高一数学试卷期末模拟卷 含答案
2023-2024学年北京市丰台区高一(上)期末数学模拟试卷+答案解析
2023-2024学年北京市丰台区高一(上)期末数学模拟试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.计算:()A. B. C. D.3.若,则a,b,c的大小关系为()A. B. C. D.4.已知,则“”是“”的()A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件5.已知函数是定义在R上的奇函数,且当时,,则()A. B.2 C. D.46.设,则函数的零点所在区间是()A. B. C. D.7.已知,,,则的最小值为()A.4B.6C.8D.98.某海岛核污水中含有多种放射性物质,其中放射性物质含量非常高,它可以进入生物体内,还可以在体内停留,并引起基因突变,但却难以被清除.现已知的质量随时间年的指数衰减规律是:其中为的初始质量则当的质量衰减为最初的时,所经过的时间约为参考数据:,()A.300年B.255年C.175年D.125年9.已知角终边上一点的坐标为,则()A. B. C. D.10.已知是定义在R上的偶函数,若、且时,恒成立,且,则满足的实数m的取值范围为()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.命题“对任意,都有”的否定为______.12.函数的定义域为______.13.已知幂函数的图像经过点,则______.14.已知函数,且该函数图像的对称轴与对称中心的最小距离为,则可得______;若当时,的最大值为,则该函数的解析式为______.15.已知函数其中,,的部分图象如图所示,则下列结论正确序号有______.①为奇函数;②函数的图象关于点对称;③在上单调递增;④若函数在上没有零点,则三、解答题:本题共6小题,共72分。
解答应写出文字说明,证明过程或演算步骤。
16.本小题12分设集合,;当时,求,若,求a的取值范围.17.本小题12分已知不等式的解集为求实数a,b的值;若,,且,求的最小值.18.本小题12分如图,已知单位圆O与x轴正半轴交于点M,点A,B在单位圆上,其中点A在第一象限,且,记,若,求点A的坐标;若点A的坐标为,求的值.19.本小题12分已知函数是定义在R上的奇函数,且当时,求出当时,的解析式;如图,请补出函数的完整图象,根据图象直接写出函数的单调递减区间;结合函数图象,求当时,函数的值域.20.本小题12分已知函数求函数的单调递增区间和最小正周期.若当时,关于x的不等式_____,求实数m的取值范围.请选择①和②中的一个条件,补全问题,并求解.其中,①有解;②恒成立.注:若选择两个条件解答,则按照第一个解答计分.21.本小题12分已知函数的定义域为,且对任意的正实数x,y都有,且当时,,,求证:;求;解不等式答案和解析1.【答案】C【解析】【分析】本题考查并集运算,属于基础题.根据集合并集的运算即可判断.【解答】解:,,故选2.【答案】A【解析】解:故选:利用诱导公式及两角差的余弦公式计算即可.本题考查两角和与差的三角函数,属基础题.3.【答案】A【解析】解:,且,,,所以故选:由对数函数和指数函数的性质可得.本题考查指数、对数的大小比较,涉及对数函数和指数函数的性质,属于基础题.4.【答案】B【解析】解:当时,不一定成立,当时,一定成立,故“”是“”的必要不充分条件.故选:由已知结合不等式范围检验充分及必要性即可判断.本题主要考查了充分必要条件的判断,属于基础题.5.【答案】B【解析】解:根据题意,当时,,则,又由为奇函数,则故选:根据题意,由函数的解析式求出的值,结合奇偶性可得答案.本题考查函数奇偶性的性质以及应用,涉及函数值的计算,属于基础题.6.【答案】C【解析】【分析】本题主要考查函数零点的判定定理的应用,属于基础题.由函数的解析式判断函数的单调性,再求解,的值,根据函数零点的判定定理可得函数的零点所在的区间.【解答】解:由于函数,是连续函数,,求导,当时,,为单调递减,而,即在不存在零点.当时,,为单调递增,且,,,由零点判定定理可知:函数的零点所在的区间是,故选:7.【答案】C【解析】解:,,,可得,,当且仅当,即,时取等号,的最小值为故选:利用基本均值不等式及“1”的活用,可得代数式的最小值.本题考查基本不等式的性质的应用,属于基础题.8.【答案】A【解析】解:经过的时间为t年,根据题意,所以,所以故选:根据题意列出等式,结合对数的运算法则求解即可.本题考查对数运算的应用,属于基础题.9.【答案】A【解析】解:由三角函数的定义得,,又由诱导公式得,故选:根据三角函数的定义求出,再由诱导公式进行化简求值即可.本题主要考查三角函数的诱导公式,属于基础题.10.【答案】A【解析】解:设,则,所以,令,则,所以函数在上为增函数,对任意的,,所以函数为R上的偶函数,且,由可得,即,即,所以,,即,解得故选:利用构造函数法,结合函数的单调性、奇偶性来求得m的取值范围.本题主要考查了函数的单调性及奇偶性在不等式求解中的应用,属于中档题.11.【答案】,【解析】解:命题是全称命题,则命题的否定是特称命题,即,故答案为:,根据全称命题的否定是特称命题进行判断即可.本题主要考查含有量词的命题的否定,比较基础.12.【答案】【解析】解:要使有意义,则:,解得,的定义域为:故答案为:可看出,要使得有意义,需满足,然后解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.13.【答案】【解析】解:设幂函数,根据它的的图像经过点,可得,,则故答案为:由题意,利用幂函数的定义和性质,先求出函数的解析式,从而得出结论.本题主要考查幂函数的定义和性质,属于基础题.14.【答案】【解析】解:因为函数图像的对称轴与对称中心的最小距离为,所以,即,所以由得,所以时,取得最大值,所以,解得,所以故答案为:3,根据对称性可得周期,然后可的,再由正弦函数的最值列方程可得本题考查由的部分图象确定其解析式,求得,m的值是关键,考查运算求解能力,属于中档题.15.【答案】②④【解析】解:由图可知,,所以,因为,所以,,即,,又,所以,所以,对于①,,显然是偶函数,故①错误;对于②,,所以函数的图象关于点对称,故②正确;对于③,当时,,函数取得最大值,所以在上不是单调增函数,故③错误;对于④,因为,所以,,当时,,因为在上没有零点,所以,解得,故④正确.故答案为:②④.根据函数图象求得的解析式,①先化简可得的解析式,再根据余弦函数的奇偶性作出判断;②计算的值是否为0,即可作出判断;③考虑时的函数值特点,即可作出判断;④先得到的解析式,再结合正弦函数的性质求解即可.本题考查三角函数的图象与性质,理解中A,,的几何意义,三角函数的单调性、奇偶性和对称性等是解题的关键,考查逻辑推理能力和运算能力,属于中档题.16.【答案】解:当时,,;因为,当时,,解得,当时,,解得,综上,a的取值范围是【解析】利用交集和并集的概念进行求解;分和两种情况,得到不等式,求出答案.本题主要考查集合的运算,属于基础题.17.【答案】解:因为的解集为,所以和为方程的两个实根,二次项系数a不为0,根据韦达定理,则有,解得当,时,的解集为,符合题意.综上,,由可知,,因为,,所以,当且仅当,即时取等号,所以的最小值为【解析】由解集可得一元二次方程的两个实根,由韦达定理可求得实数a,b的值;根据均值不等式进行求解即可.本题主要考查了二次不等式的求解,还考查了基本不等式求解最值,属于中档题.18.【答案】解:若,则,,所以点,若点A的坐标为,因为,点A在第一象限,所以,即,则,因为,所以,所以,所以【解析】Ⅰ若,直接利用三角函数的定义求点A的坐标;Ⅱ若点A的坐标为,则,,即可求的值.本题考查任意角的三角函数的定义、诱导公式的应用,比较基础.19.【答案】解:依题意,设,则,于是,因为为R上的奇函数,因此,所以当时,的解析式由已知及得函数的图象如下:观察图象,得函数的单调递减区间为:当时,由,知,函数在上单调递减,在上单调递增,当时,有最小值,当时,有最大值,而当时,有,所以,当时,函数的值域为【解析】由奇函数的定义求出解析式作答.由奇函数的图象特征,补全函数的图象,并求出单调增区间作答.利用图象,借助单调性求出最值作答.本题考查函数奇偶性的性质与判断等基础知识,考查运算求解能力,是基础题.20.【答案】解:因为,所以函数的最小正周期因为函数的单调递增区间为,所以,解得,所以函数的单调递增区间为若选择①:由题意可知,不等式有解,即因为,所以,故当,即时,取得最大值,且最大值为,所以,即;若选择②:由题意可知,不等式恒成立,即因为,所以故当,即时,取得最小值,且最小值为,所以,即【解析】根据三角函数的性质即可求解;若选择①,则不等式有解,即,求在上的最大值,即可求解;若选择②,则不等式恒成立,即,求在上的最小值,即可求解.本题考查三角函数的单调性与周期性的应用,属于中档题.21.【答案】解:证明:令,,则,,故设,且,于是,为上的增函数.又,原不等式的解集为【解析】根据对任意的正实数x,y都有,令,,即可求出的值;令,,代入求得,而,即可求得的值;根据当时,,判断函数的单调性,把化为,根据单调性,去掉对应法则f,解不等式.此题是个中档题题,考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.解决抽象函数的问题一般应用赋值法.。
北京市房山区2023-2024学年高一上学期期末检测数学试卷含答案
房山区2023-2024学年度第一学期期末检测试卷高一数学(答案在最后)本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共50分)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知()2,3A -,()4,1B -,则线段AB 中点的坐标为()A.()3,2- B.()3,2- C.()1,1 D.()1,1--【答案】D 【解析】【分析】根据,A B 两点的坐标,利用平面向量的坐标表示计算可得结果.【详解】设线段AB 中点的坐标为(),M x y ,取()0,0O ,则()()2,3,4,1OA OB =-=-uu r uu u r;由向量的坐标表示可得2OM OA OB =+,即224,231x y =-=-+,解得1,1x y =-=-;所以线段AB 中点的坐标为()1,1--.故选:D2.某产品按质量分为甲、乙、丙三个级别,从这批产品中随机抽取一件进行检测,设“抽到甲级品”的概率为0.80,“抽到乙级品”的概率为0.15,则“抽到丙级品”的概率为()A .0.05B.0.25C.0.8D.0.95【答案】A 【解析】【分析】根据概率之和为1求解.【详解】“抽到甲级品”,“抽到乙级品”,“抽到丙级品”是互斥事件,因为“抽到甲级品”的概率为0.80,“抽到乙级品”的概率为0.15,则“抽到丙级品”的概率为0.800.051150.-=-.故选:A3.下列四个函数中,在()0,∞+上单调递减的是()A.y =B.2y x x =-+C.2x y =D.2log y x=-【答案】D 【解析】【分析】ACD 可根据函数图象直接判断;C 选项,配方后得到函数单调性.【详解】A 选项,y =()0,∞+上单调递增,A 错误;B 选项,221124y x x x ⎛⎫=-+=--+ ⎪⎝⎭,故在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减,B 错误;C 选项,2x y =在()0,∞+上单调递增,C 错误;D 选项,2log y x =在()0,∞+上单调递增,故2log y x =-在()0,∞+上单调递减,D 正确.故选:D4.设2log 0.3a =,20.3b =,0.32c =,则a ,b ,c 的大小关系为()A.a b c <<B.a c b <<C.b a c <<D.b c a<<【答案】A 【解析】【分析】利用函数性质,确定与中间量0和1的大小关系即可.【详解】22log 0.3log 10a =<=,2000.30.31b <=<=,0.30221c =>=.所以a b c <<.故选:A.5.甲、乙两名射击运动员在某次测试中各射击10次,两人的测试成绩如下表:甲的成绩乙的成绩环数678910环数678910频数12421频数32113甲、乙两人成绩的平均数分别记作1x ,2x ,标准差分别记作1s ,2s ,则()A.12x x >,12s s >B.12x x <,12s s <C.12x x >,12s s <D.12x x <,12s s >【答案】C 【解析】【分析】根据平均数、方差公式运算求解.【详解】由题意可得:()1161728492101810x =⨯+⨯+⨯+⨯+⨯=,()21637281911037.910x =⨯+⨯+⨯+⨯+⨯=,1s ==,2s =所以12x x >,12s s <.故选:C.6.如图,在ABC 中,点M ,N 满足AM MB =,3BN NC = ,则MN = ()A.1344AB AC +B.1344AB AC -C.1344AB AC-+D.1344AB AC--【答案】C 【解析】【分析】直接利用向量的几何运算求解即可.【详解】()131331242444MN MB BN AB BC AB AC AB AC AB =+=+=+-=-.故选:C.7.在信息论中,设某随机事件发生的概率为p ,称21log p为该随机事件的自信息.若按先后顺序抛掷两枚均匀的硬币,则事件“恰好出现一次正面”的自信息为()A.0B.1C.2D.3【答案】B 【解析】【分析】依题意计算出事件“恰好出现一次正面”的概率为12p =,代入计算可得结果.【详解】根据题意可知,按先后顺序抛掷两枚均匀的硬币共有“正正、反反、正反、反正”四种情况,则事件“恰好出现一次正面”的概率为12p =,所以“恰好出现一次正面”的自信息为221log log 21p==.故选:B8.设,a b是向量,“a ab =+”是“0b = ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案.【详解】当12a b =-时,1122a b b b b a +=-+== ,推不出0b = 当0b = 时,0b = ,则0a b a a +=+=即“a a b =+”是“0b = ”的必要不充分条件故选:B【点睛】本题主要考查了判断必要不充分条件,属于中档题.9.血氧饱和度是呼吸循环的重要生理参数.人体的血氧饱和度正常范围是95%~100%,当血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:0()e Kt S t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K 为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln 2069ln 3110≈≈.,.)A.0.3 B.0.5 C.0.7 D.0.9【答案】B 【解析】【分析】依据题给条件列出关于时间t 的方程,解之即可求得给氧时间至少还需要的小时数.【详解】设使得血氧饱和度达到正常值,给氧时间至少还需要1t -小时,由题意可得60e 80K =,60e 90Kt =,两边同时取自然对数并整理,得804ln ln ln 4ln 32ln 2ln 3603K ===-=-,903ln ln ln 3ln 2602Kt ===-,则ln 3ln 2 1.100.691.52ln 2ln 320.69 1.10t --=≈≈-⨯-,则给氧时间至少还需要0.5小时故选:B10.已知函数()12xf x =,()221f x x =+,()()1log 1a g x x a =>,()()20g x kx k =>,则下列结论正确的是()A.函数()1f x 和()2f x 的图象有且只有一个公共点B.0x ∃∈R ,当0x x >时,恒有()()12g x g x >C.当2a =时,()00,x ∃∈+∞,()()1010f x g x <D.当1a k=时,方程()()12g x g x =有解【答案】D 【解析】【分析】对于A ,易知两个函数都过()0,1,结合特值和图象可得函数()1f x 和()2f x 的图像有两个公共点;对于B ,由函数的增长速度可判断;对于C ,当2a =时,作图可知x ∀∈R ,有()()11f x g x >恒成立;对于D ,当1a k =时,易知两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解;【详解】对于A ,指数函数()12xf x =与一次函数()221f x x =+都过()0,1,且()()121213f f =<=,()()123837f f =>=,故还会出现一个交点,如图所示,所以函数()1f x 和()2f x 的图像有两个公共点,故A 错误;对于B ,()()1log 1a g x x a =>,()()200g x kx k =>=均单调递增,由对数函数的性质可得对数函数的增长速度越来越慢,逐渐趋近0,一次函数的增长速度固定,所以不存在0x ∈R ,当0x x >时,恒有()()12g x g x >,故B 错误;对于C ,当2a =时,指数函数()12xf x =与对数函数()12log g x x =互为反函数,两函数图像关于直线y x=对称,如图所示,由图可知,x ∀∈R ,有()()11f x g x >恒成立,故C 错误;对于D ,当1a k =时,()11log k g x x =,()()20g x kx k =>,由1a >知,11k >,且两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解,故D 正确;故选:D【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解第二部分(非选择题共100分)二、填空题共6小题,每小题5分,共30分.11.238=____________;lg 42lg 5+=___________.【答案】①.4②.2【解析】【分析】直接利用指数对数的运算性质计算即可.【详解】2223824===,()22lg 42lg 5lg 4lg 5lg 45lg1002+=+=⨯==.故答案为:4;2.12.向量a ,b ,c 在正方形网格中的位置如图所示,若(),c a b λμλμ=+∈R,则λμ+=_________.【答案】3【解析】【分析】根据题意将向量a ,b ,c坐标化,解方程即可求出2,1λμ==,可得结果.【详解】以b 的起点为坐标原点,水平向右为x 轴正方向,b的方向为y 轴负方向,建立平面直角坐标系;不妨取()1,1a = ,()0,1b =- ,()2,1c =,由(),c a b λμλμ=+∈R可得()()2,10,λλμ=+-,即可得2,1λμ==,即3λμ+=.故答案为:313.为估计某森林内松鼠的数量,使用以下方法:先随机从森林中捕捉松鼠100只,在每只松鼠的尾巴上作上记号后放回森林.再随机从森林中捕捉50只,若尾巴上有记号的松鼠共有5只,估计此森林内约有松鼠_______只.【答案】1000【解析】【分析】直接根据比例求解.【详解】估计此森林内约有松鼠5100100050÷=只.故答案为:100014.已知向量)a =,(),b x y = ,若a ,b 共线,且1b = ,则向量b的坐标可以是__________.(写出一个即可)【答案】1,22⎛⎫ ⎪ ⎪⎝⎭或1,22⎛⎫-- ⎪ ⎪⎝⎭(写出一个即可)【解析】【分析】直接根据题目条件列方程组求解即可.【详解】由已知得221x x y =+=⎪⎩,解得3212x y ⎧=⎪⎪⎨⎪=⎪⎩或3212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即向量b的坐标可以是1,22⎛⎫ ⎪ ⎪⎝⎭或1,22⎛⎫-- ⎪ ⎪⎝⎭.故答案为:1,22⎛⎫ ⎪ ⎪⎝⎭或1,22⎛⎫-- ⎪ ⎪⎝⎭(写出一个即可).15.函数()()31,1log ,1a a x x f x x x ⎧--<=⎨≥⎩,若4a =,则()()2f f -=_________;若函数()f x 是(),-∞+∞上的增函数,则a 的取值范围是___________.【答案】①.0②.[)2,3【解析】【分析】(1)利用分段函数的解析式,直接求值即可;(2)函数在(),-∞+∞上递增,必须函数的每一段都递增,且1x =时,()311log 1a a -⨯-≤.【详解】(1)当4a =时,()()()234211f -=-⨯--=,()41log 10f ==.(2)因为函数在(),-∞+∞上递增,所以:()301311log 1a a a a ⎧->⎪>⎨⎪-⨯-≤⎩⇒23a ≤<.故答案为:0;[)2,316.有一组样本数据1x ,2x ,…,6x ,其中1x 是最小值,6x 是最大值,下面有四个结论:①2x ,3x ,4x ,5x 的中位数等于1x ,2x ,…,6x 的中位数;②2x ,3x ,4x ,5x 的平均数等于1x ,2x ,…,6x 的平均数;③2x ,3x ,4x ,5x 的标准差不大于1x ,2x ,…,6x 的标准差;④2x ,3x ,4x ,5x 的极差不大于1x ,2x ,…,6x 的极差.则所有正确结论的序号是____________.【答案】①③④【解析】【分析】由中位数、极差、方差的定义性质结合平均数公式逐一判断即可.【详解】由题意不妨设123456x x x x x x ≤≤≤≤≤,对于2x ,3x ,4x ,5x 的中位数和1x ,2x ,…,6x 的中位数均为342x x +,故①正确;取12345612x x x x x x =====<=,此时2x ,3x ,4x ,5x 的平均数为1,它小于1x ,2x ,…,6x 的平均数76,故②错误;对于③,2x ,3x ,4x ,5x 相比1x ,2x ,…,6x 去掉了两个极端的数,应更为稳定,故③正确;2x ,3x ,4x ,5x 的极差与1x ,2x ,…,6x 的极差满足5261x x x x -≤-,故④正确.故答案为:①③④.三、解答题共5题,共70分.解答应写出文字说明,演算步骤或证明过程.17.设向量a 与b不共线.(1)若()1,2a =r ,()1,1b =- ,且2a kb -与32a b - 平行,求实数k 的值;(2)若AB a b =- ,32BC a b =+,82CD a b =-- ,求证:A ,C ,D 三点共线.【答案】(1)43k =(2)证明见解析【解析】【分析】(1)利用向量平行求待定系数;(2)证明AC CD λ=,可得A ,C ,D 三点共线.【小问1详解】()1,2a = ,()1,1b =- ,则()22,4a kb k k -=+- ,()325,4a b -=.因为2a kb - 与32a b - 平行,所以有()()42540k k +--=.解得43k =.【小问2详解】因为AB a b =- ,32BC a b =+,82CD a b =-- ,所以324AC AB BC a b a b a b =+=-++=+,所以2CD AC =- .所以AC 与CD共线,又因为有公共点C ,所以A ,C ,D 三点共线.18.一个问题,甲正确解答的概率为0.8,乙正确解答的概率为0.7.记事件:A 甲正确解答,事件:B 乙正确解答.假设事件A 与B 相互独立.(1)求恰有一人正确解答问题的概率;(2)某同学解“求该问题被正确解答的概率”的过程如下:解:“该问题被正确解答”也就是“甲、乙二人中至少有一人正确解答了问题”,所以随机事件“问题被正确解答”可以表示为A B +.所以()()()0.80.7 1.5P A B P A P B +=+=+=.请你指出这位同学错误的原因,并给出正确解答过程.【答案】(1)0.38(2)答案见解析【解析】【分析】(1)分析可知,事件“恰有一人正确解答”可表示为AB AB +,利用互斥事件和独立事件的概率公式可求得所求事件的概率;(2)指出该同学作答的错误之处,分析可知,“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为AB AB AB ++,利用互斥事件和独立事件的概率公式可求得所求事件的概率,或利用对立事件和独立事件的概率公式可求得所求事件的概率.【小问1详解】解:事件“恰有一人正确解答”可表示为AB AB +,因为AB 、AB 互斥,A 与B 相互独立,所以()()()()()()()P AB AB P AB P AB P A P B P A P B +=+=+0.20.70.80.30.38=⨯+⨯=.【小问2详解】解:该同学错误在于事件A 、B 不互斥,而用了互斥事件的概率加法公式.正确的解答过程如下:“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为AB AB AB ++,且AB 、AB 、AB 两两互斥,A 与B 相互独立,所以()()()()P AB AB AB P AB P AB P AB ++=++()()()()()()0.20.70.80.30.80.70.94P A P B P A P B P A P B =++=⨯+⨯+⨯=.