高中数学必修一必修二综合检测题(有答案)
重庆市重点中学高中数学必修一检测题(二)(含答案)
![重庆市重点中学高中数学必修一检测题(二)(含答案)](https://img.taocdn.com/s3/m/b41f1719866fb84ae45c8d7c.png)
高中数学必修一检测题(二)一、选择题1.方程组⎩⎨⎧=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5- 2.下列函数中,是偶函数又在区间(0,)+∞上递增的函数为( ) A .||y x =B .2log y x =C .3y x =D .2y x =-3.已知 5.10.9m =,0.95.1n =,0.9log 5.1p =,则m 、n 、p 的大小关系( ) A .p n m <<. B .n p m << C .n m p <<D .m n p <<4.设}02|{2>--∈=x x Z x A ,},,04)4(|{2R k R x k x k x x B ∈∈<++-=, 若}3{=⋂B A ,则实数k 的范围是( )A .)3,1[-B .)4,2[C .)3,2[D .)3,2[- 5.函数2)(2+-=x x x f ,则下列关系中一定正确的是( )A .R m m m f f f ∈++<=),22()1()0(2B .R m m m f f f ∈++≤<),22()1()0(2C .R m m m f f f ∈++≤=),22()1()0(2D .R m m m f f f ∈++≥=),22()1()0(26.函数)(x f y =的定义域是)4,1(-,则函数)1(2-=x f y 的定义域是( ) A .)5,5(- B .)5,0()0,5(⋃- C .)5,0( D .)5,5(- 7.若关于x 的方程mme x-=2在区间(0,+∞)上有解,则实数m 的取值范围是( ) A .(1,2) B .(0,1) C .),2()1,(+∞⋃-∞ D .),1()0,(+∞⋃-∞8.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是( ) A .413.7元 B .513.7元 C .546.6元 D .548.7元9.若函数())1,0(1)(≠>--=-a a a a k x f xx在R 上既是奇函数,也是减函数,则()k x x g a +=log )(的图像是( )10.已知函数lg (010)()16,(10)2x x f x x x ⎧ , <≤⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( )A .)10,1(B .)6,5(C .)12,10(D .)24,20( 11在区间(2,)-+∞上是增函数,则实数a 的取值范围是___________12.已知函数()34f x x x a =+-,若函数()f x 在区间(1,1)-内存在零点,则实数a 的取值范围为13.若实数y x ,满足x y x 62322=+,则22y x +的最大值为14.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取最大利润,该企业一个月应生产该商品数量为_____. 15.设函数c bx x x x f ++=)(,给出四个结论:①0=c 时,有)()(x f x f -=-成立;②0,0>=c b 时,方程0)(=x f ,只有一个实数根; ③)(x f y =的图象关于点),0(c 对称; ④方程0)(=x f 至多有两个实根. 上述四个结论中所有正确的结论序号是_____________. 三、解答题16.已知集合}24{<<-=x x A ,{}15>-<=x x x B 或,}11{+<<-=m x m x C . (1)求B A ,)(B C A R ;(2)若∅=C B ,求实数m 的取值范围.17.设函数),(,1)(2R b a bx ax x f ∈++=。
人教版A版高中数学必修第一册 第二章综合测试01试题试卷含答案 答案在前
![人教版A版高中数学必修第一册 第二章综合测试01试题试卷含答案 答案在前](https://img.taocdn.com/s3/m/9e573fed541810a6f524ccbff121dd36a32dc430.png)
第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b +-+-+(.+ ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b a a b ab--,0a b <<,0b a ∴->,0ab >,0b a ab -∴,即11a b>,故选项B 不成立;选项C ,0a b <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b aa b ,故选项C 不成立;选项D ,0a b <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++ ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+-- ((当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N .故选A . 10.【答案】C【解析】2x >,20x ∴->.11==222=422y x x x x ∴+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<,>>1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使2002=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->.22222==a b a b ab a b a b a b a b +-+∴-+---()(),当且仅当a b -时等号成立.22a b a b+∴-的最小值为D .二、 13.【答案】111a a-+ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a - <≤,2111a∴-,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --((),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c d a b >,即0bc adab->, ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162ab x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+ <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+(). 因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分) 由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x ≤≤.(3分) (2)因为=A B A ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时, 由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a 、b 为正实数,且11a b+.11a b ∴+(当且仅当=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯ ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+,a b ∴+.234a b ab - ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x+-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D ,则a b <2.若++,则a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc <B .11a b<C .b aab>D .22a ab b >> 7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B ;(2)若=A B A ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.。
【平煤高中检测必修一、二】高中数学必修一、必修二综合测试卷(一)
![【平煤高中检测必修一、二】高中数学必修一、必修二综合测试卷(一)](https://img.taocdn.com/s3/m/60856ff87c1cfad6195fa779.png)
高一数学上学期期末综合测试卷(一)(必修一、必修二)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A .{}2B .{}2,3C .{}3D .{}1,3 2、函数()21log ,4y x x =+≥的值域是 ( )A .[)2,+∞B .()3,+∞C .[)3,+∞D .(),-∞+∞ 3、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 4、点(1,-1)到直线x -y +1=0的距离是( ). A .21 B .23 C .22 D .223 5、过点(1,0)且与直线x -2y -2=0平行的直线方程是( ). A .x -2y -1=0 B .x -2y +1=0C .2x +y -2=0D .x +2y -1=06、下列直线中与直线2x +y +1=0垂直的一条是( ). A .2x ―y ―1=0 B .x -2y +1=0 C .x +2y +1=0D .x +21y -1=0 7、有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm2B .15πcm2C .24πcm2D .36πcm28、已知函数)13(+x f 的定义域)4,2(-,那么()1f x -的定义域是 ( ) A .)14,4(- B .)1,1(- C .)0,2(- D .)2,0( 9、若21025x=,则10x -等于 ( )A .15-B .15C .150D .1625 10、若0.52a=,πlog 3b =,2log 0.5c =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( ) A .3a ≤- B .3a ≥- C .3a =- D .以上答案都不对 12、若()lg f x x =,则()3f = ( )A .lg 3B .3C .310 D .103 13、正方体D C B A ABCD ''''-中,二面角D AB D --'的大小是( ) A .30 B .45 C .60 D .90 14、正六棱锥底面边长为a ,体积为233a ,则侧棱与底面所成的角为( ) A .30° B .45°C .60°D .75°二、填空题15、幂函数()f x的图象过点(,则()f x 的解析式是_____________。
高中数学必修1综合测试卷(三套+含答案)
![高中数学必修1综合测试卷(三套+含答案)](https://img.taocdn.com/s3/m/c683b316e009581b6ad9ebc4.png)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
