陕西省安康市中考数学二模复习卷(一)
陕西省安康市2019-2020学年中考第二次模拟数学试题含解析
![陕西省安康市2019-2020学年中考第二次模拟数学试题含解析](https://img.taocdn.com/s3/m/610123a94b35eefdc9d33359.png)
陕西省安康市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各式中,正确的是()A.t5·t5 = 2t5B.t4+t2 = t 6C.t3·t4 = t12D.t2·t3 = t52.一元二次方程(x+3)(x-7)=0的两个根是A.x1=3,x2=-7 B.x1=3,x2=7C.x1=-3,x2=7 D.x1=-3,x2=-73.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)4.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个5.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.16.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A .(6,3)B .(6,4)C .(7,4)D .(8,4)7.计算 22x x x+-的结果为( ) A .1B .xC .1xD .2x x+ 8.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是49.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( ) A .221x = B .1(1)212x x -= C .21212x = D .(1)21x x -= 10.一元二次方程2240x x ++=的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根D .没有实数根11.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.计算1+2+22+23+…+22010的结果是( ) A .22011–1 B .22011+1C .()20111212- D .()201112+12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB ∥CD ,CD ⊥BC 于C ,且AB 、BC 、CD 边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.14.若x a y与3x2y b是同类项,则ab的值为_____.15.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.16.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_____℃.17.函数y=13x-+1x-的自变量x的取值范围是_____.18.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:(﹣2)2+20180﹣3620.(6分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“ B-比较喜欢”、“ C-不太喜欢”、“ D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是,图②中A所在扇形对应的圆心角是;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?21.(6分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元? 22.(8分)如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数ky x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积23.(8分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C .(1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若AE ﹕ED =1﹕1. 求n 的值.24.(10分)如图,已知抛物线过点A (4,0),B (﹣2,0),C (0,﹣4). (1)求抛物线的解析式;(2)在图甲中,点M 是抛物线AC 段上的一个动点,当图中阴影部分的面积最小值时,求点M 的坐标; (3)在图乙中,点C 和点C 1关于抛物线的对称轴对称,点P 在抛物线上,且∠PAB=∠CAC 1,求点P 的横坐标.25.(10分)如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B .(1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值; ③当1361DC =时,请直接写出t 的值.26.(12分)如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行60米到达C 处,再测得山顶A 的仰角为45°,求山高AD 的长度.(测角仪高度忽略不计)27.(12分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.2.C【解析】【分析】根据因式分解法直接求解即可得.【详解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故选C.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键. 3.A【解析】【分析】直接利用平移的性质结合轴对称变换得出对应点位置.【详解】如图所示:顶点A2的坐标是(4,-3).故选A.