值域为(0,+∞)。

3.奇偶性:指数函数当底数为奇函数时为奇函数,当底数为偶函数时为偶函数。

4.单调性:对于b>1的指数函数,其在定义域上是增函数;对于0<b<1的指数函数,其在定义域上是减函数。

5.渐近线:指数函数没有水平渐近线,但有垂直渐近线x=0。

6.交点与性质:当x=0时,指数函数的值为1,表示该点在y轴上;当b>1时,指数函数经过(1,b)点,当0<b<1时,指数函数经过(1,1/b)点。

三、图像1.b>1的指数函数的图像:在x轴左侧(负半轴)逐渐趋于0,在x轴右侧(正半轴)逐渐增大,图像位于y轴的上方。

2.0<b<1的指数函数的图像:在x轴左侧(负半轴)逐渐减小,在x轴右侧(正半轴)逐渐趋于0,图像位于y轴的下方。

四、运算1.指数函数的乘法法则:b^m*b^n=b^(m+n),底数相同的指数函数相乘时,指数相加。

2.指数函数的除法法则:(b^m)/(b^n)=b^(m-n),底数相同的指数函数相除时,指数相减。

3.指数函数的幂次法则:(b^m)^n=b^(m*n),指数函数的幂次公式,即指数的指数等于底数的两个指数相乘。

五、常用函数2. 对数函数:对数函数是指指数函数的反函数,记作y = logb(x),其中b为底数,x为指数。

高一指数函数知识点归纳总结

高一指数函数知识点归纳总结

高一指数函数知识点归纳总结高一是学习数学的关键时期,其中涉及到很多重要概念和知识点,其中之一就是指数函数。

指数函数是数学中一个非常重要的概念,它包含了很多基本概念和公式,今天我将对高一指数函数的知识点进行归纳总结。

一、指数函数的定义与性质指数函数是以常数e(自然对数的底数)为底的幂函数,通常写作f(x) = a^x。

其中,a称为底数,x称为指数。

指数函数具有以下性质:1.当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

2.指数函数的图像都经过点(0,1)。

3.当x为无穷大时,指数函数无界。

当x为负无穷大时,指数函数趋近于0。

4.指数函数在x轴上没有零点,但可以接近于零。

二、指数函数的图像与性质指数函数的图像特点非常明显,它表现出一种特殊的形态,具有以下特点:1.当底数a大于1时,指数函数的图像呈现逐渐上升的曲线。

2.当底数0<a<1时,指数函数的图像呈现逐渐下降的曲线。

3.指数函数的图像随着底数的变化而发生形态的改变,当底数为1时,指数函数的图像变为y=1,成为一条水平直线。

4.指数函数的图像在过点(0,1)处的切线斜率恒为底数a。

三、指数函数的基本性质和运算规律指数函数有一些基本性质和运算规律,这些规律对于解题非常有帮助:1.指数函数的幂运算性质:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。

2.指数函数的幂函数运算性质:(a^m)^n = a^(m*n)。

3.指数函数的乘方的运算性质:(a*b)^n = a^n * b^n。

4.指数函数的除法的运算性质:(a/b)^n = a^n / b^n。

5.指数函数的负指数幂的运算性质:a^(-n) = 1 / a^n。

6.指数函数与自然对数函数的关系:a^x = e^(x * ln(a))。

7.指数函数的对数函数:ln(a^x) = x * ln(a),其中ln表示以e为底的对数。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结1. 什么是指数函数?指数函数是数学中常见的一类函数,它以底数为基准,将指数作为自变量,得到相应的函数值。

指数函数可以用数学表达式y = a^x来表示,其中a表示底数,x表示指数,y表示函数值。

2. 指数函数的特点指数函数具有以下几个特点:•当底数a大于 1 时,函数呈递增的趋势;当底数a介于 0 和 1 之间时,函数呈递减的趋势。

•指数函数图像总是过点(0, 1),因为a^0 = 1。

•指数函数的图像在x轴的正半轴上是渐进于 0 的,即函数值无限趋近于 0。

•当指数x为负数时,指数函数的值可以通过倒数得到,即a^(-x) =1 / a^x。

3. 指数函数的基本性质指数函数具有以下几个基本性质:•指数函数在自变量为 0 时取值为 1,即a^0 = 1。

•当指数x为正整数时,指数函数表示连乘,即a^x = a * a * ... * a(共x个a相乘)。

•当指数x为负整数时,指数函数表示连除,即a^(-x) = 1 / (a * a * ... * a)(共x个a相除)。

•指数函数具有指数与对数的互逆性质,即loga(a^x) = x和a^(loga(x)) = x。

•当指数函数的底数a大于 1 时,函数图像与x轴交于点(0, 0);当底数a介于 0 和 1 之间时,函数图像与y轴交于点(0, 0)。

4. 指数函数的图像变化规律指数函数的图像变化规律取决于底数a的大小,具体如下:•当a > 1时,指数函数图像从左下方逐渐增加到右上方。

•当0 < a < 1时,指数函数图像从左上方逐渐减小到右下方。

•当a = 1时,指数函数恒为y = 1,即一条水平直线。

5. 指数函数的应用指数函数在实际生活和科学研究中有广泛的应用,以下列举几个常见的应用场景:•金融领域:指数函数在复利计算中起到重要的作用,可以用来计算投资收益、贷款利息等。

•物理学:指数函数可以描述某些物理量的增长或衰减规律,如放射性物质的衰变、电路中的电荷充放电过程等。

指数函数知识点

指数函数知识点

指数函数知识点专题复习一、基础知识 1.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. 形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数. 2.指数函数y =a x (a >0,且a ≠1)的图象与性质二、常用结论指数函数图象的特点(1)指数函数的图象恒过点(0,1),(1,a ),⎪⎭⎫⎝⎛-a 1,1,依据这三点的坐标可得到指数函数的大致图象. (2)函数y =a x 与y =xa ⎪⎭⎫⎝⎛1(a >0,且a ≠1)的图象关于y 轴对称.(3)底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”. 三、考点解析考点一 指数函数的图象及应用例、(1)函数f (x )=21-x 的大致图象为( )(2)若函数y=|3x-1|在(-∞,k]上单调递减,则k的取值范围为________.变式练习1.[变条件]本例(1)中的函数f(x)变为:f(x)=2|x-1|,则f(x)的大致图象为()2.[变条件]本例(2)变为:若函数f(x)=|3x-1|-k有一个零点,则k的取值范围为________.3.若函数y=21-x+m的图象不经过第一象限,求m的取值范围.考点二指数函数的性质及应用考法(一)比较指数式的大小例、已知a=243,b=425,c=2513,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b考法(二)解简单的指数方程或不等式例、若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为________.[解题技法]简单的指数方程或不等式问题的求解策略:(1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x).(3)解决简单的指数不等式的问题主要利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.考法(三)指数型函数性质的综合问题例、已知函数f(x)=34231+-⎪⎭⎫⎝⎛xax(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.[解题技法]与指数函数有关的复合函数的单调性:形如函数y=a f(x)的单调性,它的单调区间与f(x)的单调区间有关:(1)若a>1,函数f(x)的单调增(减)区间即函数y=a f(x)的单调增(减)区间;(2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间.即“同增异减”. 跟踪训练 1.函数y =12221-+⎪⎭⎫ ⎝⎛x x 的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞) 2.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a 3.设函数f (x )=x 2-a与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =1.01⎪⎭⎫⎝⎛a 的大小关系是( ) A .M =N B .M ≤N C .M <N D .M >N4.已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.课后作业1.函数f (x )=1-e |x |的图象大致是( )2.已知函数f (x )=4+2a x-1的图象恒过定点P ,则点P 的坐标是( )A .(1,6)B .(1,5)C .(0,5)D .(5,0) 3.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a 4.函数f (x )=xx +-⎪⎭⎫⎝⎛221的单调递增区间是( )A.]21,(-∞ B.]21,0[ C.)21[∞+, D.]121[, 5.函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <06.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减7.已知a =3.331⎪⎭⎫ ⎝⎛,b =9.331⎪⎭⎫⎝⎛,则a ________b .(填“<”或“>”)8.函数y =x ⎪⎭⎫ ⎝⎛41-x⎪⎭⎫⎝⎛21+1在[-3,2]上的值域是________.9.已知函数f (x )=a x +b (a >0,且a ≠1)的定义域和值域都是[-1,0],则a +b =________.10.已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.11.已知函数f (x )=ax⎪⎭⎫⎝⎛21,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.12.已知函数f (x )=ax -⎪⎭⎫⎝⎛32.(1)求f (x )的单调区间;(2)若f (x )的最大值是94,求a 的值.。