或者()()()()11P A B P AB P A P B +=-=-()()110.810.70.94=---=.19.已知函数()()()33log 2log 2f x x x =++-.(1)求()f x 的定义域;(2)判断()f x 的奇偶性,并证明;(3)解关于x 的不等式()1f x ≥.【答案】(1)()2,2-(2)函数()f x 是定义在()2,2-上的偶函数,证明见解析(3){}11x x -≤≤【解析】【分析】(1)根据对数函数定义域求法可得()f x 的定义域为()2,2-;(2)利用定义域关于原点对称,由奇偶性定义可得()f x 为偶函数;(3)由对数函数单调性解不等式即可得不等式()1f x ≥的解集为{}11x x -≤≤.【小问1详解】由题意可得2020x x +>⎧⎨->⎩,解得22x -<<.所以函数()f x 的定义域为()2,2-.【小问2详解】偶函数,证明如下:函数()f x 的定义域为()2,2-,关于原点对称.因为()()()33log 2log 2f x x x =++-,所以()()()()33log 2log 2f x x x f x -=-++=.即函数()f x 是定义在()2,2-上的偶函数.【小问3详解】由()()()()2333log 2log 2log 4f x x x x=++-=-,得()23log 41x -≥,即()233log 4log 3x -≥.因为3log y x =在()0,∞+是增函数,所以243x -≥.解得11x -≤≤,因为函数()f x 的定义域为()2,2-.因此不等式()1f x ≥的解集为{}11x x -≤≤.20.某校为了调查学生的体育锻炼情况,从全校学生中随机抽取100名学生,将他们的周平均锻炼时间(单位:小时)数据按照[)3,5,[)5,7,[)7,9,[)9,11,[]11,13分成5组,制成了如图所示的频率分布直方图.(1)求a 的值;(2)用分层抽样的方法从[)9,11和[]11,13两组中抽取了6人.求从这6人中随机选出2人,这2人不在同一组的概率;(3)假设同组中的每个数据用该区间的中点值代替,试估计全校学生周平均锻炼时间的平均数.【答案】(1)0.15a =(2)815(3)7.92小时【解析】【分析】(1)由频率分布直方图所有矩形的面积之和为1计算可得0.15a =;(2)列举出从6人中随机选出2人的所有情况,再求得2人不在同一组的情况,即可求得其概率;(3)由频率分布直方图计算平均数公式代入计算即可求得结果.【小问1详解】因为频率分布直方图所有矩形的面积之和为1,易知组距为2,所以()0.020.050.10.1821a ++++⨯=,解得0.15a =.【小问2详解】由频率分布直方图可知[)9,11和[]11,13两组的频数的比为0.1:0.052:1=所以利用分层抽样的方法抽取6人,这两组被抽取的人数分别为4,2,记[)9,11中的4人为1a ,2a ,3a ,4a ,[]11,13中的2人为1b ,2b ,从这6人中随机选出2人,则样本空间{}121314232434111221223132414212,,,,,,,,,,,,,,a a a a a a a a a a a a a b a b a b a b a b a b a b a b b b Ω=,共15个样本点设事件A :选出的2人不在同一组,{}1112212231324142,,,,,,,A a b a b a b a b a b a b a b a b =,共8个样本点,所以()815P A =【小问3详解】()40.0260.1880.15100.1120.0527.92⨯+⨯+⨯+⨯+⨯⨯=估计全校学生周平均锻炼时间的平均数为7.92小时21.若0M ∃>,对x D ∀∈,都有()f x M ≤成立,则称函数()f x 在D 上具有性质()J M .(1)分别判断函数()221x x f x -=-+与()11x g x x +=-在区间[)2,+∞上是否具有性质()J M ,如果具有性质()J M ,写出M 的取值范围;(2)若函数()124x x h x a +=⋅-在[]0,1上具有性质()1J ,求实数a 的取值范围.【答案】21.详见解析;22.3,14⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据题意结合调性与最值分析判断;(2)令[]21,2xt =∈,由题意可得对[]1,2t ∀∈,都有2121at t --≤≤.方法1:利用参变分类结合恒成立问题分析求解;方法2:先取特值1,2,求得314a ≤≤,进而根据二次函数分析求解;方法3:分类讨论二次函数对称轴与区间的关系,结合恒成立问题分析求解.【小问1详解】因为2x y =在[)2,+∞上是单调递增的函数,2xy -=在[)2,+∞上是单调递减的函数,则()221x x f x -=-+在[)2,+∞上是单调递增的函数,可得()()19204f x f =>≥,任意0M >,当2logx >()221x x f x M -=-+>,所以函数()221x x f x -=-+在区间[)2,+∞上不具有性质()J M .因为()11221111x x g x x x x +-+===+---在区间[)2,+∞上单调递减,由[)2,x ∞∈+可得[)11,x -∈+∞,则(]10,11x ∈-,所以()(]1,3g x ∈,所以3M ∃=,对[)2,x ∀∈+∞,()3≤g x ,即函数()g x 在区间[)2,+∞上具有性质()J M ,且M 的取值范围是[)3,+∞.【小问2详解】因为函数()124x x h x a +=⋅-在[]0,1上具有性质()1J ,即对[]0,1x ∀∈,都有()11h x -≤≤,且()()2124222x x x xh x a a +=⋅-=⋅-,令[]21,2x t =∈,可得对[]1,2t ∀∈,都有2121at t --≤≤,方法1:[]1,2t ∀∈,都有111122t a t t t ⎛⎫⎛⎫-≤≤+ ⎪ ⎪⎝⎭⎝⎭,设()122t m t t=-,()112n t t t ⎛⎫=+ ⎪⎝⎭,可得()max a m t ≥,()min a n t ≤,因为()m t 在区间[]1,2上单调递增,()n t 在区间[]1,2上单调递增.则()()max 324m t m ==,()()min 11n t n ==.可得314a ≤≤,所以a 的取值范围为3,14⎡⎤⎢⎥⎣⎦.方法2:对[]1,2t ∀∈,都有2121at t --≤≤,可得12111441a a -≤-≤⎧⎨-≤-≤⎩,解得314a ≤≤,若314a ≤≤,函数()22F t t at =-+的对称轴为1t a =≤,则()22F t at t =-在[]1,2t ∈上单调递减,所以()()21112121F at t F ⎧≤⎪-≤-≤⇔⎨≥-⎪⎩,即314a ≤≤,所以a 的取值范围为3,14⎡⎤⎢⎥⎣⎦.方法3:函数()22F t t at =-+的对称轴为t a =,以对称轴与区间的关系分1a ≤,12a <<,2a ≥三种情况.(i )当1a ≤时,12111441a a -≤-≤⎧⎨-≤-≤⎩,解得314a ≤≤;(ⅱ)当2a ≥时,12111441a a -≤-≤⎧⎨-≤-≤⎩,不合题意,舍去;(ⅲ)当12a <<时,2212111441121a a a a -≤-≤⎧⎪-≤-≤⎨⎪-≤-≤⎩,不合题意,舍去;综上所述:a 的取值范围为3,14⎡⎤⎢⎥⎣⎦.。
高一数学期末考试测试卷参考答案
高一数学期末考试测试卷参考答案1.B【详解】因为,所以,则,所以复数所对应的向量的坐标为.故选:B 2.A【详解】,故选:A.3.D【详解】向量在上的投影为,向量在上的投影向量为.故选:D.4.C 【详解】由题意,可得,即因为,所以,即,故△ABC 是直角三角形故选:C 5.A【详解】由可得: ,故 ,解得 ,故 ,故选:A 6.C【详解】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.即.故选:.7.D【详解】对于A ,空间中两直线的位置关系有三种:平行、相交和异面,故A 错误;对于B ,若空间中两直线没有公共点,则这两直线异面或平行,故B 错误;对于C ,和两条异面直线都相交的两直线是异面直线或相交直线,故C 错误;12i z z +=⋅()2i 11z -⋅=()()112i 12i 12i 2i 12i 112i 555z ----====------z 12,55⎛⎫-- ⎪⎝⎭()441414333333AD AB BD AB BC AB AC AB AB AC a b =+=+=+-=-+=-+ a b ·cos 3a π ab 1·cos ·232b a b b b π=⨯= 1cos 22a b C a ++=⨯cos b C a=2222b a b c a ab+-=222a b c =+90A =︒sin 2sin B C =2b c =22222567cos 248b c a c A bc c +--===2,4c b ==11sin 4222ABC S bc A ==⨯⨯ 3331115162312p ⎛⎫⎛⎫⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C对于D ,如图,在长方体中,当所在直线为所在直线为时,与相交,当所在直线为所在直线为时,与异面,若两直线分别是正方体的相邻两个面的对角线所在的直线,则这两直线可能相交,也可能异面,故D 正确.(8题)故选:D8.A【详解】在△ABC 中,b cos A =c﹣a ,由正弦定理可得sin B cos A =sin C ﹣sin A ,可得sin B cos A =sin (A +B )﹣sin A =sin A cos B +cos A sin B ﹣sin A ,即sin A cos B =sin A ,由于sin A ≠0,所以,由B ∈(0,π),可得B=,设AD =x,则CD =2x ,AC =3x ,在△ADB ,△BDC,△ABC 中分别利用余弦定理,可得cos ∠ADB=,cos ∠CDB =,cos ∠ABC =,由于cos ∠ADB =﹣cos ∠CDB ,可得6x 2=a 2+2c 2﹣12,再根据cos ∠ABC =,可得a 2+c 2﹣9x 2=ac ,所以4c 2+a 2+2ac =36,根据基本不等式可得4c 2+a 2≥4ac ,所以ac ≤6,当且仅当a =c 所以△ABC 的面积S =ac sin ∠ABC ac A .9.AC【详解】对于A ,是纯虚数,故A 正确;对于B ,,对应的点的坐标为,位于第四象限,故B 错误;对于C ,复数的共轭复数为,故C 正确;对于D ,,故D 错误.故选:AC10.BC ABCD A B C D -''''A B ',a BC 'b a b A B ',a B C 'b a b 12121212121cos 2B =3π2244x c x +-22448x a x +-22292a c x ac+-12122z 12(1i)2i 13i z z -=--=-(1,3)-1z 11i z =+12(1i)2i 2i 2z z =-⋅=+11.【详解】对于A ,由,则,故A 错误;对于B ,与相互独立,则与相互独立,故,故B 正确;对于CD ,互斥,则,,故C 正确,D 错误.故选:BC11.BC【详解】对于A 选项,由图形可知,直线、异面,A 错;对于B 选项,连接,因为,则直线与所成角为或其补角,易知为等边三角形,故,因此,直线与所成的角为,B 对;对于C 选项,分别取、的中点、,连接、、,因为四边形为正方形,、分别为、的中点,所以,且,又因为,则四边形为矩形,所以,,且,同理可证,且,因为平面,则平面,因为平面,则,因为,、平面,所以,平面,因为平面,所以,,因此,平面与平面所成二面角的平面角为,因为平面,平面,所以,,又因为,故为等腰直角三角形,故,因此,平面与平面所成二面角的平面角为,C 对;对于D 选项,易知,又因为且,则四边形为等腰梯形,分别过点、在平面内作、,垂足分别为、,()()0.2,0.6P A P B ==()()1P A P B+≠A B A B ()()()()()()10.48P AB P A P B P A P B ==-=,A B ()()()0.8P A B P A P B ⋃=+=()()0P AB P =∅=AM BN 1AD 1//MN CD MN AC 1ACD ∠1ACD △160ACD ∠= MN AC 60 AB CD E F ME MF EF ABCD E F AB CD //AE DF AE DF =AD AE ⊥AEFD EF AB ⊥//EF AD 1//MF DD 12MF DD ==1DD ⊥ABCD MF ⊥ABCD AB ⊂ABCD AB MF ⊥EF MF F ⋂=EF MF ⊂EMF AB ⊥EMF ME ⊂EMF AB ME ⊥AMB ABCD MEF ∠MF ⊥ABCD EF ⊂ABCD MF EF ⊥2MF EF ==MEF 45MEF Ð=o AMB ABCD 45 BN ===1A M =1//MN A B 112MN A B =1A BNM M N 1A BNM 1MP A B ⊥1NQ A B ⊥P Q因为,,,所以,,所以,,因为,,,则四边形为矩形,所以,,所以,所以,,由A 选项可知,平面截正方体所得的截面为梯形,故截面面积为,D 错.故选:BC.12.2【详解】.故答案为:2.13.【详解】在中,由正弦定理可得,,又由题知,所以,整理得,,在中,由余弦定理得,,所以,又,所以.故答案为:.14. 【详解】由题意,恰有一个人面试合格的概率为:,甲签约,乙、丙没有签约的概率为;1A M BN =1MA P NBQ ∠=∠190MPA NQB ∠=∠= 1Rt Rt A MP BNQ △≌△1A P BQ =//MN PQ 1MP A B ⊥1NQ A B ⊥MNQP PQ MN ==112A B PQ A P BQ -====MP ===BMN 1A BNM ()1922A B MN MP +⋅==()2202a kb b a b kb k k -⋅=⋅-⇔-=⇔= π3ABC sin sin sin C c A B a b =++sin sin sin a b C a c A B -=-+a b c a c a b-=-+222b a c ac =+-ABC 2222cos b a c ac B =+-1cos 2B =()0,B π∈3B π=3π49793113113114(1)(1(1(1)(1)(14334334339P =⨯-⨯-+-⨯⨯-+-⨯-⨯=13112(1)4333P =⨯-⨯=甲未签约,乙、丙都签约的概率为甲乙丙三人都签约的概率为,所以至少一人签约的概率为.故答案为:;.15.【详解】(1)由频率分布直方图可得分数不小于60的频率为:,则分数小于60的频率为:,故从总体的500名学生中随机抽取一人,其分数小于60的概率估计为;(2)由频率分布直方图易得分数小于70的频率为,分数小于80的频率为,则测评成绩的第分位数落在区间上,所以测评成绩的第分位数为;(3)依题意,记事件 “抽到的学生分数小于30”,事件 “抽到的学生是男生”,因为分数小于40的学生有5人,其中3名男生;所以“抽到的学生是男生”的概率为,因为分数小于30的学生有2人,其中1名男生,所以“抽到的学生分数小于30” 的概率为,因为事件表示“抽到的学生分数小于30且为男生”,满足条件的只有1名男生,所以,因为,所以这两个事件不相互独立.16.【详解】(1)由,,故,由余弦定理可得,即,即,13111(143336P=-⨯⨯=3311143312P =⨯⨯=2117336129++=4979()0.020.040.02100.8++⨯=10.80.2-=0.20.40.875%[)70,8075%0.35701078.750.4+⨯=A =B =()35P B =()25P A =AB ()15P AB =()()()P A P B P AB ≠sin θ=π,π2θ⎛⎫∈ ⎪⎝⎭cos θ==2222cos 54413BD AB AD AB AD θ=+-⋅=++=BD CD ==sin sin AB BD ADB θ=∠sin sin AB ADB BD θ∠=⋅==则故有,故,;(2),,故,则,其中,则当,即ABCD 的面积最大,此时,即此时小路BD.17.【详解】(1)取棱的中点,连接、、,则就是所求作的线,如图:在正方体中,连,是的中点,为的中点,则,且,于是得四边形是平行四边形,有,而平面,平面,因此平面,πcos cos sin 2ADC ADB ADB ⎛⎫∠=+∠=-∠= ⎪⎝⎭2222cos 4132225AC AD CD AD CD ADC ⎛=+-⋅∠=+-⨯= ⎝5AC =22111117sin 222222ABCD ABD BCD S S S AB AD BD θ=+=⋅+=+⨯= 1sin 2ABD S AB AD θθ=⋅= 2222cos 549BD AB AD AB AD θθθ=+-⋅=+-=-21922BCD S BD θ==- ()995sin 22ABCD ABD BCD S S S θθθϕ=+=+-=-+ sin ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭π2θϕ-=πcos cos sin 2θϕϕ⎛⎫=+=-= ⎪⎝⎭2917BD ⎛=-= ⎝1DD F AF CF AC ,,FC FA CA 1111ABCD A B C D -EF E 1CC F 1DD EF CD BA ∥∥EF CD BA ==ABEF AF BE ∥BE ⊂1BD E AF ⊄1BD E AF 1BD E又,,即四边形为平行四边形,则,又平面,平面,于是有平面,而,平面,从而得平面平面,所以就是所求作的线.(2)在正方体中,连接,如图,且,则四边形为平行四边形,有,三棱锥的体积,所以四棱锥的体积.18.【详解】(1)解:由频率分布直方图,根据平均数的计算公式,估计这次知识能力测评的平均数:分.(2)解:由频率分布直方图,可得的频率为,的频率为,所以用分层随机抽样的方法从,两个区间共抽取出4名学生,可得从抽取人,即为,从中抽取人,即为,从这4名学生中随机抽取2名依次进行交流分享,有 ,共有12个基本事件;其中第二个交流分享的学生成绩在区间的有:,共有3个,所以概率为.(3)解:甲最终获胜的可能性大.理由如下:由题意,甲至少得1分的概率是,1FD CE ∥1FD CE =1CED F 1CF ED ∥1ED ⊂1BD E CF ⊄1BD E CF 1BD E CF AF F ⋂=,CF AF ⊂AFC AFC 1BD E ,,FC FA CA 1111ABCD A B C D -11111,,,,,,AD BC EA EB EC ED AC 11AB C D ∥11AB C D =11ABC D 1112ABC D ABC S S = △1E ABC -111111112()21233263E ABC A BC E BC E V V S AB BC C E AB --==⋅=⋅⋅=⨯⨯⨯= 11E ABC D -111423E ABC D E ABC V V --==(650.01750.015850.045950.03)1084.5x =⨯+⨯+⨯+⨯⨯=[)60,700.1[]90,1000.3[)60,70[]90,100[)60,701a []90,10031,2,3()()()()(),1,,2,,3,1,2,1,3,a a a ()()()()()()()2,3,1,,2,,3,,2,1,3,1,3,2a a a []60,70()()()1,,2,,3,a a a 31124P ==4750可得,其中,解得,则甲的2分或3分的概率为:,所以乙得分为2分或3分的概率为,因为,所以甲最终获胜的可能性更大.19.【详解】(1)由题知,,所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB .因为,所以AO ⊥平面,所以OC 是AC 在平面内的射影,在四边形ABCD是等腰梯形中,,高得,,在和中,, 所以,,所以,因为AO ⊥平面,平面,所以,因为,所以平面,因为平面,所以(2)由(1)知,,所以⊥平面AOC .设,过点E 作于点F ,连接,因为,所以平面,因为平面,所以所以是二面角的平面角.由(1)知得,,高得,.所以,,12471(1)(1)(1)2550p ----=01p ≤≤45p =1241241241243(1(1(12552552552555P =⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯=253255>1OA OO ⊥1OB OO ⊥1OO OB O = 1OBCO 1OBCO 3AB CD =h =tan A =6AB =2CD =1OO =1Rt OO B 1Rt OO C △11tan OB OO B OO ∠==111tan O C O OC OO ∠===160OO B ∠=︒130O OC ∠=︒1OC BO ⊥1OBCO 1BO ⊂1OBCO 1AO BO ⊥AO OC O = 1BO ⊥AOC AC ⊂AOC 1AC BO ⊥1AC BO ⊥1OC BO ⊥1BO 1OC O B E ⋂=EF AC ⊥1O F 1EF O B E = AC ⊥1O EF 1O F ⊂1O EF 1O F AC⊥1O FE ∠1O AC O --3AB CD =h =tan A =6AB =2CD =3OA =1OO =11O C =所以,因为平面平面,平面平面,,所以平面,因为平面,所以 所以又所以二面角1O A =AC =1AOO D ⊥1BOO C 1AOO D 11BOO C OO =11OO CO ⊥1CO ⊥1AOO D 1AO ⊂1AOO D 11CO AO ^111O A O C O F AC ⋅=11sin30O E OO =⋅= 111sin O E O FE O F ∠==1O AC O --。
2024届湖南省宁乡县第一高级中学数学高一第二学期期末综合测试模拟试题含解析
2024届湖南省宁乡县第一高级中学数学高一第二学期期末综合测试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f (x )=Asin (ωx +φ)+B (A >0,ω>0,|φ|2π<)的部分图象如图所示,则f (x )的解析式为( )A .f (x )=sin (x 6π+)﹣1 B .f (x )=2sin (x 6π+)﹣1 C .f (x )=2sin (x 3π+)﹣1D .f (x )=2sin (2x 3π+)+12.已知两座灯塔A 和B 与海洋观察站C 的距离都等于5km ,灯塔A 在观察站C 的北偏东020,灯塔B 在观察站C 的南偏东040,则灯塔A 与灯塔B 的距离为( ) A .52kmB .3kmC .5kmD .10km3.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,ϕπ<.若()26f π=,5()06f π=且()f x 的最小正周期大于2π,则( )A .34ω=,58πϕ=-B .34ω=,38πϕ= C .94ω=,8πϕ=-D .94ω=,8πϕ=42,3,6,这个长方体的顶点在同一个球面上,则这个球的表面积为( ) A .6πB .8πC .12πD .24π5.已知函数41()x f x e-=,1()ln(2)2g x x =+,若()()f m g n =成立,则n m -的最小值为( ) A .1ln 24- B .1ln 24+ C .2ln 213- D .12ln 23+ 6.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 ( ) A .215πB .320π C .2115π-D .3120π-7.若,则向量的坐标是( )A .(3,-4)B .(-3,4)C .(3,4)D .(-3,-4)8.已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ) A .A ,B ,DB .A ,B ,CC .B ,C ,DD .A ,C ,D9.若实数x ,y 满足211x y y x -≥⎧⎨≥+⎩,则z =x +y 的最小值为( )A .2B .3C .4D .510.在棱长为1的正方体中1111ABCD A B C D -,点P 在线段1AD 上运动,则下列命题错误的是 ( )A .异面直线1C P 和1CB 所成的角为定值 B .直线CD 和平面1BPC 平行 C .三棱锥1D BPC -的体积为定值 D .直线CP 和平面11ABC D 所成的角为定值二、填空题:本大题共6小题,每小题5分,共30分。
高一数学期末考试试题及答案doc
高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
全国百校联盟2023届高一数学第一学期期末教学质量检测模拟试题含解析
A2 x B2 y C2 0 的交点. 13、55
【解析】用1减去销量为30,50 的概率,求得日销售量不低于 50 件的概率.