【检测】高中数学必修一、必修二综合测试卷(二)
![【检测】高中数学必修一、必修二综合测试卷(二)](https://img.taocdn.com/s3/m/f5fb2ce24afe04a1b071dec3.png)
高一数学上学期期末综合测试卷(二)(必修一、必修二)一、选择题1. 下列函数中与函数xy 1=相等的是 )(A 2)(1x y =)(B 331xy =)(C 21xy =)(D 22y x = 2. 集合}),{(x y y x A ==,集合}5412),{(⎩⎨⎧=+=-=y x y x y x B 之间的关系是)(A B A ∈ )(B A B ∈ )(C B A ⊆ )(D A B ⊆3. 已知函数()2()log 1,()1,f x x f a a =+==若则)(A 0 )(B 1 )(C 2 )(D 34.关于函数3()f x x = 的性质表述正确的是)(A 奇函数,在(,)-∞+∞上单调递增 )(B 奇函数,在(,)-∞+∞上单调递减 )(C 偶函数,在(,)-∞+∞上单调递增 )(D 偶函数,在(,)-∞+∞上单调递减5. 已知4)(3-+=bx ax x f ,若6)2(=f ,则=-)2(f)(A 14- )(B 14 )(C 6- )(D 106. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>7.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点C .函数)(x f 在(2,5)内有零点D .函数)(x f 在(2,4)内不一定有零点 8. 函数y x=3与y x=--3的图象关于下列那种图形对称( )A .x 轴B .y 轴C .直线y x =D .原点中心对称9. 如果一个正四面体的体积为9 dm 3,则其表面积S 的值为( ).A 、183dm 2B 、18 dm 2C 、123dm 2D 、12 dm 210. 已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A. 2cm; B.cm 34; C.4cm; D.8cm 。
(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案
![(人教版A版)高中数学必修第一册 第二章综合测试试卷01及答案](https://img.taocdn.com/s3/m/94e80f20178884868762caaedd3383c4ba4cb41a.png)
第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b >C .若a b >,0c <,则a c b c++<D .a b<2.若++,则a ,b 必须满足的条件是( )A .0a b >>B .0a b <<C .a b>D .0a ≥,0b ≥,且a b≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ÎR 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +”的充分不必要条件,则k 的取值范围是( )A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( )A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( )A .22ac bc <B .11a b<C .baab>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( )A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( )A .1c a>B .02c a<C .13c a <<D .03c a<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x $ÎR ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1B C .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________.14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题.16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ÎR ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ì-+íî,324x üýþ≤≤,{}2=|1B x x m +≥.p x A Î:,q x B Î:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ÎR .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+.(1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D .2.【答案】D【解析】2=()=a b +-+-((.++Q a \,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ÎR 恒成立,需22=36480k k k D -+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A .4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +ìí-î´,,解得=4=3a b ìí-î,,所以4=3=81a b -().故选B .6.【答案】D【解析】选项A ,c Q 为实数,\取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a \->,0ab >,0b a ab -\,即11a b>,故选项B 不成立;选项C ,0a b Q <<,\取=2a -,=1b -,则11==22b a --,2==21a b --,\此时b aa b<,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b \--()>,2=0ab b b a b --()>,22a ab b \>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a \--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D .8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x\--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a \-≥,\实数a 的最小值是2-.故选B .9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A .10.【答案】C【解析】2x Q >,20x \->.11==222=422y x x x x \+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a \.11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +ìï+íï+î<≤,>,>,即1311b ca abc a a c b a aì+ïïï+íïï+ïî<≤,>,>,1311b c a ac b a a ì+ïï\íï--ïî<≤,<<,两式相加得024c a ´<.c a \的取值范围为02ca<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a \>,且=440ab D -≤,1ab \≥.又0x $ÎR ,使2002=0ax x b ++成立,则=0D ,=1ab \,又a b >,0a b \->.22222==a b a b ab a b a b a b a b +-+\-+---()()当且仅当a b -时等号成立.22a b a b+\-的最小值为故选D .二、13.【答案】111a a-+【解析】由1a <,得11a -<<.10a \+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a \-,111a a\-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a D -´´≤,解得a ,\实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则c dab ab a b--()<(),即bc ad --<,bc ad \>,即③成立;若①③成立,则bc ad ab ab ,即c d a b >,c d a b \--<,即②成立;若②③成立,则由②得c d a b >,即0bc ad ab -,Q ③成立,0bc ad \->,0ab \>,即①成立.故可组成3个正确命题.16.【答案】42x -<<【解析】不等式2162a b x x ba ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++m i n <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<.三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a D -,9=4a .所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94.若=A Æ,则=940a D -<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分)18.【答案】(1)2560x x --+Q <,2560x x \+->,160x x \-+()()>,解得6x -<或1x >,\不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x \--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x \--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<;当=0a 时,原不等式的解集是Æ;当02a <<时,原不等式的解集是{|x x a <或}2x >;当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+,配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ìüíýîþ≤≤.(6分)由21x m +≥,得21x m -≥,所以{}2=|1B x x m -≥.(8分)因为p 是q 的充分条件,所以A B Í.所以27116m -≤,(10分)解得实数m 的取值范围是34m ≥或34m -≤.(12分)20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤,则{}=|23A B x x I ≤≤.(3分)(2)因为=A B A U ,所以B A Í.①当=B Æ,即23a a +>,3a >时,B A Í成立,符合题意.(8分)②当=B Æ,即23a a +≤,3a ≤时,由B A Í,有0233a a ìí+î≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+.11a b \+=a b 时等号成立),即12ab ≥.(3分)2221122=a b ab +´Q ≥≥(当且仅当=a b 时等号成立),22a b \+的最小值为1.(6分)(2)11a b+Q,a b \+.234a b ab -Q ()≥(),2344a b ab ab \+-()≥(),即2344ab ab -()≥(),2210ab ab -+()≤,210ab -()≤,a Q 、b 为正实数,=1ab \.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ÎR .当0a <时,解得1a x a +>.当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ;当0a <时,原不等式的解集为1|a x x a +ìüíýîþ>;当0a >时,原不等式的解集为1|a x x a +ìüíýîþ<.(6分)(2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤,因为2y x x a --≤在0+¥(,)上恒成立,所以11a x x+-≤在0+¥(,)上恒成立.令1=1t x x+-,只需min a t ≤,因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立.所以a 的取值范围是1a ≤.(12分)。
