二面角及其平面角公开课

合集下载

(第20课)直线与平面所成的角和二面角(1)

(第20课)直线与平面所成的角和二面角(1)

课 题:9.7直线与平面所成的角和二面角(一)教学目的:1.理解并掌握斜线在平面内的射影、直线和平面所成角的概念2.根据概念先找直线射影后确定线面夹角从而熟练求解直线和平面所成角3.培养化归能力、分析能力、观察思考能力和空间想象能力等4.培养立体感、数学美感,提高学生学习数学特别是立体几何的兴趣 教学重点:线面夹角的概念及利用概念分步求夹角教学难点:直线和平面所成角的概念及12cos cos cos θθθ=⋅的应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:本节有三个知识点:直线与平面所成的角、二面角、两平面垂直的性质要求学生掌握直线和平面、平面和平面所成的角、距离的概念并能灵活运用勾股定理、正余弦定理和向量代数方法计算有关的角和距离了解异面直线距离的概念和计算在学生已初步掌握向量工具的基础上,可用向量工具解决立体几何中的一些较难的问题,一方面可进一步显示向量工具的威力,另外也为解决空间的度量问题找到了通法,减少学生学习度量问题的困难过去学生解这类问题,主要方法是构造三角形,应用勾股定理、余弦定理和正弦定理求解这种解法需要对图形进行平移、投影等转化技能,而且不同的问题需要不同的技巧实践证明,没有向量工具,学生求解这类问题比较困难有了向量运算工具,很多较难的空间计算问题,就有了统一的方法求解、但如果全用向量处理夹角相距离问题,虽有通法,但有时在解决一些较难问题时,运算量较大并需要一定的技巧,学所以在教材具体编写时,不是都用向量计算方法,有些直接使用勾股定理和三角能解决的问题,就不再使用向量方法了教学过程:一、复习引入:1.平面几何中,点、线段在直线上射影的概念及性质:2.直线和平面的位置关系(平行、相交和直线在平面内)二、讲解新课: 1 斜线,垂线,射影⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,斜线和平面的交点叫斜足段叫这点到这个平面的斜线段⑶射影 过斜线上斜足外的一点向平面引垂线,的直线叫做斜线在这个平面内的射影垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点斜线任一点在平面内的射影一定在斜线的射影上2.射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中 ⑴射影相交两条斜线相交;射影较长的斜线段也较长 ⑵相等的斜线段射影相等,较长的斜线段射影较长 ⑶垂线段比任何一条斜线段都短 ⑴OB=OC ⇒AB=AC OB >OC ⇒AB >AC⑵AB=AC ⇒OB=OC AB >AC ⇒OB >OC ⑶OA <AB ,OA <AC3.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围: [0,2π](2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角证明:设平面α的一条斜线l 在α内的射影为l ',角θ是l 与l '所成的角直线OD 是平面α内与l '不同的任意一条直线,过点l 上的点A 引AC 垂直于OD ,垂足为C因为AB<AC , 所以AOAC AOAB <,即AOC ∠<sin sin θ,因此AOC ∠<θ4.公式已知平面α的斜线a 与α内一直线b 相交成θ角,且a 与α相交成ϕ1角,a 在α上的射影c 与b 相交成ϕ2角,则有θϕϕcos cos cos 21=OCBAα用几何法研究:在平面α的斜线a 上取一点P ,过点P 分别作直线c 、b 的垂线PO 、PB ,垂足为O 、B连接OB ,则OB ⊥b.在直角△AOP 中,AP AO =1cos ϕ. 在直角△ABC 中,AO AB =2cos ϕ.在直角△ABP 中,AP AB =θcos .所以 θϕϕcos cos cos 21==⋅=APAB AOAB APAO所以θϕϕcos cos cos 21=成立用向量运算研究:如图,A P 是平面α的斜线,A 是斜足,P O 垂直于平面α,O 为垂足,则直线A O 是斜线在平面α内的射影A B 是平面α内的任意一条直线,且O B A B ⊥,垂足为B ,又设A P 与A O 所成角为1θ,A B 与A O 所成角为2θ,A P 与A B 所成角为θ,则易知:1||||cos AO AP θ= ,212||||cos ||cos cos AB AO AP θθθ==又∵||||cos A B A P θ=,可以得到:12cos cos cos θθθ=⋅,则同样可以得到:平面的斜线和它在平面内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角; 三、讲解范例:例1 如图,已知A B 是平面α的一条斜线,B 为斜足,,AO O α⊥为垂足,BC 为α内的一条直线,60,45ABC O BC ∠=∠=,求斜线A B 和平面α所成角解:∵A O α⊥,由斜线和平面所成角的定义可知,A B O ∠为A B 和α所成角, 又∵12cos cos cos θθθ=⋅,ODCBA1A∴cos cos 601cos cos cos 45222ABC ABO C BO∠∠===÷=∠,∴45BAO ∠= ,即斜线A B 和平面α所成角为45 .例2.如图,在正方体1AC 中,求面对角线1A B 与对角面11BB D D 所成的角解法一:连结11A C 与11B D 交于O ,连结O B ,∵111DD A C ⊥,1111B D A C ⊥,∴1A O ⊥平面11BB D D , ∴1A BO ∠是1A B 与对角面11BB D D 所成的角, 在1Rt A BO ∆中,1112A O AB =,∴130A B O ∠=.解法二:由法一得1A BO ∠是1A B 与对角面11BB D D 所成的角,又∵11cos cos 452ABB ∠==,11cos 3B B B BO BO∠==,∴1111cos cos cos 23A B B A B O B B O∠∠===∠,∴130A B O ∠= .说明:求直线与平面所成角的一般方法是先找斜线在平面中的射影,后求斜线与其射影的夹角另外,在条件允许的情况下,用公式21cos cos cos θθθ=⋅求线面角显得更加方便解法三:建立空间直角坐标系,用向量计算例3.已知空间四边形A B C D 的各边及对角线相等,求A C 与平面BC D 所成角的余弦值解:过A 作A O ⊥平面BC D 于点O ,连接,,CO BO DO ,∵A B A C A D ==,∴O 是正三角形BC D 的外心, 设四面体的边长为a ,则3C O a =,CA∵90AOC ∠= ,∴A CO ∠即为A C 与平面BC D 所成角,∴cos 3AC O ∠=,所以,A C 与平面BCD 所3.例4 如图,已知AP ⊥BP ,PA ⊥PC ,∠ABP =∠ACP =60º,PB =PC =2BC ,D 是BC 中点,求AD 与平面PBC 所成角的余弦值. 解:∵AP ⊥BP ,PA ⊥PC ,∴AP ⊥PBC 连PD ,则PD 就是AD 在平面PBC 上的射影 ∴∠PDA 就是AD 与平面PBC 所成角又∵∠ABP =∠ACP =60º,PB =PC =2BC ,D 是BC 中点,∴PD=BC 27, PA=6BC ∴AD=BC 231∴31217cos ==∠ADPD PDA∴AD 与平面PBC 217四、课堂练习: 1 选择题(1)一条直线和平面所成角为θ,那么θ的取值范围是( )(A )(0º,90º) (B )[0º,90º] (C )[0º,180º] (D )[0º,180º)(2)两条平行直线在平面内的射影可能是①两条平行线;②两条相交直线;③一条直线;④两个点. 上述四个结论中,可能成立的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个 (3)从平面外一点P 引与平面相交的直线,使P 点与交点的距离等于1,则满足条件的直线条数不可能是( )(A )0条或1条 (B )0条或无数条(C )1条或2条 (D )0条或1条或无数条答案:(1)B (2)C (3)D 2.填空题(1)设斜线与平面α所成角为θ,斜线长为l ,则它在平面内的射影长是 . (2)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,E13cm ,这条线段与平面α所成的角是 .(3)若(2)中的线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 .答案:(1)θcos l (2)030 (3)101arcsin3.若P 为⊿ABC 所在平面外一点,且P A =PB =PC ,求证点P 在⊿ABC 所在平面内的射影是⊿ABC 的外心.分析:斜线段长相等,则射影长也相等从而由PA =PB =PC ,点P 的射影到⊿ABC 的三个顶点的距离相等,所以射影为⊿ABC 的外心.五、小结 :我们学习了有关平面的斜线、射影和直线与平面成角的几个概念,射影定理中的三个结论成立的前提是这些斜线段及垂线段必须是从平面外同一点向平面所引而得到的.否则,结论不成立.线面夹角的概念及解题步骤:先找垂线,后找射影最后确定夹角在具体解题时,关键是求斜线在平面内的射影六、课后作业:在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AA 1、A 1D 1的中点,求:(1)D 1B 1与面AC 所成角的余弦值; (2)EF 与面A 1C 1所成的角; (3)EF 与面AC所成的角.解:(1)设正方体的边长为a ,则在1Rt D BD ∆中,1,DB D B ==.∴1cos 3D B D ∠==.(2)45°.(3)45°. 七、板书设计(略)八、课后记:在具体解题时往往找不出夹角,关键是不能求斜线在平面内的射影,通过练习,使学生在不同的视图中能较熟练地找出射影。

