运算放大器四种负反馈

合集下载

交流负反馈的四种基本组态

交流负反馈的四种基本组态
20
2、电流串联负反馈电路
反馈网络由R组成。根据 运放的虚地原则,iN-≈0,有
u f ui
u f RiO
则:
uf Fui R io
1 iO 1 Aiuf Fui u f R uO uO iO RL Auuf RL Aiuf ui iO ui R
15
2、当(1+AoF)>1时,则Af<Ao,即引入负反馈 后放大倍数比无负反馈时有下降。
AO Af 1 AO F
3、当(1+AoF)<1时,则Af >Ao,即引入反馈为 正反馈,该现象发生在原在中频段为负反馈的电路, 工作于低频或高频段后由于放大倍数降低或产生附加 相移时可能出现该现象。 4、当(1+AoF)=0时,则Af =∞,即在没有输入 信号条件下仍有输出信号。该现象称为自激振荡。对 负反馈电路,自激振荡会破坏正常工作状态,应尽量 避免和消除。在有的场合也利用正反馈产生自激振荡 给电路提供信号源。 16
21
3、电压并联负反馈电路
反馈网络由R组成。 根据运放的虚地原则 ip+≈0,有
uo if R if 1 则: Fiu uo R
i f ii
1 uO Auif R Fiu i f uO uO ii 1 R Ausf Auif us ii us RS RS
22
4、电流并联负反馈电路
反馈网络由R1、R2 组成。根据运放的虚地 原则ip+≈0,有
R2 if iO R1 R2 i 则: Fii f R2 io R1 R2 1 iO R1 R2 R1 Aiif ( 1 ) Fii i f R2 R2 uO iO RL RL R1 RL Ausf Aiif ( 1 ) us ii Rs RS R2 RS

放大电路中的负反馈

放大电路中的负反馈

ube= ui – uf 反馈到发射极为串联反馈
判断电压、电流反馈
共发射极电路
RL
+ uo
iE
io RL

从集电极引出 为电压反馈 从发射极引出 为电流反馈
判断反馈类型的口诀
共发射极电路
集出为压,射出为流
基入为并,射入为串
共集电极电路为典型的电压串联负反馈
例3:判断图示电路中的负反馈类型 RB1 C1
rof (1 A0 F )ro
电流负反馈具有稳定输出电流的作用, 即有恒流输出特性,故输出电阻提高



RL
分立元件的放大电路反馈类型的判别 例 1: +UCC RB1 C1 RS + ui RB2
RC
C2 +
净输入信号:
ube = ui - uf ui 与 uf 串联,以电 压形式比较 —串联反馈
+ uS – –
+ + ube – + RL uo RE u f – ie –
反馈电压uf 削弱了净输入电压 —负反馈 uf = ie RE ic RC uf 正比于输出电流—电流反馈
之差时,是负反馈;否则是正反馈
例1: 试判别下图放大电路中从运算放大器A2输出端引至 A1输入端的是何种类型的反馈电路 串联电压负反馈
+ ui –

- – +u + A1 o1 R –u + f



– + + A2

uo
解: 先在图中标出各点的瞬时极性及反馈信号; 因反馈电路直接从运算放大器A2的输出端引出,所以 是电压反馈 因输入信号和反馈信号分别加在反相输入端和同相输 入端上,所以是串联反馈 因输入信号和反馈信号极性相同,所以是负反馈

集成运算放大器中反馈的类型和判别方法

集成运算放大器中反馈的类型和判别方法

集成运算放大器中反馈的类型和判别方法作者:周庆华来源:《硅谷》2014年第10期摘要在电子电路中,反馈的应用是极为广泛的,而集成运算放大器(简称集成运放)中引入的负反馈更对其电路的性能有着十分重要的影响。

