管内强制对流实验数据处理
化工原理实验之对流传热实验
化工原理实验之对流传热实验————————————————————————————————作者:————————————————————————————————日期:ﻩ化工原理实验报告之传热实验学院学生姓名专业学号年级二Ο一五 年 十一月一、实验目的1.测定冷空气—热蒸汽在套管换热器中的总传热系数K; 2.测定空气或水在圆直管内强制对流给热系数;3.测定冷空气在不同的流量时,Nu 与Re 之间的关系曲线,拟合准数方程。
二、实验原理(1)冷空气-热蒸汽系统的传热速率方程为m t KA Q ∆=)ln(2121t t t t t m ∆∆∆-∆=∆,11t T t -=∆,22t T t -=∆ )(21t t C V Q p -=ρ式中,Q —单位时间内的传热量,W ;A —热蒸汽与冷空气之间的传热面积,2m ,dl A π=; m t ∆—热蒸汽与冷空气之间的平均温差,℃或K K —总传热系数,)℃/(2⋅m W ;d —换热器内管的内直径,d =20m m l —换热器长度,l =1.3m ;V —冷空气流量,s m /3;pC 、ρ—冷空气密度,3/m kg 空气比热,kg J /;21t t 、—冷空气进出换热器的温度,℃; T —热蒸汽的温度,℃。
实验通过测量热蒸汽的流量V,热蒸汽进、出换热器的温度T 1和T 2 (由于热蒸汽温度恒定,故可直接使用热蒸汽在中间段的温度作为T),冷空气进出换热器的温度t 1和t2,即可测定K 。
(2)热蒸汽与冷空气的传热过程由热蒸汽对壁面的对流传热、间壁的固体热传导和壁面对冷空气的对流传热三种传热组成,其总热阻为:2211111d h d d bd h K m ++=λ 其中,21h h 、—热空气,冷空气的给热系数,)℃/(⋅m W ;21d d d m 、、—内管的内径、内外径的对数平均值、外径,m ; λ—内管材质的导热系数,)℃/(⋅m W 。
在大流量情况下,冷空气在夹套换热器壳程中处于强制湍流状态,h2较大,221d h d 值较小;λ较大,md dλ1值较小,可忽略,即 1h K ≈(3)流体在圆形直管中作强制对流时对管壁的给热系数关联式为n m C Nu Pr Re '=。
对流给热系数的测定(数据处理)
实验三 对流给热系数的测定一、实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气(或水)在圆直管内强制对流给热系数i α;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
4、掌握热电阻测温的方法。
二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1)式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃);αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃;A i ——内管的外壁、内壁的传热面积,m2;(T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2)(t w -t)m ——内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- (1-3)式中:T 1、T 2——蒸汽进、出口温度,℃;T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1-3)可得:m w P i t t A t t C V )()(012--=ρα (1-4)若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。
实验8 空气横掠单管强迫对流换热系数测定实验
实验8 空气横掠单管强迫对流换热系数测定实验一、实验目的1. 测算空气横掠单管时的平均换热系数h 。
2. 测算空气横掠单管时的实验准则方程式13Re Pr nNu C =⋅⋅。
3. 学习对流换热实验的测量方法。
二、实验原理 1对流换热的定义对流换热是指在温差存在时,流动的流体与固体壁面之间的热量传递过程。
2、牛顿冷却公式根据牛顿冷却公式可以测算出平均换热系数h 。
即:h=)(f W t t A Q-Q A t=⋅∆ w/m 2·K (8-1)式中:Q — 空气横掠单管时总的换热量, W ; A — 空气横掠单管时单管的表面积,m2;w t — 空气横掠单管时单管壁温 ℃;f t — 空气横掠单管时来流空气温度 ℃;t ∆— 壁面温度与来流空气温度平均温差,℃;3、影响h 的因素1).对流的方式: 对流的方式有两种; (1)自然对流 (2)强迫对流 2).流动的情况:流动方式有两种;一种为雷诺数Re<2200的层流,另一种为Re>10000的紊流。
Re — 雷诺数, Re vud =, 雷诺数Re 的物理定义是在流体运动中惯性力对黏滞力比值的无量纲数。
上述公式中,d —外管径(m ),u —流体在实验测试段中的流速(m/s ),v —流体的运动粘度(㎡/s )。
3).物体的物理性质: Pr — 普朗特数,Pr=αν= cpμ/k 其中α为热扩散率, v 为运动粘度, μ为动力粘度;cp 为等压比热容;k 为热导率; 普朗特数的定义是:运动粘度与导温系数之比 4).换面的形状和位置 5).流体集体的改变 相变换热 :凝结与沸腾4、对流换热方程的一般表达方式强制对流:由外力(如:泵、风机、水压头)作用所产生的流动 强迫对流公式为(Re,Pr)Nu f =自然对流:流体因各部分温度不同而引起的密度差异所产生的流动。
自然对流公式为Nu=f (Gr ,Pr ) 1).Re=vul =雷诺数Re 的定义是在流体运动中惯性力对黏滞力比值的无量纲数Re=UL/ν 。
强迫对流放热系数实验
实验14 强迫对流放热系数实验一、实验目的1. 了解实验装置,掌握测试仪器、仪表的使用方法;2. 学会翅片管束管外放热和阻力的测定方法。