《二面角的平面角求法》课件

《二面角的平面角求法》课件
二面角的平面角来解题.
复习: 二面角的平面角
以二面角的棱上任意一点为端点, 在两个面内分别作垂直于棱的两条射线, 这两条射线所成的角叫做二面角的平面角.
O
二二面面角角的的求求法法
(1)定义法——直接在二面角的棱上取一 点(特殊点)分别在两个半平面内作棱的 垂线,得到平面角.
(2)三垂线法——利用三垂线定理或 逆定理作出平面角,通过解直角三角 形求角的大小.
S
E
D
A
C
B
解:(1)因为SB=BC,E为SC的中点,
Байду номын сангаас
所以BE SC,又DE SC
S
因此SC 平面BDE
E
(2)由SC 平面BDE,得BD SC
D
又由SA 平面ABC,得BD SA
A
C
则BD 平面SAC
B
因此CDE为二面角E-BD-C的平面角
由AB BC,AB=a,BC= 2a,得AC= 3a
2. 实施解题过程仍要注意“作、证、求” 三环节,计算一般是放在三角形中,因 此,“化归”思想很重要.
作业:
1.四棱锥P-ABCD的底面 P
是边长为4的正方形,
PD⊥面ABCD,PD=6,
C
M,N是PB,AB的中点,求
二面角M-DN-C的平 D
面角的正切值?
2.如图,在平面角为600的二面
角 -l-内有一点P,过P作PC P
2BM MN
3
则BMN arccos 6 . 3
例2.正方体ABCD-A1B1C1D1的棱长为1, P是AD的中点,求二面角A-BD1-P的大小.
C1
B1
D1

21-22版:3.2.4 二面角及其度量(创新设计)

21-22版:3.2.4 二面角及其度量(创新设计)

21
题型三 向量法求二面角 例3 在底面为平行四边形的四棱锥PABCD中,AB⊥AC, PA⊥平面ABCD,且PA=AB,E是PD的中点,求平面EAC 与平面ABCD的夹角. 解 方法一 如图,以A为原点,分别以AC, AB,AP所在直线为x,y,z轴建立空间直角坐 标系.
3.2.4 二面角及其度量
第三章——
3.2.4 二面角及其度量
学习目标 理解二面角和二面角的平面角的概念,会用向量 的方法求二面角.
栏目索引
CONTENTS PAGE
1 课前预习 2 课堂互动 3 课堂反馈
知识探究 题型剖析 检测成效
课前预习
[知识链接]
知识探究
二面角的平面角与两法向量有何关系?
ห้องสมุดไป่ตู้
答 设 n1,n2 分别是面 α,β 的法向量,θ 为 α-l-β 的平面角.
A.π3
B.23π
C.π3或23π
D.π6或π3
解析 二面角的大小与两法向量的夹角相等或互补.
3.2.4 二面角及其度量
37
1234
4.若两个平面α、β的法向量分别是n=(1,0,1),v=(-1,1,0), 则这两个平面所成的锐二面角的度数是___6_0_°___. 解析 cos〈n,v〉=|nn|··|vv|=-21,∴〈n,v〉=120°.
4
[预习导引]
1.二面角的有关概念
平面内的一条直线把平面分为两部分,其中的每
一部分都叫做 半平面 .从一条直线出发的两个半
平面所组成的图形叫做 二面角 ;这条直线叫做
二面角的棱 ,每个半平面叫做 二面角.棱的为面l,