文章就集成运算放大器中反馈的类型进行了描述,并对反馈的几种不同判别方法进行了研究和总结。

关键词集成运算放大器;反馈;反馈类型;判别方法中图分类号:TN722 文献标识码:A 文章编号:1671-7597(2014)10-0132-021 反馈的分类(类型)将电路输出端输出的电压或者电流的全部或者其中的一部分,通过反馈电路引回到输入端(如图1)称为反馈。

图1反馈根据对输入端信号的增强或者削弱情况,又可以分为正反馈和负反馈两种不同的类型。

若Xd(净输入信号)>Xi(输入信号),即Xf(反馈信号)对集成运算放大器的输入端Xi(输入信号)起到了增强的作用,则此种反馈被称之为正反馈;若Xd(净输入信号)负反馈根据从集成运算放大器输出端引出的方式不同又可以分为电压反馈(或者电流反馈);根据引回到集成运算放大器的输入端形式的不同又可以分为串联反馈(或者并联反馈),最后再根据输出端和输入端不同的引出引入方式组合成四种类型的负反馈,即:电压-并联-负反馈、电流-并联-负反馈、电压-串联-负反馈、电流-串联-负反馈。

2 反馈的判别方法针对集成运算放大器而言,反馈的判别是有一定的步骤的。

首先判断有无反馈;接着判断是正反馈还是负反馈;如果是负反馈,最后再判断负反馈的类型。

2.1 有无反馈的判别方法如果集成运算放大器的输出端和输入端有电路连接,并且反馈电路将输出端的电压或电流引入到输入端,则说明此时的电路有反馈(如图2)。

图2但有一种集成运算放大器的电路需要特别注意,虽然看似有反馈,但实际电路是直接接地的,输出端的信号没有引回到输入端,此时的集成运算放大器电路是没有反馈的(如图3)。

图32.2 正反馈和负反馈的两种判别方法方法一:集成运算放大器正反馈和负反馈的通用判别方法一般采用的是瞬时极性法,具体的判别分成以下三个步骤:①先任意假设集成运算放大器的两个输入端的任一输入端在某一瞬间的极性(假设时可以假设极性为“+”,也可以假设极性为“-”);②根据反相输入端电位的瞬时极性与同相输入端电位的瞬时极性相反;输出端电位的瞬时极性与反相输入端电位的瞬时极性相反;输出端电位的瞬时极性与同相输入端电位的瞬时极性相同的三个标准(或者直接看集成运算放大器图形的符号,标示“+”相同符号的端口极性相同,标示“+”、“-”不同符号的端口极性相反),标出集成运算放大器另外一个输入端和输出端电位的瞬时极性;③根据反馈电路上所标示出的极性,与输入端标示的极性进行对比,即可以确定反馈类型。

负反馈放大电路讲解

负反馈放大电路讲解

6.1.2 反馈的分类和判断
1. 正反馈和负反馈
• 正反馈:加入反馈后,净输入信号增大,输出
幅度增大,等效增益增大.负反馈:加入反馈后, 净输入信号减小 ,输出幅度减小 ,等效增益 下降.
• 判断方法: 根据反馈极性的不同:即先假定输入 信号为某一个瞬时极性,然后逐级推出电路其 他有关各点瞬时信号的相位变化,最后判断反 馈到输入端信号的瞬时极性是增强还是削弱了
负反馈
正反馈
以上输入信号和反馈信号的瞬时极性都是指对地而 言,这样才有可比性。
2. 直流反馈与交流反馈 直流反馈:反馈量只包含直流量;交流反馈:反馈量中只 有交流量;交直流反馈:如果反馈量既有直流量又有交流 量。 判断方法:根据反馈量本身的交、直流性质。
举例:判断下列图(a)与(b)何为直流反馈?何为交流反馈?
用,使放大倍数提高。
⊕ ⊕
输入电压vI加在集成运放的同