二、实验原理空气(气体)横向流过翅片管束时的对流放热系数除了与空气流速及物性有关以外,还与翅片管束的一系列几何因素有关,函数关系如下:t l o o o o o(PP H B Nu f Re Pr N D D D D D δ=、、、、、、、)(1)式中:o Nu D α=;o m Re D U γ=;Pr C μλ=;m m G U ρ=⋅H Bδ、、分别为翅片高度、厚度、和翅片间距;P t 、P l 为翅片管的横向管间距和纵向管间距; N 为流动方向的管排数;D o 为光管外径,U m 、G m 为最窄流通截面处的空气流速(m/s )和质量流速(kg/m 2s );λ、ρ、μ、γ、α为气体的物性值。
此外,放热系数还与管束的排列方式(顺排和叉排)有关,由于在叉排管束中流体的紊流度较大,故其管外放热系数会高于顺流。
对于特定的翅片管束,其几何因素是固定不变的,这时,式(1)可简化为:(,)Nu f Re Rr = (2)对于空气,Pr 数可看作常数,故n()Nu f Re CRe== (3)式中:C 、n 为实验关联式的系数和指数。
采用光管外表面积作为基准,定义放热系数:()o a wo πQn D L T T α=-2W /m ℃(4)式中:Q 为总放热量;n 为放热管子的根数;0πD L 为支管的光管换热面积(m 2);T a 为空气平均温度(℃),T wo 为光管外壁温度(℃)。
工程上通用威尔逊方法测求管外放热系数,即:o wii111D R KD αα=--- (5)式中:K 为翅片管的传热系数,可由实验求出o πv QK n D L T T α=-()(6)其中:v T 代表管内流体的平均温度,i α是管内流体对管内壁的放热系数,w R 由管壁的导热公式计算。
管内强制对流传热膜系数的测定
装订 线实验报告课程名称: 过程工程原理实验 指导老师: 成绩:__________________实验名称: 管内强制对流传热膜系数的测定 实验类型:________________同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1、了解套管式换热器的结构和传热热阻的组成。
2、学习测定流体间壁换热总传热系数的实验方法。
3、掌握近似法和简易Wilson 图解法两种从传热系数实验数据求取对流传热膜系数的数据处理方法。
4、掌握根据实验数据获得传热准数经验公式的方法和数学工具。
5、掌握热电偶、UJ-36电位差计的长图式自动记录仪的使用方法。
二、实验内容1、在空气-水套管换热器中,测定一系列空气流量条件下冷、热流体进、出口温度。
2、通过能量衡算方程式和传热速率基本方程式计算总传热系数K i 的实验值。
3、分别用近似法、简易Wilson 图解法求取空气侧对流传热膜系数αi 。
4、根据实验获得的对流传热膜系数αi 和空气流速u i ,整理得到努赛尔数Nu 与雷诺数Re 之间的幂函数型经验公式。
5、把实验获得的经验公式与化工原理教材和参考书中的列出的同类公式进行比较,讨论其异同点。
6、根据实验装置情况分析实验测试数据的误差来源。
三、实验原理流体与固体壁面间的对流传热过程可以用牛顿冷却定律描述:()w Q A t A T t αα=∆=− (1)式中 Q ——总传热速率,W ;α——对流传热膜系数,W/ m 2·K ;A——传热面积,m 2 ; T ——流体温度,K ;t w ——固体壁面温度,K 。
如果能够用实验直接测定流体温度T 和固体壁面温度t w ,,则可以根据式(1)的关系直接计算对流膜系数α :()w Q Q A t A T t α==∆− (2)对于多数情况而言,直接测定固体壁面的温度是一件相当困难的任务,实验技术成本高且数据准确性差。
对流传热系数的测定
对流传热系数的测定北京理工大学化学学院董女青1120102745一、实验目的1、掌握对流传热系数的测定方法,测定空气在圆形直管内的强制对流传热系数, 验证准数关联式。
2、了解套管换热器的结构及操作,掌握强化传热的途径。
3、学习热电偶测量温度的方法。
二.实验原理冷热流体在间壁两侧换热时,传热基本方程及热衡算方程为:Q = KAAtm = m^Cp (t入一t出)换热器的总传热系数可表示为:1 1 b 1—------- 1 ---- 1 ----K a :入a 0 式中:Q—换热量,J/sK—总传热系数,J/(m' s)A—换热面积,m:At m-平均温度差,°CCp—比热,J/ (kg • K)nu—质量流量,kg/sb—换热器壁厚,ma i、a o—内、外流体对流传热系数,J/(m? • s)依据牛顿冷却定律,管外蒸汽冷凝,管内空气被加热,换热最亦可表示为:Q = a jAj(t w - t) = a 0A0 (T — T w)式中:t w.凡一管内(冷侧)、管外(热侧)壁温,t、T-管内(冷侧)、管外(热侧)流体温度测定空气流量、进出口温度、套管换热面积,并测定蒸汽侧套管壁温,由于管壁导热系数较大且管壁较薄,管内壁温与外壁温近似柑等,根据上述数据即可得到管内对流传热系数,由丁•换热器总传热系数近似等丁•关内对流传热系数,所以亦可得到套管换热器的总传热系数。
流体在圆形直管强制对流时满足下述准数关联式:Nu = O.O237?e°-8Pr0-33式中:Nu-努塞尔特准数,Nu=^,无因次Re—雷诺准数,Re = ^,无因次P L普兰特准数,Pr =耳,无因次测定不冋流速条件下的对流传热系数,在双对数坐标屮标绘加he关系得到一条直线,直线斜率应为0. &三、实验内容1、测定不同空气流星下空气和水蒸汽在套管换热器换热时内管空气的对流传热系数,推算总传热系数。
2、在双对数坐标中标绘M L R決糸,验证准数关联式。
化工原理基本实验