两个面分别为α,β的二面角,记作α-l-β.如图①所示,A∈α,

二面角的求法精华版公开课

二面角的求法精华版公开课

cos
n, AA1
n • AA1 n • AA1
1 3
二面角C1 EF A为钝角
二面角C1
EF
A的大小为
arc
cos
1 3
1、二面角的定义 2、二面角的平面角的定义 3、二面角的平面角的求解:
①找(或作)出平面角
⑴定义法
⑵棱的垂面法
⑶三垂线定理法 ⑷向量法
②求解
解三角形或用向量的夹角公式
则∠BDE就是此二面角的平面角。
P
∵△ABC为正△,∴ BE=
3a 2
在Rt△PAC中,E为AC中点,
则DE= 2 a
D
4
E
在Rt△DEB中
A
C tan

ቤተ መጻሕፍቲ ባይዱ
BDE=
BE DE
6
B
∴∠ BDE=arctan 6
几点说明:
⑴定义法是选择一个平面内的一点(一般为这个面的一个 顶点)向棱作垂线,再由垂足在另一个面内作棱的垂线。 此法得出的平面角在任意三角形中,所以不好计算,不是 我们首选的方法。
⑵三垂线法是从一个平面内选一点(一般为这个面的一个 顶点)向另一个面作垂线,再由垂足向棱作垂线,连结这 个点和棱上垂足。此法得出的平面角在直角三角形中,计 算简便,所以我们常用此法。
⑶垂面法需在二面角之间找一点向两面作垂线,因为这 一点不好选择,所以此法一般不用。
⑷以上三种方法作平面角都需写出作法、证明、指出平面角。
x y z
yz 2
1, SD
0
0
0,
1 2
,
1
xz n
y 2z
1,
2,1
平面SAB的法向量为AD

高中新课标数学-二面角课件

高中新课标数学-二面角课件
设平面的一个法向量为 = (1 , 1 , 1 ),
则ቐ
∙ = 1 = 0
∙ = 1 + 1 = 0
,
取1 =1,可得1 = −1, 1 = 0,此时 = (−1,0,1),
平面角的正切值.
分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射
影在AC上,由此可用三垂线定理作出二面角的平面角.
解:∵PC⊥平面ABC,
∴平面PAC⊥平面ABC,交线为AC.作BD⊥AC于D点,据面面垂直性
质定理,BD⊥平面PAC,作DE⊥PA于E点,连接BE,据三垂线定理,则
2
2√3
√2
=
√2
a,
4
= √6.
故二面角 B-PA-C 的平面角的正切值为√6.
归纳总结
1.本题解法使用了三垂线定理来作出二面角的平面角后,再用解三
角形的方法来求解.
2.二面角的定义求法主要有:
(1)由定义作出二面角的平面角;
(2)利用三垂线定理(逆定理)作出二面角的平面角;
(3)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是
解:以题意,, , 1 两两相互垂直。
以C为原点, ,, 1 的方向分别为轴, 轴, 轴正方向,
建立如图所示直角坐标系,则: C 0,0,0 , 0,1,0 , D(1,0,1) 1 (1,1,1)
所以=(0,1,0), =(1,0,1) , 1 =(-1,0,1) , 1 =(0,-1,2) ,
人教2019B版 选择性必修 第一册
第一章
空间向量与立体几何
1.2.4 二 面 角(1)
学习目标
1.掌握二面角的概念
2.理解二面角的平面角的含义