新高一数学指数函数知识点

新高一数学指数函数知识点

新高一数学指数函数知识点一、指数函数的定义指数函数是指形如f(x) = a^x的函数,其中a是一个正实数且a≠1。

二、指数函数的性质1. 定义域:指数函数的定义域为实数集R。

2. 值域:当a>1时,指数函数的值域为(0, +∞);当0<a<1时,指数函数的值域为(0, 1)。

3. 增减性:当a>1时,指数函数是严格单调递增函数;当0<a<1时,指数函数是严格单调递减函数。

4. 连续性:指数函数在其定义域上连续。

5. 零点:指数函数在x=0处有且仅有一个零点,即a^0 = 1。

6. 渐近线:当x趋近负无穷时,指数函数趋近于0;当x趋近正无穷时,指数函数趋近于正无穷。

三、指数函数的图像1. 当a>1时,指数函数的图像是逐渐上升的曲线,经过点(0,1)。

2. 当0<a<1时,指数函数的图像是逐渐下降的曲线,经过点(0,1)。

3. 指数函数的图像在y轴上没有与x轴交点。

四、指数函数的基本性质1. a^m * a^n = a^(m+n):指数函数的乘法法则。

2. (a^m)^n = a^(m*n):指数函数的指数乘法法则。

3. a^m / a^n = a^(m-n):指数函数的除法法则。

4. (a*b)^m = a^m * b^m:指数函数的乘方法则。

5. a^0 = 1:任何正实数的0次幂等于1。

五、指数方程与指数不等式1. 指数方程:形如a^x = b的方程,其中a和b是已知的正实数。

解指数方程的基本步骤是取对数,将指数方程转化为对数方程求解。

2. 指数不等式:形如a^x > b或a^x < b的不等式,其中a和b是已知的正实数。

解指数不等式的基本步骤是通过对数性质将不等式转化为对数不等式,并得到解集合。

六、指数函数的应用1. 复利问题:指数函数常用于复利计算中。

例如,计算存款在多年后的本息和。

2. 指数增长问题:指数函数也可用于描述人口增长、细菌繁殖等指数型增长问题。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要知识点之一,也是解决实际问题的重要数学模型之一。

它以指数为自变量的函数,表达式为y=a^x,其中a为底数,x为指数,y为函数值。

一、指数函数的定义指数函数是自变量的指数变化与与其函数值的关系。

指数函数的定义域是实数集R,值域是正实数集,即f(x)>0。

二、指数函数的图像1. 底数大于1的指数函数:当a>1时,指数函数的图像在x轴右侧向上增长,且逐渐加速增长,图像开口向上;2. 0<a<1的指数函数:当0<a<1时,指数函数的图像在x轴右侧向上增长,但增长速度逐渐减缓,图像开口向下;3. 底数等于1的指数函数:当a=1时,指数函数的图像是一条平行于x轴的直线,函数值恒为1。

三、指数函数的性质1. 指数函数的奇偶性:当底数为负数时,指数函数是偶函数;当底数为正数时,指数函数是奇函数;2. 指数函数的单调性:当底数大于1时,指数函数是增函数;当0<a<1时,指数函数是减函数;3. 指数函数的性质:指数函数的函数值不会等于0,即f(x)≠0;指数函数关于y轴对称,即关于y轴对称轴反射对称;4. 指数函数的极限:当x趋于无穷大时,指数函数以无穷大增长,并没有上界;当x趋于负无穷大时,指数函数趋于0。

四、指数函数与直线的相交性质1. 幂函数与指数函数的相交性质:幂函数y=x^n与指数函数y=a^x的图像在第一象限有且只有一个交点;2. 幂函数与指数函数的比较性质:当x趋于无穷大时,指数函数的增长速度快于幂函数;当x趋于负无穷大时,指数函数的增长速度慢于幂函数。

五、指数函数的应用1. 复利问题:指数函数可以用来解决复利问题,如存款定期利息的计算等;2. 比较问题:指数函数可以用来比较两个量的大小,特别是涉及到增长速度的比较问题;3. 自然现象的描述:指数函数可以用来描述一些自然现象,如人口增长、物种灭绝等;4. 经济问题:指数函数可以用来描述经济增长、货币贬值等问题。

指数函数知识点的总结

指数函数知识点的总结

指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。

当n 是奇数时,a a nn=,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0), 则得b <a <1<d <c .练习:指数函数① ② 满足不等式 ,则它们的图象是( ).【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).练习: (1)1.72.5 与 1.73 ( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1 (4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,a a a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】作出下列函数的图像:(1)y (2)y 22x ==-,()121x +(3)y =2|x-1| (4)y =|1-3x |解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x +解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y =-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8a C 、4a D 、2a3、若1,0a b ><,且bba a-+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a <D、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x -6、下列2()(1)x xf x a a-=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( ) A 、1个 B 、2个 C 、3个 D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b -二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。

指数函数知识点总结

指数函数知识点总结

指数函数(一)指数与指数幕的运算1根式的概念:一般地,如果 x n a ,那么x 叫做a 的n 次方根,其中n > 1,且n € N 负数没有偶次方根;0的任何次方根都是 0,记作n .O 0。

当n 是奇数时,器a n a ,当n 是偶数时,Va n| a | 2 •分数指数幕正数的分数指数幕的意义,规定:ma n : a m (a 0, m, n N ,n 1)mn ma n a0的正分数指数幕等于3 •实数指数幕的运算性质0,m, n N , n 1)r r r s(1) a • a a(a 0, r,s R);注意:利用函数的单调性,结合图象还可以看出: (1 )在[a , b ]上,f (x) a x (a 0且a 1)值域是[f (a),f(b)]或[f(b),f(a)](2) 若x 0,则f(x) 1 ; f(x)取遍所有正数当且仅当 x R ;(3) 对于指数函数f(x) a x (a 0且a 1),总有f (1) a ;指数函数•例题解析a (a 0) a (a0)0, 0的负分数指数幕没有意义r srs(2) (a ) a (a 0,r,sR);(3) (ab )r 『/(a 0, r,s R) •(二)指数函数及其性质1、指数函数的概念:一般地,函数 y a x (a 0,且 a1)叫做指数函1 •数,其中x 是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和【例1】求下列函数的定义域与值域:1(1)y = 3厂(2)y = ..2x 2 1 (3)y = 3 3x 1解(1)定义域为x € R且x丰2 .值域y > 0且y丰1.⑵由2x+2- 1> 0,得定义域{x|x >- 2},值域为y >0.⑶由3-3x-1> 0,得定义域是{x|x < 2},T 0< 3- 3x —1< 3, •••值域是0w y< .3.练习:(1} y⑵y(3)凶;x x 1(3) y 4 2 1;【例2]指数函数y= a x, y= b x, y= c x,则a、b、c、d、1之间的大小关系是[A. a < b< 1< c < dB. a < b< 1< d < cC. b < a< 1 < d< cD. c< d< 1< a< b解选(c),在x轴上任取一点(x , 则得b< a< 1 < d < c.练习:指数函数①■' '②y= d x的图像如图2. 6-2所示,().【例3】比较大小:(1) .2、3 2 > 5 4、88、9 16 的大小关系是: 3 2(2)43 1•-0.6 5 >(2)2.解⑶ 借助数4.5 3.6打桥,利用指数函数的单调性,4.5 4.1 >4.5 3.6 ,作函数= 4.5 x , y 2= 3.7 x 的图像如图 2. 6 — 3,取 x = 3.6,得 4.5 3.6 > 3.7 3.6 •••4.5 4.1 > 3.7 3・6 .说明如何比较两个幕的大小:若不同底先化为同底的幕,再利用指数函数的 单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幕比较大小时, 有两个技巧,其一借助 1作桥梁,如例2中的(2).其二构造一个新的幕作桥梁, 这个新的幕具有与 4.5 4.1同底与3.7 3.6同指数的特点,即为4.5 3.6 (或3.7 4.1 ), 4(2)0.6 5 (3)4.5 4.13.7 3・61解⑴ T 2 22 , 3 2函数y = 2x , 2 > 1,该函数在 ^13 2 4 又一<—<—<—< 3 8 5 91 223 , 5 4 25,(—x,+* )上是增函数,3488 28 , 9 16 29 ,12」32 V 88< 54< 916< 2 .4解(2) : 0.6 5 > 1,3 1 1> (|) 2,如例2中的(3). 练习: (1) 1. 72.5与 1 .73(2 ) 0.80.1与0.80.2解(2)y = 2x - 2的图像(如图2. 6 — 5)是把函数y = 2x 的图像向下平移 2个单位得到的.解(3)利用翻折变换,先作 y = 2|x|的图像,再把y = 2|x|的图像向右平移1 个单位,就得y = 2|x-11的图像(如图2. 6 — 6).解⑷ 作函数y = 3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y =—3x 的图像向上平移1个单位,保留其在 x 轴及x 轴上方部分不变,把 x 轴下方(3 ) 1 . 70'3与 0.93'12.1 2.0(4) 3.5 和 2.7【例4】比较大小n1a n 与n a n1(a > 0且a ^ 1, n > 1).n 1 n解V a1n(n 1)a当 0V a v 1,1 T n >1,> 0,n(n 1)V 1,n1a nV n a n1当a > 1 时,T n > 1,> 0,n(n 1)1 n(n 1)n 1 n n n 1…a > 1, . a > . a【例5】作出下列函数的图像:1(1)y =(2)x 1(2)y = 2x - 2,(3)y = 2|x-11(4)y = |1 - 3x |1 1解(1)y = (,)x1 的图像(如图 2 . 6-4),过点(0 ,-)及(一1, 1).是把函数 (2) 的图像向左平移1个单位得到的.1 n(n 1)S2 . &-43、 若 a 1,b 0 ,且 a b a b 2 2,则 a b a b 的值等于( )的图像以x 轴为对称轴翻折到 x 轴上方而得到.(如图2. 6-7)证明f(x)在区间(—8,+^ )上是增函数.解(1)定义域是R.xxa1 a 1 f( —X )= x- -x - =—f(x),a1 a1•••函数f(x)为奇函数.a x 11 y y 1 ⑵函数丫= — ,T y M 1,.・.有 a x => 0 -1V y V 1,a 1y 11 y即f(x)的值域为(一1 , 1).⑶ 设任意取两个值 X[、(-rn,+m )且 X[V X? . f(X 1) — f(x 2)a X2 1 _ 2(a Xl a X2) a x 2 1 _ (a Xl 1)(a x 2 1)'(a X2 + 1)>0, • f(xj V fg),故f(x)在R 上为增函数.8小 4 2【例8】已知f(x)= A二一(a > 1) (1)判断f(x)的奇偶性; a 1⑵求f(x)的值域;⑶x l 1 a 1—- a 1T a > 1, X 1V X 2, a X1 V a x 2, (a X1+1) 、选择题: (本题共 12小题,每小题 单元测试题5 分 ,共 60分)1、 化简132 1 216,结果是丄32B 、丄3212 32丄3263 a 9 4等于(2、C、a D a3、若a 1,b 0 ,且a b a b 2 2,则a b a b的值等于( )13、若 10x 3,10y 4,则 10xy 。