化工原理基本实验3.1 流体流动阻力的测定3.1.1 实验目的(1) 学习管路阻力损失(h f )、管路摩擦系数(λ)、管件(阀件)局部阻力系数(ζ)的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识;(2) 了解与本实验有关的各种流量测量仪表、压差测量仪表的结构特点和安装方式,掌握其测量原理,学会其使用方法。
3.1.2 实验原理实际流体沿直管壁面流过时因粘性引起剪应力,由此产生的阻力损失称为直管阻力损失f h 。
流体流过管件、阀门或突然扩大(缩小)时造成边界层分离,由此产生的阻力称为局部阻力。
上述两种阻力的测定原理如下:(1) 直管阻力损失为了测定流体流过长为l 、内径为d 的直管的阻力损失,在其两端安装一个U 形管压差计。
在压差计的上、下游取压面1-1与2-2间列伯努利方程:)2(222222111u p gz u p gz h f ++-++=ρρ (3-1)对于水平等径直管,有12z z =,12u u =,所以12f p p h ρ-=(3-2)流体流过直管的压降由压差计测定,即12()i p p gR ρρ-=- (3-3)于是()i f gRh ρρρ-=(3-4)因为22f l u h d λ=,所以在某一流量下摩擦系数可按下式计算:22()i d gRlu ρρλ-=(3-5)式中:i ρ、ρ——分别为直管阻力压差计指示剂及流体的密度;R ——U 形压差计读数。
根据因次分析,流体在直管内湍流流动时摩擦系数为雷诺准数R e 和管子相对粗糙度(ε/d )的函数,即(e,)(,)du f R f d dερελμ== (3-6)(2) 局部阻力根据局部阻力系数法,流体流过管件或阀门的阻力损失为21122()()()2i f gR p gz p gz u h ρρρρζρρ'''-+-+'=== (3-7)式中:ρ'、ρ——分别为局部阻力压差计指示剂及流体的密度;R '——U 形压差计读数。
对流传热系数的测定实验指导书
对流传热系数的测定实验指导书1 训练目的:1.1熟悉换热装置中的各种设备及名称、各类测量仪表及名称、控制阀门的作用、冷热流体进出口位置等。
1.2了解换热器的结构,掌握对装置的试压、试漏等操作技能。
1.3掌握传热系统的流程和开、停车步骤及常见事故的处理方法。
1.4学会对流传热系数的测定方法。
1.5测定空气在圆形直管内(或螺旋槽管内)的强制对流传热系数,并把数据整理成准数关系式。
1.6了解影响对流传热系数的因素和强化传热的途径。
2.实验内容:测定不同空气流量下空气和水蒸汽在套管换热器中的进出口温度,求得空气在管内的对流传热系数。
3 基本原理3.1准数关系式对流传热系数是研究传过程及换热性能的一个很重要的参数。
在工业生产和科学研究中经常采用间壁式换热装置来达到物料的冷却和加热目的,这种传热过程是冷热流体通过固体壁面(传热元件)进行的热量交换,由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对流传热所组成。
由单位传热速率议程式知,单位时间、单位传热面积所传递的热量为q=K(T-t)而对流传热所传递的热量,对于冷热流体可由牛顿定律表示q=a h·(T-T wl)或q=a·(t w2-t)式中q—传热量,W/℃;a—给热系数,W/㎡;T—热流体温度,℃;t—冷液体温度,℃;T w1、t w2—热冷液体的壁温,℃;下标:c—冷侧面h—热侧由于对流传热过程十分复杂,影响因素极多,目前尚不能通过解析法得到对流传热系数的关系式,它必须由实验加以测定获得各种因素下对流传热系数的定量关系。
为了减少实验工作量,采用因次分析法将有关的影响因素无因次化处理后组成若干个无因次数群,从而获得描述对流传热过程的无因次方块字程。
在此基础上组织实验,并经过数据处理得到相应的关系式,如流体在圆形(光滑)直管中做强制对流传热时传热系数的变化规律可用如下准数关联式表示N u=CR e m P r n=ad/λR e=duρ/µ=dw/AμNμ—努塞尔特准数;Re—雷诺准数;P r—普兰特准数;w—空气的质量流量,㎏/s;d—热管内径,m;A—换热管截面积,㎡;μ—定性温度下空气的粘度,P a·S;λ—定性温度下空气的导热系数,W/(m·℃);a—对流传热系数,W/(㎡·℃);当流体被加热时,n=0.4;被冷却时,n=0.3。
传热学实验三-对流传热实验2
传热学实验三-对流传热实验2实验三对流传热实验一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARemPr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRem中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数实验内管内径di(mm)16.00实验内管外径do(mm)17.92实验外管内径Di(mm)50实验外管外径Do(mm)52.5总管长(紫铜内管)L(m)1.30测量段长度l(m)1.10蒸汽温度空气出口温度空气入口温度蒸汽压力空气压力孔板流量计测量空气流量图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式Nu=ARem中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
化工原理 传热综合实验报告 数据处理
化工原理 传热综合实验报告 数据处理七、实验数据处理1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。
实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。
实验装置所用紫铜管的规格162mm mm φ⨯、 1.2l m =,求得紫铜管的外表面积200.010.060318576281.o S d l m m m ππ=⨯⨯=⨯⨯=。