《二面角》第二课时示范公开课教学设计【高中数学】

《二面角》第二课时示范公开课教学设计【高中数学】

《二面角》教学设计第二课时◆教学目标1、进一步理解线面角的定义.提升学生的数学抽象素养.2、掌握求线面角的两种基本方法,即空间向量法与几何法,提升学生的数学运算素养◆教学重难点◆教学重点:掌握求线面角的两种基本方法,即空间向量法与几何法.教学难点:灵活运用两种基本方法求线面角.◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本第50-52页,回答下列问题:(1)本节将要研究哪类问题?(2)本节要研究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结本节的内容.预设的答案:(1)本节主要学习二面角第二课时用空间向量求二面角的大小.(2)学生在学习了异面直线所成角的概念及线面角的基础上,对空间角的问题有了一定的经验,二面角的问题,依然按照将空间问题化为平面问题、将立体几何问题化为空间向量运算问题的基本思路展开.为培养学生直观想象、数学抽象、逻辑推理、数学建模和数学运算的核心素养提供舞台.设计意图:通过对本节知识内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架二、探索新知问题2:如果21n n ,分别是平面21αα,的一个法向量,设21αα,所成角的大小为θ,通过作图讨论θ与〉〈21n n ,的关系.师生活动:学生根据个人理解,老师指导学生总结答案.预设的答案:由图(1)(2)易知,〉〈=21,n n θ或〉〈-=21,n n πθ 特别的,〉〈=21,sin sin n n θ追问:根据上述解答过程,请同学们探究二面角为锐角和钝角时的余弦值情况.师生活动:学生根据个人理解,老师指导学生总结答案.预设的答案:已知θ为锐角,当〉〈21n n ,为锐角时,θ=〉〈21n n ,,〉〈=21,cos cos n n θ,当〉〈21n n ,为钝角时,〉〈-=21,n n πθ,〉〈-=21,cos cos n n θ,所以恒有|,cos |cos 21〉〈=n n θ.设计意图:该内容探究的是如何用两个平面的各自一个法向量去研究两个平面所成角的大小.教师可以在前面方法回顾的基础上,引导学生进行自主学习与尝试.三、初步应用例3: 如图所示,已知四棱锥ABCD S -中,ABCD ABCD SA ,面⊥为直角梯形,,90 =∠=∠ABC DAB 且AD BC AB SA 3===,求平面SCD SAB 与所成角的正弦值.师生活动:学生尝试建系解答,做完同桌总结思路,给出本体解答的一般步骤,由老师指定学生解答.预设的答案:解:依题意可得,AD ,AB ,AS 两两互相垂直,以A 为原点, AS AB AD ,,的方向分别为z y x ,,轴正方向,AD 的长为单位长度,建立如图所示直角坐标系,则:)0,0,1(),0,3,3(),3,0,0(),0,0,0(D C S A 所以)0,3,2(),3,0,1(),0,0,1(=-==DC DS AD 显然,AD 是平面SAB 的一个法向量,设平面''BCD A 的一个法向量为),,(z y x n =, 则⎪⎩⎪⎨⎧=+=⋅=+-=⋅03203y x DC n z x DS n 取3=x ,可得1,2=-=z y ,此时)1,2-,3(=n 因为14143||||,cos ==〉〈n AD nAD n AD 所以所求的角的正弦值为14701491=- 设计意图:例3是以条件较为特殊的几何体来示范用空间向量求平面所成角的问题.教师可以通过师生的探究与交流.教师讲解:在解题的过程中应该注意的方面:(1)条件的特殊性.存在共顶点的三条棱两两互相垂直,利于建系,可以直接确定其中一个平面的一个法向量;有三条棱长相等,因此,此四棱锥可视为某正方体中的一部分.可以合理利用题目中条件的特殊性,灵活确定点的坐标及平面的一个法向量.(2)所求的问题是两个平面所成角的正弦值.虽然前面有“尝试与发现”的结论,但是向量公式中没有正弦值,可以先求余弦值,再求正弦值,这是通法.事实上,两个平面所成角为特殊角的情况还是非常少的,因此,多数情况下为求所成角的三角函数值.(3)直观上看,平面SAB 与平面SCD 没有公共的棱,因此用作二面角的平面角去解答就会很困难,这也体现了向量方法在解答较复杂的立体几何问题时的优势.在条件不变的前提下,教师还可以让学生求平面SAD 与平面SBC 所成角的正弦值,以巩固学生本小节知识与方法的掌握.例4:如图所示,已知直三棱柱111C B A ABC -中,2,1,901====∠AA BC AC ABC ,且D 是1AA的中点.求平面BDC 与平面1BDC 所成角的大小.师生活动:学生先尝试自己建立坐标系,并给出解答,由老师指定学生解答.预设的答案:依题意可得,CA,CB,1CC 两两互相垂直,以C 为原点, 1,,CC CB CA 的方向分别为z y x ,,轴正方向,建立如图所示直角坐标系,则:)2,0,0(),1,0,1(),0,1,0(),0,0,0(1C D B C 所以)2,1,0(),1,0,1(),1,0,1(),0,1,0(11-=-===BC DC CD CB设平面BCD 的一个法向量为),,(z y x n =, 则⎪⎩⎪⎨⎧=+=⋅==⋅00z x DC n y CB n 取,1=z ,可得0,1=-=y x ,此时)1,0,1-(=n设平面D BC 1的一个法向量为),,(z y x m =, 则⎪⎩⎪⎨⎧=+-=⋅=+-=⋅020m 11z y BC m z x DC 取,1=z ,可得2,1==y x ,此时)1,2,1(=m因为0=⋅n m所以所求的角的大小为90°.设计意图:法向量的方向决定了法向量的夹角与二面角的平面角的大小的关系是相等或互补.这就需要结合算出的法向量,将坐标原点作为始点,根据横、纵、竖坐标的正负,判断其终点所在的空间直角坐标系的卦限,从而确定其方向.法向量方向的判断环节,有助于培养学生的逻辑思维能力和空间想象能力.问题3:根据例4所求问题中的不能直接确定平面的一个法向量.解答过程也是给出了证明空间中两个平面垂直的一种方法.请学生归纳解题的一般过程.师生活动:在教师的指导下共同讨论.预设的答案:根据题目条件合理地建立空间直角坐标系;根据所设长度写出必要的点的坐标;根据点的坐标求出两组有公共顶点的棱(线段)的方向向量;用方程组分别求出两个平面的一个法向量;利用向量的夹角公式求出向量夹角的三角函数值;写出所求问题的结论.设计意图:法向量方向的判断环节,有助于培养学生的逻辑思维能力和空间想象能力.问题4:根据所学,请学生总结求二面角的平面角的一般方法.师生活动:在教师的指导下共同讨论.预设的答案:一定义法:在棱上任取一点,过这点在两个半平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;二是利用三垂线定理及其逆定理:自二面角的一个面上的一点向另一个平面引垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足与面上这一点连线,和斜足与垂足连线所夹的角,就是二面角的平面角;三是射影面积公式法:SS 'cos =θ(其中'S 表示射影图形面积,S 表示原图形面积).设计意图:使用向量方法解决二面角的平面角问题,不能离开对立体几何图形的分析.实际上,向量方法与综合几何方法也是相互关联的.向量在立体几何中的应用的灵活性来源于立体几何图形位置关系和向量运算的联系,也就是实现向量语言对立体几何问题的描述.学习二面角的内容,对学生的空间想象力有着较高的要求.四、归纳小结,布置作业问题5:如果21n n ,分别是平面21αα,的一个法向量,设21αα,所成角的大小为θ,讨论θ与〉〈21n n ,的关系.师生活动:在教师的指导下共同讨论. 预设的答案:〉〈=21,n n θ或〉〈-=21,n n πθ 特别的,〉〈=21,sin sin n n θ设计意图:通过梳理本节课的内容,能让学生更加明确利用空间向量求二面角的大小 布置作业:教科书第52页练习B1,2,3.五、目标检测设计1已知二面角α­l ­β,其中平面α的一个法向量m =(1,0,-1),平面β的一个法向量n =(0,-1,1),则二面角α­l ­β的大小可能为________.设计意图:考查学生对空间向量求夹角的正弦值.2.三棱锥A ­BCD 中,平面ABD 与平面BCD 的法向量分别为n 1·n 2,若〈n 1,n 2〉=π3,则二面角A ­BD ­C 的大小为( )A .π3B .2π3C .π3或2π3D .π6或π3设计意图:考查学生对空间向量求夹角.3、已知向量m ,n 分别为直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-32,则直线l 与平面α所成的角为________.设计意图:考查学生对空间向量求夹角.参考答案:1.60°或120° [cos 〈m ,n 〉=m ·n |m |·|n |=-12·2=-12, ∴〈m ,n 〉=120°,∴二面角α­l ­β的大小为60°或120°.]2.C [当二面角A ­BD ­C 为锐角时,它等于〈n 1,n 2〉=π3. 当二面角A ­BD ­C 为钝角时,它应对等于π-〈n 1,n 2〉=π-π3=2π3.]3、60° [设直线l 与平面α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=32.又∵θ∈[0,90°],∴θ=60°.]。