相端(+)且设瞬时极性为正(⊕,
代表该点瞬时信号的变化为增
大);则输出电压的瞬时极性也为
正(⊕,该点瞬时信号的变化为增
大);而反馈电压vF由输出端通过 电阻R3、R4分压后得到,因此, 反馈电压消弱了输入电压的作
用,使放大倍数提高降低。
正反馈和负反馈的判断法之二:
Rf、Cf网络中流过的电流iF=io,为电 流反馈。或者,将输出端短路,反 馈量仍存在,为电流反馈。
电压与电流反馈的简易判断方法
• 一般来说: • 反馈元件直接接在输出端为电压反馈。 • 反馈元件只要没有直接接到输出端,均为电流反馈。 • (特别注意:负载不属于放大器,因此不能算作反馈元
件。)
4.串联反馈和并联反馈 并联反馈:反馈信号与输入信号加在放大电路输入回 路的同一个电极; 串联反馈:反馈信号与输入信号加 在放大电路输入回路的两个电极。

5-负反馈放大电路

5-负反馈放大电路

|| ||
A |,负 反 馈 A |,正 反 馈
=0,| Af |,自 激 振 荡
深度负反馈条件下闭环放大倍数的表达式
1A F 1时
A f
1 F
1)如果
1AF 1
,则 A A 。这就是负 f
反馈的情况,因为它表示反馈的引入削弱了
输入量的作用,使闭环增益下降。
因为
Xid =1XAi F
可见负反馈的作用是使真正加到放大电路输 入端的净输入量减小到无反馈时的
5.3 深度负反馈放大电路 放大倍数的估算
5.3.1 深度负反馈的实质
5.3.2 四种组态负反馈放大电路放大倍数分析
5.3.1 深度负反馈的实质
xi
x id
A
xf
F
xo
深度负反馈时, 输入信号与反馈信号的关系?
净输入量=?
1. 深度负反馈的实质

1AF 1 时,
A f
A 1 =1A F F

A f
用输出开路法:io=0时if=0 故为电流反馈 用输出短路法:uo=0时if存在 故为电流反馈
例5-5 判断下列电路引入的是电压反馈还是电流反馈?
io
+ uf
if
io
RL
-
负载电阻RL 不出现在反馈回路中: 为电压反馈
负载电阻RL 出现在反馈回路中: 为电流反馈
6. 串联反馈和并联反馈的判断
串联反馈:反馈信号与输入信号以 RS
1. 反馈 — 将电路的输出量(电压或电流)的部分或全部, 通过一定的元件,以一定的方式回送到输入回路并影 响输入量(电压或电流)和输出量的过程。
2. 信号的两种流向
正向传输:输入 输出 — 开环 反向传输:输出 输入

运算放大器与负反馈

运算放大器与负反馈
(3)如果需要稳定输出电压和减小输出电阻,应该在放大电路中 引入电压负反馈;需要稳定输出电流和提高输入电阻,应该引入电流 负反馈。
(4)如果需要提高放大电路的输入电阻,应该引入串联负反馈; 如果需要减小放大电路的输入电阻,应该引入并联负反馈。
3.3 理想运算放大器
3.3.1 理想运算放大器的电路模型
这就是同号器或称电压跟随器,电路如图3.4.4所示。
ቤተ መጻሕፍቲ ባይዱ
3.4 运算放大器的线性应用
3.4.3 差动输入运算
差动运算放大电路在测量和控制系统中应用很广泛,它的两个输入 端都有信号输入,其运算电路如图3.4.5所示。由于引入深度负反馈, 运放电路为线性应用电路,故可应用叠加原理进行分析。
当uI1单独作用于集成运放时,电路是一个反相基本电路,故uO1为
第3章 运算放大器与负反馈
前言
集成运算放大器(integrated operational amplifier) 是一种高增益的多级直接耦合放大器,是模拟集成电路中最 主要的一类器件。由于早期它主要用于模拟量的某些数学运 算,故称为运算放大器。随着近代集成电路技术的发展,目 前集成运算放大器的性能已达到了相当理想的程度,如电压 放大倍数可达108,输入电阻达几百兆欧,输出电阻小到几欧, 共模抑制比高达160 dB。几乎不存在失调和漂移,其性能十 分稳定可靠,且使用方便、价格低廉,从而使它的应用超出 了模拟运算的范围,在信号处理、信号测量、波形转换及自 动控制等领域都得到了广泛应用。集成运算放大器是电子线 路中重要的元器件,集成运算放大器的运用是电子技术最重 要的基础部分。
iI≈iF 及
u-≈u+=0(虚地) 由图3.4.1可得
所以闭环电压放大倍数为
3.4 运算放大器的线性应用