高中数学必修一必修二综合测试题(含答案)
![高中数学必修一必修二综合测试题(含答案)](https://img.taocdn.com/s3/m/49bee44f866fb84ae55c8d26.png)
Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。
高中数学必修一和必修二第一二章综合试题(人教A版含答案)
![高中数学必修一和必修二第一二章综合试题(人教A版含答案)](https://img.taocdn.com/s3/m/33ed570e0722192e4436f621.png)
高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个 2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x 3.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞) 4.梯形1111A B C D (如图)是一水平放置的平面图形ABCD 的直观图(斜二测),若11A D ∥/y 轴,11A B ∥/x 轴,1111223A B C D ==, 111A D =,则平面图形ABCD 的面积是( ) A.5 B.10 C.52 D.1025.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120︒ B.150︒ C.180︒ D.240︒ 6.已知f (x 3-1)=x +1,则f (7)的值,为( )A.37-1B.37+1 C .3 D .2 7.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab8.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]9.下列四个图象中,表示函数f (x )=x -1x的图象的是( )A 1B 1C 1D 1O 110.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点 B.有一个零点 C.有两个零点 D.有无数个零点11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是( )A.4 B.3 C.2 D.112.已知f(x)是定义在(0,+∞)上的增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0<x<2 D.1<x<2二、填空题(每小题5分,共20分)13.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=__________.14.函数y=log23-4x的定义域为__________.15.据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已知近两年污染区域由0.16 km2降至0.04 km2,则污染区域降至0.01 km2还需要__________年.16.空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC= 4、BD=25那么AC与BD所成角的度数是_________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|1≤x<4},B={x|x-a<0},(1)当a=3时,求A∩B;(2)若A⊆B,求实数a的取值范围.18.(12分)(1)计算:(279)12+(lg5)0+(2764)-13;(2)解方程:log 3(6x-9)=3.19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性.20. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB . (1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.21.(12分)已知正方体1111ABCD A B C D ,O 是底ABCD 对角线的交点.求证:(1)O C 1∥面11AB D ;D 1ODB AC 1B 1A 1C(2)1A C 面11AB D .22.( 12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1,(1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S(x)=xf(x)+g(12)在(0,+∞)上是增函数.高一数学期末考试模拟试题(答案)一、选择题(每小题5分,共60分)1.解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B 3.解析:要使函数有意义,自变量x 的取值须满足⎩⎪⎨⎪⎧x ≠0x +3>0,解得x >-3且x ≠0.答案:D4. 解析:梯形1111A B C D 上底长为2,下底长为3腰梯形11A D 长为1,腰11A D 与下底11C D 的夹角为45︒ ,所以梯形1111A B C D 的高为2,所以梯形1111A B C D 的面积为1+=224(23) ,根据S =4直观平面 可知,平面图形ABCD 的面积为5.答案:A 5.解析:由22r r 3r l πππ+=知道2l r =所以圆锥的侧面展开图扇形圆心角度数为13603601802r l ⨯︒=⨯︒=︒,故选C 答案:C 6.解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C7.解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B8.解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B9.解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x在(0,+∞)上为增函数,故满足条件的图象为A.答案:A10.解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.答案:B 11.解析:因为①②④正确,故选B .12.解析:由题目的条件可得⎩⎪⎨⎪⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D二、填空题(每小题5分,共20分) 13.答案:{x |x <4}14.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:2 16、解析:如图,取AD 中点Q ,连PQ ,RQ ,则5PQ =,2RQ =,而PR =3,所以222PQ RQ PR +=,所以PQR 为直角三角形,90PQR ∠=︒,即PQ 与RQ 成90︒的角,所以AC 与BD 所成角的度数是90︒.答案:90︒三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}. (2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞). 18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x-9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4.(2)由方程log 3(6x-9)=3得6x-9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性. 解:由a x-1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞), f (-x )=1a -x -1+(-x )3+12=a x1-a x -x 3+12=a x -1+11-a x-x 3+12=-1a x -1-x 3-12=-f (x ). ∴f (x )为奇函数.20.(12分) 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . (2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第20题)又OE =1,所以,tan ∠EFO =5. 21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体11A ACC ∴是平行四边形11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =D 1ODBAC 1B 1A 1C11AOC O ∴是平行四边形 111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥又1111A C B D ⊥, 1111B D AC C ∴⊥面111AC B D ⊥即同理可证11A C AB ⊥, 又1111D B AB B =∴1A C ⊥面11AB D22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x(k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x.(2)由(1)得h (x )=x +1x,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x =-(x +1x)=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数. (3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2,则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。
高中数学必修一、二练习题有答案解析