【详解】用频率估计概率知日销售量不低于 50 件的概率为 1-(0.015+0.03)×10=0.55.
故答案为: 0.55
【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.
2 cos
x 1可判断②;
分
、
x
2k
2
,
3 2
2k
k
Z
时求出
f
(x)
可判断故③;
x, 时,由
f (x) 0 可判断④.
【详解】因为 x R , f (x) cos x | cos x | 1 f (x) ,所以①正确;
当
时, f (x) 2cos x 1,
当
x
2k
2
, 3 2
2k
故选:D
5、A
【解析】将已知式同分之后,两边平方,再根据 sin2 cos2 1可化简得方程 3(sin cos )2 2sin cos 1 0 ,
解出 sin
cos
1 3
或
1,根据 sin
cos
1 2
sin
2
1, 2
1 2
,得出 sin cos
1 3
.
【详解】由 1 1 sin cos 3 , sin cos sin cos
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
5.若 1 1 3 ,则 sin cos () sin cos
A. 1
1
B.
3
3
安徽省A10联盟2023-2024学年高一上学期期末检测数学试卷含答案
2023—2024学年第一学期高一年级期末检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡上)1.已知集合{2,1,0,1,2}M =--,{(1)(3)0}N xx x =+->∣,则M N ⋂=()A.{2,1,0,1}-- B.{2}- C.{2,1}-- D.{0,1,2}【答案】B 【解析】【分析】解一元二次不等式,求出集合N ,然后进行交集的运算即可.【详解】由{(1)(3)0}N xx x =+->∣解得:{3N x x =>∣或1}x <-,因为{2,1,0,1,2}M =--,所以M N ⋂={2}-.故选:B 2.“π2π,6k k α=+∈Z ”是“1sin 2α=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要条件结合任意角的正弦函数分析判断.【详解】若π2π,6k k α=+∈Z ,则ππ1sin sin 2πsin ,662k k α⎛⎫=+==∈ ⎪⎝⎭Z 成立;若1sin 2α=,则π2π,6k k α=+∈Z 或5π2π,6k k α=+∈Z ,故π2π,6k k α=+∈Z 不一定成立;综上所述:“π2π,6k k α=+∈Z ”是“1sin 2α=”的充分不必要条件.故选:A.3.计算55log 42log 10-=()A.2B.1- C.2- D.5-【答案】C 【解析】【分析】利用对数的运算公式可得答案.【详解】555552log 42log 10log 4log 1100l 5og 2-===--.故选:C.4.已知正数x ,y 满足811x y+=,则2x y +的最小值是()A.6B.16C.20D.18【答案】D 【解析】【分析】将所求的式子乘以“1”,然后利用基本不等式求解即可.【详解】因为正数x ,y 满足811x y+=,则()811622101018y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当16y xx y=,即12,3x y ==时等号成立.故选:D5.计算sin 50cos10sin 40sin10︒︒︒︒+=()A. B.32C.12-D.12【答案】B 【解析】【分析】由两角和的正弦公式求解即可.【详解】因为sin 50cos10sin 40sin10︒︒︒︒+=sin 50cos10cos50sin10︒︒︒︒+()sin 5010=sin 602︒︒︒=+=.故选:B6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线3y x =-上,则πtan 24θ⎛⎫+= ⎪⎝⎭()A.17-B.17C.7D.7-【答案】C 【解析】【分析】先求解tan θ的值,结合倍角公式和和角公式可得答案.【详解】由题意tan 3θ=-,所以22tan 63tan 21tan 194θθθ-===--,所以πtan 21tan 2741tan 2θθθ+⎛⎫+== ⎪-⎝⎭.故选:C.7.将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A.()cos g x x =-B.()cos g x x=C.π()cos 3g x x ⎛⎫=- ⎪⎝⎭D.()πcos 43g x x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】利用三角函数图象变化规律,即可判断选项.【详解】将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,得到()2ππcos 2cos 2πcos 233y x x x ⎡⎤⎛⎫=-+=-=- ⎪⎢⎝⎭⎣⎦,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()cos y g x x ==-的图象.故选:A.8.设函数()f x 的定义域为R ,(1)f x +为奇函数,(2)f x +为偶函数,当[0,1]x ∈时,2(2)f x x bx c =++.若(3)(2)6f f -=,则752f ⎛⎫= ⎪⎝⎭()A.94B.32C.74-D.52-【答案】D 【解析】【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()2286f x x x =-+,进而利用周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()02f f c =-=,由②得:()()312f f b c ==++,因为(3)(2)6f f -=,所以26b c c +++=,即24b c +=,令0x =,由①得:()()()111020f f f b c =-⇒=⇒++=,解得:8,6b c =-=,所以()2286f x x x =-+.又因为()()()()()221111f x f x f x f x f x ⎡⎤⎡⎤+=-+=--+=--+=-⎣⎦⎣⎦,即()()2f x f x +=-,则()()()42f x f x f x +=-+=,所以函数()f x 是以4为周期的函数,所以75331114911222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==+=--+=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭115246242f ⎛⎫=⨯-+= ⎪⎝⎭.75522f ⎛⎫=- ⎪⎝⎭.故选:D【点睛】结论点睛:复合函数的奇偶性:(1)()f x a +是偶函数,则()()f x a f x a -+=+;(2)()f x a +是奇函数,则()()f x a f x a -+=-+.二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.请把正确答案涂在答题卡上)9.已知a ,b 为实数,且a b <,则下列不等式恒成立的是()A.sin sin a b <B.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.33a b <D.()()22ln 1ln 1a b +<+【答案】BC 【解析】【分析】利用函数单调性和反例可得答案.【详解】对于A ,π2π23<,而π2πsin sin 23>,故A 不正确;对于B ,因为12xy ⎛⎫= ⎪⎝⎭为减函数,a b <,所以1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故B 正确;对于C ,因为3y x =为增函数,a b <,所以33a b <,故C 正确;对于D ,21-<,而()()ln 41ln 11+>+,故D 不正确.故选:BC.10.高斯是世界著名的数学家,近代数学奠基者之一,享有“数学王子”的美称.函数[]()f x x =称为“高斯函数”,它的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=,[3]3=.下列结论正确的是()A.对12,x x ∀∈R ,若12x x <,则()()12f x f x ≤B.函数()f x 是R 上的奇的数C.对任意实数m ,(2)2()f m f m =D.对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭【答案】AD 【解析】【分析】利用函数定义及单调性的定义判断A ;通过举例来判断BC ;设m n r =+,其中n 为m 的整数部分,r 为m 的小数部分,01r ≤<,分102r ≤<,112r ≤<讨论计算来判断D .【详解】对于A :对12,x x ∀∈R ,若12x x <,则[][]12x x ≤,即()()12f x f x ≤,故A 正确;对于B :例如()[]1.5 1.51f ==,()[]1.5 1.52f -=-=-,即()()1.5 1.5f f -≠-,故函数()[]f x x =不是奇函数,故B 错误;对于C :取12m =,()[]121112f f ⎛⎫⨯=== ⎪⎝⎭,1122022f⎛⎫⎡⎤== ⎪⎢⎥⎝⎭⎣⎦,不满足(2)2()f m f m =,故C 错误;对于D :设m n r =+,其中n 为m 的整数部分,,n m n ≤∈Z ,r 为m 的小数部分,01r ≤<,则[][]1122m m n r n r ⎡⎤⎡⎤++=++++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222m n r =+,若102r ≤<,可得[]122m m n ⎡⎤++=⎢⎥⎣⎦,[]22m n =,若112r ≤<,可得[]1212m m n ⎡⎤++=+⎢⎥⎣⎦,[]221m n =+,所以对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭,故D 正确;故选:AD.11.已知0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.4ab ≤B.228a b +≥ C.228a b +≥ D.22log log 2a b +≥【答案】ABC 【解析】【分析】根据基本不等式及其变形式,结合指数运算判断ABC ,举反例根据对数函数的单调性判断D.【详解】对于A :因为4=+≥a b 4ab ≤,当且仅当2a b ==时取等号,A 正确;对于B :因为222222228a b a b ++≥=⋅=⋅=,当且仅当2a b ==时取等号,故B 正确;对于C :因为()2222162a b a b ab ab +=+-=-,4ab ≤,所以221621688a b ab +=-≥-=,当且仅当2a b ==时取等号,故C 正确;对于D :当10,30a b =>=>时,满足4a b +=,但是222222log log log 1log 3log 3log 42a b +=+=<=,故D 错误;故选:ABC.12.已知函数()cos(2)(0π)f x x ϕϕ=+<<的图象关于直线7π12=-x 对称,则()A.(0)2f =B.函数()y f x =的图象关于点2π,03⎛⎫⎪⎝⎭对称C.函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上单调递增 D.函数()f x 在区间5,126ππ⎡⎤⎢⎥⎣⎦上的值域为1,2⎡-⎢⎣⎦【答案】ABD 【解析】【分析】先根据对称轴求出函数解析式,结合选项逐个验证即可.【详解】因为()f x 的图象关于直线7π12=-x 对称,所以7ππ6k ϕ-=,即7ππ6k ϕ=+,Z k ∈;因为0πϕ<<,所以π6ϕ=,即()cos(2π6=+f x x .π(0)cos 62f ==,故A 正确;2π3π(cos 032f ==,所以函数()y f x =的图象关于点2π,03⎛⎫ ⎪⎝⎭对称,故B 正确;令π26t x =+,由19π,π24x ⎛⎫∈ ⎪⎝⎭可得21π13π,126t ⎛⎫∈ ⎪⎝⎭,因为21π13π2π126<<,所以函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上不是单调函数,故C 不正确;令π26t x =+,由5,126x ππ⎡⎤∈⎢⎥⎣⎦可得11,36t ππ⎡⎤∈⎢⎣⎦,所以cos 1,2t ⎡∈-⎢⎣⎦,所以()1,2f x ⎡∈-⎢⎣⎦,故D 正确.故选:ABD.第Ⅱ卷(非选择题共90分)三、填空题:本大题共4小题,每小题5分.把答案填在答题卡的相应位置.13.命题“()2R,ln 10x x ∀∈+>”的否定是_________.【答案】()2R,ln 10x x ∃∈+≤【解析】【分析】利用全称命题的否定方法可得答案.【详解】因为“()2R,ln 10x x ∀∈+>”的否定是“()2R,ln 10x x ∃∈+≤”故答案为:()2R,ln 10x x ∃∈+≤.14.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()4x f x =,则52f ⎛⎫-= ⎪⎝⎭_________.【答案】2-【解析】【分析】先利用周期和奇偶性,把所求转化为已知区间内,代入可得答案.【详解】因为()f x 是周期为2的奇函数,所以511222f f f ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为当01x <<时,()4x f x =,所以1()22f =,所以522f ⎛⎫-=- ⎪⎝⎭.故答案为:2-15.已知偶函数()f x 在[0,)+∞单调递减,(2)0f -=,若()2log 0f m >,则实数m 的取值范围是______.【答案】1,44⎛⎫ ⎪⎝⎭【解析】【分析】根据函数单调性和奇偶性得到22log 2m -<<,利用对数函数单调性求解即可.【详解】因为偶函数()f x 在[0,)+∞单调递减,(2)0f -=,所以()f x 在(),0∞-上单调递增,()20f =,所以()2log 0f m >等价于()()2log2f m f >,所以2log 2m <,所以22log 2m -<<,解得144m <<.所以实数m 的取值范围是1,44⎛⎫⎪⎝⎭.故答案为:1,44⎛⎫⎪⎝⎭.16.已知函数π()2sin 23f x x ⎛⎫=+⎪⎝⎭,区间[,]a b (,a b ∈R 且a b <)满足:()y f x =在区间[,]a b 上至少含有20个零点,在所有满足此条件的区间[,]a b 中,b a -的最小值为_________.【答案】55π6##55π6【解析】【分析】通过整体代换求解函数的零点通式,求出相邻零点之间的距离,即可求出满足零点个数的最小区间长度.【详解】令π()2sin 203f x x ⎛⎫=+= ⎪⎝⎭,解得πx k =或ππ6x k =+,k ∈Z ,即()y f x =的相邻两零点间隔为π6或5π6,故若()y f x =在[],a b 上至少含有20个零点,则b a ﹣的最小值为π5π55π109666⨯+⨯=.故答案为:55π6四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数2()(2)2f x x k x k =++++,设集合{}122xA x=<<∣,集合{()0}B x f x =<∣.(1)若B =∅,求实数k 的取值范围;(2)若“x A ∈”是“x B ∈”的充分条件,求实数k 的取值范围.【答案】17.[]2,2-18.5,2⎛⎤-∞- ⎥⎝⎦【解析】【分析】(1)根据题意可得()()2220f x x k x k =++++≥恒成立,即0∆≤求解;(2)化简()0,1A =,由题意A B ⊆得()()0010f f ⎧≤⎪⎨≤⎪⎩求得答案.【小问1详解】由B =∅,即()()2220f x x k x k =++++≥恒成立,()()22420k k ∴∆=+-+≤,解得22k -≤≤.所以实数k 的取值范围为[]22-,.【小问2详解】由{}()1220,1xA x =<<=,x A ∈是xB ∈的充分条件,所以A B ⊆,得()()0010f f ⎧≤⎪⎨≤⎪⎩,即20250k k +≤⎧⎨+≤⎩,解得52k ≤-.所以实数k 的取值范围为5,2∞⎛⎤-- ⎥⎝⎦.18.已知函数π()2sin 6g x x ω⎛⎫=-⎪⎝⎭周期为π,其中0ω>.(1)求函数()g x 的单调递增区间;(2)请运用“五点法”,通过列表、描点、连线,在所给的直角坐标系中画出函数()g x 在[0,]π上的简图.【答案】(1)πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦(2)答案见解析【解析】【分析】(1)先利用周期求出函数解析式,再利用单调性可得答案;(2)利用五点法画图可得答案.【小问1详解】由题意可得2ω=,所以π()2sin 26g x x ⎛⎫=- ⎪⎝⎭;令πππ2π22π262k x k -≤-≤+,Z k ∈,解得ππππ63k x k -≤≤+,故函数()g x 的单调递增区间为πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦.【小问2详解】π26x -π6-π2π3π211π6x 0π12π37π125π6π()g x 1-022-1-描点,连线,其简图如下19.已知函数2()141x a f x =-+是奇函数.(1)求实数a 的值并判断函数单调性(无需证明);(2)若不等式()()412250x x f f t ++-⋅+<在R 上恒成立,求实数t 的取值范围.【答案】(1)1a =,减函数(2)5t >-【解析】【分析】(1)先根据奇偶性求出a ,再根据复合函数单调性可判定单调性;(2)利用奇偶性和单调性进行转化,再结合换元法可求答案.【小问1详解】因为2()141x a f x =-+是奇函数,所以(0)0f =,解得1a =;当1a =时,214()14141xx x f x -=-=++,定义域为R ,又1441()41)4(1x x x x f x x f ---+-==-+=-符合题意.所以1a =,因为41x y =+为增函数,所以()f x 为减函数.【小问2详解】()()412250x x f f t ++-⋅+<等价于()()41225x x f f t +<--⋅+,即()()41225x x f f t +<-+⋅-;因为()f x 为减函数,所以41225x x t +>-+⋅-,即4226x x t ⋅+->-;令20x m =>,则上式化为226m m t ⋅+->-,即()215m t -+>-;所以5t >-.20.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产1台,需另投入成本()C x (万元),当年产量不足70台时,21()602C x x x =+(万元);当年产量不小于70台时,8100()1212180C x x x=+-(万元),若每台设备售价为120万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?【答案】20.2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩21.90台时利润最大.【解析】【分析】(1)分070x <<、70x ≥两种情况分别求出函数关系式即可;(2)利用二次函数及基本不等式计算可得.【小问1详解】由题可知当070x <<时,2211120605006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭,当70x ≥时,8100810012012121805001680y x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩;【小问2详解】当070x <<时,()22116050060130022y x x x =-+-=--+,则60x =时,y 有最大值1300(万元);当70x ≥时,81001680y x x ⎛⎫=-+ ⎪⎝⎭,当0x >时,8100180x x +≥=,当且仅当8100x x =,即90x =时取等号,所以8100168016801801500y x x ⎛⎫=-+≤-= ⎪⎝⎭,所以当90x =时,y 有最大值1500(万元);综上,年产量为90台时,该厂在这一商品的生产中所获利润最大.21.已知函数2())2cos 1(0,0π)2x f x x ωϕωϕωϕ+⎛⎫=+-+><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为π2.(1)求()()sin cos h x f x x x =+-的最小值.(2)将函数()f x 的图象向右平移π6个单位长度,再把横坐标缩小为原来的12倍(纵坐标不变),得到函数()y g x =的图象,记方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上的根从小到依次为1231,,,,,n n x x x x x - 试确定n 的值,并求1231222n n x x x x x -+++++ 的值.【答案】21.2-22.85π12【解析】【分析】(1)利用降幂公式和辅助角公式化简()f x ,再根据周期及奇偶数性求出()f x 的解析式,再令sin cos t x x =-,利用二次函数性质求解最小值即可;(2)根据三角函数图像变换求得()g x ,利用换元法,结合三角函数图象与性质求得n 以及1231222n n x x x x x -+++++ 的值.【小问1详解】()()22cos 12x f x x ωϕωϕ+⎛⎫=+-+ ⎪⎝⎭()()πcos 2sin 6x x x ωϕωϕωϕ⎛⎫=+-+=+- ⎪⎝⎭.因为函数()f x 图象的相邻两对称轴间的距离为π2,所以πT =,可得2ω=,又由函数()f x 为奇函数,所以ππ,6k k ϕ-=∈Z ,因为0πϕ<<,所以π6ϕ=,所以函数()2sin2f x x =.所以()()sin cos 2sin 2sin cos h x f x x x x x x =+-=+-,令πsin cos 4t x x x ⎛⎫⎡=-=-∈ ⎪⎣⎝⎭,则22sin 24sin cos 22x x x t ==-,故原函数最小值为222,y t t t ⎡=-++∈⎣的最小值,其对称轴为14t =,在14t ⎡⎤∈⎢⎣⎦单调递增,在14t ⎡∈⎢⎣单调递减,且(222222-⨯+>--,所以t =222y t t =-++有最小值2-,所以()()sin cos h x f x x x =+-的最小值为2-.【小问2详解】将函数()f x 的图象向右平移π6个单位长度,得到ππ2sin 22sin 263y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再把横坐标缩小为原来的12(纵坐标不变),得到()π2sin 43g x x ⎛⎫=-⎪⎝⎭,令()π22sin 433g x x ⎛⎫=-= ⎪⎝⎭,则π1sin 433x ⎛⎫-= ⎪⎝⎭,因为4π0,3x ⎡⎤∈⎢⎥⎣⎦,所以ππ4,5π33x ⎡⎤-∈-⎢⎥⎣⎦,令3π4t x =-,则π,5π3t ⎡⎤∈-⎢⎥⎣⎦,函数sin y t =在π,5π3t ⎡⎤∈-⎢⎥⎣⎦上的图象如下图所示,由图可知,sin y t =与13y =共有6个交点,所以方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上共有6个根,即6n =,因为()()()123456162345222222t t t t t t t t t t t t +++++=+++++5π3π7π2222225π222=⨯+⨯⨯+⨯⨯=,所以1234562222x x x x x x +++++()1234561π222210412t t t t t t =++++++⨯85π12=.22.对于函数()()f x x D ∈,D 为函数定义域,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≤成立,我们称函数()f x 为“T 同比不增函数”.(1)若函数()sin f x kx x =+是“π2同比不增函数”,求k 的取值范围;(2)是否存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,若存在,求T 的取值范围;若不存在,请说明理由.【答案】(1)22,π∞⎛-- ⎝⎦(2)存在,且4T ≥【解析】【分析】(1)由()()f x T f x +≤恒成立,分离常数k ,结合三角函数的最值来求得k 的取值范围.(2)结合()f x 的图象以及图象变换的知识求得T 的取值范围.【小问1详解】因为函数()sin f x kx x =+是“π2同比不增函数”,则()π2f x f x ⎛⎫+≤ ⎪⎝⎭恒成立,所以ππsin sin 22k x x kx x ⎛⎫⎛⎫+++≤+ ⎪ ⎪⎝⎭⎝⎭恒成立,所以ππsin cos 24k x x x ⎛⎫≤-=- ⎪⎝⎭,即πsin π4k x ⎛⎫≤- ⎪⎝⎭,由于πsin 14x ⎛⎫-≥- ⎪⎝⎭,所以πk ≤-.所以k的取值范围是,π∞⎛-- ⎝⎦.【小问2详解】存在,理由如下:2,1()11,112,1x x f x x x x x x x x --≤-⎧⎪=---++=-<<⎨⎪-+≥⎩,画出()f x的图象如下图所示,()f x T +的图象是由()f x 的图象向左平移T 个单位所得,由图可知,当4T ≥时,对任意的x D ∈,都有()()f x T f x +≤成立,所以存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,且4T ≥.【点睛】关键点点睛:本题考查新定义的理解和应用,解题的关键在于利用题中的定义,将问题转化为恒成立问题,本题第(2)问利用数形结合思想求解比较直观简单.。
山东省德州市2023届高一数学第一学期期末复习检测模拟试题含解析
19.计算下列各式:
(1) (式中字母均为正数);
(2) .