指数函数知识点归纳总结(精华版)

指数函数知识点归纳总结(精华版)

2 ar s ars a 0, r, s Q
3abr arbr a 0, b 0, r Q
说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;
(2)0 的正分数指数幂等于 0,0 的负分数指数幂没意义。
二、指数函数 1.指数函数定义: 一般地,函数 y ax ( a 0 且 a 1)叫做指数函数,其中x 是自变量, 函数定义域是R .
指数函数知识点归纳总结
一、指数的性质
(一)整数指数幂
1.整数指数幂概念:
a0 1a 0
an 1 a 0, n N an
2. 整数指数幂的运算性质:(1) am an amn m, n Z
பைடு நூலகம்
2 am n amn m, n Z
3
abn an bn n Z
其中am an am a n amn ,
a n b
a b1
n
an
bn
an bn

3.a 的 n 次方根的概念
一般地,如果一个数的n 次方等于a n 1,n N ,那么这个数叫
做 a 的 n 次方根,
即: 若 xn a ,则 x 叫做a 的 n 次方根, n 1,n N
说明:①若 n 是奇数,则 a 的 n 次方根记作n a ; 若 a 0 则 n a 0 , 若ao则na 0; ②若 n 是偶数,且 a 0 则 a 的正的n 次方根记作n a , a 的 负的n 次方根,记作: n a ;(例如:8 的平方根
数幂的形式。
规定:
m
正数的正分数指数幂的意义是a n n am a 0,m, n N, n 1 ;
正数的负分数指数幂的意义
m
是 a n

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数1.定义:指数函数是以正数为底数、自变量为指数的函数。

一般形式为y=a^x,其中a>0且a≠12.特点:(1)当a>1时,指数函数呈递增趋势;(2)当0<a<1时,指数函数呈递减趋势;(3)a>1时,指数函数的图像在x轴的右侧逐渐上升,称为“增长指数函数”;(4)0<a<1时,指数函数的图像在x轴的右侧逐渐下降,称为“衰减指数函数”;(5)当x=0时,指数函数的值恒为1;(6)指数函数与直线y=0平行(若a>1)或经过点(0,1)(若0<a<1)。

3.基本性质:(1)a^m*a^n=a^(m+n);(2) (a^m)^n = a^(mn);(3) (ab)^m = a^m * b^m;(4)(a/b)^m=a^m/b^m。

二、对数函数1. 定义:对数函数是指以正数a(a>0且a≠1)为底数的对数。

一般形式为y=loga(x),其中x>0。

2.特点:(1)对数函数的定义域为正实数集(0,+∞),值域为实数集;(2) 指数函数y=a^x和对数函数y=loga(x)是互逆运算,即y=loga(a^x) = x,x=loga(a^x) = y;(3)当x>1时,对数函数的值大于0;(4)当0<x<1时,对数函数的值小于0;(5)a>1时,对数函数呈递增趋势;(6)0<a<1时,对数函数呈递减趋势;(7)当x=1时,对数函数的值恒为0;(8)对数函数的图像与直线y=x交于点(1,1)。

三、常用公式与性质1.e与自然对数:(1) e的定义:e=lim(1+1/n)^n,其中n为正整数;(2) 自然对数:ln(x)表示以e为底数的对数函数;(3) 自然对数的性质:ln(e^x)=x,e^(lnx)=x;2.指数方程与对数方程:(1)指数方程:a^x=b,其中a>0且a≠1;(2) 对数方程:loga(x)=b,其中a>0且a≠1;(3)指数方程求解的一般步骤:将方程两边取对数,利用对数的性质求解;(4)对数方程求解的一般步骤:将方程两边以a为底取指数,利用指数函数的性质求解。

指数函数及其性质知识点总结超详细版(共66页)

指数函数及其性质知识点总结超详细版(共66页)