【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.4.C【解析】【分析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】①∵,∴是错误的;②数轴上的点与实数成一一对应关系,故说法正确;③∵=4,故-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如和是错误的;⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如等,也有π这样的数.5.A【解析】【分析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.6.C【解析】【详解】根据题意知小李所对应的坐标是(7,4).故选C.7.A【解析】【分析】根据同分母分式的加减运算法则计算可得.【详解】原式=22xx+-=xx=1,故选:A.【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.8.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.考点:随机事件发生的可能性(概率)的计算方法9.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.10.D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.11.D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.12.A【解析】【分析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4或1【解析】【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【详解】①如图:因为AC==2,点A是斜边EF的中点,所以EF=2AC=4,②如图:因为BD==5,点D是斜边EF的中点,所以EF=2BD=1,综上所述,原直角三角形纸片的斜边长是4或1,故答案是:4或1.【点睛】。
陕西省安康市第二中学2024年普高招生全国统考(一)数学试题模拟试卷
![陕西省安康市第二中学2024年普高招生全国统考(一)数学试题模拟试卷](https://img.taocdn.com/s3/m/5ba67289f021dd36a32d7375a417866fb84ac0e8.png)
陕西省安康市第二中学2024年普高招生全国统考(一)数学试题模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知某几何体的三视图如右图所示,则该几何体的体积为( )A .3B .103C .113D .832.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,22x x >,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝3.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A .4B .5C .6D .74.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.己知函数()()1,0,ln ,0,kx x f x x x ->⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围是( )A .(),0-∞B .()0,1C .()0,∞+D .10,2⎛⎫ ⎪⎝⎭6.,,a b αβαβ//////,则a 与b 位置关系是 ( ) A .平行 B .异面C .相交D .平行或异面或相交 7.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形8.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PAB 的面积为S ,则S AB -的最小值为( ) A .94-B .274-C .3227-D .6427-9.设02x π≤≤,且1sin 2sin cos x x x -=-,则( ) A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤D .322x ππ≤≤10.设函数()(1)x g x e e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .,2e⎛⎫+∞⎪ ⎪⎝⎭B .(,)e +∞C .[,)e +∞D .,2e⎡⎫+∞⎪⎢⎪⎣⎭11.若(12)5i z i -=(i 是虚数单位),则z 的值为( ) A .3B .5C .3D .512.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A ⋃B ,则集合中的元素共有 ( )A .3个B .4个C .5个D .6个二、填空题:本题共4小题,每小题5分,共20分。
2024届陕西史上最全的中考二模数学试题含解析
![2024届陕西史上最全的中考二模数学试题含解析](https://img.taocdn.com/s3/m/0a9ab96630126edb6f1aff00bed5b9f3f90f72b7.png)