根据24s sV V u A dπ==、0.012d m =,得到流速u ,见下表2: 表2 流速数据取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示:表3 查得的数据t 进/℃ t 出/℃ t 平均/℃()p c J kg ⋅⎡⎤⎣⎦℃ Pa s μ⋅ ()W m λ⋅⎡⎤⎣⎦℃ ()3kg m ρ-⋅ 22.1 77.3 49.7 10050.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.68459.81005 0.0000201 0.029 1.06根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、()()ln m T t T t t T t T t ---∆=--进出进出,求出Q序号 ()31sV m h -⋅ ()1u m s -⋅1 2.5 6.1402371072 5 12.280474213 7.5 18.420711324 10 24.560948435 12.5 30.701185536 15 36.841422647 17.5 42.98165975 82049.12189685和m t ∆,0S 已知,由0mQK S t =⋅∆,即可求出蒸汽冷凝与冷空气之间总传热系数K 。
4.5对流传热系数测定实验
广州大学实验报告项目名称:对流传热系数测定实验学院:化学化工学院专业年级:广州大学教务处制一、实验目的1、通过对传热系数a准数关联系的测定,掌握实验方法,加深对流传热概念和影响因素的理解。
2、应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4 中常数A、m的值。
3、加深对由实验确定经验公式的量纲分析法的理解4、得出得出单一流体下的总传热系数K。
二、实验的基本原理1、对流传热系数a i 的测定以蒸汽为加热介质走外管,空气为冷却介质走内管。
对流传热系数a I 可以根据牛顿冷却定律,通过用实验来测定。
由牛顿冷却定律:)(M W i T T S Qa -=式中:ai ——管内流体对流传热系数,W/(m2.℃); Q —传热速率,W;S —内管传热面积,㎡; Tw ——壁面平均温度,℃; Tm ——定性温度,℃。
传热面积计算公式:S=πdL 定性温度:221T T T M +=上式中:d —管内径,m;L —传热管测量段的实际长度,m;T1,T2——冷流体的入口、出口温度,℃。
传热速率)(21,T T C V Q P M M S -=ρ式中:M S V ,—冷流体在套管内的平均体积流量,m3/s; M ρ—冷流体的密度,kg/m3;P C —冷流体的定压比热容,J/(kg.℃)。
2、对流传热系数ai 准数关联式的确定流体在管内做强制湍流,准数关联式的形式为:Nu=ARemPrn在本实验条件下在管内被加热的空气,普兰特数Pr 变化不大,可近似为常数,则关联式的形式可简化为:Nu=A ’Rem 所以仅有A ’,m 两个参数。
则两边取对数得:'lg Re lg lg A m Nu +=显然,上式中是一个线性方程,通过实验测定并计算得出一系列的Nu 和Re,即可在双对数坐标系中描绘出Nu —Re 直线,然后进行线性回归即可得出m,lgA ’,继而确定准数关联式雷诺数:μπρμρπμρd V Vd du 4d 4Re 2===则努塞尔数:λadNu =上式中λμ,分别为空气的粘度、流体的热导率(在定性温度Tm 下查出)三、实验装置图附图:空气-水蒸气传热综合实验装置流程图1、普通套管换热器;2、内插有螺旋线圈的强化套管换热器;3、蒸汽发生器;4、旋涡气泵;5、旁路调节阀;6、孔板流量计;7、风机出口温度(冷流体入口温度)测试点;8、9空气支路控制阀;10、11、蒸汽支路控制阀;12、13、蒸汽放空口;14、蒸汽上升主管路;15、加水口;16、放水口;17、液位计;18、冷凝液回流口四、实验步骤:1、实验前准备,检查工作(1)向电加热釜中加水至液位计上端显示安全水位之上。
对流给热系数的测定
调节蒸汽调节阀7,使蒸汽压力稳定在0.05MPa 以下(也可用不凝气排放阀微调),蒸汽压力稳 定的条件下,由大到小调节阀10改变空气流量,测 定3~6组数据,为了保证所测数据的准确性,每组 数据之间稳定时间不得低于5min。记录数据列表。
4数据记录和处理 1)数据记录 空气流量、空气进出口温度、水蒸气压力、水 蒸气温度、壁面温度。 2)数据处理 空气流量m3/h→u,t定=(t1+t2)/2 →Re、Pr → α =0.023λ R 0.8、P 0.4/d
对流给热系数水平管外壁上的冷凝现象; 2).测定空气或水在圆形直管内强制对流给热 系数;
2 基本原理 在套管换热器中,环隙通以水蒸气,内管管内通以空 气或水,水蒸气冷凝放热以加热空气或水,在传热过程 达到稳定后,有如下关系式: VρCP(t2-t1)=αiAi(tw-t)m 式中:V 被加热流体体积流量,m3/s; ρ 被加热流体密度,kg/m3; CP 被加热流体平均比热,J/(kg· ℃); αi 流体对内管内壁的对流给热系数, W/(m2· ℃); t1、t2 被加热流体进、出口温度,℃; Ai 内管内壁的传热面积,m2; (tw-t)m 内壁与流体间的对数平均温度差,℃;
tw t m
t w t1 t w t 2
t w t1 ln t w t 2
VCP (t2 t1 ) i Ai (tw t ) m
3 实验装置与流程 1)实验装置 本实验装置由蒸汽发生器、LWQ—25型涡轮 流量变送器、变频器或PS电动调节阀、套管换热 器及温度传感器、智能显示仪表等构成。其实验 装置流程如图所示。
5 实验报告 按冷流体给热系数的模型式 Nu / Pr 0.4 A Re m确 定式中常数A及m 6思考题 1).实验中冷流体和蒸汽的流向,对传热效果 有何影响? 2).蒸汽冷凝过程中,若存在不冷凝气体, 对传热有何影响、应采取什么措施? 3).实验过程中,冷凝水不及时排走,会产 生什么影响?如何及时排走冷凝水? 4).实验中,所测定的壁温是靠近蒸汽侧还 是冷流体侧温度?为什么?