指数函数及其性质知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换 知识点一 指数函数的概念一般地,函数xa y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R . 1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,xa 无意义;若0<a ,则对于x 的某些值,xa 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义. 2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R . 3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下: (1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)xa 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.例1. 已知函数()()x a a x f ⋅-=32是指数函数,求a 的值. 分析:本题考查指数函数的定义,指数函数的定义有三个特征: (1)指数的位置只有一个自变量,但不是含自变量的多项式; (2)底数是一个大于0且不等于1的常数;(3)x a 的系数必须为1.解:∵函数()()x a a x f ⋅-=32是指数函数∴⎪⎩⎪⎨⎧≠>=-10132a a a ,解之得:2=a . 例2. 已知指数函数()()32--+=a a a y x 的图象过点()4,2,则=a _________.解:由题意可得:()()⎪⎩⎪⎨⎧≠>=--10032a a a a ,解之得:2=a 或3=a .∵函数的图象经过点()4,2 ∴2=a .例3. 若指数函数()x f 的图象经过点()9,2,求()x f 的解析式及()1-f 的值. 解:设函数()x a x f =.∵其图象经过点()9,2,∴2239==a ,∴3=a . ∴()x f 的解析式为()x x f 3=. ∴()31311==--f . 例4. 函数()x a a a y 442+-=是指数函数,则a 的值是【 】 (A )4 (B )1或3 (C )3 (D )1解:由题意可得:⎪⎩⎪⎨⎧≠>=+-101442a a a a ,解之得:3=a .∴x y 3=.选择【 C 】.例5. 若函数()xa y 12-=(x 是自变量)是指数函数,则a 的取值范围是_________.解:∵函数()xa y 12-=是指数函数∴⎩⎨⎧≠->-112012a a ,解之得:21>a 且1≠a .∴a 的取值范围是⎭⎬⎫⎩⎨⎧≠>121a a a 且.例6. 若函数()xa a y 32-=是指数函数,求实数a 的取值范围.解:∵函数()xa a y 32-=是指数函数∴⎩⎨⎧≠->-130322a a a a ,解之得:⎪⎩⎪⎨⎧±≠<>213303a a a 或. ∴实数a 的取值范围是⎭⎬⎫⎩⎨⎧±≠<>213303a a a a 且或.知识点二 指数函数的图象和性质一般地,指数函数xa y =(0>a 且1≠a )的图象和性质如下表所示:指数函数函数值的特点:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数xa y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数xa y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大. (2)由于指数函数xa y =(0>a 且1≠a )的图象经过点⎪⎭⎫⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小. 2. 函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称. 如下图所示,指数函数x y 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.(1)指数函数xa y =(0>a 且1≠a )与函数xa y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数xy 2=与函数xy 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数xa y --=(0>a 且1≠a )(即xa y ⎪⎭⎫ ⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数xy --=2(即xy ⎪⎭⎫ ⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数xa y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.例7. 函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点_________. 解:令01=-x ,则1=x ,2513-=-⨯=y .∴函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点()2,1-.例8. 函数1-=x a y (1,0≠>a a 且)的图象恒过定点P ,则点P 的坐标为【 】 (A )()1,0 (B )()1,1 (C )()1,1- (D )()0,1 解:令01=-x ,则1=x ,10==a y . ∴定点P 的坐标为()1,1.选择【 B 】.例9. 函数1+=x a y (1,0≠>a a 且)的图象恒过的定点坐标为_________. 解:令01=+x ,则1-=x ,10==a y .∴函数1+=x a y (1,0≠>a a 且)的图象恒过定点()1,1-.例10. 函数33+=-x a y (1,0≠>a a 且)的图象过定点_________.解:令03=-x ,则3=x ,43130=+=+=a y .∴函数33+=-x a y (1,0≠>a a 且)的图象过定点()4,3.例11. 如果指数函数()()xa x f 1-=是R 上的减函数,那么a 的取值范围是【 】(A )2<a (B )2>a (C )21<<a (D )10<<a分析 对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数的图象从左到右是下降的,函数为R 上的减函数.解:∵函数()()xa x f 1-=是R 上的减函数∴110<-<a ,解之得:21<<a . ∴a 的取值范围是()2,1.选择【 C 】.例12. 已知集合{}3<=x x A ,{}42>=x x B ,则=B A __________. 分析:指数函数x y 2=为R 上的增函数. 解:42>x ,222>x∵函数x y 2=为R 上的增函数 ∴2>x ,∴{}2>=x x B ∴{}32<<=x x B A .例13. 解不等式22112>⎪⎭⎫ ⎝⎛-x .解:()22121>--x ,2221>-x∵函数x y 2=为R 上的增函数 ∴121>-x ,解之得:0<x . ∴原不等式的解集为()0,∞-. 例14. 不等式422<-xx 的解集为__________.解:2222<-xx∵函数x y 2=为R 上的增函数 ∴22<-x x ,解之得:21<<-x . ∵原不等式的解集为()2,1-.4.指数函数xa y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快;(2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b )的图象特点(1)若1>>b a ,则当0<x 时,总有10<<<xxb a ;当0=x 时,总有1==xxb a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>xxa b ;当0=x 时,总有1==xxb a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a <.6. 指数函数xa y =(0>a 且1≠a )的图象和性质再说明 指数函数xa y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0.图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交; (2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数xa y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间. (2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.例15. 设0>x ,且x x a b <<1,则【 】(A )10<<<a b (B )10<<<b a (C )a b <<1 (D )b a <<1 解法一:∵0>x ,且x x a b <<1∴指数函数x a y =(0>a 且1≠a )和x b y =(0>b 且1≠b )在y 轴右侧的图象f x () =12(都在直线1=y 的上方,它们的的图象是上升的,∴1>a ,1>b∵在y 轴右侧,指数函数x a y =(0>a 且1≠a )的图象在x b y =(0>b 且1≠b )的图象的上方∴根据第一象限“底大图上”,有b a >. ∴1>>b a .选择【 C 】.解法二:∵x x a b <<1,∴x x a a b b <<00, ∵0>x ,∴1,1>>a b . ∵x x a b <,0>x a ,0>x∴1<⎪⎭⎫⎝⎛=xx x a b a b ,∴10<<a b ,∴b a >.∴1>>b a .例16. 已知实数b a ,满足ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121,给出下面的五种关系,则其中可能成立的序号为__________.①b a <<0; ②a b <<0; ③0<<a b ; ④0<<b a ; ⑤0==a b . 分析:采用数形结合的方法解决本题:在同一平面直角坐标系中分别画出指数函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫⎝⎛=31的草图,在画图时要注意y 轴左侧“底小图高”和y 轴右侧“底大图高”,还有指数函数的图象都经过定点()1,0.解:如下图所示,在同一平面直角坐标系中分别画出函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫ ⎝⎛=31的图象.为便于观察并发现问题,设m ba=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121.当0<x 时,有0<<b a ; 当0>x 时,有a b <<0;当0=x 时,有0==b a ,此时1=m . ∴可能成立的序号为②④⑤.例17. 设3132⎪⎭⎫ ⎝⎛=a ,3231⎪⎭⎫ ⎝⎛=b ,3131⎪⎭⎫ ⎝⎛=c ,则c b a ,,的大小关系是【 】 (A )b c a >> (B )c b a >> (C )b a c >> (D )a c b >>分析:(1)对于同底数幂比较大小,则可以利用指数函数的单调性比较.如本题中b 与c 的大小比较;(2)对于非同底数幂比较大小,则要借助于中间量或借助于指数函数的图象比较大小.如本题中a 与c 的大小比较.本题知识储备(1)对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数在R 上为减函数,即y 随x 的增大而减小.(2)对于指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b ),若b a >,则当0<x 时,xxb a <;当0>x 时,xxb a >.解:∵指数函数xy ⎪⎭⎫ ⎝⎛=31在R 上为减函数∴31323131⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛,即b c >. ∵3132>,∴31313132⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛,即c a >. ∴b c a >>,选择【 A 】.另外,也可以这样比较a 与c 的大小:∵12231323132031313131=>=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ca ,∴c a >. 例18. 设6.06.0=a ,5.16.0=b ,6.05.1=c ,则c b a ,,的大小关系是__________.