2024届陕西史上最全的中考二模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=02.如图,等边△ABC 内接于⊙O ,已知⊙O 的半径为2,则图中的阴影部分面积为( )A .8233π-B .433π-C .8333π- D .9344π- 3.如果2a b -=,那么22b a a b a a-+÷的值为( ) A .1 B .2 C .1- D .2-4.关于x 的方程(a ﹣1)x |a|+1﹣3x+2=0是一元二次方程,则( )A .a≠±1B .a =1C .a =﹣1D .a =±15.如图,在矩形ABCD 中,AB=2,AD=2,以点A 为圆心,AD 的长为半径的圆交BC 边于点E ,则图中阴影部分的面积为( )A .2213π--B .2212π-- C .2222π-- D .2214π--6.实数﹣5.22的绝对值是( )A .5.22B .﹣5.22C .±5.22D . 5.227.下列运算正确的是( )A .235x x x +=B .236x x x +=C .325x x =()D .326x x =()8.估计112-的值在( )A .0到l 之间B .1到2之间C .2到3之间D .3到4之间9.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A .B .C .D .10.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知,如图,AB//CD,∠DCF=100°,则∠AEF 的度数为 ( )A .120°B .110°C .100°D .80°12.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是( )A .①②B .①③C .①④D .①③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.当x=_________时,分式323xx -+的值为零.14.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.15.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.16.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.17.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.18.已知21xy=⎧⎨=⎩是方程组ax5{1bybx ay+=+=的解,则a﹣b的值是___________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).20.(6分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.21.(6分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?22.(8分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B 的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.23.(8分)如图,在△ABC中,AB>AC,点D在边AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC=5,点D是AC的中点,求DE的长.24.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.25.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.26.(12分)如图,已知AD 是ABC △的中线,M 是AD 的中点,过A 点作AE BC ∥,CM 的延长线与AE 相交于点E ,与AB 相交于点F .(1)求证:四边形AEBD 是平行四边形;(2)如果3AC AF =,求证四边形AEBD 是矩形.27.(12分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少? (4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解题分析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.2、A【解题分析】解:连接OB 、OC ,连接AO 并延长交BC 于H ,则AH ⊥BC .∵△ABC 是等边三角形,∴BH 33OH =1,∴△OBC 的面积= 12×BC ×OH 3则△OBA 的面积=△OAC 的面积=△OBC 的面积3BOC =120°,∴图中的阴影部分面积=2240223360π⨯-8233π-A . 点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.3、D【解题分析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案. 【题目详解】22()()=b a a b b a b a b a a a ba a a -++-÷⨯=-+ 2ab -=()2b a a b ∴-=--=-故选:D .【题目点拨】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.4、C【解题分析】根据一元一次方程的定义即可求出答案.【题目详解】 由题意可知:1012a a -≠⎧⎨⎩+=,解得a =−1 故选C .【题目点拨】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.5、B【解题分析】先利用三角函数求出∠BAE =45°,则BE =AB DAE =45°,然后根据扇形面积公式,利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 进行计算即可.【题目详解】解:∵AE =AD =2,而AB ,∴cos ∠BAE =AB AE ,∴∠BAE =45°,∴BE =AB BEA =45°.∵AD ∥BC ,∴∠DAE =∠BEA =45°,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD ﹣12﹣2452360π⋅⋅﹣1﹣2π. 故选B .【题目点拨】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.6、A【解题分析】根据绝对值的性质进行解答即可.【题目详解】实数﹣5.1的绝对值是5.1.故选A .【题目点拨】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.7、D【解题分析】根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.