传热综合实验
气---汽对流传热综合实验班级:化学工程与工艺姓名:韩兴云学号:033112037 组别:甲4一、实验目的:1、测定光滑圆形直管管外蒸气冷凝,管内为空气强制对流时的传热系数——K值;2、学会用实验方法,讲所测实验数据整理成准数方程式3、了解并掌握热电偶和电位差计的使用,及其温度测量。
二、基本原理概述1、测定传热系数K。
根据传热速率方程式得:其中:传热速率Q,既可以用热流体得放热速率计算,也可以用冷流体的吸收速率计算。
传热推动力Δtm可用对数平均温度差计算。
逆流时,S=лdl2、测定给热系数α在蒸汽-空气换热系统,若忽略管壁与污垢的热阻,则总传热系数与分传热系数的关系为:由于蒸汽冷凝给热系数远大于管壁对空气的给热系数,所以α1=K3、求与Re的定量关系式。
由因次分析法可知,流体在圆形管中呈强制湍流时的给热系数,符合下列准数关联式:本实验就是通过调节空气的流量,测得对应的给热系数,然后将流量整理为Re,将给热系数整理为Nu。
再将所得的一系列Nu-Re数据,通过图解法或者回归分析法,求得待定系数A、n。
进而得到给热系数α与Re的经验公式。
三、装置与流程:来自鼓风机的空气通过调节阀1转子流量计2和换热管3,经换热后排空。
热量由缠绕在换热管表面的电热丝4供给;空气流量由转子流量计2测定;进、出口空气温度由温度计读取,其进口压强由U形管液柱压差计显示;壁温由热电偶测量。
四、实验数据及处理:表一普通套管换热器原始数据表二强化套管换热器原始数据表三普通套管换热器实验数据处理表t2 /℃67.1 66.4 65.7 65.7 66.5 67.8 68.2t /℃48.8 49.6 49.6 50.4 52 54.3 54.9ρ/(kg/m3) 1.097 1.094 1.094 1.092 1.086 1.079 1.077 Cp/(J/kg·k)1005λ/(w/m·k)0.02816 0.02821 0.02821 0.02827 0.02838 0.02854 0.02858 μ/(Pa·s)19.5 19.6 19.6 19.6 19.7 19.8 19.8Pr0.4 0.866Vt0/(m3/h) 15.57 23.62 29.64 34.49 38.42 42.11 42.99 V/(m3/h) 16.51 24.92 31.2 36.21 40.23 43.94 44.81 Tw/℃109.2 109.5 109.5 109.5 109.5 109.5 109.5 Δtm/℃60.4 59.9 59.9 59.1 57.5 55.2 54.6Q/w 185.6 255.7 306.8 338.9 354.9 358.7 358.4 α/(w/m2·℃)48.9 67.9 81.5 91.3 98.2 103.4 104.5 Nu 34.7 48.1 57.8 64.6 69.2 72.5 73.1u/(m/s) 14.6 22.03 27.58 32.01 35.57 38.85 39.62 Re 16426.9 24592.7 30788.3 35668.3 39217.3 42342.6 43101.8 lnNu 3.55 3.87 4.06 4.17 4.24 4.28 4.29 lnRe 9.71 10.11 10.33 10.48 10.58 10.65 10.67由Nu=ARemPr0.4 , 可得lnNu=lnA+mlnRe+0.4lnPr所以以lnNu——lnRe作图,可得一直线,直线的斜率是m,截距是lnA+0.4lnPr作图,可得m=0.78,lnA+0.4lnPr=-3.9922,所以A=0.0195即Nu=0.0195Re0.78Pr0.4表四强化套管换热器实验数据处理表Nu 103.7 98.7 91.1 81.5 70.5 51.7u/(m/s) 35.89 32.96 29.12 25.06 20.55 13.77 Re 37854.1 35102.4 31402.8 27262.2 22397.4 15007.9 lnNu 4.64 4.59 4.51 4.40 4.25 3.95 lnRe 10.54 10.47 10.35 10.21 10.02 9.62由Nu=BRem, 可得lnNu=lnB+mlnRe所以以lnNu——lnRe作图,可得一直线,直线的斜率是m,截距是lnB.作图得,m=0.75 , lnB=-3.30677所以B=0.0366即 Nu=0.0366Re0.75强化比的计算:同一流量下,强化管的努塞尔准数Nu与普通管的努塞尔准数Nuo之比,即Nu/Nuo.当流量等于40.60m3/h时,Nu=103.7, 当流量等于40.23m3/h时, Nuo=69.2.所以强化比=103.7/69.2=1.50实验数据处理过程:以普通管第一组数据为例孔板流量计压差ΔP=0.60kPa,进口温度t1=30.4℃,出口温度t2=67.1℃,壁面温度热电势4.59mV.