![高中数学必修一、二练习题有答案解析](https://img.taocdn.com/s3/m/2167ebff1eb91a37f1115cbc.png)
高中数学必修一、二练习题及答案解析一. 选择题:1.用符号表示“点A 在直线l 上,l 在平面α外”,正确的是( ) A .α⊄∈l l A , B .α∉∈l l A , C .α⊄⊂l l A , D .α∉⊂l l A ,1.A ;解析:B 中;C 中点和直线的关系应该是;D 中直线与平面的关系应为.故选A.考点:元素与集合的关系,集合与集合的关系.2.{}{}=⋂长方体正棱柱( )A. {}正棱柱B. {}长方体C. {}正方体D. 不确定2.A3、已知平面α有无数条直线都与平面β平行,那么 ( )A .α∥βB .α与β相交C .α与β重合D .α∥β或α与β相交3.D ;解:根据题意当两个平面平行时符合平面有无数条直线都与平面平行,当两平面相交时,在平面作与交线平行的直线,也有平面有无数条直线都与平面平行.为D解析:根据题意平面有无数条直线都与平面平行,利用空间两平面的位置关系的定义即可判断.4、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么A 、点P 不在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面ABCD 、点P 必在平面ABC 外4.C 解:因为EF,GH 能相交于点P, 所以,且,又因为面ABC,所以面ABC,因为面ACD,所以面ACD,所以P 是平面ABC 与面ACD 的公共点. 因为面面.所以.即点P 必在直线AC 上,又面ABC,所以点P 必在平面ABC. 所以C 选项是正确的.解析:由EF 属于面ABC,而HG 属于面ACD,且EF 和GH 能相交于点P,知P 在两面的交线上,知点P 必在直线AC 上.5.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是 A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖5.D ;解析:本题主要考查的是对线,面关系的理解以及对空间的想象能力。
(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案
![(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案](https://img.taocdn.com/s3/m/bf6129f8b1717fd5360cba1aa8114431b90d8ea8.png)
第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。
(人教版B版)高中数学必修第一册 第二章综合测试试卷03及答案
![(人教版B版)高中数学必修第一册 第二章综合测试试卷03及答案](https://img.taocdn.com/s3/m/e54e83f3d0f34693daef5ef7ba0d4a7302766ca8.png)
第二章综合测试一、单选题(本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.二次三项式22x bx c ++分解因式为2(3)(1)x x -+,则,b c 的值分别为( )A .3,1B .62--,C .64--,D .4,6--2.不等式(1)0x -的解集是( )A .{|1}x x >B .{|1}x x ≥C .{|12}x x x =-≥或D .{| 2 1}x x x -=≤或3.已知a b c 、、是ABC △的三条边,且满足22a bc b ac +=+,则ABC △一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.已知13a b -+<<且24a b -<<,则23a b +的取值范围是()A .1317,22æö-ç÷èøB .711,22æö-ç÷èøC .713,22æö-ç÷èøD . 913,22æö-ç÷èø5.已知01b a <+<,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则()A .10a -<<B .01a <<C .13a <<D .36a <<6.在R 上定义运算:(1)x y x y Ä=-,若x $ÎR 使得()()1x a x a -Ä+>成立,则实数a 的取值范围是()A .13,,22æöæö-¥-+¥ç÷ç÷èøèøU B .13,22æö-ç÷èøC .31,22æö-ç÷èøD .31,,22æöæö-¥-+¥ç÷ç÷èøèøU 7.某车间分批生产某种产品,每批的生产准备费用为800元若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A .60件B .80件C .100件D .120件8.若两个正实数,x y 满足141x y+=,且不等式234yx m m +-<有解,则实数m 的取值范围是( )A .(1,4)-B .(,1)(4,)-¥-+¥U C .(4,1)-D .(,0)(3,)-¥+¥U 9.已知不等式20x bx c ++>的解集为|21{}x x x >或< ,则不等式210cx bx ++≤的解集为()A .1,12æöç÷èøB .1,(1,)2æö-¥+¥ç÷èøU C .1,[1,)2æù-¥+¥çúèûU D .1,12éùêúëû二、多选题(本大题共3小题,每小题5分,共15分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)10.下列不等式推理正确的是( )A .若x y z >>,则xy yz>B .若110a b,则2ab b >C .若,a b c d >>,则ac bd >D .若22a x a y >,则x y>E .若0a b >>,0c >,则a c b c -->11.已知a b a <<,则()A 11a b>B .1ab <C .1a bD .22a b >E .2a ab>12.若正实数,a b 满足1a b +=,则下列说法正确的是( )A .14ab ≥B +C .114a b+D .2212a b +≥三、填空题(本大题共4小题,每小题5分,共20分。
(人教版B版)高中数学必修第一册 第二章综合测试试卷01及答案
![(人教版B版)高中数学必修第一册 第二章综合测试试卷01及答案](https://img.taocdn.com/s3/m/9eb1c52800f69e3143323968011ca300a7c3f65e.png)
第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23A a ab =+,24B ab b =-,则A ,B 的大小关系是( )A .AB …B .A B …C .A B <或A B >D .A B>2.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b>C .若a b >,0c <,则a c b c++<D .若a b<3.下列变形是根据等式的性质的是( )A .由213x -=得24x =B .由2x x =得1x =C .由29x =得x=3D .由213x x -=得51x =-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <5.已知||a b a <<,则( )A .11a b >B .1ab <C .1ab D .22a b >6.若41x -<<,则222()1x x f x x -+=-( )A .有最小值2B .有最大值2C .有最小值2-D .有最大值2-7.已知0a >,0b >,2a b +=,则14y a b =+的最小值是( )A .72B .4C .92D .58.已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121234x x x x +-=,那么b 的值为()A .5B .5-C .4D .4-9.不等式22120x ax a --<(其中0a <)的解集为( )A .(3,4)a a -B .(4,3)a a -C .(3,4)-D .(2,6)a a 10.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数()*x x ÎN 为二次函数的关系(如图),则每辆客车营运_____年,营运的年平均利润最大( )A .3B .4C .5D .611.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .245B .285C .5D .612.已知a b >,二次三项式220ax x b ++…对于一切实数x 恒成立,又0x $ÎR ,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.当1x >时,不等式11x a x +-≥恒成立,则实数a 的取值范围为__________.14.若0a b <<,则1a b -与1a 的大小关系为__________.15.若正数a ,b 满足3ab a b =++,则ab 的取值范围是__________.16.已知关于x 的一元二次方程2320x x m -+=有两个不相等的实数根1x 、2x .若1226x x -=,则实数m 的值为__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式(组):(1)2(2)01x x x +ìíî>,<;(2)262318x x x --<….18.(本小题满分12分)已知a ,b ,c 为不全相等的正实数,且1abc =.111a b c++<.19.(本小题满分12分)已知21()1f x x a x a æö=-++ç÷èø.(1)当12a =时,解不等式()0f x …;(2)若0a >,解关于x 的不等式()0f x ….20.(本小题满分12分)某镇计划建造一个室内面积为2800 m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?21.(未小题满分12分)设函数2()3(0)f x ax bx a =++¹.(1)若不等式()0f x >的解集为(1,3)-,求a ,b 的值;(2)若(1)4f =,0a >,0b >,求14a b+的最小值.22.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)()(2)0a x a x -->.第二章综合测试答案解析一、1.【答案】B【解析】()2222334240b A B a ab ab b a b æö-=+--=-+ç÷èø∵…,A B ∴….2.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.3.【答案】A【解析】A .根据等式的性质1,在等式213x -=的左右两边同时加上1,可得24x =,故本选项正确;B .在等式2x x =的左右两边同时除以x ,可得1x =,但是当0x =时,不成立,故本选项错误;C .将等式29x =的左右两边开平方,可得3x =±,故本选项错误;D .根据等式的性质1,在等式213x x -=的左右两边同时加上(31)x +,可得561x x =+,故本选项错误.4.【答案】D【解析】根据题图可知,21a --<<,01b <<,所以||||b a <.5.【答案】D【解析】由||a b a <<,可知0||||b a <…,由不等式的性质可知22||||b a <,所以22a b >.6.