解:∵指数函数xxy ⎪⎭⎫⎝⎛==536.0在R 上为减函数∴6.05.16.06.0<,即a b <. ∵16.06.006.0=<,15.15.106.0=>∴6.06.05.16.0<,即c a <. ∴c a b <<.另外,根据: 对于指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b ),若b a >,则当0<x 时,x x b a <;当0>x 时,xx b a >.可直接得到c a <.例19. 设9.014=y ,61.028=y ,5.1321-⎪⎭⎫⎝⎛=y ,则【 】(A )321y y y >> (B )312y y y >> (C )231y y y >> (D )123y y y >>分析:三个幂是不同底数的幂,但每个幂根据底数与2的关系都可以化为以2为底的幂,最后借助于指数函数的单调性即可得到三者之间的大小关系. 解:∵9.014=y ,61.028=y ,5.1321-⎪⎭⎫ ⎝⎛=y∴()8.19.02122==y ,()83.161.03222==y ,()5.15.11322==--y .∵指数函数x y 2=在R 上为增函数∴83.18.15.1222<<,即61.09.05.18421<<⎪⎭⎫⎝⎛-∴312y y y >>.选择【 B 】.例20. 设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab ,那么【 】(A )a b a b a a << (B )b a a a b a << (C )a a b b a a << (D )a a b a b a <<解:∵1212121<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<a b ,∴0121212121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a b . ∵指数函数xy ⎪⎭⎫ ⎝⎛=21为R 上的减函数∴10<<<b a .在同一平面直角坐标系中分别画出函数x a y =与x b y =的图象如下页图所示.x x由图象可得:a a b b a a <<.选择【 C 】.知识点三 指数函数的定义域和值域 1 定义域(1)指数函数xa y =(0>a 且1≠a )的定义域为R . (2)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(3)函数()xa f y =的定义域与函数()x f 的定义域不一定相同.例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R .注意:求指数型复合函数的定义域时,先观察函数是()xa f y =型还是()x f ay =型.例21. 函数()3121++-=x x f x 的定义域为【 】(A )(]0,3- (B )(]1,3-(C )()(]0,33,--∞- (D )()(]1,33,--∞-解:由题意可得:⎩⎨⎧>+≥-03021x x,解之得:x <-3≤0.∴函数()x f 的定义域为(]0,3-.选择【 A 】. 例22. 求下列函数的定义域:(1)xy ⎪⎭⎫⎝⎛-=211; (2)153-=x y .解:由题意可知:x⎪⎭⎫ ⎝⎛-211≥0,∴x⎪⎭⎫ ⎝⎛21≤1021⎪⎭⎫ ⎝⎛=,∴x ≥0.∴该函数的定义域为[)+∞,0;(2)由题意可知:15-x ≥0,解之得:x ≥51.∴该函数的定义域为⎪⎭⎫⎢⎣⎡+∞,51.例23. 函数()2311-⎪⎭⎫ ⎝⎛-=x x f x的定义域为__________. 解:由题意可得:⎪⎩⎪⎨⎧≠-≥⎪⎭⎫⎝⎛-020311x x,解之得:x ≥0且2≠x .∴函数()x f 的定义域为[)()+∞,22,0 . 例24. 求函数()423212-⨯-=xxx f 的定义域.解:由题意可得:042322>-⨯-x x∴()()04212>-+x x ,解之得:12-<x (舍去),42>x . ∵函数x y 2=为R 上的增函数,2242=>x ,∴2>x . ∴函数()x f 的定义域为()+∞,2.2 值域(1)指数函数xa y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()xa f y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.例25. 求函数1241--=+x x y 的值域. 解:()122212421-⨯-=--=+x x x x y .设x t 2=,则0>t ,∴()211222--=--=t t t y .∵()+∞∈,0t∴()21min -==f y ,无最大值.∴函数1241--=+x x y 的值域为[)+∞-,2. 例26. 求函数1241-+=+x x y 的值域. 解:()122212421-⨯+=-+=+x x x x y .设x t 2=,则0>t ,∴()211222-+=-+=t t t y .∴函数在()+∞∈,0t 上为增函数 ∴函数1241-+=+x x y 的值域为()+∞-,1. 注意例25和例26的区别.例27. 已知函数()1-=x a x f (x ≥0)的图象经过点⎪⎭⎫⎝⎛21,2,其中0>a ,且1≠a .(1)求a 的值;(2)求函数()x f 的值域.分析:求指数函数x a y =(0>a 且1≠a )的解析式,只需要其图象上一个点的坐标即可.解:(1)把⎪⎭⎫⎝⎛21,2代入()1-=x a x f 得:21=a ;(2)由(1)知()121-⎪⎭⎫⎝⎛=x x f ,为R 上的减函数∵x ≥0,∴1-x ≥1-,∴()x f <0≤2211=⎪⎭⎫⎝⎛-.∴函数()x f 的值域为(]2,0.注意:指数函数x a y =(0>a 且1≠a )的图象位于x 轴的上方,并且在一个方向上无限接近于x 轴,函数的值域为()+∞,0.本题易错结果为(]2,∞-.总结 求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f ay =的值域.例28. 若函数()1-=x a x f (0>a 且1≠a )的定义域和值域都是[]2,0,求实数a 的值.分析:指数函数的单调性与底数和1的大小关系有关,若关系不明确,必要时要进行分类讨论. 解:由题意可知:当10<<a 时,函数()1-=x a x f 在[]2,0上为减函数∴⎩⎨⎧=-=-012120a a ,显然无解; 当1>a 时,函数()1-=x a x f 在[]2,0上为增函数∴⎩⎨⎧=-=-210120a a ,解之得:3=a (3-=a 舍去). 综上所述,实数a 的值为3. 例29. 求下列函数的定义域和值域: (1)412-=x y ; (2)32221--⎪⎭⎫⎝⎛=x x y .本题知识点储备 (1)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f ay =的值域.解:(1)由题意可得:04≠-x ,解之得:4≠x . ∴函数412-=x y 的定义域为()()+∞∞-,44, .∵041≠-x ,∴122041=≠=-x y ,且0>y . ∴函数412-=x y 的值域为{}10≠>y y y 且;(2)函数32221--⎪⎭⎫⎝⎛=x x y 的定义域为R .∵()413222--=--x x x ≥4-∴32221--⎪⎭⎫ ⎝⎛x x ≤16214=⎪⎭⎫ ⎝⎛-,且021322>⎪⎭⎫ ⎝⎛--x x .∴函数32221--⎪⎭⎫⎝⎛=x x y 的值域为(]16,0.例30. 求下列函数的定义域和值域:(1)xy -⎪⎭⎫⎝⎛=32; (2)222x x y -=.解:(1)函数xy -⎪⎭⎫⎝⎛=32的定义域为R .∵x ≥0,∴x -≤0. ∴1320min=⎪⎭⎫⎝⎛=y ∴函数xy -⎪⎭⎫⎝⎛=32的值域为[)+∞,1;(2)函数222x x y -=的定义域为R . ∵()11222+--=-x x x ≤1∴()2211max ===f y ,且0>y . ∴函数222x x y -=的值域为(]2,0.例31. 如果函数122-+=x x a a y (0>a 且1≠a )在[]1,1-上有最大值,且最大值为14,试求a 的值.分析:这是求()x a f y =型函数的定义域和值域.求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:()121222-+=-+=x x x x a a a a y .设x a t =,则0>t ,∴()211222-+=-+=t t t y .当1>a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t ,1.∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t ,1上为增函数∴()14122max =-+==a a a f y ,解之得:3=a (5-=a 不符合题意,舍去);当10<<a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t 1,∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t 1,上为增函数∴1412112max =-+=⎪⎭⎫ ⎝⎛=a a a f y ,解之得:31=a (51-=a 不符合题意,舍去).综上所述,3=a 或31=a . 例32. 求函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xxy 的值域.解:12121121412+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=xxxxy 设xt ⎪⎭⎫ ⎝⎛=21,则0>t ,∴4321122+⎪⎭⎫ ⎝⎛+=++=t t t y . ∴函数43212+⎪⎭⎫ ⎝⎛+=t y 在()+∞∈,0t 上为增函数.取0=t ,得1=y .∴函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xx y 的值域为()+∞,1.例33. 已知[]3,2-∈x ,求函数()12141+-=x x x f 的最值. 解:()1212112141121412+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-=xxxxx x x f .设xt ⎪⎭⎫ ⎝⎛=21,∵[]3,2-∈x ,∴⎥⎦⎤⎢⎣⎡∈4,81t .∴4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵⎥⎦⎤⎢⎣⎡∈4,81t∴()134,4321max min ===⎪⎭⎫ ⎝⎛=f y f y .例34. 若122+x ≤241-⎪⎭⎫ ⎝⎛x ,则函数x y 2=的值域是_________.解:∵122+x ≤241-⎪⎭⎫ ⎝⎛x ,∴122+x≤()x x 242222---=.∵函数x y 2=在R 上为增函数∴12+x ≤x 24-,解之得:3-≤x ≤1,即[]1,3-∈x .∴函数x y 2=在[]1,3-上的值域为⎥⎦⎤⎢⎣⎡2,81.例35. ()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2解法一:()13331331+⋅=+=+x xx x x f 设x t 3=,则()+∞∈,0t ,()()133131313+-+=+-+=+=t t t t t t f . ∵()+∞∈,0t ,∴0133<+-<-t ,∴31330<+-+<t .∴()30<<t f ,即函数()1331+=+x x x f 的值域为()3,0.选择【 B 】.解法二:()xxx xx x x f ⎪⎭⎫ ⎝⎛+=+=+⋅=+=+3113311313331331. ∵031>⎪⎭⎫ ⎝⎛x ,∴1311>⎪⎭⎫ ⎝⎛+x,∴331130<⎪⎭⎫ ⎝⎛+<x,∴()()3,0∈x f .例36. 已知定义在R 上的偶函数()x f 满足:当x ≥0时,()x x a x f 22+=,()251=f . (1)求实数a 的值;(2)用定义法证明()x f 在()+∞,0上是增函数; (3)求函数()x f 在[]2,1-上的值域. 解:(1)∵当x ≥0时,()x x a x f 22+=,()251=f ∴2522=+a ,解之得:1=a ; (2)证明:由(1)可知:()xx x f 212+=. 任取()+∞∈,0,21x x ,且21x x <,则()()()()()212121212122112122221212221221221x x x x x x x x x x x x x x x f x f ++--=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛+-+=-∵()+∞∈,0,21x x ,且21x x < ∴02,012,022212121>>-<-++x x x x x x ∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在()+∞,0上是增函数;(3)∵函数()x f 为偶函数,且在[)+∞,0上为增函数 ∴()x f 在(]0,∞-上为减函数 ∴()()20min ==f x f .