求二面角 (平面与平面所成的角) 高中数学教案

求二面角 (平面与平面所成的角) 高中数学教案

§2.3.2求二面角——平面与平面所成的角一、教学目标1、知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。

2、过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。

3、情态与价值通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。

二、教学重点、难点。

重点:平面与平面垂直的判定;难点:如何度量二面角的大小。

三、学法与教学用具。

1、学法:实物观察,类比归纳,语言表达。

2、教学用具:二面角模型(两块硬纸板)四、教学设计(一)创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?(二)研探新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。

教师特别指出:(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;(2)∠AOB的大小与点O在L上位置无关;(3)当二面角的平面角是直角时,这两个平面的位置关系怎样?承上启下,引导学生观察,类比、自主探究,βB获得两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

二面角及其平面角 课件

二面角及其平面角 课件
ADO 就是二面角 - l - 的平面角.
A.

AO 2 3, AD 4
在Rt△ADO中,
D
O
∵sin∠ADO=
l

AO 2 3 AD 4
∴ ∠ADO=60°.
∴二面角 - l- 的大小为60 °.
15
金太阳教育网

例2 在正方体ABCD-A1B1C1D1中, 求二面角B1-AC-B大小的正切值. C1 B1 C B
(1)、以直线 l 为棱,以 , 为半平面的二面角记为: l (2)、以直线AB 为棱,以 , 为半平面的二面角记为: AB

l

β




l
α
9
金太阳教育网
常用的二面角

品质来自专业 信赖源于诚信
l α β l α
10
β
金太阳教育网

半 平 面

l
半 平 面
面 棱 l

7
3.二面角的 画法与记法
(1)二面角的画法:
(1)、平卧式
金太阳教育网

品质来自专业 信赖源于诚信
(2)、直立式
8
金太阳教育网
3.二面角的 画法与记法

品质来自专业 信赖源于诚信
(2)二面角的记法: 面1-棱-面2
金太阳教育网
引入:

品质来自专业 信赖源于诚信
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成 的角”、“直线和平面所成的角”又是 怎样定义的?它们有什么共同的特征?
1
金太阳教育网

实例1:

(第21课)直线与平面所成的角和二面角(2)

(第21课)直线与平面所成的角和二面角(2)