【答案】D 【解析】2221()(1)11x x f x x x x -+==-+--.又41x -∴<<,10x -∴<,(1)0x --∴>1()(1)2(1)f x x x éù=---+-êú--ëû∴…当且仅当111x x -=-,即0x =时等号成立.7.【答案】C【解析】2a b +=∵,12a b +=∴∴14142a b a b a b +æö+=+×ç÷èø52592222a b b a æö=+++=ç÷èø…(当且仅当22a b b a =,即423b a ==时,等号成立)故14y a b =+的最小值为92.8.【答案】A【解析】12,x x ∵是关于x 的方程230x bx +-=的两根,12x x b +=-∴,123x x =-,121234x x x x +-=∵,94b -+=∴,解得5b =.9.【答案】B【解析】方程22120x ax a --=的两根为4a ,3a -,且43a a -<,43a x a <<-∴.10.【答案】C【解析】求得函数式为2(6)11y x =--+,则营运的年平均利润2512122y x x x æö=-+-=ç÷èø…,当且仅当25x x=时,取“=”号,解得5x =.11.【答案】C【解析】35x y xy +=∵,13155y x+=∴1334(34)1(34)55x y x y x y y x æö+=+´=++ç÷èø∴3941213555555x y y x =++++=…当且仅当31255x y y x =,即1x =,12y =时等号成立.12.【答案】D【解析】a b ∵>,二次三项式220ax x b ++≥对于一切实数x 恒成立,0a ∴>,且440ab D =-…,1ab ³∴.再由0x $ÎR ,使20020ax x b ++=成立,可得0D …,1ab ∴…,又a b >,1a >.2224231101a a b a a a b a a a a +++==---∴2242484243624222211211211222a a a a a a a a a a a a a a a a æö+++ç÷æö+++èø===ç÷-+-æöèø+-+-ç÷èø22222221124412a a a a a a æöæö+-++-ç÷ç÷èøèø=æö+-ç÷èø令22112a a +=>,则24231(2)4(2)44(2)444822a t t t a a t t æö+-+-+==-+++=ç÷---èø…,当且仅当4t =,即a =时取等.故2431a a a æö+ç÷-èø的最小值为8,故22a b a b +-=.二、13.【答案】(,3]-¥【解析】1x ∵>,11(1)11311x x x x +=-+++=--∴….3a ∴….14.【答案】11a b a -<【解析】110()()a ab b a b a a a b a a b -+-==---∵<.11a b a-∴15.【答案】[9,)+¥【解析】33ab a b =+++…,所以1)0-+…,3,所以9ab ….16.【答案】2-【解析】由题意知123x x +=,1226x x -=∵,即12236x x x +-=,2336x -=∴,解得21x =-,代入到方程中,得1320m ++=,解得2m =-.三、17.【答案】(1)原不等式组可化为 2 0,11,x x x -ìí-î<或><<即01x <<,所以原不等式组的解集为{|01}x x <<.(2)原不等式等价于22623,318,x x x x x ì--í-î≤<即2260,3180,x x x x ì--í--î<…因式分解,得(3)(2)0,(6)(3)0,x x x x -+ìí-+î<…所以 2 3,36,x x -ìí-î或<<……所以132x --<≤或36x <….所以不等式的解集为{|3236}x x x --<≤或≤<.18.【答案】证明:因为a ,b ,c 都是正实数,且1abc =,所以112a b +=…11b c +=…11a c +=…以上三个不等式相加,得1112a b c æö++++ç÷èø…,即111a b c+++.因为a ,b ,c 不全相等,所以上述三个不等式中的“=”不同时成立.111a b c++++<.19.【答案】(1)当12a =时,有不等式25()102f x x x =-+≤,1(2)02x x æö--ç÷èø∴…,122x ∴……,即所求不等式的解集为1,22éùêúëû.(2)1()()0f x x x a a æö=--ç÷èø∵…,0a >且方程1()0x x a a æö--=ç÷èø的两根为1x a =,21x a =,∴当1a a ,即011a <<,不等式的解集为1,a a éùêúëû;当1a a <,即1a >,不等式的解集为1,a a éùêúëû;当1a a=,即1a =,不等式的解集为{1}.20.【答案】设矩形温室的左侧边长为 m a ,后侧边长为 m b ,蔬菜的种植面积为2 m S ,则800ab =.所以(4)(2)4288082(2)808648S a b ab b a a b =--=--+=-+-=…当且仅当2a b =,即40a =,20b =时等号成立,则648S =最大值.故当矩形温室的左侧边长为40 m ,后侧边长为20 m 时,蔬菜的种植面积最大,最大种植面积为2648 m .21.【答案】(1)因为不等式()0f x >的解集为(1,3)-,所以1-和3是方程()0f x =的两个实根,从而有(1)30,(3)9330,f a b f a b -=-+=ìí=++=î解得1,2,a b =-ìí=î(2)由(1)4f =,得1a b +=,又0a >,0b >,所以1414()a b a b a b æö+=++ç÷èø4559b a a b =+++=…当且仅当4b a a b =即1,32,3a b ì=ïïíï=ïî时等号成立,所以14a b+的最小值为9.22.【答案】(1)2560x x --+<∵,2560x x +->∴,(1)(6)0x x -+∴>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{| 6 1}x x x -<或>.(2)当0a <时,()(2)y a x a x =--的图象开口向下,与x 轴交点的横坐标为x a =,2x =,且2a <,()(2)0a x a a --∴>的解集为{|2}x a x <<.当0a =时,()(2)0a x a x --=,()(2)0a x a x --∴>无解.当0a >时,抛物线()(2)y a x a x =--的图像开口向上,与x 轴交点的横坐标为x a =,2x =.当2a =时,不等式可化为22(2)0x ->,解得2x ¹.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.综上,当0a <时,不等式的解集是{|2}x a x <<;当0a =时,不等式的解集是Æ;当02a <<时,不等式的解集是{| 2}x x a x <或>;当2a =时,不等式的解集是{|2}x x ¹;当2a >时,不等式的解集是{|2}x x x a <或>.。
(北师大版)高中数学必修第一册 第二章综合测试试卷02及答案
![(北师大版)高中数学必修第一册 第二章综合测试试卷02及答案](https://img.taocdn.com/s3/m/c7914221178884868762caaedd3383c4bb4cb4b0.png)
第二章综合测试一、单选题(每小题5分,共40分),1.函数()f x = )A .[]12-,B .(]12-,C .[)2+¥,D .[)1+¥,2.设函数()221121x x f x x x x ì-ï=í+-ïî,≤,,>,则()12f f öæ÷çç÷èø的值为( )A .1-B .34C .1516D .43.已知()32f x x x =+,则()()f a f a +-=( )A .0B .1-C .1D .24.幂函数223a a y x --=是偶函数,且在()0+¥,上单调递减,则整数a 的值是( )A .0或1B .1或2C .1D .25.函数()34f x ax bx =++(a b ,不为零),且()510f =,则()5f -等于( )A .10-B .2-C .6-D .146.已知函数22113f x x x x öæ+=++ç÷èø,则()3f =( )A .8B .9C .10D .117.如果函数()2f x x bx c =++对于任意实数t 都有()()22f t f t +=-,那么( )A .()()()214f f f <<B .()()()124f f f <<C .()()()421f f f <<D .()()()241f f f <<8.定义在R 上的偶函数()f x 满足对任意的[)()12120x x x x Î+¥¹,,,有()()21210f x f x x x --,且()20f =,则不等式()0xf x <的解集是( )A .()22-,B .()()202-+¥U ,,C .()()8202--U ,,D .()()22-¥-+¥U ,,二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.定义运算()()a ab a b b a b ìï=íïî≥□<,设函数()12x f x -=□,则下列命题正确的有( )A .()f x 的值域为[)1+¥,B .()f x 的值域为(]01,C .不等式()()12f x f x +<成立的范围是()0-¥,D .不等式()()12f x f x +<成立的范围是()0+¥,10.关于函数()f x =的结论正确的是( )A .定义域、值域分别是[]13-,,[)0+¥,B .单调增区间是(]1-¥,C .定义域、值域分别是[]13-,,[]02,D .单调增区间是[]11-,11.函数()f x 是定义在R 上的奇函数,下列命题中是正确命题的是( )A .()00f =B .若()f x 在[)0+¥,上有最小值1-,则()f x 在(]0-¥,上有最大值1C .若()f x 在[)1+¥,上为增函数,则()f x 在(]1-¥-,上为减函数D .若0x >时,()22f x x x =-,则0x <时,()22f x x x =--12.关于函数()f x )A .函数是偶函数B .函数在()1-¥-,)上递减C .函数在()01,上递增D .函数在()33-,上的最大值为1三、填空题(每小题5分,共20分)13.已知函数()()f x g x ,分别由表给出,则()()2g f =________.x 123()f x 131()g x 32114.已知()f x 为R 上的减函数,则满足()11f f x öæç÷èø>的实数x 的取值范围为________.15.已知函数()f x 是奇函数,当()0x Î-¥,时,()2f x x mx =+,若()23f =-,则m 的值为________.16.符号[]x 表示不超过x 的最大整数,如[][]3.143 1.62=-=-,,定义函数:()[]f x x x =-,则下列说法正确的是________.①()0.80.2f -=;②当12x ≤<时,()1f x x -;③函数()f x 的定义域为R ,值域为[)01,;④函数()f x 是增函数,奇函数.四、解答题(共70分)17.(10分)已知一次函数()f x 是R 上的增函数,()()()g x f x x m =+,且()()165f f x x =+.(1)求()f x 的解析式.(2)若()g x 在()1+¥,上单调递增,求实数m 的取值范围.18.