已知数据及有关常数:(1)传热管内径di及流通段面积Fdi=20.0mm=0.0200mF=л(di2)/4=3.142*0.02002 /4=0.0003142m2(2)传热管有效长度L及传热面积Si L=1.00mSi=лLdi=3.142*1.00*0.0200=0.06284m2(3) t1为孔板处空气的温度,为由此值查得空气的平均密度ρ当t1=30.4℃时,ρ= kg/m3(4)传热管,测量段上空气平均物性常数的确定先算出测量段上空气的定性温度t /℃t= (t1 +t2)/2=(30.4+67.1)/2=48.8 ℃查得:测量段上空气的平均密度ρ=1.097 (kg/m3)测量段上空气的平均比热Cp=1005(J/kg·k)测量段上空气的平均导热系数λ=0.02816 (w/m·k)测量段上空气的平均黏度μ=19.5 (μPa·s)测量段上空气的平均普朗特准数的0.4 次方为:Pr0.4=0.866(5)空气流过测量段上平均体积V(m3/h)的计算:Vto=20.243*(ΔP)0.5139=15.57(m3/h)V=Vto*(273+t)/(273+ t1)=16.51(m3/h)(6) 冷热流体间的平均温度差Δtm/℃的计算:Tw=1.2705+23.518*4.59=109.2℃Δtm= Tw-t=109.2-48.8=60.4℃(7) 其余计算传热速率Q=V*ρ*Cpi*Δt/3600=15.57*1.097*1005*(67.1-30.4)/3600=185.6 wα=Q/(Δtm Si)=185.6/(60.4*0.06284)=48.9 (w/m2·℃)传热准数N u=α*di/λ=48.9*0.0200/0.0283=34.7测量段上空气的平均流速u=V/(F*3600)=16.51/(0.0003142*3600)=14.60(m/s)雷诺准数Re=di*u*ρ/μ=0.0200*14.60*1.097/0.0000195=16426.9(8)作图,回归得到准数关联式Nu=ARemPr0.4中的系数绘制两个实验的Nu—Re的关系图:。
实验四MS管内对流换热实验
实验四MS管内对流换热实验一、实验目的1、了解对流换热实验的一般方法和了解如何建立对流换热的经验关系式;2、了解相似理论对实验的指导作用;3、熟悉测温、测速的基本方法;4、了解计算机在热工测量中的应用。
二、实验原理传热学的发展是建立在实验基础上的,通过理论和实验相结合的分析方法来描述传热现象的各种因素对传热能力影响作用。
由于各种原因,一些传热现象不能用数学方法描述,或者描述该问题的微分方程组无法求解,而工程师又需要得到这种情况下的实用的结果来解决实际问题。
这种实用的结果就要通过传热学的实验来得到。
传热学实验大部分是在与实际问题相似的实验模型上取得大量的实验数据,然后将实验结果与实际问题联系起来,这就需要应用相似理论使得实验结果可以应用到实际问题中去。
经过相似理论分析,描述传热的关系式可以用合理的无量纲相似准则数组合来表示。
无量纲准则数的形式可以通过对描述换热的微分方程组进行无因次化得到。
(请参考传热学)根据相似原理,流体在圆管内湍流流动强制对流换热时,其准则方程式的一般形式为Nu f=f(Re f,Pr f)通常这三个准则数之间具有如下的函数关系Nu f=C Re f m·Pr f n为确定上式中的参数C、m和n,我们需要进行一定量的实验来测量Nu f、Re f和Pr f,这些准则数都是对流换热系数、温度、速度、比容、特征尺度以及一些物性参数的组合,因此需要通过间接测量才能得到。
然后对实验测得的Nu f、Re f和Pr f进行数学处理和分析得到常数C和指数m、n。
三、实验装置、测试仪器本实验的主要设备为对流换热实验台。
实验件为光滑的不锈钢圆管(1Cr18Ni9Ti),通过在管外壁上布置测温热电偶进行温度的测量。
管子两侧同一大电流电源相连,对管子进行加热,加热方式为等热流方式。
管内介质水由一台小型清水泵提供,通过调节阀门可以改变流量的大小,从而改变雷诺数Re f。
冷却水进出口温度由安装在管子进出口处的测温热电偶进行测量。
空气横掠单管强迫对流的换热实验
空气横掠单管强迫对流的换热实验热交换器中广泛使用各种管子作为传热元件,其外侧通常为流体横向掠过管子的强制对流换热方式,因此测定流体横向掠过管子时的平均换热系数是传热中的基本实验.本实验是测定空气横向掠过单圆管时代平均换热系数。
一、实验目的及要求1、了解实验装置,熟悉空气流速及管壁的测量方法,掌握测试仪器、仪表的使用方法。
2、通过对实验数据的综合、整理,掌握强制对流换热实验数据整理的方法。
3、实验测定空气横掠单管时的平均换热系数;了解空气横掠管子时的换热规律。
、 二、实验原理1. 根据牛顿冷却公式:)(f w t t hF Q -= (W ) (6-2—1) 得)(f w t t F Qh -=(W/m2℃) (6-2-2)式中 Q —对流换热的热流,[W]; h -对流换热系数,[W/m2℃]; F —与流体接触的物体表面面积,[m2]; t f —流体平均温度,[℃]; t w —物体表面温度,[℃]。
本实验采用电加热的放热圆管,空气外掠圆管表面,当换热稳定时,测出加热电功率,即可得出对流换热热流Q ,即:Q IU = (W ) (6-2—3)2. 根据对流换热的分析,强制对流稳定时的换热规律可用下列准则关系式来表示:Nu f =(Re,Pr) (6—2-4)对于空气,因温度变化范围不大,上式中的普朗特数Pr 变化很小,可作为常数看待,故式(6-2-4)化简为:Nu f =(Re) (6—2—4a)式中 努谢尔特数 λhDNu =雷诺数νvD=Reh —空气横掠单管时的平均换热系数,[W/m 2℃];v —空气来流速度,[m/s ]; D —定型尺寸,取管子外径,[m ]; λ—空气的导热系数,[W/m ℃]; ν—空气的运动粘度,[m2/s]。