【题目详解】解:A 、B 两项不是同类项,所以不能合并,故A 、B 错误,C 、D 考查幂的乘方运算,底数不变,指数相乘.326x x ()= ,故D 正确;【题目点拨】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.8、B【解题分析】∵9<11<16,∴34<<,∴122<<故选B.9、C【解题分析】看到的棱用实线体现.故选C.10、A【解题分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【题目详解】解:点(2,3)所在的象限是第一象限.故答案为:A【题目点拨】考核知识点:点的坐标与象限的关系.11、D【解题分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【题目详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【题目点拨】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12、C【解题分析】根据倒数的定义,分别进行判断即可得出答案.【题目详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【题目点拨】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算即可.【题目详解】解:依题意得:2﹣x=1且2x+2≠1.解得x=2,故答案为2.【题目点拨】本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.14、【解题分析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【题目详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【题目点拨】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.15、160°【解题分析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.16、(1,0);(﹣5,﹣2).【解题分析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【题目详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1),∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点,设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩. ∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点,设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩, 故此直线的解析式为115y x =-…② 联立①②得1122115y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得52x y =-⎧⎨=-⎩,故AE 与CG 的交点坐标是(-5,-2). 故答案为:(1,0)、(-5,-2).17、1【解题分析】连接OB ,由矩形的性质和已知条件得出△OBD 的面积=△OBE 的面积=12四边形ODBE 的面积,再求出△OCE 的面积为2,即可得出k 的值.【题目详解】连接OB ,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=kx(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=12四边形ODBE的面积=1,∵BE=2EC,∴△OCE的面积=12△OBE的面积=2,∴k=1.故答案为:1.【题目点拨】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.18、4;【解题分析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).【解题分析】分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=AB tan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.故答案为1;(Ⅱ)如图2,连接AA′.∵点A′落在线段AB的中垂线上,∴BA=AA′.∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=AB tan∠ABD=1tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0);(Ⅲ)①如图3,当点D在OA上时.由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+1,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=1+.∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.20、(1)k=b2+4b;(2).【解题分析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.21、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解题分析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【题目详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【题目点拨】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.22、(1)坡底C点到大楼距离AC的值为203米;(2)斜坡CD的长度为803-120米.