(12分)已知()()212021021 2.f x x f x x x x x +-ìï=+íï-î,<<,,≤<,,≥(1)若()4f a =,且0a >,求实数a 的值.(2)求32f öæ-ç÷èø的值.19.(12分)已知奇函数()q f x px r x =++(p q r ,,为常数),且满足()()5171224f f ==,.(1)求函数()f x 的解析式.(2)试判断函数()f x 在区间102æùçúèû,上的单调性,并用函数单调性的定义进行证明.(3)当102x æùÎçúèû,时,()2f x m -≥恒成立,求实数m 的取值范围.20.(12分)大气中的温度随着高度的上升而降低,根据实测的结果,上升到12km 为止,温度的降低大体上与升高的距离成正比,在12km 以上温度一定,保持在55-℃.(1)当地球表面大气的温度是a ℃时,在km x 的上空为y ℃,求a x y 、、间的函数关系式.(2)问当地表的温度是29℃时,3km 上空的温度是多少?21.(12分)已知函数()f x 是定义在[]11-,上的奇函数,且()11f =,对任意[]110a b a b Î-+¹,,,时有()()0f a f b a b++成立.(1)解不等式()1122f x f x öæ+-ç÷èø<.(2)若()221f x m am -+≤对任意[]11a Î-,恒成立,求实数m 的取值范围.22.(12分)已知函数()[](]2312324.x x f x x x ì-Î-ï=í-Îïî,,,,,(1)画出()f x 的图象.(2)写出()f x 的单调区间,并指出单调性(不要求证明).(3)若函数()y a f x =-有两个不同的零点,求实数a 的取值范围.第二章综合测试答案解析一、1.【答案】B【解析】选B .由10420x x +ìí-î>,≥,得12x -<≤.2.【答案】C【解析】选C .因为()222224f =+-=,所以()211115124416f f f öæööææ==-=÷çç÷ç÷ç÷èèøøèø.3.【答案】A【解析】选A .()32f x x x =+是R 上的奇函数,故()()f a f a -=-,所以()()0f a f a +-=.4.【答案】C【解析】选C .因为幂函数223aa y x --=是偶函数,且在()0+¥,上单调递减,所以2223023a a a z a a ì--ïÎíï--î<,,是偶数.解得1a =.5.【答案】B【解析】选B .因为()51255410f a b =++=,所以12556a b +=,所以()()51255412554642f a b a b -=--+=-++=-+=-.6.【答案】C【解析】选C .因为22211131f x x x x x x ööææ+=++=++ç÷ç÷èèøø,所以()21f x x =+(2x -≤或2x ≥),所以()233110f =+=.7.【答案】A【解析】选A .由()()22f t f t +=-,可知抛物线的对称轴是直线2x =,再由二次函数的单调性,可得()()()214f f f <<.8.【答案】B【解析】选B .因为()()21210f x f x x x --<对任意的[)()12120x x x x Î+¥¹,,恒成立,所以()f x 在[)0+¥,上单调递减,又()20f =,所以当2x >时,()0f x <;当02x ≤<时,()0f x >,又()f x 是偶函数,所以当2x -<时,()0f x <;当20x -<<时,()0f x >,所以()0xf x <的解集为()()202-+¥U ,,.二、9.【答案】AC【解析】选AC .根据题意知()10210xx f x x ìöæïç÷=íèøïî,≤,,>,()f x 的图象为所以()f x 的值域为[)1+¥,,A 对;因为()()12f x f x +<,所以1210x x x +ìí+î>≤,或2010x x ìí+î<>,所以11x x ìí-î<≤,或01x x ìí-î<>,所以1x -≤或10x -<<,所以0x <,C 对.10.【答案】CD【解析】选CD .由2230x x -++≥可得,2230x x --≤,解可得,13x -≤≤,即函数的定义域为[]13-,,由二次函数的性质可知,()[]22231404y x x x =-++=--+Î,,所以函数的值域为[]02,,结合二次函数的性质可知,函数在[]11-,上单调递增,在[]13,上单调递减.11.【答案】ABD【解析】选ABD .()f x 为R 上的奇函数,则()00f =,A 正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以B 正确,C 不正确;对于D ,0x <时,()()()22022x f x x x x x --=---=+>,,又()()f x f x -=-,所以()22f x x x =--,即D 正确.12.【答案】ABD【解析】选ABD .函数满足()()f x f x -=,是偶函数;作出函数图象,可知在()1-¥-,,()01,上递减,()10-,,()1+¥,上递增,当()33x Î-,时,()()max 01f x f ==.三、13.【答案】1【解析】由题表可得()()2331f g ==,,故()()21g f =.14.【答案】()()01-¥+¥U ,,【解析】因为()f x 在R 上是减函数,所以11x,解得1x >或0x <.15.【答案】12【解析】因为()f x 是奇函数,所以()()223f f -=-=,所以()2223m --=,解得12m =.16.【答案】①②③【解析】()[]f x x x =-,则()()0.80.810.2f -=---=,①正确,当12x ≤<时,()[]1f x x x x =-=-,②正确,函数()f x 的定义域为R ,值域为[)01,,③正确,当01x ≤<时,()[]f x x x x =-=;当12x ≤<时,()1f x x =-,当0.5x =时,()0.50.5f =;当 1.5x =时,()1.50.5f =,则()()0.5 1.5f f =,即有()f x 不为增函数,由()()1.50.5 1.50.5f f -==,,可得()()1.5 1.5f f -=,即有()f x 不为奇函数,④错误.四、17.【答案】(1)由题意设()()0f x ax b a =+>.从而()()()2165f f x a ax b b a x ab b x =++=++=+,所以21655a ab ì=í+=î,,解得41a b =ìí=î,或453a b =-ìïí=-ïî,(不合题意,舍去).所以()f x 的解析式为()41f x x =+.(2)()()()()()()()414241g x f x x m x x m x m x m g x =+=++=+++,图象的对称轴为直线418m x +=-.若()g x 在()1+¥,上单调递增,则4118m +-≤,解得94m -≥,所以实数m 的取值范围为94öé-+¥÷êëø.18.【答案】(1)若02a <<,则()214f a a =+=,解得32a =,满足02a <<;若2a ≥,则()214f a a =-=,解得a =或a =,所以32a =或a =.(2)由题意,3311222f f f öööæææ-=-+=-ç÷ç÷ç÷èèèøøø1111212222f f ööææ=-+==´+=ç÷ç÷èèøø.19.【答案】(1)因为()f x 为奇函数,所以()()f x f x -=-,所以0r =.又()()5121724f f ì=ïïíï=ïî,即52172.24p q q p ì+=ïïíï+=ïî解得212p q =ìïí=ïî,,所以()122f x x x =+.(2)()122f x x x =+在区间102æùçúèû,上单调递减.证明如下:设任意的两个实数12x x ,,且满足12102x x <<≤,则()()()12121211222f x f x x x x x -=-+-()()()()21211212121214222x x x x x x x x x x x x ---=-+=.因为12102x x <<≤,所以2112121001404x x x x x x -->,<<,>,所以()()120f x f x ->,所以()122f x x x =+在区间102æùçúèû,上单调递减.(3)由(2)知()122f x x x =+在区间102æùçúèû,上的最小值是122f öæ=ç÷èø.要使当102x æùÎçúèû,时,()2f x m -≥恒成立,只需当102x æùÎçúèû,时,()min 2f x m -≥,即22m -≥,解得0m ≥即实数m 的取值范围为[)0+¥,.20.【答案】(1)由题意知,可设()0120y a kx x k -=≤≤,<,即y a kx =+.依题意,当12x =时,55y =-,所以5512a k -=+,解得5512a k +=-.所以当012x ≤≤时,()()5501212x y a a x =-+≤≤.又当12x >时,55y =-.所以所求的函数关系式为()55012125512.x a a x y x ì-+ï=íï-î,≤≤,,>(2)当293a x ==,时,()3295529812y =-+=,即3km 上空的温度为8℃.21.【答案】(1)任取[]121211x x x x Î-,,,<,()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-g 由已知得()()()12120f x f x x x +-+->,所以()()120f x f x -<,所以()f x 在[]11-,上单调递增,原不等式等价于112211121121x x x x ì+-ïïï-+íï--ïïî<,≤≤≤,所以106x ≤<,原不等式的解集为106öé÷êëø,.(2)由(1)知()()11f x f =≤,即2211m am -+≥,即220m am -≥,对[]11a Î-,恒成立.设()22g a ma m =-+,若0m =,显然成立;若0m ¹,则()()1010g g -ìïíïî≥≥,即2m -≤或2m ≥,故2m -≤或2m ≥或0m =.22.【答案】(1)由分段函数的画法可得()f x 的图象.(2)单调区间:[]10-,,[]02,,[]24,,()f x 在[]10-,,[]24,上递增,在[]02,上递减.(3)函数()y a f x =-有两个不同的零点,即为()f x a =有两个实根,由图象可得,当11a -<≤或23a ≤<时,()y f x =与y a =有两个交点,则a 的范围是(][)1123-U ,,.。
(人教版A版)高中数学必修第一册 第二章综合测试试卷02及答案
![(人教版A版)高中数学必修第一册 第二章综合测试试卷02及答案](https://img.taocdn.com/s3/m/910e7dbb534de518964bcf84b9d528ea80c72f7c.png)