课 题:9.7直线与平面所成的角和二面角(二)教学目的:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法:(1)根据定义;(2)作二面角棱的垂面;(3)利用三垂线定理或逆定理 教学重点:二面角的概念和二面角的平面角的作法 教学难点:二面角的平面角的一般作法及其寻求 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1 斜线,垂线,射影⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,个平面的斜线斜线和平面的交点叫斜足段叫这点到这个平面的斜线段⑶射影 过斜线上斜足外的一点向平面引垂线,的直线叫做斜线在这个平面内的射影点到这个平面的斜线段在这个平面内的射影直线与平面平行,直线在平面由射影是一条直线斜线任一点在平面内的射影一定在斜线的射影上2.射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中 ⑴射影相交两条斜线相交;射影较长的斜线段也较长⑵相等的斜线段射影相等,较长的斜线段射影较长 ⑶垂线段比任何一条斜线段都短⑴OB=OC ⇒AB=AC OB >OC ⇒AB >AC⑵AB=AC ⇒OB=OC AB >AC ⇒OB >OC ⑶OA <AB ,OA <AC3.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角.直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角4.公式:已知平面α的斜线a 与α内一直线b 相交成θ角,且a 与α相交成ϕ1角,a 在α上的射影c与b 相交成ϕ2角,则有θϕϕcos cos cos 21=.二、讲解新课:1 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的l ,两个面分别为,αβ的二面角记为l αβ--;二面角的图形表示:第一种是卧式法,也称为平卧式:J第二种是立式法,也称为直立式:l B'O'A'B O A βα2.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角DCBAE1A 说明:(1)二面角的平面角范围是[0,180] ;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 三、讲解范例:例1 在正四面体ABCD 中,求相邻两个平面所成的二面角的平面角的大小解:取BC 的中点E ,连接,AE DE ,∵正四面体ABCD ,∴,BC AE BC ED ⊥⊥于E , ∴AED ∠为二面角A BC D --的平面角, 方法一:设正四面体的棱长为1, 则1AE DE AD ===,由余弦定理得1cos 3AED ∠=方法二:(向量运算)令AB a = ,,AC b AD c ==,棱长为1,∵1111[()][]2224EA ED a b c a b ⋅=-+⋅--= ,又∵||||EA ED == ,∴1cos 3AED ∠=即相邻两个平面所成的二面角的平面角的大小为1arccos 3. 例2.在棱长为1的正方体1AC 中, (1)求二面角11A B D C --的大小;(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小解:(1)取11B D 中点1O ,连接11,AO CO , ∵正方体1AC ,∴111111,B D AO CO B D ⊥⊥, ∴1AO C ∠即为二面角11A B D C --的平面角,1A在AOC ∆中,112AO CO AC ===, 可以求得11cos 3AO C ∠=即二面角11A B D C --的大小为1arccos 3.(2)过1C 作1C O BD ⊥于点O ,∵正方体1AC ,∴1CC ⊥平面ABCD ,∴1COC ∠为平面1C BD 与平面ABCD 所成二面角1C BD C --的平面角,可以求得:1tan COC ∠=所以,平面1C BD 与底面ABCD 所成二面角1C BD C--的平面角大小为说明:求二面角的步骤:作——证——算——答例3.已知:二面角l αβ--且,A A α∈到平面β的距离为A 到l 的距离为4,求二面角l αβ--的大小解:作AO l ⊥于点O ,AB ⊥平面β于点B ,连接BO , ∵AB β⊥于点B ,AO l ⊥于点O ,∴l OB ⊥,∴AOB ∠即为二面角l αβ--的平面角, 易知,4AB AO ==,∴60AOB ∠=即二面角l αβ--的大小为60.说明:利用三垂线定理作二面角的平面角是解决二面角问题中一种重要的方法,其特征是其中一个平面内一点作另一个平面的垂线平面角的方法,即:定义法、垂面法、三垂线法例4.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角lBOAβαD CBPAB ACD --的正弦值分析:要求二面角的正弦值,首先要找到二面角的平面角解:过D 作DE AC ⊥于E ,过E 作EF AC ⊥交BC 于F ,连结DF , 则C 垂直于平面DEF ,FED ∠为二面角B AC D --的平面角, ∴AC DF ⊥,又AB ⊥平面BCD ,∴AB DF ⊥,AB CD ⊥,∴DF ⊥平面ABC ,∴DF EF ⊥,DF BC ⊥, 又∵AB CD ⊥,BD CD ⊥,∴CD ⊥平面ABD ,∴CD AD ⊥,设BD a =,则2AB BC a ==,在Rt BCD ∆中,1122BCD S BC DF BD CD ∆=⋅=⋅,∴2DF =, 同理,Rt ACD ∆中,DE =,∴sin DF FED DE ∠=== 所以,二面角B AC D --四、课堂练习:1 如图所示,已知PA ⊥面ABC ,,PBC ABC S S S S ∆∆'==,二面角P BC A--的平面角为θ, 求证:cos S S '⋅=证明:过P 作BC 的垂线,垂足为D ,连接AD ∵PA ⊥平面ABC ,BC ⊂平面ABC ,BC PD ⊥ ∴BC AD ⊥∴PDA ∠为二面角P BC A --的平面角, 即PDA θ∠=∵PA ⊥面ABC ∴PA AD ⊥ ∵PAD ∆是直角三角形 ∴cos ADPAD PD∠=A BC D E FD CFHBAE 又∵11,22PBC ABC S BC PD S S BC AD S ∆∆'=⋅==⋅= ∴cos S PAD S '∠= ∴cos S Sθ'=即cos S S θ'⋅=说明:这是推广的射影定理,也是求二面角平面角的一种方法2.如图,在空间四边形ABCD 中,BCD ∆是正三角形,ABD ∆是等腰直角三角形,且90BAD ∠=,又二面角A BD C --为直二面角,求二面角A CDB --的大小解:过A 作AH BD ⊥于H∵二面角A BD C --为直二面角 ∴AH ⊥面BCD取CD 中点E ,F 为DE 中点,连接,HF AF ∵BE CD ⊥ ∴//HF BE ∴EF CD ⊥ ∴HF CD ⊥∴AFH ∠为二面角A BD C --的平面角 令AB a=,则,2AH a BE a ===∴HF a =∴在Rt AHF ∆中tan AH AFH HF ∠==∴AFH ∠= 即二面角A CD B--的大小为arctan33.设A 在平面BCD 内的射影是直角三角形BCD 的斜边BD的中点O ,1,AC BC CD ===1)AC 与平面BCD 所成角的大小;(2)二面角A BC D --的大小;(3)异面直线AB 和CD 的大小解:(1)∵AO ⊥面BCD ∴AO CO ⊥ ∴ACO ∠为AC 与面BCD所成角∵1,BC CD ==∴BD∴12CO BD ==∴cos ACO ∠=O EDCFBA∴6ACO π∠=即AC 与平面BCD 6(2)取BC 中点E ,连接,OE AE ∴//OE CD ∵CD BC ⊥ ∴OE BC ⊥ 又∵AO ⊥面BCD ∴AE BC ⊥∴AEO ∠为二面角A BC D --的平面角又∵1122OE CD AO === ∵AO OE ⊥∴tan AO AEO OE ∠==∴arctan AEO ∠=即二面角A BC D --的大小为arctan2(3)取AC 的中点E ,连接,EF OF ,则//,//EF AB OE CD ∴OE 与EF 所成的锐角或直角即为异面直线AB 和CD 所成角 易求得45OEF ∠=即异面直线AB 和CD 所成角为45五、小结 :1.二面角的定义、画法.2.二面角的平面角的定义、作法.3.求简单的二面角的大小. 六、课后作业:七、板书设计(略)八、课后记:。