20.已知 .
(1)若 , ,求x的值;
(2)若 ,求 的最大值和最小值.
21.在 中,设角 的对边分别为 ,已知 .
(1)求角 的大小;
(2)若 ,求 周长的取值范围.
22.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
故选:B
10、C
【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.
[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.
所以每平方米的平均综合费用为
,
当且仅当 ,即 时取等号,
所以公司应把楼层建成15层,此时,该楼房每平方米的平均综合费用最低为24000元,
故答案为:15,24000
16、①.14②.10
【解析】根据数量积的运算性质,计算 的平方即可求出最大值, 两边平方,可得 ,计算 的平方即可求解.
【详解】
,当且仅当 同向时等号成立,
【小问1详解】
依题意, ,
由 ,即 得: ,而 ,即 ,
于是得 或 ,解得 或 ,
所以x的值是 或 .
【小问2详解】
由(1)知, ,当 时, ,
则当 ,即 时, ,当 ,即 时, ,
所以 的最大值和最小值分别为: , .
21、(1) ;(2)
山西省太原市太原师范学院附属中学2023届高一数学第一学期期末经典模拟试题含解析
注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
(2)判断函数 f x 在[0, ) 上的单调性,并用定义证明.
19.对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”满足 函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}
8.下列命题是全称量词命题,且是真命题的为()
A.有些四边形的内角和不等于 360°
B. n N , 1 1 n
C. mR , m 0
D.所有能被 4 整除的数都是偶数
9.若圆锥的高等于底面直径,则它的底面积与侧面积之比是
A.1: 2
B.1: 3
C.1: 5
D. 3 : 2
10.已知函数
f
x 是定义在
)
A. (, 1]
B.[1, 2)
C. (1, 2]
D. (2, )
3.函数 f x x2 2x 的零点个数为
A.1
B.2
C.3
D.4
4.已知函数
.则“ 是偶函数“是“ ”的()
A.充分不必要条件
B.必要不充分条件
.C.充分必要条件
5.设函数
f
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。
高一数学上册期末模拟检测试卷附答案
高一数学上册期末模拟检测试卷附答案一、选择题1.对于全集U ,命题甲“所有集合A 都满足U A A U ⋃=”,命题乙为命题甲的否定,则命题甲、乙真假判断正确的是( ) A .甲、乙都是真命题 B .甲、乙都不是真命题 C .甲为真命题,乙为假命题 D .甲为假命题,乙为真命题 2.函数()ln 4f x x x =+-的定义域为( )A .(),4-∞B .(],4-∞C .[]0,4D .(]0,43.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1的角是周角的1360,1rad 的角是周角的12πC .1rad 的角比1的角要大D .用角度制和弧度制度量角,都与圆的半径有关 4.已知点()3,4A ,向的OA 绕原点O 逆时针旋转3π后等于OB ,则点B 的坐标为( ) A .433343,22⎛⎫++ ⎪ ⎪⎝⎭ B .433343,22⎛⎫-+ ⎪ ⎪⎝⎭ C .343433,22⎛⎫-- ⎪ ⎪⎝⎭D .343433,22⎛⎫-+ ⎪ ⎪⎝⎭5.方程41log 2x x=-的解所在的区间是( )A .11,43⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .23,34⎛⎫ ⎪⎝⎭6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)是气球体积V (立方米)的反比例函数,其图象如图所示,则这个函数的解析式为( )A .p =96VB .p =96V- C .p =69VD .p =96V7.若R 上的奇函数()f x 在区间(,0)-∞上单调递增,且(3)0f =,则不等式()0f x >的解集是( )A .(,3)(3,)-∞-⋃+∞B .(,3)(0,3)-∞-C .(3,0)(3,)-⋃+∞D .()3,3-8.已知函数221,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,若函数()y f x k =-有三个零点,则实数k 的取值范围为( ) A .(2,1]--B .[2,1]--C .[1,2]D .[1,2)二、填空题9.已知函数()f x 的定义域为R ,对任意的实数想,x ,y 满足1()()()2f x y f x f y +=++,且1()02f =,下列结论正确的是( ) A .1(0)2f =-B .3(1)2f -=- C .()f x 为R 上的减函数 D .1()2+f x 为奇函数10.下列命题不正确的有( ) A .函数tan y x =在定义域内单调递增 B .若a b >,则lg lg a b >成立C .命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”D .已知()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()221f x x x =-++,则[)0,x ∈+∞时,函数解析式为()221f x x x =-- 11.设0b a <<,则下列不等式中正确的是( ) A .0a b +>B .2211ab a b< C .11b a a b+<+ D .22ln ln a b <12.已知函数()2cos 2,f x x x x =-∈R ,则( ) A .2()2f x -≤≤B .()f x 在区间(0,)π上只有1个零点C .()f x 的最小正周期为πD .,33x R f x f x ππ⎛⎫⎛⎫∀∈+=- ⎪ ⎪⎝⎭⎝⎭三、多选题13.已知集合{15}A x Nx =∈<<∣,则A 的非空真子集有________个. 14.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x=的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,,(4)k x k 所对应的点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k =均在直线y x =的同侧,则实数a 的取值范围是______.15.若函数sin()(0)y x ωϕω=+>的部分图象如图所示,则ω的值为_______________.16.已知14a <<,函数()[][]129,1,,,4f x x x a x a x=+∃∈∈,使得()()1280f x f x ≥,则a 的取值范围________.四、解答题17.已知a R ∈,集合{}2230A x x x =--≤,{}220B x x ax =--=.(1)若a =1,求A B ,R C A ; (2)若A B A ⋃=,求实数a 的取值范围.18.已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,3P -,当12()()4f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的单调减区间; (2)求函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域; (3)若方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解,求实数m的取值范围.19.已知函数()f x 的图象向左平移3个单位后,再关于y 轴对称可得到函数()22g x x x =-的图象. (1)求()f x 的表达式;(2)()g x 的图象与直线y b =有两个交点时,求b 的取值范围.20.如图,已知正方形ABCD 的边长为1,点P ,Q 分别是边BC ,CD 上的动点(不与端点重合),在运动的过程中,始终保持4PAQ π∠=不变,设BAP α∠=.(1)将APQ 的面积表示成α的函数,并写出定义域; (2)求APQ 面积的最小值.21.已知函数()f x x x a =-为R 上的奇函数. (1)求实数a 的值;(2)若不等式()()2sin 2cos 0f x f t x +-≥对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的最小值.22.已知函数()13x mf x -⎛⎫= ⎪⎝⎭,其中m R ∈.(1)当函数()f x 为偶函数时,求m 的值; (2)若0m =,函数()()31xg x f x k=+-,[]2,0x ∈-,是否存在实数k ,使得()g x 的最小值为0?若存在,求出k 的值,若不存在,说明理由; (3)设函数()2327mx h x x =+,()()(),39,3h x x g x f x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都有小于3的实数2x ,使得()()12g x g x =成立,求实数m 的取值范围.【参考答案】一、选择题1.C 【分析】根据集合的运算可知甲正确,由命题与其否定命题的关系可知乙的真假. 【详解】全集U ,命题甲“所有集合A 都满足U A A U ⋃=”,根据补集及并集的运算知,是真命题, 所以由乙为命题甲的否定知,乙是假命题. 故选:C 2.D 【分析】根据真数大于0,偶次根式被开方数大于等于0,即可求得答案. 【详解】由题意得040x x >⎧⎨-≥⎩,解得04x <≤,所以定义域为(]0,4.故选:D 3.D 【分析】根据角度和弧度的定义可判断各选项的正误. 【详解】对于A 选项,“度”与“弧度”是度量角的两种不同的度量单位,A 选项正确; 对于B 选项,1的角是周角的1360,1rad 的角是周角的12π,B 选项正确;对于C 选项,11180π=<,C 选项正确;对于D 选项,用角度制和弧度制度量角,都与圆的半径无关,D 选项错误. 故选:D. 【点睛】本题考查角度制与弧度制相关概念的判断,属于基础题. 4.D 【分析】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,先求出5OA =,34cos ,sin 55αα==,再结合两角和的正弦公式和余弦公式求出cos β和sin β,进而可以求出结果. 【详解】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,则3πβα=+,由题意知 5OA =,34cos ,sin 55αα==,所以cos cos cos cos sin sin 333πππβααα⎛⎫=+=-= ⎪⎝⎭sin sin sin cos cos sin 333πππβααα⎛⎫=+=+= ⎪⎝⎭所以点B 的横坐标为5cos 5β==;点B 的纵坐标为5sin 5β==;所以点B 的坐标为⎝⎭, 故选:D. 5.B 【分析】令41()log 2f x x x=+-,则利用函数零点的判定定理求得函数()f x 的零点所在区间即可.【详解】解:令41()log 2f x x x=+-,则()f x 为连续函数,又因为44111()log 32log 10333f =+-=+>,44111()log 22log 0222f =+-=<,11()()032f f <, 所以方程的解所在区间为1(3,1)2, 故选:B . 6.D 【解析】因为气球内气体的气压是气球体积的反比例函数,所以可设kp V=,由图象可知,点()1.5,64 在函数图象上,所以64 1.5k =,解得96k =,故96p V=,故选D.7.C 【分析】由奇偶性可得()f x 在(0,)+∞上单调递增,()(3)3f f -=-0=,分类讨论,利用单调性可得到结论. 【详解】定义在R 上的奇函数()f x 在区间(,0)-∞上单调递增,且f (3)0=, 则()f x 在(0,)+∞上单调递增,且()(3)3f f -=-0=, 因为()0f x >,所以()()03x f x f <⎧⇒⎨>-⎩30x -<<或()()03x f x f >⎧⇒⎨>⎩3x >. 不等式()0f x >的解集是(3,0)(3,)-⋃+∞ 故选:C . 8.A 【分析】做出函数()f x 的图像,根据图像即可求解. 【详解】函数()y f x k =-有三个零点, 即()y f x =与y k =有三个交点,()f x 的图像如下:由图像可得21k -<≤- . 故选:A【点睛】本题考查函数的零点,利用数形结合转化为两个函数的交点,属于基础题.二、填空题9.ABD 【分析】利用赋值法确定ABC 选项的正确性,根据奇偶性的定义判断D 选项的正确性.依题意1()()()2f x y f x f y +=++,且1()02f =,令0x y ==,得()()()()110000022f f f f +=++⇒=-,故A 选项正确. 令11,22x y ==-,则1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即1111012222f f ⎛⎫⎛⎫-=+-+⇒-=- ⎪ ⎪⎝⎭⎝⎭, 令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即()11131222222f f ⎛⎫-=-+=-+=- ⎪⎝⎭,故B 选项正确.由于()()10f f -<,故C 选项错误. 令y x =-,得()()()12f x x f x f x -=+-+, 即()()1122f x f x -=+-+,即()()11022f x f x ⎡⎤⎡⎤=++-+⎢⎥⎢⎥⎣⎦⎣⎦,所以()12f x +为奇函数,故D 选项正确. 故选:ABD 10.ABD 【分析】由正切函数的性质判断A ;由对数函数的性质判断B ;由特称命题的否定判断C ;由函数的奇偶性判断D. 【详解】对于选项A :因为tan y x =在其定义域内不具有单调性,故A 不正确; 对于选项B :若0a b >>,则lg lg a b >,故B 不正确;对于选项C :命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”,故C 正确;对于选项D :当0x >时,()()()222121f x f x x x x x =--=---+=+-,又()00f =,所以当[)0,x ∈+∞时,()20,021,0x f x x x x =⎧=⎨+->⎩. 故D 不正确. 故选:ABD.【分析】取特殊值判断A ,由不等式性质判断B ,由作差法判断C ,根据对数函数单调性判断D. 【详解】对于A ,1,2a b =-=-,显然不成立,故A 错;对于B ,两边同乘以22a b 可得a b <,与题意矛盾,故B 错误;对于C , 因为11111()+()(1)0a b a b a b b a b a ab +--=--=-+>,故11b a a b+<+,故C 正确;对于D ,因为0b a <<,所以22a b <,由对数函数ln y x =单调递增知22ln ln a b <,故D 正确. 故选:CD 12.ACD 【分析】利用二倍角公式和三角函数的性质对每一个选项进行判断即可. 【详解】已知函数()2cos 22sin(2)6f x x x x π=-=-,x ∈R ,A 、2()2f x -≤≤正确,B 、当26x k ππ-=,k Z ∈,即212k x ππ=+,k Z ∈,()f x 在区间(0,)π上只有2个零点7,1212x ππ=,则()f x 在区间(0,)π上只有1个零点错误,C 、()f x 的最小正周期为π,正确D 、当3x π=时,函数()2sin(2)6f x x π=-,x ∈R ,2sin 22336f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭所以3x π=为()f x 图象的一条对称轴,正确.故选:ACD .三、多选题13.6 【分析】由题意可得集合{}234A =,,,结合求子集个数的计算公式即可. 【详解】 由题意知,{}15A x N x =∈<<,所以{}234A =,,,所以集合A 的非空真子集的个数为:3226-=. 故答案为:614.()(),66,-∞-+∞【分析】原方程等价于34x a x +=,分别作出3y x a =+和4y x=的图象,分0a >和0a <讨论,利用数形结合即可得到结论. 【详解】因为方程440x ax +-=等价于34x a x+=, 原方程的实根是3y x a =+ 与曲线4y x=的交点的横坐标, 曲线3y x a =+是由曲线3y x =纵向平移||a 个单位而得到,若交点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k =均在直线y x =的同侧,因y x =与4y x=的交点为(2,2),(2,2)--,所以结合图象可得:3022a x a x >⎧⎪+>-⎨⎪≥-⎩或3022a x a x <⎧⎪+<⎨⎪≤⎩恒成立,所以32a x >--在[2,)-+∞上恒成立,或32a x <-+在(,2]-∞上恒成立,所以3max (2)a x >--=3(2)26---=,或33min (2)226a x <-+=-+=-,即实数a 的取值范围是()(),66,-∞-+∞.故答案为: ()(),66,-∞-+∞.【点睛】本题考查了数形结合思想,等价转化思想,函数与方程,幂函数的图象,属于中档题. 15.=4ω. 【分析】由所给函数图像 过点05(,)24y π,011(,)24y π-,列式115sin()sin()2424ππωϕωϕ+=-+,利用诱导公式可得. 【详解】 由函数图像过点05(,)24y π,011(,)24y π-,得05sin()24y πωϕ=+,011sin()24y πωϕ-=+,所以115sin()sin()2424ππωϕωϕ+=-+,又两点在同一周期,所以115()2424ππωϕπωϕ+=++,4ω=.故答案为4. 【点睛】本题考查三角函数的图像与性质,考查简单三角方程的解,考查图形识别与运算求解能力,属于基础题.16.(1,4【分析】由已知得出函数的单调性,再得出()()4f a f =时,a 的值,从而分91,4a <≤9<<44a 两种情况,分别由()()12max max 80f x f x ≥解得可得a 的取值范围. 【详解】 因为()9f x x x =+,所以函数()9f x x x=+在(]0,3上单调递减,在[)3,+∞上单调递增, 当()()99444f a a f a =+==+时,解得94a =(4a =舍去),(1)当()()()()12max max 991,110804a f x f x f f a a a ⎛⎫<≤==+≥ ⎪⎝⎭,解得(1,4a ∈; (2)当()()()()12max max 99<<4,141048044a f x f x f f ⎛⎫==⨯+≥ ⎪⎝⎭,不符题意.故答案为:(1,4. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <.四、解答题17.(1){}12A B =-,,()()13R C A =-∞-+∞,,;(2)713⎡⎤⎢⎥⎣⎦,. 【分析】(1)当1a =,先求出集合B ,再利用集合的交集和补集计算即可;(2)先利用已知条件得到B A ⊆,由一元二次方程的根的分布建立不等式组,即可得出结果. 【详解】(1)由题意知:{}[]223013A x x x =--≤=-,,当a =1时,{}{}22012B x x x =--==-,, 所以{}12A B =-,,()()13R C A =-∞-+∞,,; (2)A B A B A ⋃=∴⊆,,因为()2+8>0a =-∆恒成立,所以B ≠∅,所以要使B A ⊆,则需()()2213211203320a a a ⎧-<<⎪⎪⎪--⨯--≥⎨⎪--≥⎪⎪⎩,解得713a ≤≤,所以实数a 的取值范围为:713⎡⎤⎢⎥⎣⎦,.18.(1)()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)(]0,2;(3)112⎧⎫⎨⎬⎩⎭或(]10,0- 【分析】(1)利用三角函数的定义求出ϕ的值,由题意知223T ππω==可得ω的值,进而可得()f x 的解析式,利用整体代入法以及正弦函数的单调性即可求解; (2)由x 的范围求出33x π-的范围,利用正弦函数的性质即可求解;(3)设()(]0,2f x t =∈,将问题转化为y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,数形结合可得112m -=-或010m ≤-<,即可求解. 【详解】(1)因为角ϕ的终边经过点(1,P,所以tan ϕ= 因为02πϕ-<<,所以3πϕ=-,因为当12()()4f x f x -=时,12x x -的最小值为3π, 所以223T ππω==,可得:3ω=,所以()2sin 33f x x π⎛⎫=- ⎪⎝⎭,令()3232232k x k k Z πππππ+≤-≤+∈解得:()52112183183k k x k Z ππππ+≤≤+∈, 所以函数()f x 的单调减区间为()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (2)当4,99x ππ⎛⎫∈ ⎪⎝⎭时,033x ππ<-<, 所以0sin 313x π⎛⎫<-≤ ⎪⎝⎭,所以()02sin 323f x x π⎛⎫<=-≤ ⎪⎝⎭,所以函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域为(]0,2, (3)设()(]0,2f x t =∈,因为方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 则230t t m -+=在(]0,2t ∈内有一根或两个相等的实根,因为23m t t -=-,所以y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,作出y m =-与(]23,0,2y t t t =-∈的图象,由图知:当16t =时211136612y ⎛⎫=⨯-=- ⎪⎝⎭;当0t =时,0y = ;当2t =时,232210y =⨯-=, 所以112m -=-或010m ≤-≤直线y m =-与(]23,0,2y t t t =-∈的图象只有一个交点, 当10m -=时,2t =,此时方程()2sin 323f x x π⎛⎫=-= ⎪⎝⎭只有一解,不符合题意,所以112m -=-或010m ≤-<,即方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 所以:112m =或100m -<≤ 所以实数m 的取值范围为:112⎧⎫⎨⎬⎩⎭或(]10,0-19.(1)()243f x x x =-+;(2)1b =-或0b >.【分析】(1)()g x 关于y 轴对称的函数()22F x x x =+,再根据函数的平移法则得到答案.(2)将()g x 化简为分段函数,画出函数图象,根据图象得到参数范围. 【详解】(1)()g x 关于y 轴对称的函数()()2222F x x x x x =--=+,()F x 的图象向右平移3个单位可得到函数()f x 的图象,()()()2232343f x x x x x ∴=-+-=-+;(2)()2222,022,0x x x g x x x x x x ⎧-≥=-=⎨+<⎩,作出()g x 的图象可知:()g x 的图象与直线y b =有两个交点时,b 的范围:1b =-或0b >.