第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知,,a b c ÎR ,那么下列命题中正确的是( )A .若a b >,则22ac bc >B .若a bc c>,则a b>C .若33a b >,且0ab <,则11a b >D .若22a b >,且0ab >,则11a b<2.如果a ÎR ,且20a a +<,那么2,,a a a -的大小关系为( )A .2a a a ->>B .2a a a ->>C .2a a a ->>D .2a a a->>3.若函数14(2)2y x x x =+-->,则函数y 有( )A .最大值0B .最小值0C .最大值2-D .最小值2-4.不等式1021x x -+的解集为( )A .1|12x x ìü-íýîþ<≤B .1|12x x ìü-íýîþ≤C .1| 12x x x ìü-íýîþ<或≥D .1|| 12x x x x ìü-íýîþ≤或≥5.若不等式220ax bx ++<的解集为11|| 23x x x x ìü-íýîþ<或>,则a b a -的值为( )A .16B .16-C .56D .56-6.若不等式()(2)3x a x a a --->对任意实数x 都成立,则实数a 的取值范围是( )A .(1,3)-B .(3,1)-C .(2,6)-D .(6,2)-7.若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .114ab B .111a b+≤C 2D .228a b +≥8.不等式3112x x--≥的解集是( )A .3|24x x ìüíýîþ≤B .3|24x x ìüíýîþ≤<C .3| 24x x x ìüíýîþ≤或>D .{|2}x x <9.若命题“0x $ÎR ,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是( )A .26m ≤≤B .62m --≤≤C .26m <<D .62m --<<10.若正数,x y 满足35x y xy +=,则34x y +的最小值是( )A .245B .285C .5D .611.已知210a +<,关于x 的不等式22450x ax a -->的解集是( )A .{|5 }x x a x a -<或>B .{|5 }x x a x a ->或<C .{|5}x a x a -<<D .{|5}x a x a -<<12.某厂以x 千克/时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是310051x x æö+-ç÷èø元.若使生产该产品2小时获得的利润不低于3 000元,则x 的取值范围为( )A .{|3}x x ≥B .1| 35x x x ìü-íýîþ≤或≥C .{|310}x x ≤≤D .{|13}x x ≤≤二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.若1x ->,则当且仅当x =________时,函数111x x y +++=的最小值为________.14.若不等式20x ax b ++<的解集为{}|12x x -<<,则不等式210bx ax ++<的解集为________.15.已知,x y +ÎR ,且满足22x y xy +=,那么34x y +的最小值为________.16.若x ÎR ,不等式224421ax x x ++-+≥恒成立,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]已知不等式2340x x --<的解集为A ,不等式260x x --<的解集为B .(1)求A B I ;(2)若不等式20x ax b ++<的解集为A B I ,求,a b 的值.18.[12分]已知命题p :方程210x mx ++=有两个不相等的实根,命题p 是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a ---<的解集为N ,若x N Î是x M Î的充分条件,求a 的取值范围.19.[12分](1)若0,0x y >>,且281x y+=,求xy 的最小值;(2)已知0,0x y >>满足21x y +=,求11x y+的最小值.20.[12分]要制作一个体积为39m ,高为1m 的有盖长方体容器,已知该容器的底面造价是每平方米10元,侧面造价是每平方米5元,盖的总造价为100元.求该长方体容器的长为多少时总造价最低,最低为多少元?21.[12分]已知,,a b c 均为正实数.求证:(1)()2()4a b ab c abc ++≥;(2)若3a b c ++=+.22.[12分]设2()1g x x mx =-+.(1)若()0g x x对任意0x >恒成立,求实数m 的取值范围;(2)讨论关于x 的不等式()0g x ≥的解集.第二章综合测试答案解析一、1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】A 5.【答案】C 6.【答案】D 7.【答案】D 8.【答案】B 9.【答案】A 10.【答案】C【解析】由35x y xy +=可得13155y x+=,所以139431213131234(34)5555555555x y x y x y y x y x æö+=++=++++=+=ç÷èø,当且仅当31255x yy x =且35x y xy +=,即1x =,12y =时取等号.故34x y +的最小值是5.11.【答案】A【解析】方程22450x ax a --=的两根为,5a a -.1210,,52a a a a +\-\-Q <<>.结合2245y x ax a =--的图像,得原不等式的解集是{|5 }x x a x a -<或>.12.【答案】C【解析】根据题意,得3200513000x x æö+-ç÷èø≥,整理,得35140x x --≥,即251430x x --≥.又110x ≤≤,可解得310x ≤≤.即要使生产该产品2小时获得的利润不低于3000元,x 的取值范围是|310{}x x ≤≤.二、13.【答案】0214.【答案】1| 1 2x x x ìü-íýîþ<或>15.【答案】5+16.【答案】2|3a a ìü-íýîþ≥【解析】不等式224421ax x x ++-+≥恒成立2(2)430a x x Û+++≥恒成立220443(2)0a a +>ìïÛí-´´+ïî≤23a Û-≥,故实数a 的取值范围是2|3a a ìü-íýîþ≥.三、17.【答案】(1)解:{|14},{|23}A x x B x x =-=-<<<<,{|13}A B x x \Ç=-<<.(2)解:Q 不等式20x ax b ++<的解集为{|13}x x -<<,1,3\-为方程20x ax b ++=的两根.10,930,a b a b -+=ì\í++=î2,3.a b =-ì\í=-î18.【答案】(1)解:命题p :方程210x mx ++=有两个不相等的实根,所以240m D =->,解得2m >或2m -<.所以{| 2 2}M m m m =->或<.(2)解:因为x N Î是x M Î的充分条件,所以N M Í.因为{|2}N x a x a =+<<,所以22a +-≤或2a ≥,所以4a -≤或2a ≥.19.【答案】(1)解:0,0x y Q >>且281x y+=,281x y \=+=≥,8,当且仅当82x y =且281x y+=即4x =,16y =时取等号.64xy \≥..故xy 的最小值是64.(2)解:0,0,21x y x y >>+=Q11112(2)1233x y x y x y x y y x æö\+=++=++++=+ç÷èø≥当且仅当x =且21x y +=.即x =,y =.故11x y+的最小值是3+20.【答案】解:设该长方体容器的长为m x ,则宽为9m x.又设该长方体容器的总造价为y 元,则9991021510019010y x x x x æöæö=´++´´+=++ç÷ç÷èøèø.因为96x x +=≥(当且仅当9x x =即3x =时取“=”).所以min 250y =.即该长方体容器的长为3m 时总造价最低,最低为250元.答:该长方体容器的长为3m 时总造价最低,最低为250元.21.【答案】(1)证明:因为,,a b c 均为正实数,由基本不等式得a b +≥,2ab c +≥,两式相乘得()2()4a b ab c abc ++≥,当且仅当a b c ==时取等号.所以()2()4a b ab c abc ++≥..(2)解:因为,,a b c 12322a a +++=,当且仅当12a +=时取等号;12322b b +++=,当且仅当12b +=时取等号;12322c c +++=.当且仅当12c +=时取等号.以上三式相加,得962a b c ++++=≤,当且仅当1a b c ===时取等号.22.【答案】(1)解:由题意,若()0g x x≥对任意0x >恒成立,即为10x m x-+对0x >恒成立,即有1(0)m x x x+≤>的最小值.由12(0)x x x +≥>,可得1x =时,1x x+取得最小值2.所以2m ≤.(2)解:2()1g x x mx =-+对应的一元二次方程为210x mx -+=.当240m D =-≤,即22m -≤≤时,()0g x ≥的解集为R ;当0D >,即2m >或2m -<时,方程的两根为x =可得()0g x ≥的解集为|x x x ìïíïî.。
完整版)高中数学必修一第二章测试题(含答案)
![完整版)高中数学必修一第二章测试题(含答案)](https://img.taocdn.com/s3/m/2981a01b2bf90242a8956bec0975f46527d3a797.png)
完整版)高中数学必修一第二章测试题(含答案)1.已知p>q>1,0<a<1,则下列各式中正确的是:A。
ap>aq B。
pa>qa C。
a-p>a-q D。
p-a>q-a正确答案:A解析:因为p>q>1,所以p-q>0,又因为0<a<1,所以a 的p-q次方小于1,即a^p-q<1,所以ap<aq,即选项A正确。
2.已知f(10x)=x,则f(5)=?A。
105 B。
510 C。
lg10 D。
lg5正确答案:B解析:将f(10x)=x代入x=5/10=1/2中,得到f(1/2)=5,又因为f(5)=f(1/2)/10=5/10=1/2,所以选项B正确。
3.当a≠0时,函数y=ax+b和y=ba^x的图象只可能是?正确答案:直线和指数函数曲线解析:当a=1时,y=x+b和y=be^x,即两个函数都是直线;当a>1时,y=ax+b的图象是一条上升的直线,y=ba^x的图象是一条上升的指数函数曲线;当0<a<1时,y=ax+b的图象是一条下降的直线,y=ba^x的图象是一条下降的指数函数曲线。
4.当a≠1时,函数y=a^(x+b)和y=b^(ax)的图象只可能是?正确答案:指数函数曲线解析:y=a^(x+b)可以化为y=a^b*a^x,因此是一条上升的指数函数曲线;y=b^(ax)可以化为y=(b^a)^x,因此也是一条上升的指数函数曲线。
5.设y1=4,y2=80.90.48,y3=1/2,则递增区间是?正确答案:(0,+∞)解析:因为y1<y3<y2,所以递增区间是(0,+∞)。
6.下列函数中,在区间(0,+∞)上为增函数的是?A。
y=ln(x+2) B。
y=-x+1 C。
y=1/(1+x) D。
y=sin(x)正确答案:A解析:求导可得y'=(1/(x+2))>0,所以y在区间(0,+∞)上为增函数,因此选项A正确。
(人教版A版2017课标)高中数学必修第一册:第二章综合测试(含答案)
![(人教版A版2017课标)高中数学必修第一册:第二章综合测试(含答案)](https://img.taocdn.com/s3/m/c26fe62725c52cc58bd6be65.png)