∵()252211=+=-f ,()4174142=+=f ,25417> ∴在区间[]2,1-上()()4172max ==f x f .∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.利用单调性法求最值的结论(1)如果函数()x f y =在区间[]b a ,上单调递增,在区间[]c b ,上单调递减,那么函数()x f y =在区间[]c a ,上有最大值)()(max b f x f =.如下页图所示;(2)如果函数()x f y =在区间[]b a ,上单调递减,在区间[]c b ,上单调递增,那么函数()x f y =在区间[]c a ,上有最小值)()(min b f x f =.如下图所示.f x ()max = f b ()f x ()min = f b ()第(3)问另解:∵函数()x f 为定义在R 上的偶函数 ∴()x f 在区间[]0,1-和[]1,0上的值域相同 ∴()x f 在[]2,1-上的值域即在[]2,0上的值域. ∵()x f 在[)+∞,0上为增函数 ∴()x f 在[]2,0上为增函数∴()()20min ==f x f ,()()4172max ==f x f . ∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.例37. 设函数()axx f -⎪⎭⎫⎝⎛=1021,a 是不为零的常数.(1)若()213=f ,求使()x f ≥4的x 的取值范围; (2)当[]2,1-∈x 时,()x f 的最大值是16,求a 的值.解:(1)∵()axx f -⎪⎭⎫⎝⎛=1021,()213=f ∴2121310=⎪⎭⎫ ⎝⎛-a,∴1310=-a ,解之得:3=a . ∴()()103310122---==x xx f .∵()x f ≥4,∴1032-x ≥22,∴103-x ≥2,解之得:x ≥4. ∴使()x f ≥4的x 的取值范围是[)+∞,4;(2)()()10101102221----==⎪⎭⎫⎝⎛=ax axaxx f .当0>a 时,()x f 在[]2,1-上为增函数∴()()4102max 21622====-a f x f ,∴4102=-a ,解之得:7=a ; 当0<a 时,()x f 在[]2,1-上为减函数∴()()410max 21621===-=--a f x f ,∴410=--a ,解之得:14-=a . 综上所述,7=a 或14-=a .例38. 已知函数()ax a x f -=3(0>a 且1≠a ). (1)当2=a 时,()4<x f ,求x 的取值范围;(2)若()x f 在[]1,0上的最小值大于1,求a 的取值范围. 解:(1)当2=a 时,()x ax a x f 2332--==.∵()4<x f ,∴223242=<-x ,∴223<-x ,解之得:21>x . ∴x 的取值范围是⎪⎭⎫⎝⎛+∞,21;(2)∵0>a 且1≠a∴函数ax y -=3在[]1,0上为减函数. 当1>a 时,()x f 在[]1,0上为减函数∴()()03min 11a a f x f a =>==-,∴03>-a ,解之得:3<a . ∴31<<a ;当10<<a 时,()x f 在[]1,0上为增函数 ∴()()103min >==a f x f ,显然不成立. 综上所述,a 的取值范围是()3,1.例39. 已知函数()1+=-a x a x f 的图象(0>a 且1≠a )过点⎪⎭⎫⎝⎛2,21.(1)求实数a 的值;(2)若函数()121-⎪⎭⎫ ⎝⎛+=x f x g ,求函数()x g 的解析式;(3)在(2)的条件下,若函数()()()12--=x mg x g x F ,求()x F 在[]0,1-∈x 上的最小值()m h .本题知识储备 求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:(1)∵函数()1+=-a x a x f 的图象过点⎪⎭⎫⎝⎛2,21∴2121=+-a a,解之得:21=a . ∴实数a 的值为21; (2)由(1)知:()12121+⎪⎭⎫⎝⎛=-x x f∵()121-⎪⎭⎫ ⎝⎛+=x f x g∴()xx x g ⎪⎭⎫⎝⎛=-+⎪⎭⎫⎝⎛=-+2111212121;(3)∵()()()12--=x mg x g x F∴()xx x x m m x F ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-212212121212. 设xt ⎪⎭⎫⎝⎛=21,∵[]0,1-∈x ,∴[]2,1∈t∴()()2222m m t mt t t F --=-=,[]2,1∈t .①当2>m 时,()t F 在[]2,1∈t 上为减函数∴()()()442222min +-=--==m m m F t F ,∴()44+-=m m h ;②当1≤m ≤2时,()()2min m m F t F -==,∴()2m m h -=; ③当1<m 时,()t F 在[]2,1∈t 上为增函数∴()()()121122+-=--==m m m F t F ,∴()12+-=m m h .综上所述,()⎪⎩⎪⎨⎧<+-≤≤->+-=1,1221,2,442m m m m m m m h .例40. 已知函数()x a x f =,()m a x g x +=2,其中1,0,0≠>>a a m 且.当[]1,1-∈x 时,()x f y =的最大值与最小值之和为25. (1)求a 的值;(2)若1>a ,记函数()()()x mf x g x h 2-=,求当[]1,0∈x 时,()x h 的最小值()m H . 分析:(1)指数函数()x a x f =(10≠>a a 且)在其定义域内为单调函数,所以指数函数在给定闭区间上的最值在区间的端点处取得,故本问不用进行分类讨论. 解:(1)∵函数()x a x f =(10≠>a a 且)在[]1,1-上为单调函数 ∴由题意可知:()()2511=-+f f . ∴251=+a a ,解之得:2,2121==a a . ∴a 的值为21或2;(2)∵1>a ,∴2=a ,∴()()m x g x f x x +==22,2. ∵()()()x mf x g x h 2-=∴()()m m m m x h x x x x +⋅-=⋅-+=22222222.设x t 2=,∵[]1,0∈x ,∴∈t []2,1 ∴()()m m m t m mt t t h +--=+-=2222①当2>m 时,()t h 在[]2,1上为减函数 ∴()()432min +-==m h t h ,即()43+-=m m H ;②当1≤m ≤2时,()()m m m h t h +-==2min ,即()m m m H +-=2; ③当1<m 时,()t h 在[]2,1上为增函数 ∴()()11min +-==m h t h ,即()1+-=m m H .综上所述,()⎪⎩⎪⎨⎧<+-≤≤+->+-=1,121,2,432m m m m m m m m H .例41. 已知函数()1242--⋅=x x a x f . (1)当1=a 时,解不等式()0>x f ; (2)当21=a ,∈x []2,0时,求()x f 的值域. 解:(1)当1=a 时,()()122212422--=--⋅=x x x x x f . 设x t 2=,则0>t ,()122--=t t t f .∵()0>x f ,∴0122>--t t ,解之得:1>t 或21-<t .∵0>t∴1>t ,∴0212=>x ,∴0>x . ∴不等式()0>x f 的解集为()+∞,0; (2)当21=a 时,()()1221242--=--=x x x x x f . 设xt 2=,∵∈x []2,0,∴∈t []4,1,()4521122-⎪⎭⎫ ⎝⎛-=--=t t t t f∵()t f 在[]4,1上为增函数∴()()()()114,11max min ==-==f t f f t f .∴函数()t f 的值域为[]11,1-,即函数()x f 在∈x []2,0上的值域为[]11,1-. 例42. 已知函数()x x b a x f +=(其中b a ,为常数,10,10≠>≠>b b a a 且且)的图象经过点()6,1A ,⎪⎭⎫ ⎝⎛-43,1B .(1)求函数()x f 的解析式;(2)若b a >,函数()211+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=xx b a x g ,求函数()x g 在[]2,1-上的值域.解:(1)把()6,1A ,⎪⎭⎫ ⎝⎛-43,1B 分别代入()x x b a x f +=得:⎪⎩⎪⎨⎧=+=+43116b a b a ,解之得:⎩⎨⎧==42b a 或⎩⎨⎧==24b a . ∴函数()x f 的解析式为()x x x f 42+=; (2)若b a >,则2,4==b a∴()22141211+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=xx x x b a x g设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,1-,∴∈t ⎥⎦⎤⎢⎣⎡2,41,()4721222+⎪⎭⎫ ⎝⎛-=+-=t t t t g . ∴()4721min =⎪⎭⎫ ⎝⎛=g t g ,()()42max ==g t g .∴()t g 在⎥⎦⎤⎢⎣⎡2,41上的值域为⎥⎦⎤⎢⎣⎡4,47,即函数()x g 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡4,47.说明:方程组⎪⎩⎪⎨⎧=+=+43116b a b a 可以这样求解:∵⎪⎩⎪⎨⎧=+=+43116b a b a ,∴⎩⎨⎧==+86ab b a .∴b a ,是方程0862=+-x x 的两个实数根(方程思想).解之得:4,221==x x ,∴⎩⎨⎧==42b a 或⎩⎨⎧==24b a .例43. 函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xxy ,∈x []2,2-的值域是__________.解:设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,2-,∴∈t ⎥⎦⎤⎢⎣⎡4,41,41232322-⎪⎭⎫ ⎝⎛-=+-=t t t y . ∴()64,4123max min ==-=⎪⎭⎫⎝⎛=f y f y∴函数41232-⎪⎭⎫ ⎝⎛-=t y 在∈t ⎥⎦⎤⎢⎣⎡4,41上的值域为⎥⎦⎤⎢⎣⎡-6,41.∴函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xx y ,∈x []2,2-的值域是⎥⎦⎤⎢⎣⎡-6,41. 例44. 已知函数()ax xx f ++-=223(∈a R ).(1)若()271=f ,求a 的值; (2)若()x f 有最大值9,求a 的值. 解:(1)∵()271=f∴3213273==++-a ,∴31=+a ,解之得:2=a ; (2)设()()11222++--=++-=a x a x x x g∴()()11max +==a g x g∴()()21max 3933max ====+a x g x f ,∴21=+a ,解之得:1=a .例45. 若函数()m x f x -=-3的最大值为2,则实数m 的值为【 】 (A )1- (B )2- (C )3- (D )4- 解:设()x x g -=3,则()x g <0≤130=,即函数()x g 的最大值为1. ∵函数()m x f x -=-3的最大值为2 ∴()2max =-m x g ,∴21=-m 解之得:1-=m .选择【 A 】.例46. 例45的第三种解法 以下几例为求()x a f y =型函数的值域()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2 解:设x t 3=,则0>t ,()13+==t t t f y . ∴03>-=yyt ,解之得:30<<y .选择【 B 】.例47. 函数x y --=328(x ≥0)的值域为__________.不等分析法和单调性法解:∵x ≥0,∴x -≤0,∴x -3≤3 ∴x -<320≤823=,∴8-≤023<--x .∴0≤8283<--x ,0≤8<y ,即函数x y --=328(x ≥0)的值域为[)8,0.注意: 不要漏掉023>-x这一范围.例48. 函数x y 416-=的值域是__________.解:由题意可知:x 40<≤16,∴16-≤04<-x ,∴0≤16416<-x . ∴0≤4416<-x ,0≤4<y . ∴函数x y 416-=的值域是[)4,0. 例49. 函数()xxx f 242-=的定义域是__________,值域是__________. 