要通过实验确定空气横掠单圆管时的Nu 与Re 的关系,就需要测定不同流速v及不同管子直径D 时换热系数h 的变化。
因此,本实验中要测量的基本量为管子所处的空气流速v 、空气温度t f 、管子表面温度t w 及管子表面散出的热量Q 。
强迫对流管族管外放热系数实验数据处理结果
强迫对流管族管外放热系数实验(六)数 据 整 理工作段和前后测量段的内部横截面积为300mm ×300mm 。
工作段的管束及固定管板可自由更换。
试验管件由两部分组成;单纯翅片管和带翅片的试验简易热管,但外形尺寸是一样的采用顺排排列,翅片管束的几何特点如表4-1所示。
表4-1翅片管内径翅片管外径翅片高度翅片厚度翅片间距横向管间距纵向管间距管排数Di Do H δB P t P l Nmm mm mm mm mm mm mm 2025.59.750.22.775805数据的整理可按下述步骤进行:1.算风速和风量测量截积的风速 孔板流量计流量公式(4-10)ρμ02p AQ V ∆=测其中:μ由 d./D 和Re 决定. 在本例中,由实验台铭牌可得: d=100mm,D=140mm; 若假设充分紊流,可取μ=0.7 计算.= HK.p ∆ρ空气g ∆H 为液柱的变化量, K 为斜面系数,本例中从实验铭牌中读得为0.2.∆风量:Ma= ρ测测V Q ⨯2.空气侧吸热量:Q l =M a C pa (T a2-T a1)(4-⨯⨯11)3.电加热器功率Q 2=I V, 可直接读出⨯4.加热器箱体散热。
因箱体温度很低,散热量小,可由自然对流计算Q 3=αc F b (T ω- T o )⨯⨯此处,αc 为自然对流散热系数,可近似取αc =5w/m 2•℃进行计算;F 箱为箱体散热面积(实测),T ω箱体温度 本例中按出口空气温度计,T o 为环境温度。
5.计算热平衡误差(4-1321)(Q Q Q Q --=∆12)6.计算翅片管束最窄流通截面处的流速和质量流速m/s.kg/m 2·s窄测F Q U V m =ρ⨯=m m U G 7.计算R e 数 R e =μmo G D 8.计算传热系数 ℃∙-⨯∙∙∙=20/)(m w T T L D n Q K a v lπ9.计算管内凝结液膜放热系数 31))(677.93404245623(2--+=i l v v l nD Q T T a 10.计算管壁热阻,翅片管的传热系数)(απT T L D n QK v o -∙∙∙=11. 园筒壁的导热热阻为 i o ww D D R ln21πλ=w iR K --=αα11112.计算λiu aD N =进风T 出风I翅1翅2翅3翅4室内功率液面1液面2注释℃℃℃℃℃℃℃Wmmmm19.519.522.3222221.819.8012237初始状况20.82125.425.824.4242146.515544定风22.122.73232.229.928.822.5101.91594822.723.737.137.33432.523.11521645223.424.742.242.338.236.323.8201.91715823.925.547.247.242.24024.3250.91766224.126.252.151.846.143.224.6301.81816724.426.656.656.649.746.424.9351.91857024.626.849.648.844.342.125.1197.817171定功率24.526.145.144.740.738.625.1197.81807324.625.843.243.139.137.125.2197.818975Qv Vf Ma Q1Q3Q1+Q3不平衡度0000-6.48-6.48无意义0.0510550.5672830.06126712.31458012.31458-2.77601 0.0540610.6006810.06487439.11873 4.3243.43873-1.49446 0.0575980.6399820.06911869.463612.9682.4236-1.00162 0.0622130.6912590.07465697.5380419.44116.978-0.87065 0.065310.7256710.078372126.022925.92151.9429-0.78523 0.0682670.7585230.08192172.893234.56207.4532-0.54569 0.0705430.7838140.084652187.165436.72223.8854-0.683970.0622130.6912590.074656165.064436.72201.78440.024138 0.0676860.7520670.081223130.60721.6152.207-0.34908 0.0727480.8083140.087298105.281312.96118.2413-0.75568Re K Tv al Nu logRe logNu00295.0251461.39632.84609297.948037.0432.83935 3.164768 1.516395 1547.43250.70706303.72535683.7351.59028 3.189612 1.712568 