第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D .a b <2.若a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc < B .11a b< C .b a a b>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( ) A .45a << B .32a --<<或45a << C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________. 15.已知三个不等式:①0ab >,②c dab--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b -(.Q ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +<”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c Q 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a ∴->,0ab >,0b a ab -∴>,即11a b>,故选项B 不成立;选项C ,0a b Q <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b a a b <,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A . 10.【答案】C【解析】2x Q >,20x ∴->.11==222=422y x x x x ∴+-++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<≤,>,>,1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使202=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->. 22222==a b a b ab a b a b a b a b +-+∴-+---()()≥,当且仅当a b -时等号成立.22a b a b+∴-的最小值为故选D .二、 13.【答案】111a a-+≥ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a∴-≥,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --()<(),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c da b>,即0bc ad ab ->,Q ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162a b x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+Q <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分)由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x I ≤≤.(3分) (2)因为=A B A U ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时,由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+11a b ∴+=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯Q ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+Q,a b ∴+.234a b ab -Q ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a Q 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x+-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
D
A 1
D 1
B 1
C 1
A
数学必修一必修二综合检测题(一)
1. 设f :x →x 2是集合A 到集合B 的映射,若B ={1,2},则A ∩B 为 A.φ B.{1} C.φ或{2} D.φ或{1}
2. 函数b
x a
x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是
A.0,1<>b a
B.0,1>>b a
C.0,10><<b a
D.0,10<<<b a 3. 下列各组函数中,表示同一函数的是
(x )与g (x )= f (x +1) B. f (x )= x 2
-2 x -1与g (t )= t 2
-2 t -1
x x g x x f x x x x x f C ==+=-+=
)()(D. 1
-1g(x) 1
1
)(.2与与
^
4. 函数y =)23(log 3
1-x 的定义域是
A.[1,+∞]
B.⎪⎭
⎫
⎝⎛+∞,32 C.⎥⎦
⎤
⎢⎣⎡132,
D.⎥⎦
⎤ ⎝⎛,132
5. 函数y =1-1
1
-x , 则下列说法正确的是
在(-1,+∞)内单调递增 在(-1,+∞)内单调递减 在(1,+∞)内单调递增
在(1,+∞)内单调递减
6. 正方体的内切球与外接球的半径之比为
A .3∶1
B .3∶2
C .1∶3
D .2∶3
7. 已知直线02)1(:1=-++y x a l 与直线01)22(:2=+++y a ax l 互相垂直,则实数a 的值为
A .-1或2
B .-1或-2
C .1或2
D .1或-2
8. 下列命题中错误的是
、
(A )若//,,m n n m βα⊥⊂,则αβ⊥ (B )若α//β,//γβ 则//αγ
(C )若α⊥
γ,β⊥γ,l αβ=,则l ⊥γ (D )若α⊥β,a ⊂α,则a ⊥β
9. 函数x
e y -=的图象
A.与x
e y =的图象关于y 轴对称 B.与x
e y =的图象关于坐标原点对称 C.与x
e y -=的图象关于 y 轴对称 D.与x
e y -=的图象关于坐标原点对称 10. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是
x y O x y O x y O x
y
O
11. 如图,已知长方体1111ABCD A B C D -中,14,2AB BC CC ===,则直线1BC 和平面11DBB D 所成的正弦值
等于( )
A .
3 B .5 C .
105 D .10
10
12. 已知实数a, b 满足等式,)3
1()21(b
a =下列五个关系式
~
①0<b<a ②a<b<0 ③0<a<b ④b<a<0 ⑤a=b 其中不可能...
成立的关系式有 个 个 个 个
13. 若幂函数f(x)的图像过点(2,8),则f(x)= .
14. 经过点A(-3,4),且在两坐标轴上的截距相等的直线方程的一般式为_________________.
15. 若一个正三棱柱的三视图及其尺寸如图所示(单位:cm),则该几何体的体积是 ________________cm 3. 16.
已知a b ,为常数,若
2()43f x x x =++,
2()1024f ax b x x +=++,则5a b -=___________.
17.k Q P k x k x Q x x P 的实数求使已知集合∅=-≤≤+=≤≤-= },121|{},52|{
?
的取值范围。
(
18. 已知
ABC 三边所在直线方程为:34120,AB x y ++= :43160,BC x y -+=:220.CA x y +-=
(Ⅰ)求直线AB 与直线BC 的交点B 的坐标;(Ⅱ)求AC 边上的高所在的直线方程.
>
19. 如图,在棱长为a 的正方体ABCD D C B A -1111中,
(1)作出面11A BC 与面ABCD 的交线l ,判断l 与线11A C 位置关系,并给出证明; (2)证明1B D ⊥面11A BC . (3)求线AC 到面11A BC 的距离;
、
20. 已知函数⎩
⎨⎧∈+-∈=]7,4(1)5(]4,1[log )(2
2x x x x
x f . (Ⅰ)在给定的直角坐标系内画出)(x f 的大致图象; (Ⅱ)求函数g(x)=f(x)-
3
2
的零点. ?
21. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 111设F 是棱AB 的中点,证明:直线EE 11
;
22. 已知函数4()log (41)2
x
x f x =+-
. (Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)若方程()0f x m -=有解,求m 的取值范围; (Ⅲ)若函数4()log [123(1)]x x x x g x n n a =++++--,2,n n N ≥∈,对任意(,1]x ∈-∝都有意义,
求a 的取值范围.
-
/
!
A
B
C
F
E 1
A 1
B 1
C 1
D 1
)
答案
1~12 DDBDC CBDDC CB 13. 3
)(x x f = 14. 4x+3y=0或x+y-1=0 15. 38 16. 2
17. k>4或k<2
18. B(-4,0) 直线AC 方程为:x-2y+4=0 19. (1)l ∥AC. (2)略. (3)
a 3
3
. `
20.
(Ⅰ)图像如右图所示,此题需突出(1,0),(4,2), (5,1), (7,5)四个点,并保留作图痕迹;
(Ⅱ)当1≤x ≤4时,23
log 2
x =
,得22x =; 当4<x ≤7时,23
(5)12
x -+=,得252x =±;
故函数g(x)=f(x)-3
2
的零点为2222,5,522+-.
{
21.
证明:(1)在直四棱柱ABCD-A 1B 1C 1D 1中,取A 1B 1的中点F 1, 连接A 1D ,C 1F 1,CF 1,因为AB=4, CD=2,且AB 111EE ⊄11CF ⊂111
(2)连接AC,在直棱柱中,CC 1⊥平面ABCD,AC ⊂
平面ABCD,
所以CC 1⊥AC,因为底面ABCD 为等腰梯形,AB=4, BC=2, F 是棱AB 的中点,所以CF=CB=BF ,△BCF 为正三角形,
60BCF ∠=︒,△ACF 为等腰三角形,且30ACF ∠=︒
所以AC ⊥BC, 又因为BC 与CC 1都在平面BB 1C 1C 内且交于点C, 所以AC ⊥平面BB 1C 1C,而AC ⊂平面D 1AC, 所以平面D 1AC ⊥平面BB 1C 1C.
22.
(Ⅰ)f(x)是偶函数,
∵44414()log (41)log log (41)()2422
x x
x x x x x
f x f x -+-=++=+=+-=;
(Ⅱ)∵44441
()log (41)log (41)log 2log (2)22
x x x x x x m f x ==+-
=+-=+, 又212(2)2222
x x
x x +
=-+≥, ∴12m ≥
;
故要使方程()0f x m -=有解,m 的取值范围为1
2
m ≥. (Ⅲ)由123(1)0x x x x n n a +++
+-->知121()()()x x x
n a n n n
-<+++恒成立
又∵(),1,2,,1x i i
y i n n ==-都是减函数
∴121()()()x x x
n y n n n
-=+++也是减函数
∴y 在(,1]-∝上的最小值为1111min 123
11
()()()(
)2
n n y a n n n
n --=+++
+=> ∴a 的取值范围是1
(,)2
n --∝.
E A B C F
E 1 ,
B 1
C 1
D 1 D F 1
E
A
B
C
? E 1 A 1
B 1
C 1
D 1 D。