实验四 负反馈放大器

实验四 负反馈放大器
VoL AVL = Vi AV∞ Vo∞ = Vi
(4)测量负反馈放大电路的输入电阻Ri 测量负反馈放大电路的输入电阻R
在输入端串接交流电流表,并接交流电压表,可测 得输入电阻Ri:
Vi Ri = Ii
(5)测量负反馈放大电路的输出电阻Ro 测量负反馈放大电路的输出电阻R
用带载和空载法,可测得输出电阻Ro
表5-1:
VE1 (V ) VB1 VC1 VE2 VB2 VC2 RW1 RW2 (V ) (V ) (V ) (V ) (V ) (Ω) (Ω)
估算值 实测值
2.基本放大电路动态参数估算及测量
(1)基本放电路动态参数测量电路 (1)
K
将开关K2打开 ,构成基本放电路,输入正弦信号 (f=1kHz Vi1=1mV) 在输出波形不失真的条件下,进行动态测量。
三、 实验内容
1.静态工作点估算及调试
(1)静态工作点估算 根据给定参数:VCC=12V、VBE=0.75V、IC1=1.3mA IC2=4mA、β1=β2=100,估算静态工作点VB1、VC1、 VE1和VB2、VC2、VE2的值,RW1和RW2的值。
VE ≈ IC×RE VB = VE +VBE VC = VCC-(IC×RC) RW =〔(VCC-VB)/ IR1〕-Rb1 IR1≈IR2 = VB/Rb2
放大电路输出电阻(第二级输出电阻):
(3)测量基本放大电路放大倍数 输入的正弦信号(f=1kHz Vi1=1mV),用示波器 观察,在输出波形不失真的条件下,进行动态 测量。 空载、带载放大倍数:
VoL AVL = Vi
AV∞
Vo∞ = Vi
(4)测量基本放大电路输入电阻Ri 测量基本放大电路输入电阻R

第 5 章 负反馈放大电路

第 5 章 负反馈放大电路

教学难点:
负反馈对放大电路性能的影响
第一节 反馈的基本概念
一、反馈与反馈支路
反馈:就是将放大电路输出信号(电压或电 流信号)的全部或一部分,通过反馈支路形成反馈 信号引回到输入端,和输入信号作比较(相加或相 减),再由比较所得的信号去控制输出。这样一来, 输出不但取决于输入,也取决于输出本身。
二、反馈放大电路的组成


ui
解: 因反馈信号取自输出电流,所以是电流反馈;
因输入信号和反馈信号均加在同相输入端上,所
以是并联反馈;
作业:P106 17.1.2 , P106 17.2.1
第三节 负反馈对放大电路性能的影响
一、提高放大倍数的稳定性
A Af 1 AF
将Af对A求导,得到
dAf 1 1 ,即dAf dA 2 2 dA (1 AF ) (1 AF )
第 5 章 负反馈放大电路
第一节 反馈的基本概念
第二节 反馈电路的类型与判别
第三节 负反馈对放大电路性能的影响
第 5 章 负反馈放大电路
教学目的及要求:
1.掌握负反馈的概念及含义 。 2.理解负反馈放大电路。 3.理解负反馈对放大电路性能的影响。
教学重点:
负反馈的概念及含义、负反馈对放大电路性能 的影响
负反馈信号取自输出电压,反馈信号与输入信号相并联。
(3)电流串联负反馈:
负反馈信号取自输出电流,反馈信号与输入信号相串联。
(4)电流并联负反馈: 负反馈信号取自输出电流,反馈信号与输入信号相并联。
二、反馈极性的判别(瞬时极性法)
利用瞬时极性法判别负反馈与正反馈的步骤 1.设接“地”参考点的电位为零。
图 (a) 直流反馈