解:由题意可知:0242>-xx,∴024>-x ,解之得:2<x . ∴函数()x f 的定义域是()2,∞-.设x t 2=,则40<<t (2<x ),()tt t t g -+-=-=4414. ∵40<<t ,∴04<-<-t ,∴440<-<t ,∴144>-t(可结合图象)∴0441>-+-t ,()0>t g ,∴()0>x f∴函数()x f 的值域为()+∞,0. 例50. 函数xx y +-=112的值域为__________.解:()xxx xx y ++-+++-+-===12112111222∵012≠+x ,∴1121-≠++-x ,∴21221121=≠-++-x ,即21≠y . ∵0>y ,∴该函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛,2121,0 .例51. 函数()xx xx x f --+-=10101010的值域是【 】(A )(][)+∞-∞-,11, (B )()()+∞-∞-,11, (C )[]1,1- (D )()1,1-解:()11021110211011011010110101101010101022222+-=+-+=+-=+-=+-=--x x x x x xx x x x x xxx f . ∵0102>x ,∴11102>+x ,∴2110202<+<x ,∴0110222<+-<-x∴11102112<+-<-x ,即()11<<-x f .∴函数()xx xx x f --+-=10101010的值域是()1,1-.选择【 D 】. 解法二:()11011010110101101010101022+-=+-=+-=--x x xxx x x x x x x f 设t x =210,则0>t ,11+-=t t y∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴函数()x f 的值域为()1,1-. 例52. 求下列函数的值域:(1)11+-=x x a a y (0>a ,且1≠a );(2)124+-=x x y .解:(1)12112111+-=+-+=+-=xx x x x a a a a a y . ∵0>x a ,∴11>+x a ,∴2120<+<x a ,∴0122<+-<-x a ∴11211<+-<-x a ,即11<<-y . ∴该函数的值域为()1,1-.解法二:设x a t =,则0>t ,11+-=t t y ∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴该函数的值域为()1,1-. (2)()1221242+-=+-=x x x x y设xt 2=,则0>t ,4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵()+∞∈,0t ,∴4321min =⎪⎭⎫ ⎝⎛=f y .∴函数124+-=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43.例53. 已知函数()b a x f x +=(10≠>a a 且)的定义域和值域都是[]0,1-,则=+b a _________.解:当10<<a 时,函数()x f 在[]0,1-上为减函数∴()()⎩⎨⎧-==-1001f f ,即⎪⎩⎪⎨⎧-=+=+1101b b a ,解之得:⎪⎩⎪⎨⎧-==221b a .∴=+b a 23-; 当1>a 时,函数()x f 在[]0,1-上为增函数∴()()⎩⎨⎧=-=-0011f f ,即⎪⎩⎪⎨⎧=+-=+0111b b a ,显然方程组无解.综上所述,=+b a 23-. 例54. 函数124--=x y 的值域为【 】 (A )[)+∞,1 (B )()1,1- (C )()+∞-,1 (D )[)1,1-解:由题意可知:x 20<≤4,∴4-≤02<-x ,∴0≤424<-x ∴0≤224<-x ,∴1-≤1124<--x ,即1-≤1<y . ∴函数124--=x y 的值域为[)1,1-,选择【 D 】. 例55. 已知函数()13-=-x x f ,则()x f 的【 】 (A )定义域是()+∞,0,值域是R (B )定义域是R ,值域是()+∞,0 (C )定义域是R ,值域是()+∞-,1 (D )定义域、值域都是R 解:函数()13-=-x x f 的定义域为R . ∵03>-x ,∴13->-x ,即()1->x f∴函数()13-=-x x f 的值域为()+∞-,1.选择【 C 】. 例56. 下列各函数中,值域为()+∞,0的是【 】 (A )22x y -= (B )x y 21-= (C )12++=x x y (D )113+=x y解:(A )函数22x y -=的定义域为R ,值域为()+∞,0,故(A )正确; (B )∵x 20<≤1,∴1-≤02<-x ,∴0≤121<-x ,∴0≤121<-x . ∴函数x y 21-=的值域为[)1,0;(C )∵4321122+⎪⎭⎫ ⎝⎛+=++=x x x y ≥43 ∴函数12++=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43;(D )对于函数113+=x y ,因为011≠+x ,所以130=≠y ,且0>y ,故该函数的值域为()()+∞,11,0 .例57. 关于x 的方程0131=--⎪⎭⎫⎝⎛a x有解,则a 的取值范围是__________.解:∵0131=--⎪⎭⎫ ⎝⎛a x,∴131+=⎪⎭⎫ ⎝⎛a x∵x ≥0,∴x⎪⎭⎫ ⎝⎛<310≤1∵方程0131=--⎪⎭⎫⎝⎛a x有解∴10+<a ≤1,解之得:a <-1≤0. ∴a 的取值范围是(]0,1-.例58. 关于x 的方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根,则实数a 的取值范围是_________. 分析:该方程有正实数根指的是0>x .解:∵方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根 ∴0>x ,∴1535300=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<x,∴15230<-+<a a . 解之得:4332<<-a ,即实数a 的取值范围是⎪⎭⎫⎝⎛-43,32. 例59. 已知方程013329=-+⋅-k x x 有两个实数解,求实数k 的取值范围. 分析:设x t 3=,则0>t ,方程可转化为关于t 的一元二次方程,且方程有两个正实数根.结论 一元二次方程()002≠=++a c bx ax 有两个正实数根的条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 解:设x t 3=,则0>t ,∵013329=-+⋅-k x x ,∴01322=-+-k t t由题意可知:方程01322=-+-k t t 有两个正实数根∴()()⎪⎩⎪⎨⎧>-=⋅>=+≥---013020134221212k t t t t k ,解之得:k <31≤32.∴实数k 的取值范围是⎥⎦⎤⎝⎛32,31.例60. 已知函数122-+=x x a a y (0>a 且1≠a ),当x ≥0时,求该函数的值域. 解:设x a t =,则0>t ,()211222-+=-+=t t t y .当1>a 时,∵x ≥0,∴t ≥1∵函数()212-+=t y 在[)+∞,1上为增函数∴()21min ==f y ,∴函数的值域为[)+∞,2; 当10<<a 时,∵x ≥0,∴t <0≤1∴()y f <0≤()1f ,∴y <-1≤2,即函数的值域为(]2,1-.综上所述,当1>a 时,函数的值域为[)+∞,2;当10<<a 时,函数的值域为(]2,1-.知识点四 指数函数的单调性及其应用 1 单调性当1>a 时,函数xa y =在R 上为增函数;当10<<a 时,函数xa y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:注意 讨论形如()x f ay =的函数的单调性,首先要确定函数()x f 的单调性,然后结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减.2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较;类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高;类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小.(2)应用于解简单不等式 不等式可化为()()x g x f a a<的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.例61. 求函数x y -=2的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数 ∴函数x y -=2在(]0,∞-上为增函数,在[)+∞,0上为减函数.例62. 求函数xy -⎪⎭⎫⎝⎛=21的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数∴函数xy -⎪⎭⎫⎝⎛=21在(]0,∞-上为减函数,在[)+∞,0上为增函数.例63. 函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间是【 】(A )[)+∞-,1 (B )(]1,-∞- (C )[)+∞,1 (D )(]1,∞-解:设()11222+--=+-=x x x t ,则函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数∵指数函数ty ⎪⎭⎫⎝⎛=21在R 上为减函数∴函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间为[)+∞,1.选择【 C 】.例64. 求函数()2222++-=x xx f 的单调区间.解:设()312222+--=++-=x x x t ,则()t y x f 2==.∵函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数,函数t y 2=在R 上为增函数 ∴函数()x f 的单调递增区间为(]1,∞-,单调递减区间为[)+∞,1. 例65. 求函数32212+-=+x x y 的单调区间. 解:()3222322212+⋅-=+-=+x x x x y设x t 2=,则0>t ,且函数x t 2=在R 上为增函数 ∴()213222+-=+-=t t t y∴函数()212+-=t y 在∈t (]1,0上为减函数,此时(]0,∞-∈x ;在[)+∞∈,1t 上为增函数,此时[)+∞∈,0x .∴函数32212+-=+x x y 的单调递增区间为[)+∞,0,单调递减区间为(]0,∞-.例66. 求函数1121+-⎪⎭⎫⎝⎛=x x y 的单调区间.解:设12112111+-=+-+=+-=x x x x x t ,()()+∞--∞-∈,11, x ,则ty ⎪⎭⎫⎝⎛=21,且1≠t .∵函数121+-=x t 在()1,-∞-和()+∞-,1上均为增函数 函数ty ⎪⎭⎫⎝⎛=21在()()+∞∞-∈,11, t 上为减函数∴函数1121+-⎪⎭⎫⎝⎛=x x y 的单调递减区间为()1,-∞-和()+∞-,1,无单调递增区间.1例67. 函数()()32212---=x x x f 的单调增区间为__________.解:∵221<<,∴1120<-< ∴函数()()32212---=x x x f 的单调增区间即函数322--=x x t 的单调减区间.∵()413222--=--=x x x t∴函数t 的单调减区间为(]1,∞- ∴函数()()32212---=x x x f 的单调增区间为(]1,∞-.例68. 若函数axxy +-=22在()1,∞-内单调递增,则a 的取值范围是__________.解:设42222a a x ax x t +⎪⎭⎫ ⎝⎛--=+-=∵函数axxy +-=22在()1,∞-内单调递增∴函数4222a a x t +⎪⎭⎫ ⎝⎛--=在()1,∞-内单调递增∴2a≥1,解之得:a ≥2,即a 的取值范围是[)+∞,2. 例69. 若函数12-=x y 在(]m ,∞-上单调递减,则m 的取值范围是__________. 解法一:设x t 2=,则0>t ,1-=t y . ∵函数1-=t y 在(]1,0∈t 上为减函数 ∴x 20<≤021=,解之得:x ≤0.∴函数12-=x y 在(]0,∞-∈x 上为减函数. ∵函数12-=x y 在(]m ,∞-上单调递减 ∴m ≤0,即m 的取值范围是(]0,∞-. 解法二:函数12-=x y 的图象大致如图所示. 由图象可知:函数12-=x y 的单调递减区间 为(]0,∞-,所以(]0,∞-∈m .。