二面角及二面角的平面角

二面角及二面角的平面角
二面角
二面角及面面垂直的判定
15:10
二面角
一、 二面角及二面角的平面角
1
、半平面——
平面的一条直线把平面分为两部分, 其中的每一部分都叫做一个半平面。
α
ቤተ መጻሕፍቲ ባይዱ
l
15:10
二面角
2、二面角的定义
从空间一直线出发的两个半 平面所组成的图形叫做二面角 记作:
α
ι
β
3、二面角的平面角
一个平面垂直于二面角 的 棱 , 并 与 两 半 平 面分别相交于射线 PA 、 PB 垂足为P,则∠APB叫做二面 角 的平面角
O
15:10
10
A O
B

B
(1)
(2)
二面角
二.作二面角的平面角的常用方法
①、点P在棱上 —定义法 ②、点P在一个半平面上 ③、点P在二面角内 —垂面法
ι
p
α
β
A B B

β
B
p
α
A
ι
ι
O
α
A
15:10
一般地,两个平面相交,如果它们所成的二面 角是直二面角,就说这两个平面互相垂直.
(1)除了定义之外,如何判定两个平面互相垂直 呢? (2)日常生活中平面与平面垂直的例子?
例三.如图,四面体P-ABC中 PA 平面ABC BC AC
P
F
E
(1)问此图中有多少个直角三角形? C (2)过A作AE PC于E,过 A作 AF PB于 F,连接 EF
A
B
问此图形中有多少直角三角形?
15:10
小结
一.作二面角的平面角的常用方法

二面角及其平面角 课件

二面角及其平面角 课件
有时为了方便,也可在α,β内(棱以外的半平 面部分)分别取点P,Q,将这个二面角记作二面 角P-AB-Q。
如右图,在三棱锥A-BCD中,面 ABC与面BCD所成的二面角可以记 作二面角A-BC-D.
3. 画法
⑴ 平卧式:
l
A
B
A
l
B
⑵ 直立式: A
l
B
三、二面角的平面角
1.定义 在二面角-l-的棱l上任取一点O,以点O
(1)二面角C'-BD-C;(2)二面角C'-BD-A;
(3)二面角D'-DC-A;(4)二面角D'-AB-D.
D'
C'
A'Βιβλιοθήκη B'D A
C B
例: 在正方体ABCD-A'B'C'D'中,找出下列二面角 的平面角:
(1)二面角C'-BD-C;(2)二面角C'-BD-A;
(3)二面角D'-DC-A;(4)二面角D'-AB-D.
① 二面角的两个面重合: 0o ② 二面角的两个面合成一个平面: 180o ③ 平面角是直角的二面角叫直二面角. 90o
二面角的范围: [ 0o, 180o ]
例: 在正方体ABCD-A'B'C'D'中,找出下列二面角 的平面角:
(1)二面角C'-BD-C;(2)二面角C'-BD-A;
(3)二面角D'-DC-A;(4)二面角D'-AB-D.
二面角及其平面角
一、半平面的定义
平面内的一条直线把平面分为两部分,其中的每
一部分都叫做半平面.
二、二面角

人教A版数学必修2课件:2.3.3二面角

人教A版数学必修2课件:2.3.3二面角

如图,点A在二面角α-l-β的半平面α上一 点,过点A如何作出二面角α-l-β的平面 角?
方法1

A O
由定义知:过A作 AO l 交l于O,在面β内作 OB l 则∠AOB为所求的角。
l
B

----“定义法”
3、二面角的平面角的求法:
如图,点A在二面角α-l-β的半平面α上一 点,过点A如何作出二面角α-l-β的平面 角?
D
A O B
C
练习:指出下图中的二面角的平面角:
A, B l

B D O A’ D A B
二面角A--BC--D

B D’
A
AC BD C
AC⊥l BD ⊥l A
l
D
C’
B’ O C
E
O
C
二面角--l--
二面角B--B’C--A
例2:如图,已知P是二面角 AB 棱上一 点,过P分别在 、 内引射线PM、PN, 且∠MPN=600,∠BPM =∠BPN =450, 求此二面角的度数。
l
B
A
F B D
E
二面角- l-

C
二面角C-AB- E
上述变化过程中图形在变化,形成 的“角度”的大小如何来确定 ?
二、二面角的平面角:
1、二面角的平面角的定义: 定义一: 以二面角的棱上任意 O 。 1 一点为端点,在两个半平 面内分别作垂直于棱的两 条射线,这两条射线所成 的角叫做二面角的平面角。
如图,过A点作AO⊥β于O,在α内作AC垂直棱于C, 连OB、OC,则∠ABC=45°∠ABO=30°,∠ACO 就是所求二面角的平面角。
α A B