反馈放大器详解

反馈放大器详解

输入信号反馈信号净输入信号反馈放大器反馈过程:在电子系统中把输出回路的电量(电压或电流)以一定的方式(串联、并联)馈送到输入回路的过程。

输入信号、反馈信号、净输入信号−−−−−−−−↓←↓←↑↑→↑→↑→BE B B E E C B V I V V I I I 不变因V B I e+V e -+V BE -正反馈正反馈+-负反馈负反馈可以改善放大电路的性能。

be Lv r RA 'β−=Vo 与Vi 反相若Vi 瞬时极性为正,则Vo 瞬时极性为负+-+-+-_+A电流串联正反馈负反馈类型负反馈类型电压串联负反馈电压串联负反馈电压并联负反馈电压并联负反馈电流串联负反馈电流串联负反馈电流并联负反馈电流并联负反馈电压反馈基本放大器反馈网络i V 'i V fV oI gR LR +−+−+−.AF A F♁♁♁♁v i v id v f v o电压负反馈稳定输出电压串联反馈考虑电压间♁♁♁♁○+v f-反馈信号和输入信号加于输入回路两点时,○○♁♁○♁AFoI gR LR V .+−gI i I 'i I fI ...AF♁v oI i I id I f○负反馈。

iI fI 'i I 反馈信号和输入信号同一点时,为正反馈。

AFoI gR LR iI 'i I f I ...♁i i i idi f○A F○反馈信号和输入信号加于输入回路同一点时,i o电流负反馈稳定输出电流iI •iI•'○○♁♁♁fI •○AF i V 'i V f V o I gR L R +−+−+−A F ♁♁v i v id v f ♁反馈信号和输入信号两点时,为负反馈。

i o电流串联负反馈−−−−−−−−↓←↓←↑↑→↑→BE B B E C B V I V V I I 不变因输入端:串联反馈和并联反馈反馈信号与输入信号加在输入回路的同一个电极上,则为并联反馈;反之,加在放大电路输入回路的两个电极,则为串联反馈。

负反馈放大电路的四种基本类型

负反馈放大电路的四种基本类型

输出回路
_
iO
A
+
+
u_O RL
R2 R3
a. 判断反馈网络
反馈网络F
上页 下页 返回
模拟电子技术基础
b. 判断反馈极性 ⊕
利用瞬时极性法 +
当uI>0时
uS
_
uO<0
R1
+ iI
i Id
uI i F
_
_
iO
A
+
+
u_O RL
R2 R3
反馈信号极性为负 削弱了输入信号
负反馈
上页 下页 返回
模拟电子技术基础
+
uI
_
VCC
RB1
C1 +
+ u Id
_
T
C
+
2
RB2
+ u_F R E
+
RL uO
_
(a) 反馈网络F与RL并联,属电压反馈。
F
(b) 反馈电压uF与输入电压uI串联于电路的输入端, 属串联反馈。 电压串联负反馈
上页 下页 返回
模拟电子技术基础
d. 电压负反馈的作用
能够稳定输出电压
+
uI
_
稳定输出电压的原理
d. 电流并联负反馈
方框图