【点睛】本题考查了函数的平移和对称,利用分段函数图象解决交点个数问题,意在考查学生的计算能力和转化能力,画出图象是解题的关键. 20.(1)11224APQSπα=⎛⎫+ ⎪⎝⎭;定义域为0,4π⎛⎫⎪⎝⎭;(221 【分析】(1)在Rt ABP 与Rt ADQ 中,利用正方形的边长,求出,AP AQ,根据三角形的面积公式即可求解. (2)由(1)利用三角函数的性质即可求解. 【详解】(1)由BAP α∠=,4PAQ π∠=,则244ADQ πππαα∠=--=-,正方形的边长为1,在Rt ABP 中,1cos AP α=, 在Rt ADQ 中,1cos 4AQ πα=⎛⎫- ⎪⎝⎭,所以1111sin 242cos cos 4APQSAP AQ ππαα=⋅⋅=⋅⋅⎛⎫- ⎪⎝⎭()211112cos cos sin 2cos cos sin αααααα=⋅=⋅++12121cos 2sin 2124ααπα=⋅=++⎛⎫+ ⎪⎝⎭,由图可知04πα<<,所以函数的定义域为0,4π⎛⎫⎪⎝⎭. (2)由04πα<<,则32444πππα<+<,1124APQS πα=⎛⎫+ ⎪⎝⎭,当sin 214πα⎛⎫+= ⎪⎝⎭,即8πα=时,APQ 面积的最小,即APQ1=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值). 21.(1)0a =;(2)14.【分析】(1)由奇函数得到()x x a x x a -⋅--=-⋅-,再由多项式相等可得a ;(2)由()f x 是奇函数和已知得到()()2sin 2cos f x f x t ≥-,再利用()f x 是R 上的单调增函数得到2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.利用参数分离得22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,再求22cos sin x x -,π7π,36x ⎡⎤∈⎢⎥⎣⎦上最大值可得答案.【详解】(1)因为函数()f x x x a =-为R 上的奇函数, 所以()()f x f x -=-对任意x ∈R 成立, 即()x x a x x a -⋅--=-⋅-对任意x ∈R 成立, 所以--=-x a x a ,所以0a =.(2)由()()2sin 2cos 0f x f t x +-≥得()()2sin 2cos f x f t x ≥--,因为函数()f x 为R 上的奇函数, 所以()()2sin 2cos f x f x t ≥-.由(1)得,()22,0,,0,x x f x x x x x ⎧≥==⎨-<⎩是R 上的单调增函数,故2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.所以22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.因为()2222cos sin cos 2cos 1cos 12x x x x x -=+-=+-, 令cos m x =,由π7π,36x ⎡⎤∈⎢⎥⎣⎦,得1cos 1,2x ⎡⎤∈-⎢⎥⎣⎦,即11,2m ⎡⎤∈-⎢⎥⎣⎦.所以()212y m =+-的最大值为14,故14t ≥,即t 的最小值为14.【点睛】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到2sin 2cos x x t ≥-,再利用参数分离后求22cos sin x x -π7π,36x ⎡⎤∈⎢⎥⎣⎦的最大值,考查了学生分析问题、解决问题的能力.22.(1)0m =;(2)83k =;(3)06m <<【分析】(1)由()()f x f x =-可得m 的值; (2)当[]2,0x ∈-时,()()21x xg x k =+⋅-,令1,13x t ⎡⎤=∈⎢⎥⎣⎦,则()2221124k kg t t kt t ⎛⎫=+-=+-- ⎪⎝⎭,分类讨论求出()g t 的最小值,列方程即可求解;(3)将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点,分四种情况讨论即可得实数m 的取值范围. 【详解】(1)当函数()f x 为偶函数时,()()f x f x =-, 所以x m x m -=--,解得:0m =, 经检验,0m =符合,故0m =; (2)当[]2,0x ∈-时,()()21113xxx xg x k k ⎛⎫=+⋅-=+⋅- ⎪⎝⎭,令1,13xt ⎡⎤=∈⎢⎥⎣⎦,则()2221124k k g t t kt t ⎛⎫=+-=+-- ⎪⎝⎭,当123k -<即23k >-时,()g t 在1,13⎡⎤⎢⎥⎣⎦上单调递增, 所以2111033k ⎛⎫+-= ⎪⎝⎭,解得:83k =,符合;当1132k ≤-≤即223k -≤≤-时,2104k --=无解; 当12k ->即2k <-时,()g t 在1,13⎡⎤⎢⎥⎣⎦上单调递减, 所以110k +-=,解得:0k =,应舍去;综上,83k =;(3)()193m h x x x=⋅+,将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点. 当3x ≥时,9y x x=+是单调递增的,所以当0m ≠时,()h x 是单调函数, 分四种情况讨论:①当0m <时,()g x 在[)3,+∞上符号是负,而在(),3-∞上符号是正的,所以不满足题目的条件;②当0m =时,当3x ≥时,()0g x =,而当3x <时,()1303xg x ⎛⎫=⋅> ⎪⎝⎭,所以也不符合条件;③当03m <<时,要满足条件只需()()93f m h >即162m <,所以03m <<;④当3m ≥时,要满足条件只需()()933f h >即732mm ->,即3log 702mm +-<, 令()3log 72mt m m =+-, 因为()t m 在[)3,+∞上单调递增,且()60t =,所以解()()06t m t <=得6m <, 所以36m ≤<,综上,实数m 的取值范围为06m <<. 【点睛】关键点睛:本题的关键是能够将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点,结合图象就能求解出实数m 的取值范围;当然再分析当3m ≥情况时,需要构造函数()3log 72mt m m =+-,利用单调性求解不等式.。
2022~2023学年高一年级数学上册期末备考模拟试卷(4)【含答案】
期末模拟试卷(4)一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1.设全集=U R ,集合=−−A x x x {|20}2,=>B x lgx {|0},则=A B ( ) A .−x x {|12} B .<x x {|12} C .<<x x {|12} D .−x x {|1}2.=A x x {|02},=B y y {|12},下列图形中能表示以A 为定义域,B 为值域的函数的是A .B .C .D .3.单位圆上一点P 从(0,1)出发,逆时针方向运动π3弧长到达Q 点,则Q 的坐标为A .−2(1B .−2()1C .−2(,1D .2()14.不等式>+x 216|21|的解集为 A .+∞2[,)3 B .−∞−+∞22(,)(,)53C .−∞−+∞22(,](,)53D .−∞−2(,)55.《九章算术》是我国算术名著,其中有这样的一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”意思是说:“现有扇形田,弧长30步,直径16步,问面积是多少?”在此问题中,扇形的圆心角的弧度数是 A .415 B .154 C .815 D .1206.设=a =b 0.90.8,=c log 0.80.9,则 A .>>c a b B .>>a c b C .>>a b c D .>>c b a7.已知函数=−−f x x x ()log (45)212,则函数f x ()的减区间是A .−∞(,2)B .+∞(2,)C .+∞(5,)D .−∞−(,1)8.已知实数>>x y 0,且+−+=x y 216111,则−x y 的最小值是 A .21 B .25 C .29 D .33二、多选题(本大题共4小题,共20分。
在每小题有多项符合题目要求) 9.下列命题中,是存在量词命题且是真命题的是 A .∃∈x R ,x ||0B .存在∈x R ,使得++=x x 102C .至少有一个无理数x ,使得x 3是有理数D .有的有理数没有倒数10.下列说法正确的是A .若⋅>ααsin cos 0,则α为第一象限角B .将表的分针拨快5分钟,则分针转过的角度是−︒30C .终边经过点≠a a a ,0)()(的角的集合是Z =+∈ααππk k 4,}{ D .在一个半径为3cm 的圆上画一个圆心角为30°的扇形,则该扇形面积为πcm 23211.已知函数−=x f x ||2()1,则下列结论中正确的是A .f x ()是偶函数B .f x ()在−∞−(,2)上单调递增C .f x ()的值域为RD .当∈−x (2,2)时,f x ()有最大值12.如图所示,边长为2的正方形ABCD 中,O 为AD 的中点,点P 沿着→→→A B C D 的方向运动,设∠AOP 为x ,阴影部分的面积为f x (),则下列说法中正确的是A .f x ()在π2(,π)上为减函数B .=πf 42()1C .+−=πf x f x ()()4D .f x ()图象的对称轴是=πx 2三、填空题(本大题共4小题,共20分) 13.求值:2617sin cos()34ππ+−= .14.已知幂函数2()(57)m f x m m x =−+是R 上的增函数,则m 的值为 .15.若“13x <<”的必要不充分条件是“22a x a −<<+”,则实数a 的取值范围是 .16.已知函数{25,2()(2),2x x f x xlg x x −−=+>−,若方程()1f x =的实根在区间(k ,1)()k k Z +∈上, 则k 的所有可能值是 .四、解答题(本大题共6小题,共70分。
2023-2024学年河北省石家庄市高一上学期期末数学模拟试题(含答案)
2023-2024学年河北省石家庄市高一上册期末数学模拟试题一、单选题1.已知集合{}2log 2A x R x =∈<,{}12B x R x =∈-<,则A B = ()A .()0,3B .()1,3-C .()0,4D .(),3-∞【正确答案】A解不等式确定集合,A B 后,由交集定义计算.【详解】由题意得:{}04A x R x =∈<<,{}13B x R x =∈-<<,即{}03A B x x ⋂=<<,故选:A.本题考查集合的交集运算,掌握对数函数的性质是解题关键.2.“1n =”是“幂函数()()22333nnf x n n x-=-+⋅在()0,∞+上是减函数”的一个()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【正确答案】A【分析】由幂函数()()22333n nf x n n x-=-+⋅在()0,∞+上是减函数,可得2233130n n n n ⎧-+=⎨-<⎩,由充分、必要条件的定义分析即得解【详解】由题意,当1n =时,()2f x x -=在()0,∞+上是减函数,故充分性成立;若幂函数()()22333nnf x n n x-=-+⋅在()0,∞+上是减函数,则2233130n n n n ⎧-+=⎨-<⎩,解得1n =或2n =故必要性不成立因此“1n =”是“幂函数()()22333n nf x n n x-=-+⋅在()0,∞+上是减函数”的一个充分不必要条件故选:A3.用二分法判断方程32330x x +-=在区间()0,1内的根(精确度0.25)可以是(参考数据:30.750.421875=)()A .0.825B .0.635C .0.375D .0.25【正确答案】B【分析】设3()233f x x x =+-,由题意可得()f x 是R 上的连续函数,由此根据函数零点的判定定理求得函数()f x 的零点所在的区间.【详解】设3()233f x x x =+-,(0)30f ∴=-<,(1)23320=+-=>f ,3(0.5)20.530.530f =⨯+⨯-< ,()f x ∴在(0.5,1)内有零点,3(0.75)20.7530.7530f =⨯+⨯-> ()f x ∴在(0.5,0.75)内有零点,∴方程32330x x +-=根可以是0.635.故选:B .4.已知α为锐角且4cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫- ⎪⎝⎭的值为()A B .10C .10-D .10-【正确答案】C【分析】利用同角的三角函数的基本关系式和两角差的正弦可求sin 12πα⎛⎫- ⎪⎝⎭的值.【详解】α为锐角,故ππ2π663α<+<,而4cos 65πα⎛⎫+= ⎪⎝⎭,故3sin 65πα⎛⎫+= ⎪⎝⎭,又πππππsin sinsin cos 1264266αααα⎡⎤⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦15==故选:C.5.函数()()1xxa f x a x=>的大致图象是()A .B .C .D.【正确答案】C【分析】去掉绝对值,根据函数的单调性即可判断.【详解】当0x >时,()x f x a =,因为1a >,所以函数()x f x a =单调递增,当0x <时,()x f x a =-,因为1a >,所以函数()x f x a =-单调递减.故选:C .6.奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()12f =,则()()20222023f f +的值为()A .2B .1C .-1D .-2【正确答案】D【分析】由已知函数的奇偶性可先求出函数的周期,结合奇偶性及函数的周期性把所求函数值转化可求.【详解】由()1f x +为偶函数,∴()()11f x f x +=-+,令1x t +=,则12x t -+=-,即()()2f t f t =-,因为()f x 为奇函数,有()()f t f t =--,所以()()2f t f t -=--,令x t =-,得()()2f x f x +=-,∴()()()42f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,奇函数()f x 中,已知()12f =,()00f =,则()()()()()()()()20222023505425064121012f f f f f f f f +=⨯++⨯-=+-=--=-.故选:D .7.已知0.450.11log 2,,0.7log 0.7a b c ===,则,,a b c 的大小关系正确的是()A .a c b <<B .a b c <<C .b<c<aD .c<a<b【正确答案】A【分析】根据指数函数和对数函数的单调性,确定12a <,1b >,10.8c >>,得到大小关系.【详解】51log 2log 2a =<,0.70.70.11log 0.1log 0.71log 0.7b ==>=,00.40.50.518.07.06040.7.70.c >=>>==,故b c a >>.故选:A8.已知函数())ln 1f x x =+,正数,a b 满足()()222f a f b +-=,则222b a a ab b ++的最小值为()A .1B .2C .4D .5【正确答案】B【分析】先判断函数是单调递减函数,且有对称中心,找出,a b 之间的关系可求.【详解】因为()()))ln 1ln12f x f x x x +-=-+++=,故函数()f x 关于()0,1对称;又()f x 的定义域为R ,()))ln 1ln1ln1f x x x =+==-+,所以()f x 在R 上单调递减;因为(2)(2)2f a f b +-=,所以220a b +-=,即2 2.a b +=又0,0a b >>,故()2222 2.222b a b a b aa ab b a b a b a b+=+=+≥=++当且仅当42,55a b ==时,等号成立.故选:B.二、多选题9.有以下四种说法,其中说法正确的是()A .“m 是实数”是“m 是有理数”的必要不充分条件B .“0a b >>”是“22a b >”的充要条件C .“3x =”是“2230x x --=”的充分不必要条件D .“1a >”是“11a<”的必要不充分条件【正确答案】AC【分析】根据充分条件和必要条件的定义逐个分析即可.【详解】当m 是实数时,m 可能为有理数,可能为无理数,而当m 为有理数时,m 一定为实数,所以“m 是实数”是“m 是有理数”的必要不充分条件,A 正确;当0a b >>时,22a b >成立,而当22a b >时,有可能0a b <<,所以“0a b >>”是“22a b >”的充分不必要条件,B 错误;当3x =时,2230x x --=成立,而当2230x x --=时,3x =或=1x -,所以“3x =”是“2230x x --=”的充分不必要条件,C 正确;当1a >时,11a <成立,而当11a <时,有可能a<0,所以“1a >”是“11a<”的充分不必要条件,D 错误;故选:AC10.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,ϕπ<)的部分图象如图所示,则下列说法正确的是()A .函数()y f x =在5,1212ππ⎡⎤-⎢⎣⎦单调递减B .函数()y f x =图象关于19,012π⎛⎫⎪⎝⎭中心对称C .将函数()y f x =的图象向左平移3π个单位得到函数()2sin 23g x x π⎛⎫=- ⎪⎝⎭的图象D .若()f x 在区间2,3a π⎡⎤⎢⎥⎣⎦上的值域为A ⎡-⎣,则实数a 的取值范围为133,122ππ⎡⎤⎢⎥⎣⎦【正确答案】AD【分析】根据图象可得函数的解析式,再根据整体法或代入法可判AB 的正误,利用图像变换可判断C 的正误,根据正弦函数的性质可判断D 的正误.【详解】由图象可得2A =,且37ππ3π41264T =+=,故πT =即2ω=,而7ππ22π,122k k Z ϕ⨯+=+∈,故2π2π,3k k Z ϕ=-+∈,因为ϕπ<,故2π3ϕ=-,故()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭,对于A ,当5,1212x ππ⎡⎤∈-⎢⎣⎦,3π2ππ2232x -≤-≤-,而sin y t =在3ππ,22⎡⎤--⎢⎥⎣⎦上为减函数,故()f x 在5,1212ππ⎡⎤-⎢⎥⎣⎦为减函数,故A 正确.对于B ,1919π2π2sin 21263f π⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故1912x π=为函数图象的对称轴,故B 错误.对于C ,将函数()y f x =的图象向左平移3π个单位得到函数2π2π2sin 22sin 233y x x ⎛⎫=+-= ⎪⎝⎭的图象,故C 错误.对于D ,当2,3x a π⎡⎤∈⎢⎥⎣⎦时,2π2π2π22333x a ≤-≤-,因为函数的值域为⎡-⎣,故3π2π7π2233a ≤-≤,故13π3π122a ≤≤,故D 正确.故选:AD.11.对x ∀∈R ,[]x 表示不超过x 的最大整数,如[]3.143=,[]0.6180=,[]2.718283-=-,我们把[]y x =,x ∈R 叫做取整函数,也称之为高斯( G aussian )函数,也有数学爱好者形象的称其为“地板函数”.早在十八世纪,人类史上伟大的数学家,哥廷根学派的领袖约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich G aussian )最先提及,因此而得名“高斯( G aussian )函数”.在现实生活中,这种“截尾取整”的高斯函数有着广泛的应用,如停车收费、 E XCEL 电子表格,在数学分析中它出现在求导、极限、定积分、级数等等各种问题之中.以下关于“高斯函数”的命题,其中是真命题有()A .R x ∀∈,[]x x ⎡⎤=⎣⎦B .,R ∃∈x y ,[][][]x y x y -<-C .,x y ∀∈R ,若[][]x y =,则1x y -<D .N n +∃∈,[][][]lg 2lg 3lg 93n +++= 【正确答案】BC【分析】根据高斯函数的定义,结合特值法,对每个选项进行逐一分析,即可判断和选择.【详解】对A :不妨取0.2x =-,则[]0.20x ⎡⎤==⎣⎦,而[]11x =-=,故A 错误;对B :不妨取3, 1.2x y ==,则[][]1.81x y -==,而[][]312x y -=-=,满足[][][]x y x y -<-,故B 正确;对C :因为[][]x y =,故可得,x y 同号;当0x y ==时,01x y -=<,满足题意;当,x y 同为正数或负数时,设,x a b y c d =+=+,其中,a c 和,b d 分别为,x y 的整数部分和小数部分,因为[][]x y =,则a c =,故x y b d -=-,又,b d 同为小数,且符号相同,故1b d -<,即1x y -<,则,x y ∀∈R ,若[][]x y =,则1x y -<,故C 正确;对D :令[]lg ,2,N y x x x +=≥∈,当210,N x x +≤<∈时,[]lg 0x =;当10100,N x x +≤<∈时,[]lg 1x =;当1001000,N x x +≤<∈时,[]lg 2x =;L当11010,N n n x x -+≤<∈时,[]lg 1x n =-.则当10100n ≤<时,[][][]lg 2lg3lg n +++ [][][][][][]lg 2lg3lg9lg10lg11lg 9n n =+++++++=- ;又9,10100,N y n n n +=-≤<∈为单调增函数,故99n =时,取得最大值90;当1001000n ≤<时,[][][]lg 2lg3lg n +++ [][][][][][]()lg 2lg3lg99lg100lg101lg 902992108n n n =++++++=+-=- ;不存在N n +∈使[][][]lg 2lg 3lg 93n +++= ,故D 错误.故选:BC.12.已知函数242()12,R f x x x x k k =--+-∈,则下列说法正确的是()A .R k ∃∈,使得函数()f x 有1个零点B .R k ∃∈,使得函数()f x 有2个零点C .R k ∃∈,使得函数()f x 有4个零点D .R k ∃∈,使得函数()f x 有8个零点【正确答案】BCD【分析】设21x t -=,[)0,t ∈+∞,21k t t =-+,画出函数图像,讨论54k >,54k =,514k <<,1k =,1k <几种情况,计算得到答案.【详解】242()120f x x x x k =--+-=,即24212k x x x =--+,设21x t -=,[)0,t ∈+∞,则24221t x x =-+,21k t t =-+,设()2215124g t t t t ⎛⎫++=-- ⎪⎭=+-⎝,图像如图所示:当54k >时,21k t t =-+无解,此时函数没有零点;当54k =时,12t =,即2112x -=,方程有4个解,函数有4个零点;当514k <<时,方程有两解,设为12,t t 且121012t t <<<<,211x t -=有4个解,221x t -=有4个解,故函数共有8个零点;当1k =时,0=t 或1t =,当0=t 时,210x -=有2个解;当1t =时,211x -=有3个解,故函数有5个零点;当1k <时,方程有1个解1t >,此时21x t -=有2个解,函数有2个零点.