两个平面所成的角及求法

两个平面所成的角及求法

两个平面所成的角及求法一、 教学目的:(1)掌握二面角、二面角的平面角的概念;(2)并能根据条件找出(或作出)二面角的平面角;(3)能求二面角的大小.二、 教学重点、难点:二面角、二面角的平面角的概念;找出(或作出)二面角的平面角;三、 教学过程: 1、复习: (1) 异面直线所成的角定义: (2) 异面直线所成角的范围:(3) 斜线与平面所成的角定义:(4) 斜线与平面所成角的范围:2、问题:(1)平面与平面所成的角呢?(2)平面与平面所成的角如何求?(3)平面与平面所成角的范围?3、平面内的一条直线把这个平面分成两部分,其中的每一部分都叫做半平面;两个半平面组成的图形叫做二面角;(l 叫做二面角的棱;βα,叫做二面角的面.)4、如何求二面角?面面角⇒一个平面内的线线角?注:(1)当平面角是直角的二面角叫做直二面角.(2)两条直线相交时对顶角相等,两个平面相交时有没有这种位置关系呢?(3)什么时候二面角考虑二解? [例1]:在正方体1111D C B A ABCD -中,求平面11D ABC 与平面ABCD 的角;平面11D ABC 与平面C C BB 11所成的角;平面11BC A 与平面1111D C B A 所成的角;平面11D AB 与平面ABCD .练习:1、如图,γβα,,为平面,γγβγαβα⊥=⋂=⋂=⋂l b a l ,,,,指出图中哪个角是二面角βα--l 的平面角,并说明理由.2、如图,二面角βα--l 的大小为030,P α∈,点P 到β的距离为h ,求点P 到棱l 的距离.α β lαβ l[例2]:如图,河堤斜面与水平面所成的二面角为060,堤面上有一条直道CD ,它与堤脚的水平线AB 的夹角为030,沿这条直道从堤脚向上行走到10m 时人升高了多少?[说明]:总结:二面角的平面角构造方法:练习:1、 如图,立体图形V —ABC 的四个侧面是全等的正三角形,画出二面角V —AB —C 的平面角,并求它的度数.2、 如图,立体图形V —ABCD 中,底面是正方形ABCD ,其他四个侧面都是全等的正三角形,画出二面角V —AB —C 的平面角,并求它的度数.3、 在一个斜坡上,有一条与坡脚的水平线成045角的直道,沿这条道行走到40m 时人升高了14.14m ,求坡面的倾斜角(即坡面与水平面所成的二面角).4、画出三个二面角,使它们的度数分别是为.120,90,45000 030 VA B C VA B C D A B C D A B C E F P Q。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
E
A
B
D
C
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
二面角及其平面角
二面角的平面角
制作:威远中学 郑飞宇
以二面角的棱上任意一点为端点, 在两个面内分别作垂直于棱的两 条射线, 这两条射线所成的角叫做二面角的平面角。二面角的大小用它
的平面角的大小来度量。二面角的平面角必须满足: 1、角的顶点在棱上(与顶点位置无关) 2、角的两边分别在两个面内 3、角的两边都要垂直于二面角的棱 注意:二面角的平面角的范围: [0,180 ]平面角是直角的二面角叫做直二面角.
二面角及其平面角
二面角的定义
制作:威远中学 郑飞宇
图形 引入

二面角
l
一直线上的一点把这条直线分成两 一平面内的一条直线把这个平面分成 部份,每一部份称为半直线(射线)。 两部份,每一部份称为半平面。
定义 构成 表示法
从一点出发的两条半直线(射线) 所组成的图形。
半直线——点——半直线 (边) (顶点) (边)

lO A α
找一找
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
二面角及其平面角
作二面角的平面角常用方法
制作:威远中学 郑飞宇
1、定义法(直接法)
2、间接法
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
二面角及其平面角
例题讲解
制作:威远中学 郑飞宇
例1.河堤斜面与水平面所成角为60°,堤面上有一条直道CD,它 与堤角的水平线AB的夹角为30°,沿着这条直道从堤角向上行走
它们的共同 特征都是将 三维空间的 角转化为二 维空间的角, 即平面角。
实例引入 复习回顾 新课讲解 例题讲解
直线和平面所成角
总结归纳 返回
二面角及其平面角
实例引入
拦洪坝截面
制作:威远中学 郑飞宇
人造卫星轨道平面 与地球赤道平面
问题3:两个相交平面的相对位置关系如何定量研究? 实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
到10米时,人升高了多少(精确到0.1米)?
解:①取CD上一点E,设CE=10 m,过点E作直线AB所在的水平面的垂线EG, 垂足为G,则线段EG的长就是所求的高度.在河堤斜面内,作EF⊥AB.垂足为 F,连接FG, ②由三垂线定理的逆定理,知FG⊥AB.因此,∠EFG就是河堤 斜面与水平面ABG所成的二面角的平面角,∠EFG=60°. ③由此得:EG= Fsin60°=CE sin30°sin60°=10××≈4.3(m) 答:沿着直道向上行走到10米时,人升高了约4.3米.
13、、定二面义角法的大小用它的平面
五、二面角的计算:
2、角的三大垂小线来(度逆量 )定理法 3一、“垂作”面二法“证”三“计算”
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
D E
B
G
F
30
C A
① “作” ② “证” ③ “计算”
练一练
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
二面角及其平面角
课堂练习
制作:威远中学 郑飞宇
练习1:指出下列各图中正方体的二面角的平面角:
D'
C'
D'
C'
D'
A'
B'
A'
B'
A '’
D C
A
B
二面角B’ --AB--C
O D
C
A
B
—AC—B)
D A
C' B'
O
C
B
课后作业: 课本(43页):习题六 1、2
课外思考题:点O为二面角α—a—β内部一点,过O如何 作该二面角的平面角呢?
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
二面角及其平面角
制作:威远中学 郑飞宇
总结归纳
一、二面角的定义:
∠AOB
从一条直线出发的两个半平面所组成 的图形。
半平面——直线——半平面 (面) (棱) (面)
α—a—β或 α—AB—β
比一比
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
二面角及其平面角
二面角的画法及表示
制作:威远中学 郑飞宇
二面角-AB-
A
B
二面角- l-
l
二面角C-AB- E
从一条直线出发的两个半 平面所组成的图形叫做二 面角。这条直线叫做二面 角的棱。这两个半平面叫
做二面角的面。
二 面 角 -AB-
二、二面角的表示方法:
二 二
面 面
角 C-AB- D 角 - l-
三、二面角的平面角:
1、面角的平面角必须满足 三个条件
2、二面角的平面角的大小与
四、二面角平面角的作法: 其顶点在棱上的位置无关
二面角及其平面角
制作:威远中学 郑飞宇
二面角及其平面角
实例引入 复习回顾 新课讲解 例题讲解 总结归纳 返回
二面角及其平面角
复习回顾
制作:威远中学 郑飞宇
问题1:平面几何中,“角”是如何定义的? 问题2:“异面直线所成的角”、“直线和平面 所成的角”是如何定义的?它们有什么共同的特征?
异面直线所成角
相关文档
最新文档