1648.67762.69675308.22530315.8164.56306 3.217135 1.809984 1780.77467.4165312.7526712.7269.77157 3.250609 1.843678 1869.42470.29094317.1524037.3372.97896 3.271708 1.863198 1954.05581.37938321.321862.485.47711 3.290937 1.93185 2019.20875.6831325.32520070.479.05948 3.305181 1.8979541780.77488.50755319.225602.7193.58715 3.250609 1.971216 1937.42583.99453315.27526396.8288.3974 3.287225 1.946439 2082.32473.87292313.62526724.0776.95014 3.318548 1.886209本实验误差较大,误差主要来源于一些几个方面:1,实验过程中时间有限,难以有充裕时间来判断是否达到稳态,这个会对实验结果产生较大影响。
强迫对流单管管外放热系数测定实验报告
机械强迫对流单管管外放热系数测定装置实验报告一、实验目的1、了解对流放热的实验研究方法;2、测定空气横向流过单管表面时的平均放热系数程式;3、学习测量风速、温度、热量的基本技能。
二、实验原理根据相似理论,流体受迫外掠物体时的放热系数a与流速、物体几何形状及尺寸、流体物性间的关系可用下列准则方程式描述:Nu=f (Re, Pr)实验研究表明,流体掠过横向单管表面时,一般可将上式整理成下列具体的指数形式。
式中:c、n、m均为常数,由实验确定,N u m――努谢尔特准则R e m ------- 雷诺准则P t m ――普朗特准则上述各准则中,d 实验管外径,作定性尺寸[米]流体流过实验管外最窄面处流速[m/s]a,并将实验数据整理成准则方Mi禅-入一―体导热系数[W/m]a体导温系数[m2/s]V 体运动粘度[m2/s]准则角码“m表示用流体边界层平均温度t^1(t w t f)作定性温度。
2鉴于实验中流体为空气,Prm= 0.7,故准则式可化成:N um =CR em本实验的任务在于确定c与n的数值,首先使空气流速一定,然后测定有关的数据:电流I、电压V、管壁温度t w、空气温度t f,微压计压差h。
至于a①在实验中无法直接测得,可通过计算求得,而物性参数可在有关书中查得。
得到一组数据后,可得一组R、N u值,改变空气流速,又得到一组数据,再得一组R、N u值,改变几次空气流速,就可得到一系列的实验数据。
三、实验设备本对流实验在一实验风洞中进行。
实验风洞主要由风洞本体、风机、移动式不锈钢支架、实验管及其加热器、电测温度计、倾斜式微压计、孔板、功率表以及调压器组成。
由于实验段前有整流段,可使进入实验段前的气流稳定。
风量由电子调速调节。
实验风洞中安装了一根实验管,管内装有电加热器作为热源,管壁嵌有四支热电偶以测壁四、实验步骤1、将孔板与微压计连接好、校正零点;连接热电偶与电控箱,指导老师检查确认无误后,准备启动风机。
化工原理管内强制对流传热膜系数的测定
实验七 管内强制对流传热膜系数的测定一.实验目的1. 学习用近似法、简易Wilson 法测定空气与管壁传热膜系数的原理;2. 掌握用不同的方式处理实验数据,根据实际结果比较各种处理方法的优缺点;3. 用测定的传热膜系数,整理成努塞尔准数Nu 与雷诺准数Re 之间成n C Nu Re =的形式,并验证实测Nu 的与Re 关系式与公认式n Nu Pr Re 023.08.0=是否一致。
4. 训练运用实验实测的数据拟合成经验公式的能力。
二.实验原理1.流程装置简介(如图1-1所示)本实验装置只要由加热系统、控制系统、调节系统三部分构成。
由电加热器—热电偶—可控硅控制仪组成调节系统;由孔板流量计—压力传感器—电子电位差计—阀门组成的空气流量计测量调节系统;由空气进、出口处的热电偶—自动平衡记录仪组成测温系统。
空气由旋涡机进入风管,经电加热器加热到温度T 1后,进入套管换热器的内管,与环隙的水进行热交换,空气冷却到温度T 2后排出;空气的流量由连有压力传感器的孔板流量计测得,空气流量变化的信号通过压力传感器传送到UJ —36电位计,可读出电位差值,计算出空气的实际流量。
换热器的热空气进套管,换热器的温度由可控硅控仪控制,系统的稳定性由记录仪内的红蓝笔是否走直线来判断。
由于外力的作用,使流体被迫流动而产生传热的现象,称为强制对流传热。
对于空气在圆形直管内,强制对流传热的膜系数1α的测定方法有如下几种:(以空气作热流体,水作冷流体,两流体在套管换热管中作逆流运动,空气的质量流量用孔板流量计配压力传感器,用电位差计测出压力传感器两侧的电势差值而计算得到。
)2.数据处理方法图1-2 简易Wilson 图解法示意图 图1-3 Nu —Re 的关系线方法1、近似法:根据传热速率基本方程式:m t KA Q ∆= , 即 t A Q K ∆=1 (7) 而总传热系数与对流传热系数之间的关系为:22121112111d d d d R d bd R K s m s αλα++++= (8) 套管换热器壳程走的是水,因水的传热性能非常好,其传热膜系数2α可以达到几千w/m 3•℃,其热阻值221d d α很小。