指数函数、对数函数、幂函数的图像和性质知识点总结

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn;②a a nn =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数1、对数的概念 (1)对数的定义如果(01)xa N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log Na x =,其中a叫做对数的底数,N 叫做真数。

(2)几种常见对数2(1)对数的性质(0,1a a >≠且):①1log 0a =,②l og 1aa =,③lo g Na a N =,④lo g N a aN =。

(2)对数的重要公式:①换底公式:log log (,1,0)log N Na bbaa b N =>均为大于零且不等于; ②1log log b a ab =。

(完整版)指数函数知识点总结

(完整版)指数函数知识点总结

指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·sr raa += ),,0(R s r a ∈>;(2)rss r a a =)( ),,0(R s r a ∈>; (3)sr r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0), 则得b <a <1<d <c . 练习:指数函数① ②满足不等式,则它们的图象是( ).【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 练习: (1)1.72.5与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,aa a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】作出下列函数的图像:(1)y (2)y 22x ==-,()121x +(3)y =2|x-1| (4)y =|1-3x |解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x+ 解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y=-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b ba a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x - 6、下列2()(1)x xf x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数(一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.负数没有偶次方根;0的任何次方根都是0,记作。

当是奇数时,,当是偶数时, 2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)·;(2);(3).(二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 0<a<1 定义域 R 定义域 R 值域y>0 值域y>0 在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;指数函数·例题解析【例1】求下列函数的定义域与值域:解 (1)定义域为x∈R且x≠2.值域y>0且y≠1. (2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0. (3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3,练习:(1);(2);(3);【例2】指数函数y=ax,y=bx,y=cx,y=dx的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C. b<a<1<d<cD.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.练习:指数函数①②满足不等式 ,则它们的图象是 ( ).【例3】比较大小:(3)4.54.1________3.73.6 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y1=4.5x,y2=3.7x的图像如图2.6-3,取x=3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).练习:(1)1.72.5 与 1.73( 2 )与 ( 3 ) 1.70.3 与 0.93.1(4)和【例5】作出下列函数的图像:(3) y=2|x-1| (4)y=|1-3x| 解 (2)y=2x-2的图像(如图2.6-5)是把函数y=2x的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y=2|x|的图像,再把y=2|x|的图像向右平移1个单位,就得y=2|x-1|的图像(如图2.6-6).解 (4)作函数y=3x的图像关于x轴的对称图像得y=-3x的图像,再把y=-3x的图像向上平移1个单位,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为对称轴翻折到x轴上方而得到.(如图2.6-7) (1)判断f(x)的奇偶性;(2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R.</PGN0095A.TXT/PGN> ∴函数f(x)为奇函数.即f(x)的值域为(-1,1). (3)设任意取两个值x1、x2∈(-∞,+∞)且x1<x2.f(x1)-f(x2) 单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简,结果是()A、 B、 C、 D、 2、等于()A、 B、 C、 D、 3、若,且,则的值等于()A、 B、 C、 D、2 4、函数在R上是减函数,则的取值范围是()A、 B、 C、 D、 5、下列函数式中,满足的是( ) A、 B、 C、 D、 6、下列是()A、奇函数B、偶函数C、非奇非偶函数D、既奇且偶函数 7、已知,下列不等式(1);(2);(3);(4);(5)中恒成立的有()A、1个B、2个C、3个D、4个 8、函数是()A、奇函数B、偶函数C、既奇又偶函数D、非奇非偶函数 9、函数的值域是()A、 B、 C、 D、 10、已知,则函数的图像必定不经过()A、第一象限B、第二象限C、第三象限D、第四象限 11、是偶函数,且不恒等于零,则( ) A、是奇函数 B、可能是奇函数,也可能是偶函数 C、是偶函数 D、不是奇函数,也不是偶函数 12、一批设备价值万元,由于使用磨损,每年比上一年价值降低,则年后这批设备的价值为()A、 B、 C、 D、二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本节知识点
1、
(一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)

55n n n ⎧=⎪⎨=-⎪⎩正数的次方根是正数当是奇数时,负数的次方根是负数

20,n a n n ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根
◆ 0的任何次方根都是0
2

n a =当

,0,0a a n a a a ≥⎧==⎨-≤⎩当 3、 分数指数幂

**0,,,1)1(0,,,1)m n m n m n a a m n N n a a a m n N n a -⎧=>∈>⎪⎪⎨=>∈>⎪⎪⎩
正分数指数幂的意义且当为正数时,负分数指数幂的意义且 ◆ 00⎧⎨
⎩0的正分数指数幂等于当a 为时,0的负分数指数幂无意义
4、 有理指数幂运算性质
①(0,,)r s r s a a a a r s Q +=>∈

()(0,,)r s rs a a a r s Q =>∈
③()(0,0,)r r r ab a b a b r Q =>>∈
5、指数函数的概念
6、指数函数x y a =在底数1a >及01a <<这两种情况下的图象和性质:
1a > 01a << 图

性质 (1)定义域:
(2)值域:
(3)过点 ,即0x =时1y = (4)
(4)
7、比较指数或指数幂的大小
(1)0.80.73,3
(2)0.8 2.31.7,0.9(3)(01)m n a a a <<<(4)(1)m n a a a >>
8、指出函数2x y =与1
()2x
y =图象间的关系 (动手画图,猜想概括)
9、方法总结。

相关文档
最新文档