【解题分析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=60203603ABtan==︒(米)答:坡底C点到大楼距离AC的值是203米.(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,∴AF=DE,DF=AE.设CD=x米,在Rt△CDE中,DE=12x米,3米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-12x(米)∵DF=AE=AC+CE,∴3312x解得:3(米)故斜坡CD的长度为(3)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.23、(1)作图见解析;(2)5 2【解题分析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.【题目详解】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵点D是AC的中点,∴DE为△ABC的中位线,∴DE=12BC=52.24、(1)C(2,-1),A(1,0);(2)①3,②0<t<12+2,1)或(2+2,1)或(-1,0)【解题分析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L 双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.【题目详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=2+2或x=-2+2.∴点P的坐标为(2+2,1)或(-2+2,1),当点P(-1,0)时,也满足条件.综上所述,满足条件的点(2+2,1)或(-2+2,1)或(-1,0)【题目点拨】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.25、(1)证明见解析;(2).【解题分析】试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.试题解析:(1)连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO, OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.26、(1)见解析;(2)见解析.【解题分析】(1)先判定AEM DCM ≌,可得AE CD =,再根据AD 是ABC △的中线,即可得到AD CD BD ==,依据AE BD ,即可得出四边形AEBD 是平行四边形;(2)先判定AEF BCF ∽,即可得到3AB AF =,依据3AC AF =,可得AB AC =根据AD 是ABC △的中线,可得AD BC ⊥,进而得出四边形AEBD 是矩形.【题目详解】证明:(1)M 是AD 的中点,AM DM ∴=,AE BC ∥,AEM DCM ∴∠∠=,又AME DMC ∠∠=,AEM DCM ∴≌,AE CD ∴=,又AD 是ABC △的中线,AD CD BD ∴==,又AE BD ∥,∴四边形AEBD 是平行四边形;(2)AE BC ∥,AEF BCF ∴∽, ∴AF AE 1BF BC 2==,即2BF AF =, 3AB AF ∴=,又3AC AF =,AB AC ∴=,又AD 是ABC △的中线,AD BC ∴⊥, 又四边形AEBD 是平行四边形,∴四边形AEBD 是矩形.【题目点拨】本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.27、18 60分【解题分析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x =18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.。
2024年陕西省安康市旬阳县中考二模数学试题
![2024年陕西省安康市旬阳县中考二模数学试题](https://img.taocdn.com/s3/m/3c8e995a77c66137ee06eff9aef8941ea76e4b83.png)
2024年陕西省安康市旬阳县中考二模数学试题一、单选题1.3-的倒数为( )A .3B .3-C .13D .13- 2.下列道路警示标志中,是轴对称图形的是( )A .B .C .D . 3.计算:()22x xy -⋅=( )A .2xy -B .32x yC .6xy -D .26x y4.如图,将一副三角板按如图所示的方式放置,其直角顶点落在直尺的一边上.若136∠=︒,则2∠=( )A .36︒B .45︒C .54︒D .64︒5.在同一平面直角坐标系中,一次函数y ax b =-与正比例函数y abx =(a ,b 是常数,且0ab <)的图象可能是( )A .B .C .D .6.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,BAO ∠的平分线交对角线BD 于点E ,且122AB AC ==,则线段AE 的长为( )A .1BC .32D 7.图1为某型号的“汤碗”,图2是从正面看到的一个“汤碗”的形状示意图.碗体部分为半圆,直径AB 为10cm ,碗底CD 与AB 平行.如图3,倒汤时,碗底CD 与桌面MN 的夹角为30︒,则BE 的长为( )A .5cmB .C .D 8.若抛物线 2y ax bx c =++与x 轴交于A ,B 两点,且满足0,0,ab a b c <-+=0a b c ++>,则A B 、两点间的距离d 满足( )A .2>dB .2d <C .2d ≥D .2≤d二、填空题9.如图,数轴上的两个点分别表示3-和m ,若这两个点之间的距离为5,则m 的值为.10.分解因式:2296a ab b -+=.11.春节期间,小宇去表哥家拜年,好学的他发现在表哥新装修的房子里,钢琴房的背景墙上有用岩板作的几何图案造型.如图,这个图案是由正六边形ABCDEF 、正方形EDMN 及FEN △拼成的(不重叠,无缝隙),则EFN ∠的度数是.12.