+
Ii

U_i
R1

Iid

A

If

F

Io
RL
上页 下页 返回
模拟电子技术基础
4. 负反馈放大电路举例
(1) 电压串联负反馈

第4章 放大电路中的负反馈

第4章 放大电路中的负反馈

第4章 放大电路中的负反馈
图4-4 交流反馈和直流反馈 (a) 交流反馈;(b) 直流反馈; (c) 交、 直流反馈
第4章 放大电路中的负反馈
3.电压反馈和电流反馈 由于基本放大电路和反馈网络均是四端双口, 因
此基本放大电路 A 与反馈网络 F 的端口连接方式就
有串联和并联的区别。
基本放大电路 A 与反馈网络 F 在反馈放大电路
路。 假设输入信号瞬时极性为⊕, 则V1的集电极电位
, V2
, 因为电阻不改变信号的极
性, 所以通过Rf送回原输入端反馈信号的瞬时极性为
。 根据图中标出的各点瞬时极性, 反馈信号回到V1
的基极, 与原输入信号在同一点并且极性相反, 因此,
净输入信号减小, 为负反馈。
第4章 放大电路中的负反馈
图4-9 电流并联负反馈
阻Rf上的电流就是反馈电流, 方向按照瞬时极性从⊕ 。
第4章 放大电路中的负反馈
图4-10 电压并联负反馈
第4章 放大电路中的负反馈
4) 电流串联负反馈 图4-11为分压式偏置共发射极放大电路。 反馈元 件为Re1 、 Re2和Ce, 由于旁路电容的存在, Re1 和Re2 构成直流反馈, 交流反馈仅由Re1构成。 由瞬时极性看 出, 净输入信号减小, 为负反馈。
输入端的连接方式, 叫做比较方式, 根据比较方式的 不同, 分为串联反馈和并联反馈, 如图4-6所示。
第4章 放大电路中的负反馈
图4-6 串联反馈和并联反馈(比较方式) (a) 串联反馈; (b) 并联反馈
第4章 放大电路中的负反馈
4.1.3 负反馈的四种基本类型与判别方法 因为不同的反馈类型对放大电路性能的影响大不
第4章 放大电路中的负反馈

集成运算放大器中反馈的类型和判别方法

集成运算放大器中反馈的类型和判别方法

集成运算放大器中反馈的类型和判别方法作者:周庆华来源:《硅谷》2014年第10期摘要在电子电路中,反馈的应用是极为广泛的,而集成运算放大器(简称集成运放)中引入的负反馈更对其电路的性能有着十分重要的影响。

文章就集成运算放大器中反馈的类型进行了描述,并对反馈的几种不同判别方法进行了研究和总结。

关键词集成运算放大器;反馈;反馈类型;判别方法中图分类号:TN722 文献标识码:A 文章编号:1671-7597(2014)10-0132-021 反馈的分类(类型)将电路输出端输出的电压或者电流的全部或者其中的一部分,通过反馈电路引回到输入端(如图1)称为反馈。

图1反馈根据对输入端信号的增强或者削弱情况,又可以分为正反馈和负反馈两种不同的类型。

若Xd(净输入信号)>Xi(输入信号),即Xf(反馈信号)对集成运算放大器的输入端Xi(输入信号)起到了增强的作用,则此种反馈被称之为正反馈;若Xd(净输入信号)负反馈根据从集成运算放大器输出端引出的方式不同又可以分为电压反馈(或者电流反馈);根据引回到集成运算放大器的输入端形式的不同又可以分为串联反馈(或者并联反馈),最后再根据输出端和输入端不同的引出引入方式组合成四种类型的负反馈,即:电压-并联-负反馈、电流-并联-负反馈、电压-串联-负反馈、电流-串联-负反馈。

2 反馈的判别方法针对集成运算放大器而言,反馈的判别是有一定的步骤的。

首先判断有无反馈;接着判断是正反馈还是负反馈;如果是负反馈,最后再判断负反馈的类型。

2.1 有无反馈的判别方法如果集成运算放大器的输出端和输入端有电路连接,并且反馈电路将输出端的电压或电流引入到输入端,则说明此时的电路有反馈(如图2)。

图2但有一种集成运算放大器的电路需要特别注意,虽然看似有反馈,但实际电路是直接接地的,输出端的信号没有引回到输入端,此时的集成运算放大器电路是没有反馈的(如图3)。