综上所述:函数可能有0,2,4,5,8个零点.故选:BCD 三、填空题13.对任意实数0a >且1a ≠,函数31x y a -=+的图象经过定点P ,且点P 在角θ的终边上,则πtan 4θ⎛⎫-= ⎪⎝⎭__________.【正确答案】15-##0.2-【分析】函数过定点()3,2P 得到2tan 3θ=,再利用和差公式计算得到答案.【详解】函数31x y a -=+的图象经过定点()3,2P ,点P 在角θ的终边上,故2tan 3θ=,21πtan 113tan 241tan 513θθθ--⎛⎫-===- ⎪+⎝⎭+.故15-14.已知函数()()2ln 23f x x x =-++,则()f x 的单调增区间为______.【正确答案】(]1,1-##(-1,1)【分析】先求定义域为()1,3-,再利用复合函数的单调性法则“同增异减”即可求得.【详解】因为2230x x -++>,解得:13x -<<,所以()()2ln 23f x x x =-++的定义域为()1,3-.令()222314t x x x =-++=--+,则ln y t =.要求()f x 的单调增区间,只需1x ≤.所以11x -<≤,所以()f x 的单调增区间为(]1,1-.故答案为.(]1,1-15.“R x ∃∈,210ax ax -+<”是假命题,则实数a 的取值范围为_________.【正确答案】04a ≤≤【分析】存在量词命题是假命题,则其否定全称量词命题是真命题,写出其全称量词命题,是一个二次不等式恒成立问题,分情况讨论,求a 的范围.【详解】由题意可知,“R x ∃∈,210ax ax -+<”的否定是真命题,即“R x ∀∈,210ax ax +≥-”是真命题,当0a =时,10≥,不等式显然成立,当0a ≠时,由二次函数的图像及性质可知,2Δ40a a a >⎧⎨=-≤⎩,解得04a <≤,综上,实数a 的取值范围为04a ≤≤.故答案为.04a ≤≤16.已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<<,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.【正确答案】()6,10【分析】确定函数的max π()()4f x f =,由此可得ππ2π,Z 24k k ωϕ=-+∈,再利用()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点得到ππ02ππ243πππ3π2π4π824k k ωωω⎧<-+<⎪⎪⎨⎪<+-+≤⎪⎩,求得答案.【详解】由已知得:π()()4f x f ≤恒成立,则max π()()4f x f =,ππππ2π,Z 2π,Z 4224k k k k ωωϕϕ+=+∈⇒=-+∈,由3π0,8x ⎛⎫∈ ⎪⎝⎭得3π(,)8x ωϕϕωϕ+∈+,由于()y f x =在区间3π0,8⎛⎫⎪⎝⎭上恰有3个零点,故0π3π3π4π8ϕωϕ<<⎧⎪⎨<+≤⎪⎩,则ππ02ππ243πππ3π2π4π824k k ωωω⎧<-+<⎪⎪⎨⎪<+-+≤⎪⎩,Z k ∈,则8282,Z 20162816k k k k k ωω-<<+⎧∈⎨-<≤-⎩,只有当1k =时,不等式组有解,此时610412ωω<<⎧⎨<≤⎩,故610ω<<,故()6,10四、解答题17.集合1121x A xx +⎧⎫=≥⎨⎬-⎩⎭,{}22240B x x ax a =-+-<.(1)若{}23,4,23C a a =+-,()0B C ∈ ,求实数a 的值;(2)若()R A B ⋂=∅ð,求实数a 的取值范围【正确答案】(1)1;(2)5(0,2【分析】(1)根据集合交集的性质进行求解即可;(2)根据分式不等式的解法,结合补集和交集的性质进行求解即可.【详解】(1)因为()0B C ∈ ,所以0C ∈,且0B ∈,由0C ∈,可得2230a a +-=,解得:1a =或3a =-.由0B ∈,所以2202040a a -⨯+-<得22a -<<;∴实数a 的值为1;(2)集合12110221212x x A xx x x x x +-⎧⎫⎧⎫⎧⎫=≥=≥=<≤⎨⎬⎨⎬⎨⎬--⎩⎭⎩⎭⎩⎭∣∣∣.集合{}22240{22}B x x ax a x a x a =-+-<=-<<+∣∣.由()R A B ⋂=∅⇒ð12222a a ⎧-≤⎪⎨⎪+>⎩,解得502a <≤,所以实数a 的取值范围为5(0,]2.18.已知函数()2f x ax bx =-.(1)若()f x c ≥的解集为{}32x x -≤≤,求不等式20bx ax c ++≤的解集;(2)若0a >,0b >且()12f -=,20a b mab +-≥恒成立,求m 的最小值.【正确答案】(1){}23xx -≤≤∣(2)(132+【分析】(1)根据题中条件可知0<a ,根据解集可知二次方程20ax bx c --=的两根为123,2x x =-=,再根据韦达定理找到a 、b 、c 三者之间的关系,由此解出不等式.(2)根据题意可知a 、b 之间的关系,再将20a b mab +-≥分离参数,利用基本不等式即可求出答案.【详解】(1)由题设知0<a 且20ax bx c --=的两根为123,2x x =-=所以12121,6b c x x x x a a-+==-==-,可得:,6b a c a =-=2260bx ax c ax ax a ++=-++≤可化为:260x x --≤,解得:23x -≤≤,所以不等式20bx ax c ++≤的解集为{}23xx -≤≤∣(2)0,0a b >>且()122f a b -=⇒+=,20a b mab +-≥,则12m a b≤+恒成立,()(11212133222a b a b a b b a ⎛⎫⎛⎫++=++≥+ ⎪⎪⎝⎭⎝⎭,当且仅当b =,2a b +=,即)214a b ⎧=-⎪⎨⎪=-⎩时,“=”成立,(132m ∴≤+19.已知()π1πsin cos sin 23234f x x x x ⎛⎫=++⎛⎫ ⎪⎝⎭+- ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)当π5π,66x ⎡⎤∈⎢⎣⎦时,关于x 的不等式1ππ22612a x f f x --⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎭+≥⎝有解,求实数a 的取值范围.【正确答案】(1)π5ππ,π,Z1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)1a ≥【分析】(1)根据三角恒等变换得到()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,再计算πππ2π22π232k x k -≤+≤+得到答案.(2)化简得到sin cos22a x x -≥,即2cos2sin x a x +≥有解,令1sin ,,12t x t ⎡⎤=∈⎢⎥⎣⎦,根据函数的单调性计算最小值得到范围.【详解】(1)()111cos sin sin2222f x x x x x x ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭11cos21sin2sin2424x x x x +=++1πsin2sin 223x x x ⎛⎫=+=+ ⎪⎝⎭令2π22π,Z π23π2πk x k k -≤+≤+∈,解得5ππππ,Z 1212k x k k -≤≤+∈所以单调递增区间为π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦.(2)1sin cos222612ππaf x f x a x x ⎛⎫⎛⎫--+=-≥ ⎪ ⎪⎝⎭⎝⎭,π5π,66x ⎡⎤∈⎢⎥⎣⎦,sin 0x >,即2cos2sin xa x +≥有解,只需要min2cos2sin x a x +⎛⎫≥ ⎪⎝⎭即可,22cos232sin 32sin sin sin sin x x x x x x +-==-,令13sin ,,1,22t x t y t t ⎡⎤=∈=-⎢⎥⎣⎦为减函数,所以当1t =时,min 1y =,所以1a ≥.20.已知函数()e e x x f x a -=+是偶函数,其中e 是自然对数的底数.(1)求a 的值;(2)若关于x 的不等式()+e 10x f x m m ---≥在[)ln3,+∞上恒成立,求实数m 的取值范围.【正确答案】(1)1a =(2)7,2⎛⎤-∞ ⎥⎝⎦【分析】(1)由函数()f x 是偶函数,即得()()f x f x -=,可求出a ;(2)由e e e 10x x x m m --++--恒成立,可分参转化,令e 1x t -=,则e 1x t =+,11m t t≤++,然后利用基本不等式求出右边的最小值即可.【详解】(1)∵函数e e x x f x a -=+()是偶函数,∴f x f x -=()(),即e e e e x x x x a a --+=+,()()1e e 0x x a ---=恒成立∴1a =(2)由题意,知e e e 10x x x m m --++--≥在[ln3∞+,)上恒成立,则e e 11e x x x m --+--(),即2e 1e e 1x x x m--+(),∴2e e 1e 1x x x m -+≤-令e 1x t -=,则e 1x t =+.ln3e 12x x t ≥∴=-≥ ∴22111111t t t t m t t t t+-++++≤==++()().min 11m t t ⎛⎫≤++ ⎪⎝⎭∵11t t ++在[2∞+,)上单调递增,当且仅当t =2时,取11t t ++到最小值72.∴72m ≤.∴m 的范围是7,2⎛⎤-∞ ⎥⎝⎦.21.2020年一场突如其来的疫情让亿万中华儿女的心再一次凝结在一起,为控制疫情,让广大发热患者得到及时有效的治疗,武汉市某社区决定临时修建一个医院.医院设计平面图如图所示:矩形ABCD 中,400AB =米,300BC =米,图中DMN 区域为诊断区(M 、N 分别在BC 和AB 边上),ADN △、CDM V 及BMN 区域为治疗区.受诊断区医疗设备的实际尺寸影响,要求MDN ∠的大小为4π.(1)若按照200AN CM ==米的方案修建医院,问诊断区是否符合要求?(2)按照疫情现状,病人仍在不断增加,因此需要治疗区的面积尽可能的大,以便于增加床位,请给出具体的修建方案使得治疗区面积S 最大,并求出最大值.【正确答案】(1)不符合要求(2)按照tan 218ADN ADN π⎛⎫∠=-∠= ⎪⎝⎭修建,治疗区面积最大,最大值为2400001200002-(平方米)【分析】(1)依题意求()tan ADN CDM ∠+∠即可判断.(2)设ADN θ∠=,用θ表示诊疗区域的面积ADN BMN CDM S S S S =++△△△即可.【详解】(1)当200AN CM ==时,2tan 3ADN ∠=,1tan 2CDM ∠=所以()21732tan 1214132ADN CDM +∠+∠==≠-⋅因此诊断区不符合要求(2)设ADN θ∠=,则4CDM πθ∠=-,1tan ,17θ⎛⎫∈ ⎪⎝⎭()()11502004003002ADN BMN CDM S S S S AN CM AN CM =++=++--△△△1600002AN CM =⋅+在ADN △中,tan ANADθ=,300tan AN θ=在CDM V 中,tan 4CM CD πθ⎛⎫=- ⎪⎝⎭,400tan 4CM πθ⎛⎫=- ⎪⎝⎭,所以160000tan tan 6000060000141t S t t πθθ-⎛⎫⎛⎫=-+=⋅+ ⎪ ⎪+⎝⎭⎝⎭260000141t t ⎛⎫=-++- ⎪+⎝⎭,其中1tan ,17t θ⎛⎫=∈ ⎪⎝⎭,所以240000S ≤-211t t +=+即1t =取等号故按照tan 18ADN ADN π⎛⎫∠=∠= ⎪⎝⎭修建,治疗区面积最大,最大值为240000-米).22.若函数()y T x =对定义域内的每一个值1x ,在其定义域内都存在2x ,使()()121T x T x ⋅=成立,则称该函数为“圆满函数”.已知函数()sin,()224x x f x x g x π-==-;(1)判断函数()y f x =是否为“圆满函数”,并说明理由;(2)设2()log ()h x x f x =+,证明:()h x 有且只有一个零点0x ,且05sin 46xg π⎛⎫< ⎪⎝⎭.【正确答案】(1)不是“圆满函数”,理由见解析;(2)证明见解析.(1)取特殊值123x =,代入“圆满函数”的定义,判断是否有实数2x 能满足22sin()sin 1434x ππ⎛⎫⋅⋅⋅= ⎪⎝⎭;(2)当(]0,2x ∈时,利用零点存在性定理讨论存在零点,以及当()2,x ∈+∞时,证明()h x 在()2,∞+上没有零点,再化简0sin 4x g π⎛⎫ ⎪⎝⎭,转化为证明不等式00156x x -<.【详解】解:(1)若()sin 4f x x π=是“圆满函数”.取123x =,存在2x R ∈,使得()()121f x f x =,即2sinsin 164x ππ⋅=,整理得2sin 24x π=,但是2sin 14x π≤,矛盾,所以()y f x =不是“圆满函数”.(2)易知函数()2log sin4h x x x π=+的图象在()0+∞,上连续不断.①当(]0,2x ∈时,因为2log y x =与sin 4y x π=在(]0,2上单调递增,所以()h x 在(]0,2上单调递增.因为22222212log sin log log 0336323h π⎛⎫=+==< ⎪⎝⎭,()1sin 04h π=>,所以()2103h h ⎛⎫< ⎪⎝⎭.根据函数零点存在定理,存在02,13x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,所以()h x 在(]0,2上有且只有一个零点0x .②当()2,x ∈+∞时,因为2log y x =单调递增,所以22log log 21y x =>=,因为sin 14y x π=≥-.所以()110h x >-=,所以()h x 在()2,∞+上没有零点.综上:()h x 有且只有一个零点0x .因为()0020log sin 04x h x x π=+=,即020sinlog 4x x π=-,所以()2020log log 020001sinlog 224x x x g g x x x π-⎛⎫=-=-=- ⎪⎝⎭,02,13x ⎛⎫∈ ⎪⎝⎭.因为1y x x =-在2,13⎛⎫⎪⎝⎭上单调递减,所以001325236x x -<-=,所以05sin 46x g π⎛⎫< ⎪⎝⎭.关键点点睛:本题第二问的关键是根据零点存在性定理先说明零点存在,并且存在02,13x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,再利用020sin log 4x x π=-,化简()020sin log 4x g g x π⎛⎫=- ⎪⎝⎭,利用02,13x ⎛⎫∈ ⎪⎝⎭,利用函数的最值证明不等式..。
【必考题】高一数学下期末模拟试题及答案【精华版】
【必考题】高一数学下期末模拟试题及答案一、选择题2 32 ,cos A 1. △ABC 的内角 A 、B 、 C 的对边分别为 a 、 b 、 c.已知 a 5 , c ,则b= A . B . C . 2D . 32 32. 已知 a n n 项和是 S n B . dS 9S 17S 18 S 8S 10 ,则( 是公差为 d 的等差数列,前 ,若 )S 17S 18 0A . d 0 , 0 , 0 C . d0 , D . d 0 , v -2 ,则 a v2b 的最v v a , b 满足 )v va v 4 ,b 在 a 上的投影(正射影的数量)为 3. 已知向量 小值为( A . 4 B . 10C .D . 8 )3104. 设 m , n 为两条不同的直线, ,为两个不同的平面,则(/ /m, m / / m / / , n / / m// n m/ / A .若 ,则 B .若 ,则 C .若 m // n , n,则 mD .若 m/ / ,,则 uu u v uu u v u u u vPC ) 的5. 已知 ABC 是边长为 4 的等边三角形, P 为平面 ABC 内一点,则 PA ?(PB 最小值是() 63 A .B .C . 4D . 26. 已知函数 (x )定义域是 [-2 , 3] ,则 y=f ( 2x-1 )的定义域是()y=f 5 21 20,B .1,4, 2 5,5A . C .D ., m 是两条不同的直线, 是一个平面,则下列命题正确的是( )m7.设 l , l // m ,则 m m l l // mll / / a 2 ,则 ,则 B .若 D .若 ll / / m , A .若 C .若 l // m, m/ / ,则 , 2a na 1C . La 10n 项和 S nn4n 1 ,则 8. 已知 的前 ( )A . 68673 , 61D . 60AOC B . u u u v 1, | OB |u u u v u u u v u u u vOA OB 9. 若 | OA | 0 ,点 C 在 AB 上,且 30 ,设u u u v OC u u u v mOA u u u v nOB ( m ,n mnR) ,则 的值为( )1 33 33A .B .C .D . 310. 某三棱锥的三视图如图所示,则该三棱锥的体积为()A . 20 11. 如图,已知三棱柱B . 10 ABCC . 30 A 1 B 1C 1 的各条棱长都相等,且D . 60底面 ABC , CC 1M 是侧棱 AB 1 和 CC 1 的中点,则异面直线 BM 所成的角为 ()A .B .C .D .32ABC 中,根据下列条件解三角形,其中有一解的是( 12. 在 A . aB . bC . aD . b)30oB45ooA 120oC607 , b 3 , 5 2 B , 6 , c 10 , b 15 , 6 , 3 , c 6 二、填空题≤m 的概率为 13. 在区间 [﹣2, 4] 上随机地取一个数 x ,若 x 满足 |x| ,则 m=.14. 在ABC 中,若 BAB 2BC 的最大值为 ., 3 ,则 AC3oo15.sin10 1 3 tan 7016. 如图,在正方体 ABCD A 1B 1C 1 D 1 中, E 、 分别是 DD 1 、 F DC 上靠近点 D 的三等分点,则异面直线与 A 1C 1 所成角的大小是 EF.17.已知圆的方程为x2 +y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD,则四边形ABCD 的面积为1tan1 1 tan 2 1tan3 L1tan 44 1tan 4518.= .19.如图,棱长均为 2 的正四棱锥的体积为.x2 m20.已知函数 f ( x). mx 1,若对于任意的x m, m 1 f ( x) 0 ,则实数都有的取值范围为三、解答题21.已知数列{ a n} 是一个等差数列,且a2=1,a5=-5.求{ a n} 的通项a n;(1)(2) 求{ a n} 前n 项和S n 的最大值.4sin x cos 022.将函数g x x 的图象向左平移个单位长度后得到62f x 的图象.(1)若 f x f为偶函数,求的值;7,(2)若 f x 在上是单调函数,求的取值范围.623.某班50 名学生在一次百米测试中,成绩全部介于13 秒与18 秒之间,将测试结果按如13,14 ,第二组14,15 ,第五组17,18 .下图是按上述分下方式分成五组:第一组,组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于 人数;14 秒且小于 16 秒认为良好,求该班在这次百米测试中成绩良好的 m,n 13,14 17,18 .求事(2)设 m,n 表示该班某两位同学的百米测试成绩,且已知 件“mn 1 ”发生的概率 .n 项和为 S n ,且 a n 是 S n 与 a n b n 24. 已知数列 b 1 2 ,的前 2 的等差中项.数列 中, yx 2 上.点 P b n , b n在直线 1(1)求 a 1 和 a 2 的值; a n b n (2)求数列 , 的通项公式;c n n 项和 (3)设 c na nb n ,求数列 T n .的前 1 4a na 1= 1,a n 1n ∈N * . { a n } 满足 25. 已知数列 ,其中 1 22 a n 4 a nb n(1)设 ,求证:数列 { b n } 是等差数列,并求出 { a n } 的通项公式.1 1 T n(2)设 c n,数列 { c n c n +2} 的前 n 项和为 T n ,是否存在正整数 m ,使得 c m c m n 11对于 n ∈ N * ,恒成立?若存在,求出 m 的最小值;若不存在,请说明.26. 如图,平行四边形ABCD 中, E , 分别是 BC , DC 的中点, G 为 与 的F BF DE u u u v v v u u u v、 CG u u u v AB v v u u u v DE u u u v BF 交点,若 b ,试以 a , b为基底表示 、 . a , AD 【参考答案】 *** 试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】由余弦定理得,解得(舍去),故选 D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于 b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因2.D解析:D【解析】【分析】,请考生切记!a n利用等差数列的通项公式求和公式可判断出数列的单调性,并结合等差数列的求和公式可得出结论.【详解】Q S9S8S10 ,a9S18 0 ,a9a10a100 ,a10 0 ,d0 .9 a90 .S17 故选:17a9D.0 ,【点睛】本题考查利用等差数列的前n 项和判断数列的单调性以及不等式,考查推理能力与计算能.力,属于中等题3.D解析:D【解析】【分析】r| b | cos r ra, br| b |rb 在r a ra 上的投影(正射影的数量)为r 22 可知 2 ,可求出 2 ,求的最小值即可得出结果.2b【详解】r r 因为 b 在 a 上的投影(正射影的数量)为2 ,r | b | cos r r a, b 所以 r 2 , 2 r r a,br r即 | b |,而 0 ,1 cos a, b cos r | b | ra 所以 2 , r 2 2br ( a r 2b) r r a r 4a r b r 4b r r rr r a, br 2 2 2 2 2因为 | a | 4 | a ||b | cos 4 | b |r 2 2=16 4 4 r 2 2b ( 2) 4 | b | 48 4 | b |r r 2b ra a 8 ,故选 D.所以 48 4 4 64 ,即 【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题4.C解析: C 【解析】【分析】 根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断. 【详解】.,则 m 与 n 平行、相交、异面都可以,位置关系不确定;对于 A 选项,若 m// I, n// l , mmm//l 对于 B 选项,若,且 , ,根据直线与平面平行的判定定理m// m// 知, , ,但与 n 不平行;a 、b 使得 n a ,;对于 n C 选项,若 m// n , ,在平面内可找到两条相交直线 b ,于是可得出 m a , m ,在平面b ,根据直线与平面垂直的判定定理可得m对于 D 选项,若 内可找到一条直线 a 与两平面的交线垂直,根据平面与am 才与平面平面垂直的性质定理得知 ,只有当 m//a 时, 垂直.