如图,点A B ,分别在反比例函数()()12800,0k y x y k x x x=>=<<,的图象上.若OA OB ⊥,1sin 3A =,则k =.13.如图,直线l 平分菱形ABCD 的面积,分别交,AB CD 于点E ,F ,交CB 的延长线于点G .若6,2AB DF ==,则BG =.三、解答题14.计算:()022121π--+-.15.解不等式:1532x x --<. 16.化简:2242242a a a a ⎛⎫÷- ⎪+--⎝⎭. 17.如图,36ABC ∠=︒,请在AB 上找一点P ,使得72APC ∠=︒.18.如图,在ABC V 中,AB BC =,90ABC ∠=︒,CE BD ⊥,垂足为F ,且CE B D =连接AD ,BE .求证:D E ∠=∠.19.陕西西安市在“创建国家卫生城市”的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,实际平均每天比原计划多植4棵,现在植120棵所需的时间与原计划植100棵所需的时间相同,求原计划平均每天植树多少棵?20.2024年为龙年,龙是中国文化中非常重要的元素,2024龙年春晚主题为“龙行鼹鼹”.龙行鼹蟲、前程關闕、生活雛盤等词也成为新春热门祝福语.为了熟悉生僻词和叠字,兴趣小组组织学习一部分生僻叠字,现在有4张卡片,分别为A 卡片“龘”、B 卡片“朤”、C 卡片“䲜”、D 卡片“㵘”,其中由三个相同字组成的字称为“三字叠字”,由四个相同字组成的字称为“四字叠字”.(1)在4张卡片中随机抽取一张,抽中“三字叠字”的概率为______.(2)若该小组随机抽取两个生僻字学习,用画树状图或列表的方法,求抽到一个“三字叠字”、一个“四字叠字”的概率.21.无人机在生活中被广泛应用,小哲同学喜欢用无人机进行探索研究,寒假期间,他和小组成员共六人,一起利用无人机测量了家附近某大楼BC 的高度,他设计的测量方案如下:测量图例请你根据上述信息,求大楼BC的高度.(结果保留根号)22.某蔬菜种植基地为了提高蔬菜苗的成活率,决定进行集中育苗.已知某种蔬菜苗早期在新建的育苗温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长,研究表明,60天内,这种蔬菜苗生长的高度()cmy与生长的时间x(天)之间大致的函数关系图象如图所示.(1)当1560x<≤时,求y与x之间的函数表达式.(2)当这种蔬菜苗长到大约100cm时,开始开花结果,试求这种蔬菜苗移至大棚后,继续生长多少天,开始开花结果?23.某学校在数学文化节上,组织了一次全校3000名学生参加的“数学文化知识比赛”,最后,经过统计分析,发现所有参赛学生的成绩均不低于50分.为了更好地了解本次比赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x为整数,总分100分)作为样本进行整理,得到下列不完整的统计图表.请根据所给信息,解答下列问题.(1)填空:=a ______,并请补全频数分布直方图.(2)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩为“优”等的约有多少人?(3)你认为举办数学文化节对学生们的数学学习有什么帮助?24.如图,AB 是O e 的直径,点C D ,在O e 上,连接AC BC AD BD ,,,,过点D 作O e 的切线DE ,交AB 的延长线于点E ,CAD BAD ∠=∠.(1)求证:CAD BDE ∠=∠;(2)若13AC BE ==,,求DE 的长. 25.如图1,这是一款智能浇灌系统,水管OP 垂直于地面并可以随意调节高度(OP 的最大高度不超过1.5m ).浇灌花木时,喷头P 会向四周喷射水流形成固定形状的抛物线,水流的落地点M 与点O 的距离即为最大浇灌距离,各方向水流的落地点形成一个以点O 为圆心,OM 为半径的圆形浇灌区域(区域内均能被浇灌到).当喷头P 位于地面与点O 重合时,某一方向的水流上边缘形成了如图2所示的抛物线.经测量,2m OM =,水流最高时距离地面0.1m .(1)在图中建立合适的平面直角坐标系,求抛物线的函数表达式.(2)当调节水管OP 的高度时,圆形浇灌区域的面积会发生变化,请你求出圆形浇灌区域的最大面积.(结果保留π)26.(1)如图1,在四边形ABCD 中,90,BAD BCD AB AD ∠∠==︒=,对角线12AC =,若8BC =,求CD 的长.(2)陕北羊肉在全国远近闻名,某养殖场准备在以AB ,BC 为围档的旧农场中,建设一个新的山羊养殖基地,如图2,六边形ABCDEF 为新养殖基地的鸟瞰图,点A 位于点B 的正北方,已知40AB BC ==米,AB BC ⊥,且点C 位于点B 的东边,设计要求将点B ,E 分别设为入口,点E 位于点C 的正北方向,点A 的正东方向,,120,270AF CD FED AFE CDE ∠∠∠==︒+=︒.根据设计要求,求六边形ABCDEF 的面积的最小值及此时DE 的长.。
精品解析:2024年陕西省部分学校中考二模数学试题(原卷版)
![精品解析:2024年陕西省部分学校中考二模数学试题(原卷版)](https://img.taocdn.com/s3/m/92f3ce6e492fb4daa58da0116c175f0e7cd119a7.png)
九年级学业水平质量监测数学注意事项:1.全卷满分120分,答题时间为120分钟.2.请将各题答案填写在答题卡上.第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 规定:表示零上12摄氏度,记作,表示零下7摄氏度,记作( )A. B. C. D. 2. 如图,这是某几何体的三视图,这个几何体是( )A. 三棱柱B. 圆柱C. 圆锥D. 三棱锥3. 将含有的直角三角板在两条平行线中按如图所示的方式摆放.若,则的度数是( )A B. C. D. 4. 计算的结果是( )A. B. C. D. 5. 已知一次函数,当时,函数值的取值范围是,则的值为()A. B. C. 或 D. 或6. 在中,,则的值为( ).()12↑12+()7↓7-7+17-17+30︒2110∠=︒1∠110︒120︒130︒140︒()2322m n -642m n -544m n 644m n 944m n y kx b =+02x ≤≤y 13y -≤≤k b +1-11-112ABC 4560B C ∠=︒∠=︒,ACABA. B. C. D. 7. 