图32.2 正反馈和负反馈的两种判别方法方法一:集成运算放大器正反馈和负反馈的通用判别方法一般采用的是瞬时极性法,具体的判别分成以下三个步骤:①先任意假设集成运算放大器的两个输入端的任一输入端在某一瞬间的极性(假设时可以假设极性为“+”,也可以假设极性为“-”);②根据反相输入端电位的瞬时极性与同相输入端电位的瞬时极性相反;输出端电位的瞬时极性与反相输入端电位的瞬时极性相反;输出端电位的瞬时极性与同相输入端电位的瞬时极性相同的三个标准(或者直接看集成运算放大器图形的符号,标示“+”相同符号的端口极性相同,标示“+”、“-”不同符号的端口极性相反),标出集成运算放大器另外一个输入端和输出端电位的瞬时极性;③根据反馈电路上所标示出的极性,与输入端标示的极性进行对比,即可以确定反馈类型。

运放反馈判断方法

运放反馈判断方法

运放反馈判断方法
负反馈放大器可组合成四种类型,即:电流串联、电流并联、电压串联、电压并联四种负反馈类型。

 正负反馈的判断
 正负反馈的判断使用瞬时极性法。

瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。

这个信号通过放大电路和反馈回路回到输入端。

反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。

(运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反)
 共射极放大器:集电极与基极电位反相;
 共基极放大器:集电极与发射极电位同相;
 共集极放大器:发射极与基极电位同相;
 正反馈:输入极性和反馈极性相同。

负反馈放大电路_电子电路

负反馈放大电路_电子电路
电压反馈稳定输出电压 V 0 电流反馈稳定输出电流 I
0
4、按反馈信号与输入信号的关系:(反馈与输入端的连接情况)
输入、反馈、偏差(净输入)连接:串联反馈、并联反馈
、 V f 、 V id 是串联的 串联反馈: V i

V f V id 即V i


并联反馈: I i 、 I f 、 I id 是并联的
结论:负反馈使闭环放大倍数稳定度提高了 (1 AF )倍,
dA f dA 3 即 为10 若1 AF 100,则 为10 5。 A Af
二、扩展放大器的通频带 负反馈降低了由于信号频率变化引起的放大倍数不稳定程度, 结果表现为扩大了放大器的通频带。大约扩展了(1+AF)倍 三、减小了非线性失真 四、对输入电阻、输出电阻的影响



I f I id 即I i


如右图: V V f V id 则:该电路为串联反馈 i 负反馈的电路型式:四种反馈组态 (1) 电压串联负反馈(2) 电流串联负反馈 (3) 电压并联负反馈(4) 电流并联负反馈
第二节
负反馈放大器的基本关系式
一、负反馈放大器的方框图表示
(2)若1 A F 1,


A f A 反馈增强输入是正反馈


(3) 1 A F 0,


Af

正反馈,属于自激振荡,无输入,即有输出
1 (4)当1 A F 》 1,深度负反馈,A f F
, A F 对不同类型反馈具有不 同量纲 f A,
x o A d x
F F x x i x d x f x d F o x d A d x d 1 A x