故选 C .【点睛】 本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行 与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.5.AA 解析: 【解析】【分析】 建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解 【详解】 . 由题意,以BC 中点为坐标原点,建立如图所示的坐标系,则 A(0, 2 P( x, y) 3), B( 2,0), C(2,0) ,u u u r PA u u u r PC) u u u r y), PB u u u ry), PC 设 ,则 u u u r ( x, 2 3 ( 2 x, (2 x, y) ,2 2 y u u u r 2( 2 y) 2 x 所以 PA ?( P B x ( 2 x) (2 3 y) 4 3 y 222[ x( y 3)3] ,uu u r u u u r u u u rPC ) 取得最小值为 2 ( 3)6 ,所以当 x 0, y3 时, PA ?(PB 故选 A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的 关键,着重考查了推理与运算能力,属于基础题6.C解析: C 【解析】.∵函数 y=f(x) 定义域是 [-2,3] , ∴由 -2 ? 2x-1 ? 3, 1 2解得 -? x ? 2,12即函数的定义域为 , 2 , 本题选择 7.B解析: B 【解析】 【分析】C 选项 .l , 与 m 异面判断l // m或利用 可能平行判断A ,利用线面平行的性质判断B ,利用 l 与 m 可能平行、相交、异面,判断C , lD .【详解】l , m ,m l ll / /l / / ,则 可能平行,A错;m , l // m ,由线面平行的性质可得, B 正确;m与 m 异面;C 错, l // m , l ,则 , m 可能平行、相交、异面, , m/ / , l 与 错, .故选 B.D 【点睛】.空间直线、平面平本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图 (尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原 命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否 命题等价 .8.B解析: B 【解析】 【分析】S 1, n 1首先运用 a n a n ,判断 a n 的正负情况,再运用 S 102S 2 即可求出通项 S n S n 1 , n 2得到答案. 【详解】 当 n 1 时, S 1 a 1 2 ; 22n2 时, a n S nS n n4n 1 n 14 n 1 1 2n5 ,当 12, n 1a n故 ;2n n 5,n 2 时, 20 ,当 所以,当 a na n0 .n 2 时, 因此,a 1a 2 La 10a 1 a 2a 3 a 4 La 10S 10 2S 2 61 23 67 .B . 故选: 【点睛】本题考查了由数列的前 n 项和公式求数列的通项公式,属于中档题,解题时特别注意两 a n S n S n n 2 点,第一,要分类讨论,分n 1 和 n 2 两种情形,第二要掌握 这1 一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还 是一个结果的形式 9.B解析: B 【解析】【分析】 利用向量的数量积运算即可算出. 【详解】 .解: Q AOC30u u u r u u u r OC, OA3 2cosu u u r uu u r OC u u u r OC OA u u u r OA3 2u u u r nOB u u u r mOA u u u r mOA u u u r OA 3 2u u u r nOB u u u r u u u r nOB u u u r OAu u u r 2 m OA uu u r u u u r OA 3 2u u u r 2 OA uu u r 2 u u u r 22 m u u u r Q OA 2mnOA OB n OB OAu uu r u u u r OBu u u r OA 1 , 3 , OB 0 m m 2323n 22 2m9n又Q C 在AB 上m m n故选: 0 ,n 0 3B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的 综合应用.10.B解析: B 【解析】【分析】 根据三视图还原几何体,根据棱锥体积公式可求得结果 【详解】由三视图可得几何体直观图如下图所示:.1 215 2h 4;底面面积: S 5 3可知三棱锥高:1 3 1 3 152三棱锥体积:VSh 4 10本题正确选项: 【点睛】 本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的 B高和底面面积 11.A.解析: A 【解析】 【分析】 由题意设棱长为a ,补正三棱柱 ABC-A 2B 2C 2,构造直角三角形 A 2BM ,解直角三角形求出BM ,利用勾股定理求出 【详解】A 2M ,从而求解. 设棱长为 a ,补正三棱柱 ABC-A 2B 2C 2(如图).平移 AB 1 至 A 2B ,连接 A 2M ,∠ MBA 2 即为 AB 1 与 BM 所成的角, a 2( ) 2 5a ,22a在△A 2BM 中, 2a , BM A B 23a ( ) 213 222222 A 2M , a , A 2 BBMMBA 2, .A 2 Ma2故选 A .【点睛】 本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.12.D解析: D 【解析】【分析】 根据三角形解的个数的判断条件得出各选项中对应的 项. 【详解】ABC 解的个数,于此可得出正确选1 27 2asin B 7ABC 无解;对于 A 选项, asin B b ,此时, ,2 2对于 B 选项, csin B b c ,此时, ABC 有两5 , c sin B5 2120o ,则 对于 C 选项, A 为最大角,由于 a b ,此时, ABC 无解; .故选 D.A Q 60o,且 对于 D 选项, Q Cc b ,此时, ABC 有且只有一解【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力, 属于中等题 .二、填空题13.3【解析】【分析】【详解】如图区间长度是 6区间﹣ 24上随机地取一个数x若 x 满足 |x| 3解析: 3 【解析】 【分析】 【详解】≤的m 概率为若 m 对于 3概率大于若 m 小于 3概率小于所以 m=3故答案为 如图区间长度是 6,区间 [﹣ 2, 4] 上随机地取一个数 x ,若 x 满足 |x| ≤m 的概率为 ,若 m 对 于 3 概率大于 ,若 m 小于 3,概率小于 ,所以 m=3 . 故答案为 3.14.【解析】【分析】【详解】设最大值为考点:解三角形与三角函数化简点 评:借助于正弦定理三角形内角和将边长用一内角表示转化为三角函数求最值 只需将三角函数化简为的形式 解析: 2 【解析】 【分析】 【详解】7ABBC sin3 3 2 2 32 3A Q 2AB 2sin,设2 3 sinAB 2 B C2sin 4sin 2 7 sinBC 2sin,最大值为 2 7考点:解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只 a2b 2需将三角函数化简为asin bcossin的形式15.【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利 用二倍角公式可变为由可化简求得结果【详解】本题正确结果:【点睛】本题 考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二解析: 1【解析】 【分析】o osin10 cos10 3 写成 tan60o ,切化弦后,利用两角和差余弦公式可将原式化为 将 ,利o ocos 60 cos 70o1 2 sin 20sin 20ocos70o可化简求得结果 用二倍角公式可变为 ,由 .oocos 60 cos 70【详解】o o o ocos 60 cos 70si n 60 sin 70ooo o oosin10 13tan70sin10 1 tan 60 tan70sin10oocos60 cos70oo cos 7060o o osin10 cos101 2 sin 201 2cos60osin101ooooooocos60 cos70cos60 cos70 cos60 cos70本题正确结果: 【点睛】1本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角 .公式的应用 16.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面 直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连 接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析: 60o【解析】 【分析】连接 EF // C D 1 ,证明出四边形 A 1B // C D 1 ,可得 CD 1 ,可得出 A 1 BCD 1 为平行四边形,可得 出异面直线 EF 与 A 1C 1 所成角为BA 1C 1 或其补角,分析 A 1BC 1 的形状,即可得出BA 1C 1 的大小,即可得出答案 【详解】.DE DD 1DF DC1 3BC 1 ,Q 连接 CD 1 、 A 1B 、 , EF //CD 1 ,A 1D 1 // A D AD //BC A 1D 1 //B C 在正方体 ABCDA 1B 1C 1D 1 中, , , , 所以,四边形 A 1 B// C D 1 , BA 1C 1 . A 1 BCD 1 为平行四边形, 所以,异面直线 EF 与 A 1C 1 所成的角为 oA 1 BC 1 为等边三角形,BA 1C 160 易知 .60o . 故答案为: 【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计 算能力,属于中等题 .17.20【解析】【分析】根据题意可知过( 35)的最长弦为直径最短弦为过 ( 35)且垂直于该直径的弦分别求出两个量然后利用对角线垂直的四边形的面 x ﹣积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(解析: 20 【解析】【分析】 根据题意可知,过(6 3, 5)的最长弦为直径,最短弦为过(3, 5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可. 【详解】解:圆的标准方程为( x ﹣ 3) 2+(y ﹣ 4)2= 52, 由题意得最长的弦 |AC|= 2×5= 10, 根据勾股定理得最短的弦 |BD |= 225211 2,且 AC ⊥ BD , 4 6 四边形 ABCD 的面积 S = | 1210× 4 .AC|?|BD|6 20 6 故答案为 20 . 6 【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方 法为对角线乘积的一半.18.【解析】【分析】根据式子中角度的规律可知变形有由此可以求解【详 解】根据式子中角度的规律可知变形有所以故答案为:【点睛】本题主要考查 两角和的正切公式的应用以及归纳推理的应用属于中档题 解析: 【解析】 【分析】23245o45o,045o根据式子中角度的规律,可知,tan tantano1 ,变形有 1 tan 1 tan2 ,由此可以求解.tan 451 tan 【详解】ooo根据式子中角度的规律,可知45 045 ,045 ,tan tantano1 ,变形有 tan 1 tan 12 .所以tan 451 tan 1 tan1 1 tan 442 , 1 tan 2 1 tan 432 ,L otan 45tan 44 , 1 tan 221 tan 232 , 1 2 ,231 tan1 1 tan2 1 tan3 L 1 1 tan 452 .故答案为: 【点睛】232 .本题主要考查两角和的正切公式的应用以及归纳推理的应用,属于中档题.19.【解析】在正四棱锥中顶点 S 在底面上的投影为中心 O 即底面ABCD 在底面正方形 ABCD 中边长为 2 所以 OA=在直角三角形 SOA 中所以故答案为 4 2解析: 3【解析】在正四棱锥中,顶点 S 在底面上的投影为中心 O ,即 SO 底面 ABC D,在底面正方形 SOA 中,在直角三角形 ABCD 中,边长为 2,所以 OA=2 22 22SOSA OA2221 Vsh 313 4 2 3所以 2 224 2故答案为 320.【解析】【分析】【详解】因为函数的图象开口向上的抛物线所以要使对 于任意的都有成立解得所以实数的取值范围为【考点】二次函数的性质 2 2,0 解析:【解析】 【分析】 【详解】 2因为函数f ( x) xmx 1 的图象开口向上的抛物线,所以要使对于任意的x m, m 1 f ( x) 0 成立,都有 m 2 m 2 f ( m) f ( m 1 20 m(m 2 2,解得m 0 ,1)m 11) 1 02,0 2所以实数 m 的取值范围为 . 【考点】 二次函数的性质.三、解答题21. ( 1) a n =- 2n + 5.(2) 4 【解析】(Ⅰ)设 {a n }的公差为 d ,由已知条件,,解出 a 1= 3, d =- 2.所以 a n = a 1+(n -1)d =- 2n + 5.(Ⅱ) S n = na 1+ d =- n 2+4n =- (n - 2)2+ 4,所以 n = 2 时, S n 取到最大值 4. , 22. ( 1) 0;( 2) .6 2【解析】 【分析】 g x f x f x(1)首先化简 解析式,然后求得左移个单位后函数的解析式,根据 f的奇偶性求得的值,进而求得的值. 2sin 2 x21 ,求得 f x(2)根据( 1)中求得的 2x2 的取值范围,66762 f x 根据 的取值范围,求得, 上是单调函数,以及 的取值范围,根据 在2正弦型函数的单调性列不等式,解不等式求得【详解】 的取值范围 .3 2 12 (1) Q g x4sin x cos x sin x3 sin 2 x 1 cos 2 x2sin 2x1 ,6f x2sin 2 x2 1 ,6 又 fx 2为偶函数,则( k Z k ),Q 0 ,.2662ff0 .6, 7 6 Q x 2 x222 ,22(2), ,6 6 23, 7 6 6 22 ,, , Q 0,622 2 2762Q f x , 上是单调函数. 且 0在.6 2 2, 6 2【点睛】. 本小题主要考查三角恒等变换,考查根据三角函数的奇偶性求参数,考查三角函数图像变 换,考查三角函数单调区间有关问题的求解,考查运算求解能力,属于中档题 .3 523. (1) 29 人;( 2) . 【解析】 【分析】(1)根据频率分布直方图,良好即第二三两组,计算出第二三两组的频率即可算出人数; 13,14 ,17,18 两组的人数, m n 1 即两位同学来(2)结合频率分布直方图,计算出自不同的两组,利用古典概型求解概率即可 【详解】.[14,16) 50 0.20 50 0.38 29 (人), (1)由直方图知,成绩在 所以该班成绩良好的人数为(2)由直方图知,成绩在 内的人数为: 29 人;[13,14) 50 0.06 3 人;的人数为 [17,18] 50 0.04 2 人;. 成绩在 的人数为 事件“m n 1”发生即这两位同学来自不同的两组,此题相当于从这五人中任取 2 人,求这两人来自不同组的概率1 1C 2 C 3 C56 10 35P其概率为 .2 3 5P( m n 1)【点睛】此题考查用样本的频率分布估计总体分布;利用频率直方图求相关数据;古典概型及其概 率的计算. nn 224. ( 1) a 1 2 , a 24 ( 2)a n 2 ,b n2n ( 3) T nn 1 24【解析】 【分析】2 a n 2 ,分别令 (1)根据题意得到 S n2 ,得到 a 1 , a 2 ;( 2)当 n 1 , n n 2a nx S n S n 时, 1 时,得到 a n 的通项,根据点 P b n , b n 在直线,再验证 n 1 1 y 2 上,得 b n ,得到 2 ,得到 b n 为等差数列,从而得到其通项;(b n b n 3)根据1 n 项和 c na n c n 的通项,然后利用错位相减法,得到前T n .【详解】 2a n 2S n S 1 解:( 1)由 当 n 1 时,得 2a 1 2a 2S n2 ,即 2a 1 a 1 a 1 2 ,解得 a 12 ;当 n2 时,得 S 2 2 ,即 2a 2 a 2 2 ,解得 a 24 .2 a n 2 (2)由 ①得 2a nS n 2 n S n 2 )②;( 11 2a n 2a n S n 将两式相减得 1 ,1 即 2a n 2a n a n ,1 a n 2a n n2 所以 ,1 因为 a 1 a n a n2 0 ,所以 a n 0 ,12 n 2 所以,1a n 所以数列是首项为 2,公比为 2 的等比数列,n 1n 1n所以 a nb n a 1 22 22 .y x 2 上,数列 b 1 2 ,点 P b n , b n 在直线 中, 1 得 b n b n2 ,1b n 2 所以数列 是首项为 2,公差为 2 的等差数列, 2 12n .所以 b n n n 1(3) c n 所以 T na nb n2n 2 ,234nn 11 2 2423 252n 1 2n 2232n 1 2n 22T 1 2 3 n 1 n n上式减下式得234n 1n 2T n 22 1 22 2 2n 22n2 4 n 1 1 n 2n 2n 2n 22n 2n 2所以 T n 1 24 .【点睛】本题考查由 a n 档题 . 和 S n 的关系求数列通项,等差数列基本量计算,错位相减法求和,属于中 n 1 ;( 2) 325. ( 1) a n 2n【解析】 试题分析:(1) 结合递推关系可证得 b n+1-b n 2,且 b 1= 2,即数列 { b n } 是首项为 2,公差为 2 的等差数 n 1 a n 列,据此可得数列的通项公式为 a n.2n 1n 1,求和有c n c n2 (2) 结合通项公式裂项有 2n 21 2 1 1n 2T n2 13 .据此结合单调性讨论可得正整数m 的最小值为 3.n 1 试题解析:2 2 2 22a n 2a n 11 4a n(1)证明: b n+1-b n2 112a n 1 11 4a n 2a n 22a n 2 .1 1又由 a 1= 1,得 b 1= 2,所以数列 { b n } 是首项为 2,公差为 2 的等差数列,所以 b n = 2+( n- 22a n n 1 .b n,得 a 1) ×2=2n ,由 n12n4 n 1n 12 nc c 2(2)解: 所以 c n, n n 2n 2n 2 1 2 11 T n2 13 .n 1 n 1 2m m 41T nn ∈N * 恒成立,只需 对于 m ≥3或 m ≤-4.又 依题意,要使 3 ,解得 c m c m 1m > 0,所以 u u u v26. CGm ≥3,所以正整数 vm 的最小值为 3.1 3v ( a b ) 【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.u u u v DE u u u v DC u u u v CE uu u v 1 u u u v vb ,1 2v a 详解:由题意,如图 AB CB 2 u u u v BF u u u v BC u u u v CF u u u v AD 1 u u u v ABv1 2v , a b 2,则 G 是 VBCD AC 交 于点 O ,则 O是连接 的重心,连接 的中点,BD BD BD ∴点 G 在 AC 上,u u u v 2 u u u vCO2 u u u v OC 1 u u u vAC v b 2 3 1 3v ∴ , CG a 33 2 故答案为u u u v DE v u uu v v b 1 2 1 31 2v v ; a b ; BFa u u u v CGv b v a ∴ . 点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解 答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与 差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运 算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简 单).。
湖南长沙2024年高一下学期期末调研数学试卷