如图,为的直径,点C ,D 都在上,,若,则的度数为( )A. B. C. D. 8. 抛物线:经过,两点,且抛物线不经过第四象限,则下列点坐标不可能在抛物线上的是( )A. B. C. D. 第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9.在实数,,,中,无理数的个数是________.10. 七边形的外角和等于________.11. 菱形的对角线,,则的长为________.12. 如图,过点作轴,垂足为C ,轴,垂足为D .,分别交反比例函数 ()图象于点A ,B ,则阴影部分的面积是________.13. 如图,在矩形中,点在边上,点在边上,连接,,,则线段的长度为________.的AB O O CE AB ∥25ADE ∠=︒ABC ∠45︒55︒65︒75︒L 2y ax bx c =++()4,3A ()0,1B L L ()2,1()2,1--()2,3-()1,1-430.3-2π0.1010010001ABCD 12AC =48ABCD S =菱形AB (3,4)P PC x ⊥PD y ⊥PC PD 6y x=0x >ABCD E AB F AD CE CF EF ,,2CEB CEF ECF ECB ∠=∠∠=∠,AF =9CD =EF三、解答题(共13小题,计81分.解答应写出过程)14. 计算:.15. 解不等式组:16. 已知,求代数式的值.17. 如图四边形是菱形,,请用尺规作图法,在边上求作一点P ,使(保留作图痕迹,不写作法).18. 如图,A ,B ,C ,D 四点同一条直线上,,,.求证:.19. 小明和小乐两位同学都是体育爱好者,小明喜欢观看“足球、乒乓球、羽毛球”赛事,小乐喜欢观看“篮球、排球”赛事,他们商定采用抽签的方式确定观看的赛事项目,并制作了五张卡片(这些卡片除赛事名称外,其余完全相同)并将卡片背面朝上洗匀后放在桌面上.(1)小乐从五张卡片中随机抽取一张卡片,是他喜欢的赛事的概率是_____.(2)我们常称足球、排球、篮球为“三大球”,小明先从洗匀后的五张卡片中抽取一张卡片,小乐从剩下的卡片中再抽取一张卡片,求他俩抽取的卡片上都是“三大球”中的赛事项目的概率.20. 如图在平面直角坐标系中,的顶点坐标分别是.在()()22221-+⨯-26,113x x x x >-⎧⎪+⎨≥-⎪⎩2a =-2222212111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭ABCD 120A ∠=︒AD 15ABP ∠=︒AB DC =CE BF ∥E F ∠=∠AE DF =ABC ()()()2,3,1,1,3,2A B C -(1)作,使其与关于对称,且点分别与点对应.(2)在(1)的情形中,连接,则的长为______.21. 如图,装有某种液体的工业用桶中放置有一根搅拌棍.工人师傅为了解桶内所装液体的体积,先在搅拌棍所处桶孔位置做好标记点A ,并取出;然后测得搅拌棍接触到液体部分m ,搅拌棍A 到底端D 处的长度为,最后测量出桶的高为,圆桶内壁的底面直径为.已知桶内的液面与桶底面平行,其平面示意图如图2所示.请你根据以上数据,帮工人师傅计算出桶内所装液体的体积(结果保留π)22. 小明同学通过查阅资料发现,声音在空气中传播的速度随气温的变化而变化,几组对应值如下表:气温/0510152025声音在空气中的传播速度/()331334337340343346(1)已知声音在空气中传播速度与气温成一次函数关系,请求出该函数的表达式.(2)若当日气温为,小明观看到炫烂的烟花后才听到声响,求小明与烟花之间的大致距离.23. 阅读使人进步,启智增慧,阅读素养的建立使人终身受益.某学校随机抽取了50名学生寒假期间阅读书本的数量并统计分析,发现学生寒假阅读的书本数最少的有1本,最多的有4本,并根据调查结果绘制了如下不完整的频数分布直方图.的A B C ''' ABC y ,,A B C '''A B C ,,AB 'AB '1BD =1.5m AE 1.2m 1m ℃m /s ()m /s y ()x ℃8℃5s(1)补全频数分布直方图;这50名学生寒假阅读的书本数的中位数是_____本;(2)求抽取的学生寒假阅读书本数的平均数;(3)若该校共有1100名学生,请估算该校学生寒假阅读书本数在3本及以上的人数.24. 如图,在中,,以边为直径的交于点D ,点E 在上,连接,满足,连接.(1)求证:.(2)若,求长.25. 如图,在一个斜坡上架设两个塔柱,(可看作两条竖直的线段),塔柱间挂起的电缆线下垂弧度可以近似看成抛物线的形状.两根塔柱的高度满足,塔柱与之间的水平距离为,且两个塔柱底端点与点的高度差为.以点为坐标原点,为单位长度构建平面直角坐标系.(1)求点,,的坐标.(2)经测量得知:,段所挂电缆线对应的抛物线的形状与抛物线一样,且电缆线距离斜坡面竖直高度至少为时,才符合设计安全要求.请结合所学知识判断上述电缆的架设是否符合安全要求?并说明理由.的ABC AB BC =AB O BC O AD DE ,C ADE ∠=∠BE AC BE ∥tan 25C AB ==,DE AB CD 27m AB CD ==AB CD 60m D B 12m A 1m xOy B C D A C 21100y x =15.5m26. 在平面直角坐标系中,A 为y 轴正半轴上一点,B 为x 轴正半轴上一点,且,连接.(1)如图1,C 为线段上一点,连接,将绕点O 逆时针旋转得到,连接,求的值.(2)如图2,当点C 在x 轴上,点D 位于第二象限时,,且,E 为的中点,连接,试探究线段是否存在最小值?若存在,求出的最小值;若不存在,请说明理由.4OA OB ==AB AB OC OC 90︒OD AD AC AD +90ADC ∠=︒AD CD =AB DE AD DE +AD DE +。
陕西省安康市2020年(春秋版)中考数学二模试卷(I)卷
![陕西省安康市2020年(春秋版)中考数学二模试卷(I)卷](https://img.taocdn.com/s3/m/3dd1243d81c758f5f61f67de.png)