运算放大器电路中的负反馈

运算放大器电路中的负反馈

反馈信号与输入信号在输入端以电压的形式比较——串联 反馈
特点:输入电阻高、输出电阻低
3. 串联电流负反馈

u+i
uf
R1 R2
+ u+–d
– +

io +
RL
uo
R
设输入电压 ui 为正, 各电压的实际方向如图 差值电压 ud =ui – uf uf 削弱了净输入电压(差值 电压) ——负反馈
反馈电压 uf =Rio 取自输出电流 ——电流反馈
例如:在图 (a) 所示电路中,
(1) 当无负反馈时, ud≈ ui
Rf
(2) 当增加 Rf 和 R1 后: ud≈ ui-uf
当 uo = 0时: uf = 0
因此 uf∝uo
- uf + - -
R1
ui R2
ud
+
+
Ao +
uo
RL
图 (a) 串联电压负反馈 集成运放电路中的负反馈
◆ 结论: Rf和 R1 :串联电压负反馈。
反馈信号与输入信号在输入端以电流的形式比较 ——并 联反馈
运算放大器电路反馈类型的判别方法:
1. 反馈电路直接从输出端引出的,是电压反馈; 从负载电阻RL的靠近“地”端引出的,是电流反馈;
2. 输入信号和反馈信号分别加在两个输入端(同相和 反相)上的,是串联反馈;加在同一个输入端(同相或反 相)上的,是并联反馈;
联反馈
特点:输入电阻低、输出电阻低
2. 串联电压负反馈
RF
+
ui


uf + R1 u–+d
– +

实验四负反馈放大器(1)

实验四负反馈放大器(1)

实验二 晶体管共射极单管放大器一、实验目的1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3、 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。

图2-1 共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算CC B2B1B1B U R R R U +≈U CE =U CC -I C (R C +R E ) 电压放大倍数beLC V r R R βA // -= 输入电阻R i =R B1 // R B2 // r be 输出电阻 R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大器四种负反馈
一、分类
按输出端采样方式分为:电压负反馈、电流负反馈。

按输入端接入电路方式分为:串联反馈、并联反馈。

即组合为四种方式:并联电压负反馈(图1)、
串联电压负反馈(图2)、
并联电流负反馈(图3)、
串联电流负反馈(图4)。

二、区分
电压/电流反馈区分方法:输出端的反馈取样点与输出点在同一点时,则为电压反馈,反之
为电流反馈。

并联/串联反馈区分方法:反馈信号引回信号输入同一端,则为并联反馈;反之为串联反馈。

三、示图
图1 并联电压负反馈
图2 串联电压负反馈
图3并联电流负反馈
图4串联电流负反馈
四、图解
图1并联电压负反馈是反相比例运算电路。

反馈电流取自输出电压(即负载电压),并与之成正比,故为电压反馈。

反馈信号与输入信号在输人端以电流的形式作比较,两者并联,故为并联反馈。

因此,反相比例运算电路是引入并联电压负反馈的电路。

由前面讨论可知,电压负反馈的作用是稳定输出电压,并联反馈电路则降低输入电阻。

反馈系数F由定义式得出:其中XF为反馈电流,所以反馈系数 。

可见,反馈系数具有电导(电阻的倒数)的量纲,称为互导反馈系数。

图2串联电压负反馈是同相比例运算电路。

反馈电压取自输出电压,并与之成正比,故为电压反馈。

反馈信号与输入信号在输入端以电压的形式作比较.两者串联,故为串联反馈。

因此,同相比例运算电路是引入串联电压负反馈的电路。

反馈系数F由定义式 得 电压负反馈的作用是稳定输出电压,串联反馈电路则有很高的输入电阻。

图3并联电流负反馈是反相输入恒流源电路。

反馈电流取自输出电流,并与之成正比,故为电流反馈。

反馈信号与输入信号在输入端以电流的形式作比较,两者并联,故为并联反馈,因此,反相输入恒流源电路是引入并联电流负反馈的电路。

图4串联电流负反馈是同比例运算电路。

反馈电压取自输出电流(即负载电流)并与之成正比,故为电流反馈。

反馈信号与输入信号在输入端以电压形式作比较,两者串联,故为串联反馈。

因此,同相输入恒流源电路是引入串联电流负反馈的电路。

反馈系数F具有电阻的量纲,称为互阻反馈系数。

五、各方式特征说明
电压反馈,输出电阻小,输出电压稳定,低噪声,DC特性良好,反馈回路不受限制。

电流反馈,输出电阻大,输出电流稳定,具有更快的压摆率,失真小,反馈回路受限制。

串联反馈,输入电阻大,适合采样弱点压信号。

并联反馈,输入电阻小,输出电压纹波小。

相关文档
最新文档