湖南省长沙市2023-2024学年高一下学期期末调研数学试卷(含答案)一、单选题1.若复数()21i z a a =+−是纯虚数,则实数a 的值为( ) A .0 B .1 C .-1 D .1±2.已知一组数据4,8,9,3,3,5,7,9,则( ) A .这组数据的上四分位数为8 B .这组数据没有众数 C .这组数据的极差为5D .这组数据的平均数为63.已知a ,b 为实数,则>是“11b ba a+>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.在三角形ABC 中,3,4,120AC AB CAB ==∠=°,则()AB CA AB +⋅=( )A .10B .22C .10−D .22−5.已知1212102π,sin sin 3x x x x <<<==,则()12cos x x −=( )A.79B. 79−C.D. 6.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图池盆几何体是一个刍童,其中上,下底面均为正方形,且边长分别为8和4,侧面是全等的等腰梯形,且梯形的高为能装的水的体积为( )A B .4483C .D .4487.已知函数()f x 是定义在R 上周期为4的奇函数,且(),012,12x x f x x x ≤< = −+≤≤,则不等式(1) 0xf x −<在(2,2)−上的解集为( )A .(2,1)−−B .(2,1)(0,1)−−C .(1,0)(0,1)−D .(1,0)(1,2)−8.在ABC 中,AB = O 为ABC 外心,且1AO AC ⋅= ,则ABC ∠的最大值为( )A .30°B .45°C .60°D .90°二、多选题9.在棱长为 1 的正方体1111ABCD A B C D −中,M N ,分别为棱111,C D C C 的中点,则( )A .直线BN 与1MB 是异面直线 B .直线MN 与AC 所成的角是3πC .直线MN ⊥平面ADND .平面BMN 截正方体所得的截面面积为98.10.已知函数()()ππcos 0,0,22f x A x A ωϕωϕ=+>>−<<的部分图象如图所示,则下列说法正确的是( )A .3ω=B .π4ϕ= C .直线π12x =为()f x 图象的一条对称轴 D .将()f x 图象上的所有点向左平移π4个单位长度得到2sin 3y x =−的图象11.已知函数()24,0,31,0,x x x x f x x − −≥= −<其中()()()f a f b f c λ===,且a b c <<,则( )A .()232f f −=− B .函数()()()gx f x f λ=−有2个零点 C .314log ,45a b c++∈+D .()34log 5,0abc ∈−三、填空题12.数据12,,,n x x x ⋅⋅⋅的方差为1,则数据1221,21,,21n x x x ++⋅⋅⋅+的方差为 .13.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,四棱锥P ABCD−为阳马,侧棱PA ⊥底面,2,1,ABCD PAAD AB E ===为棱PA 的中点,则直线CE 与平面PAB 所成角的余弦值为 .14.设定义在R 上的函数()f x 的值域为A ,若集合A 为有限集,且对任意12,R x x ∈,存在3R x ∈,使得()()()123f x f x f x =,则满足条件的集合A 的个数为 .四、解答题15.某重点中学100位学生在市统考中的理科综合分数,以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中 x 的值;(2)求理科综合分数的中位数;16.已知i 为虚数单位,12z z 、是实系数一元二次方程的两个虚根. (1)设12z z 、满足方程()1241i 95i z z +−=−,求12z z 、;(2)设112z i =+,复数12z z 、所对的向量分别是a 与b,若向量ta b − 与2a b + 的夹角为钝角,求实数t 的取值范围.17.已知函数()1428x x f x m +=−⋅−.(1)若1m =,求不等式()0f x <的解集;(2)若[]0,2x ∀∈,()12f x ≥−恒成立,求实数m 的取值范围.18.如图,已知AB 是圆柱下底面圆的直径,点C 是下底面圆周上异于,A B 的动点,CD ,BE 是圆柱的两条母线.(1)求证:ACD ⊥平面BCDE ;(2)若6AB =,3BC =,圆柱的母线长为ADE 与平面ABC 所成的锐二面角的余弦值.19.已知函数()44log 2x xmf x +=为偶函数. (1)求m 的值;(2)若()()4log f x g x =,判断()g x 在()0,∞+的单调性,并用定义法给出证明;(3)若()()4log 2xf x a a ≥⋅−在区间(]1,2上恒成立,求a 的取值范围.参考答案:1.A【分析】根据纯虚数的概念列方程求解.【详解】根据题意,复数()21i z a a =+−是纯虚数, 所以0a =且210a −≠,解得0a =. 故选:A 2.D【分析】根据给定条件,结合上四分位数、众数、极差、平均数的意义依次判断即得.【详解】对于A ,给定数据由小到大排列为3,3,4,5,7,8,9,9,而875%6×=, 所以这组数据的上四分位数为898.52+=,A 错误; 对于B ,这组数据的众数是3和9,B 错误; 对于C ,这组数据的极差为6,C 错误; 对于D ,这组数据的平均数为6334578998++++++=+,D 正确.故选:D 3.A【分析】利用不等式的等价思想,作差分析,结合充分性与必要性进行推理即可.>0a b >≥,所以()()()()1110111a b b a b b a b a a a a a a +−++−−==>+++,充分性成立; 由11b b a a +>+,得()01a b a a −>+,不妨取2,3a b =−=−满足不等式,所以推不出0a b >≥>. 故选:A. 4.B【分析】根据数量积的运算律计算即可.【详解】()2211634222AB CA AB AB CA AB AB AC AB−××⋅=−= +⋅=+⋅− . 故选:B. 5.【答案】B 【解析】【分析】利用正弦函数图象的对称性得12π22x x +=,再根据诱导公式和二倍角的余弦公式可求出结果. 【详解】因为1212102π,sin sin 03x x x x <<<==>, 所以12π22x x +=,即12πx x +=,21πx x =−,所以()()1211cos cos 2πcos 2x x x x −=−=−()2112sin x =−−17(12)99=−−×=−. 故选:B 6.B【分析】根据题意可知,这个刍童为棱台,求出棱台的高,再根据棱台的体积公式即可得出答案. 【详解】根据题意可知,这个刍童为棱台, 如图,为垂直底面的截面,4=,所以该几何体的体积为(14486416433×++×=,即该盆中最多能装的水的体积为4483. 故选:B. 7.B【分析】由函数()y f x =的图象向右平移1个单位长度,作出函数(1)=−y f x 在[2,2]−上的图象,结合图象,即可求解.【详解】因为函数()f x 是定义在R 上周期为4的奇函数,且(),012,12x x f x x x ≤< =−+≤≤ , 所以当(1,0]x ∈−时,()f x x =;当[2,1]x ∈−−时,[1,2]x −∈,所以()()(2)2f x f x x x =−−=−+=−−; 当[3,2]x ∈−−时,4[1,2]x +∈,所以()(4)(4)22f x f x x x =+=−++=−−, 函数(1)=−y f x 的图象可由函数()y f x =的图象向右平移1个单位长度得到, 作出函数(1)=−y f x 在[2,2]−上的图象,如图所示.由图可知不等式(1)0xf x −<在(2,2)−上的解集为(2,1)(0,1)−− . 故选:B . 8.A 【分析】根据三角形外心性质及数量积的几何意义,可得AO 在AC 方向上的投影向量为12AC ,从而求得AC =【详解】由O 为△ABC 外心,可得AO 在AC 方向上的投影向量为12AC ,则2112AO ACAC ⋅== ,故AC =又AB = ,设BC a = ,则cos ABC ∠==+≥=当且仅当a =由0180ABC °∠°<<可知,030ABC °∠≤°<, 故ABC ∠的最大值为30°. 故选:A . 9.ABD【分析】根据异面直线成角,线面垂直的判定定理,梯形面积公式逐项判断即可. 【详解】对于A ,由于BN ⊂平面11BB C C ,1MB 平面1111BB C C B ,B BN =∉, 故直线BN 与1MB 是异面直线,故A 正确;对于B ,如图,连接1CD ,因为M N ,分别为棱111C D C C ,的中点,所以1∥MN CD ,所以直线MN 与AC 所成的角即为直线1CD 与AC 所成的角, 又因为1ACD △是等边三角形,所以直线1CD 与AC 所成的角为π3,故直线MN 与AC 所成的角是π3,故B 正确;对于C ,如图,假设直线MN ⊥平面ADN ,又因为DN ⊂平面ADN ,所以MN DN ⊥,而MNDN DM =,这三边不能构成直角三角形, 所以DN 与MN 不垂直,故假设错误,故C 错误;对于D ,如图,连接11,A B A M ,因为111,A B CD CD MN ∥∥,所以1//A B MN ,所以平面BMN 截正方体所得的截面为梯形1A BNM ,且11MN A B A M BN ====,所以截面面积为1928×=,故D 正确. 故选:ABD.10.ACD【分析】根据函数()f x 的图象,求得()π2cos(3)4f x x =−,可得判定A 正确,B 不正确,再结合三角函数的性质,以及三角函数的图象变换,可判定C 、D 正确.【详解】由函数()f x 的图象,可得1πππ()24123T −−,可得2π3T =,则2π3T ω==, 又由2A =,所以()()2cos 3f x x ϕ=+, 又由ππ3π()2cos(3))2cos()0444f ϕϕ=×+=+=,即3πcos()04ϕ+=, 因为ππ22ϕ−<<,所以3ππ42ϕ+=,可得π4ϕ=−,所以()π2cos(3)4f x x =−, 所以A 正确;B 不正确;对于C 中,由πππ()2cos(3)212124f =×−=为函数()f x 的最大值, 所以直线π12x =为()f x 图象的一条对称轴,所以C 正确; 对于D 中,将()f x 图象上的所有点向左平移π4个单位长度,可得πππ2cos[3()]2cos(3)2sin 3442y x x x =+−=+=−,所以D 正确. 故选:ACD. 11.ACD【分析】先作出函数图象,结合图象逐一判定即可. 【详解】解:()()2832f f f −==− ,故A 正确; 作出函数()f x 的图象如图所示,观察可知,04λ<<,而()()0,4f λ∈, 故()y f x =,()y f λ=有3个交点,即函数()g x 有3个零点,故B 错误; 由对称性,4b c +=,而31log ,05a∈, 故314log ,45a b c++∈+,故C 正确;b ,c 是方程240x x λ−+=的根,故bc λ=,令31a λ−−=,则()3log 1a λ=−+, 故()3log 1abc λλ=−+,而y λ=,()3log 1y λ+均为正数且在()0,4上单调递增,故()34log 5,0abc ∈−,故D 正确, 故选:ACD. 12.4【分析】直接利用方差公式求解即可. 【详解】设12,,,n x x x ⋅⋅⋅的平均数为x ,则1221,21,,21n x x x ++⋅⋅⋅+的平均数为121[(21)(21)(21)]21n x x x x n ++++⋅⋅⋅++=+, 所以1221,21,,21n x x x ++⋅⋅⋅+的方差为:()()(){}22212121(21)21(21)21(21)n x x x x x x n +−+++−++⋅⋅⋅++−+=()()()2221214414n x x x x x x n ×−+−+⋅⋅⋅+−=×=.故答案为:4.13【分析】首先证明BC ⊥平面PAB ,再根据线面角的定义,即可作出线面角的平面角,再计算这个平面角的大小. 【详解】因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,故可得BC PA ⊥,又BC AB ⊥,PA AB A = ,,PA AB ⊂平面PAB ,故BC ⊥平面PAB ,连接EB ,故CEB ∠即为所求直线CE 与平面PAB 所成角.由2,1,PA AD AB ===,故在直角三角形CBE 中2BC =,BECE则cos BE CEB CE ∠=CE 与平面P AD14.5 【分析】根据题意,得到A 中最大元素不超过1,最小元素不小于1−,再跟进集合A 元素的个数,分类讨论,结合集合中元素的性质,即可求解.【详解】解:若A 中最大元素为大于1的元素为a ,则2a a >,不满足题意,故A 中最大元素不超过1,同理可得A 中最小元素不小于1−,若集合A 中只有一个元素a ,则2a a =,可得0a =或1a =,所以{}0A =或{}1A =,若集合A 中有两个元素(),11a b a b −≤≤≤,则2a a =或2a b =,当2a a =时,可得1a =(舍去)或0a =,此时2b b =,可得1b =,所以{}1,0A =−; 当2a b =时,0a ≠,所以0b ≠,可得ab a =,截得1b =,所以21a =,所以1a =−或1a =(舍去),所以{}1,1A =−;若集合A 中有三个元素(),11a b a b −≤≤≤,则2a a =或2a b =或2a c =,当2a a =时,0a =或1a =(舍),此时2b a ≠,2b b ≠,2c a ≠,所以2b c =,2c c =或2c b =,解得1c =,1b a =−<,(舍去),当2a b =时,0a ≠,10b >>,可得2b b ≠,2b a ≠,所以2b a =,0b =,即{}1,0,1A =−,其集合A 中有四个或四个以上元素(),,,,11a b c d a b c d ⋅⋅⋅−≤<<⋅⋅⋅<<≤,则由上推导可得1a =−,1d =,0b c =⋅==,矛盾,即此时A 无解.综上,所满足条件的集合A 可以为{}{}{}{}{}0,1,1,1,1,0,1,0,1−−,共5个.故答案为:5.15.(1)0.0075x =(2)224【分析】(1)由频率分布直方图中所有小矩形的面积之和为1得到方程,解得即可;(2)首先判断中位数在[220,240)内,再设出未知数,列出方程,解得即可.【详解】(1)由频率分布直方图可得()200.0020.00950.0110.01250.0050.00251x ×++++++=, 解得:0.0075x =.(2)由于(0.0020.00950.011)200.5++×<,(0.0020.00950.0110.0125)200.5+++×>,因此理科综合分数的中位数在[220,240)内,设中位数为a ,由(0.0020.00950.011)200.0125(220)0.5a ++×+×−=, 解得224a =,∴月平均用电量的中位数为224.16.(1)12118i 77118i 77z z =+ =− 或12118i 77118i 77z z =− =+(2)117,22∞ −−∪−+【分析】(1)设出12,z z 的代数形式根据复数相等可得答案;(2)求出a 与b 的坐标,根据向量夹角为钝角列出t 的不等式可得答案.【详解】(1)不妨设()1i ,z a b a b =+∈R ,则2i z a b =−, 因为12z z 、满足方程()1241i 95i z z +−=−,所以()()()4i 1i i 95i ++−−=−a b a b ,可得()()53i 95i −+−=−a b b a ,所以5935a b b a −= −=− ,解得11787a b = =−, 所以12118i 77118i 77z z =+ =− ,或12118i 77118i 77z z =− =+;(2)设112z i =+,则212i z =−,因为复数12z z 、所对的向量分别是a 与b ,所以()1,2a = ,()1,2b =− ,可得()()()1,21,21,22−=−−=−+ ta b t t t ,()()()21,221,23,2+=+−=− a b ,若向量ta b − 与2a b + 的夹角为钝角, 则()()202−⋅+<−⋅+ ta b a b ta b a b ,且()()212−⋅+≠−−⋅+ ta b a b ta b a b ,0<1≠−,解得7t >−,12t ≠−, 实数t 的取值范围是117,22∞ −−∪−+. 17.(1)(),2−∞(2)(],2−∞【分析】(1)变形得到()()24220x x −+<,结合220x +>得到240x −<,求出解集;(2)换元后得到242t m t+≤对任意[]1,4t ∈恒成立,由基本不等式求出最小值,得到答案. 【详解】(1)当1m =时,可得()1428x x f x +=−−, 即14280x x +−−<,整理为()()24220x x −+<,因为220x +>,所以240x −<,解得2x <,所以不等式()0f x <的解集为(),2−∞;(2)因为[]0,2x ∀∈,令[]21,4x t =∈,可得()228f t t mt =−−, 由()12f x ≥−,可得22812t mt −−≥−,[]0,2x ∀∈,()12f x ≥−恒成立,即242t m t+≤对任意[]1,4t ∈恒成立,又因为242222t t t t +=+≥=,当且仅当22t t =,即2t =时取等, 所以2m ≤,即实数m 的取值范围为(],2−∞.18.(1)证明见解析;【分析】(1)先证明线面垂直,通过线面垂直得到线线垂直,再证线面垂直,最后得到面面垂直即可; (2)先作出底面的垂线,再由垂足作两个面的交线的垂线,最后连接交线的垂足与斜足构成二面角的平面角求解即可.【详解】(1)因为AB 是底面的一条直径,C 是下底面圆周上异于,A B 的动点,所以AC BC ⊥,又因为CD 是圆柱的一条母线,所以CD ⊥底面ACB ,而AC ⊂底面ACB ,所以CD AC ⊥,因为CD ⊂平面BCDE ,BC ⊂平面BCDE ,且CD BC C ∩=, 所以AC ⊥平面BCDE ,又因为AC ⊂ACD ,所以平面ACD ⊥平面BCDE ;(2)如图所示,过A 作圆柱的母线AM ,连接DM ,EM因为底面ABC //上底面DME ,所以即求平面ADE 与平面DME 所成锐二面角的大小,因为,M E 在底面的射影为,A B ,且AB 为下底面的直径,所以EM 为上底面的直径,因为AM 是圆柱的母线,所以AM ⊥平面DME ,又因为EM 为上底面的直径,所以MD DE ⊥,而平面ADE DME DE =, 所以MDA ∠为平面ADE 与平面DME 所成的二面角的平面角,又因为D 在底面射影为C ,所以3DEBC ==,6ME AB ==,所以DM =AM = 又因为AM ⊥平面DME ,DM ⊂平面DME ,所以AM MD ⊥, 所以AD =所以cos MD MDA AD ∠=即平面ADE 与平面ABC 19.(1)1m =(2)单调递增,证明见解析 (3)170,12【分析】(1)根据()()=f x f x −,得到方程,求出1m =;(2)先得到()122x xg x =+,定义法判断函数单调性步骤,取值,作差,判号,下结论; (3)参变分离得到1a ≤()()211221x x x h x +=+−,换元后得到1123y t t=++−,根据单调性求出其最值,得到结论.【详解】(1)()44log 2x x m f x +=定义域为R , ()44log 2x x m f x −−+−=, 由于函数()44log 2x x m f x +=为偶函数,所以()()=f x f x −, 即4444log log 22x x x x m m −−++=,即4422x x x x m m −−++=, 即()()1410x m −−=恒成立, 1m ∴=.(2)已知函数()()444log log 2x x m f x g x +==,由于函数4log y x =在()0,∞+上单调递增, 由第(1)问可得1m =,因此()122x x g x =+不妨设1x ,()20,x ∈+∞,且12x x <则()()212121112222x x x x g x g x −=+−+()()122121212122122221222x x x x x x x x x x +− =−+=−− ⋅因为12x x <,因此21220x x −>,由因为1x ,()20,x ∈+∞,因此2121x x +>, 所以211102x x +−>,故()()210g x g x −>,所以函数()g x 在()0,∞+单调递增.(3)由题得()4441log log 22x x x a a +≥⋅−在区间(]1,2上恒成立,即4122x x x a a +≥⋅−在区间(]1,2上恒成立, 因为(]1,2x ∈,所以1213x<−≤,所以()211221x x x a +≤+−在区间(]1,2上恒成立, 令()()211221x x x h x +=+−,令()2135x t t +<≤, 则()21112323t y h t t t t t==+=+−++−, 因为23y t t=+−在(]3,5单调递增, 所以函数()h t 在(]3,5上单调递减,故()()min 17512h t h ==. 1712a ∴≤. 20x a a ⋅−> 对任意的(]1,2x ∈恒成立,且1213x <−≤, 0a ∴>.∴实数a 的取值范围是170,12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学试卷期末模拟卷二
学校:___________姓名:___________班级:___________考号:___________
一、选择题(本大题共12小题,共60.0分)
1.98与63的最大公约数为a,二进制数化为十进制数为b,则
A. 53
B. 54
C. 58
D. 60
2.执行如图的程序框图,为使输出S的值小于91,则输
入的正整数N的最小值为
A. 5
B. 4
C. 3
D. 2
3.用秦九韶算法求多项式,当时,的
值为
A. 1
B. 7
C.
D.
4.如图所示的茎叶图记录了甲、乙两组各5名工人某日的
产量数据单位:件若这两组数据的中位数相等,且平
均值也相等,则x和y的值分别为
A. 3,5
B. 5,5
C. 3,7
D. 5,7
5.若样本数据,,,的方差为8,则数据,
,,的方差为
A. 31
B. 15
C. 32
D. 16
6.某企业节能降耗技术改造后,在生产某产品过程中的产量吨与相应的生产能耗
吨的几组对应数据如表所示:
x3456
y34
若根据表中数据得出y关于x的线性回归方程为,若生产7吨产
品,预计相应的生产能耗为吨.
A. B. C. D.
7.某班有学生60人,将这60名学生随机编号为号,用系统抽样的方法从中抽
出4名学生,已知3号、33号、48号学生在样本中,则样本中另一个学生的编号为
8.连续掷两次骰子,以先后得到的点数m,n为点的坐标,那么点P在圆
内部的概率是
A. B. C. D.
9.已知数列满足递推关系:,,则
A. B. C. D.
10.等差数列和的前n项和分别为与,对一切自然数n,都有,则
等于
A. B. C. D.
11.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表
面积为
A. B. C. D.
12.若x,,且,则的最小值是
A. 5
B.
C.
D.
二、填空题(本大题共4小题,共20.0分)
13.用秦九韶算法计算多项式,当时的值的过程中,
的值为______ .
14.若奇函数在其定义域R上是减函数,且对任意的,不等式
恒成立,则a的最大值是______.
15.已知函数在定义域上是偶函数,在上单调递减,并且
,则m的取值范围是______.
16.已知三棱锥的所有顶点都在球O的球面上,SC是球O的直径若平面
平面SCB,,,三棱锥的体积为9,则球O的表面积为______.
三、解答题(本大题共6小题,共72.0分)
17.随着人们经济收入的不断增长,个人购买家庭轿车已
不再是一种时尚车的使用费用,尤其是随着使用年
限的增多,所支出的费用到底会增长多少,一直是购
车一族非常关心的问题某汽车销售公司作了一次抽
样调查,并统计得出某款车的使用年限x与所支出的
总费用万元有如表的数据资料:
使用年限x23456
总费用y
在给出的坐标系中做出散点图;
求线性回归方程中的、;
估计使用年限为12年时,车的使用总费用是多少?
最小二乘法求线性回归方程系数公式,
18.某车间为了规定工时定额,需要确定加工零件所花费的时
间,为此做了四次试验,得到的数据如表所示:
零件的个数个2345
加工的时间34
Ⅰ在给定的坐标系中画出表中数据的散点图;
Ⅱ求出y关于x的线性回归方程;
Ⅲ试预测加工10个零件需要多少时间?
19.已知是公差为3的等差数列,数列满足,,.
Ⅰ求的通项公式;
Ⅱ求的前n项和.
20.已知数列的前n项和为,且满足Ⅰ求的通项
公式;
Ⅱ求证:.
21.已知数列前n项和为,且.
求数列的通项公式;
若为数列的前n项和,且存在,使得
成立,求实数的取值范围.
已知函数,将的图象向左平移个单位后得到的图象,且在区间内的最小值为.
求m的值;
在锐角中,若,求的取值范围.
高一数学试卷期末模拟卷二
【答案】
1. C
2. D
3. C
4. A
5. C
6. A
7. C
8. C9. C10. C11. A12. A
13. 301
14.
15.
17. 解:散点图如图,由图知y与x间有线性相关关系.
;
,,,,
;
.
线性回归直线方程是,
当年时,万元.
即估计使用12年时,支出总费用是万元.
18. 【解答】
解:Ⅰ散点图如图所示,
Ⅱ由表中数据得:,,,,
,
,
.
Ⅲ将代入回归直线方程,
小时.
预测加工10个零件需要小时.
19. 解:Ⅰ.
当时,.
,,
,
又是公差为3的等差数列,
,
Ⅱ由知:.
即.
即数列是以1为首项,以为公比的等比数列,
的前n项和.
解得,
时,,,
,时也成立,
.
Ⅱ证明:由Ⅰ可得:,
,
,
.
21. 解:当时,,
当时,.
时,也满足上式,
.
因为,
所以.
因为存在,使得成立,
所以存在,使得成立,
即有在,使得成立.
又当且仅当时取等号,
所以.
即实数的取值范围是.
22. 解:
,
,,
当时,取得最小值,
.
,
,
,,
,即.
是锐角三角形,,解得,,
,
.
的取值范围是
22.。