陕西省安康市2020年(春秋版)中考数学二模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·番禺模拟) 下列所给图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分)(2019·河南) 成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A .B .C .D .3. (2分)下列算式中,你认为正确的是().A .B . 1÷ . =lC .D .4. (2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A . 面CDHEB . 面BCEFC . 面ABFGD . 面ADHG5. (2分) (2019八下·长兴期中) 有一组数据:x1 , x2 ,x3…,xn ,它的平均数是,中位数是xi ,众数是xj ,方差是S2 ,则关于另一组数据:7x1-3,7x2-3,7x3-3…,7xn-3的说法正确的是()A . 平均数是7 -3,标准差是7S-3B . 中位数是7xi-3,方差是49S2-9C . 众数是7xi-3,标准差是7SD . 中位数是7xi,方差是7S2-36. (2分)下列计算正确的是()A . a+a2=a3B . a6b÷a2=a3bC . (a﹣b)2=a2﹣b2D . (﹣ab3)2=a2b67. (2分)已知在△ABC中,AB=14,BC=13,tanB= ,则sinA的值为()A .B .C .D .8. (2分) (2018九上·京山期末) 如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=54°,则∠A的度数是()A . 36°B . 33°C . 30°D . 27°9. (2分)二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A . 8B . ﹣10C . ﹣42D . ﹣2410. (2分)(2019·容县模拟) 如图,在中,, .现分别任作的内接矩形,,,设这三个内接矩形的周长分别为,则的值是()A . 6B .C . 12D .二、填空题 (共6题;共6分)11. (1分)(2017·黄州模拟) 若等式(x3﹣2)0=1成立,则x的取值范围是________.12. (1分)(2017·绵阳) 分解因式:8a2﹣2=________.13. (1分)(2020·西安模拟) 菱形的边,,则菱形的面积为________.14. (1分) (2018九上·商南月考) 已知α,β是方程的两实根,则的值为________.15. (1分)(2019·海门模拟) 如图,⊙O的半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为________.16. (1分) (2020九上·泰州月考) 等边三角形ABC和正方形ADEF都内接于⊙O,则AB:AD的值为________.三、解答题 (共9题;共90分)17. (10分) (2020·泰州)(1)计算:(2)解不等式组:18. (5分)先化简,再求值:•,其中x=2+, y=2﹣.19. (10分) (2019八上·乐清开学考) 如图,已知正方形ABCD中,AB=4,点E,F在对角线BD上,AE∥CF.(1)求证:△ABE≌△CDF;(2)若∠ABE=2∠BAE,求DF的长.20. (10分)(2018·南山模拟) 中考即将来临,小王调查了初三年级部分同学在中考后将以何种方式对自己的老师表达感谢,他将调查结果分为如下四类:A类—当面表示感谢、B类—打电话表示感谢、C类—发短信表示感谢、D类—写书信表示感谢.他将调查结果绘制成了如图所示的扇形统计图和条形统计图.请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有4人来自同一班级,其中有2个女生.现准备从他们4人中随机抽出两位同学主持感谢恩师主题班会课,请用树状图或列表法求抽出1男1女的概率.21. (5分)如图,某高楼CD与处地面垂直,要在高楼前的地面A处安装某种射灯,安装后,射灯发出的光线与地面的最大夹角∠DAC为70°,光线与地面的最小夹角∠DAB为35°,要使射灯发光时照射在高楼上的区域宽BC为50米,求A处到高楼的距离AD.(结果精确到0.1米)【参考数据:sin70°=0.94,cos70°=0.34,tan70°=2.75,sin35°=0.57,cos35°=0.82,tan35°=0.70】22. (10分) (2017七下·姜堰期末) 如图,线段AD、BE相交与点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1) ME=BN;(2)ME∥BN.23. (10分)(2017·邢台模拟) 已知,如图,在平面直角坐标系xOy中,正比例函数y= x的图像经过点A,点A的纵坐标为6,反比例函数y= 的图像也经过点A,第一象限内的点B在这个反比例函数的图像上,过点B作BC∥x轴,交y轴于点C,且AC=AB,求:(1)这个反比例函数的解析式;(2)直线AB(一次函数)的表达式.24. (10分)(2014·贵港) 如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.25. (20分) (2018九上·浙江月考) 如图,抛物线y=ax2- x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C(0,-2),已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,记点M到线段BC的距离为d,当d取最大值时,求出此时M点的坐标;(4)若点P是抛物线上一点,点E是直线y=-x+1上的动点,是否存在点P、E,使以点A,点B,点P,点E 为顶点的四边形是平行四边形?若存在,请直接写出点E坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共90分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、25-1、25-2、25-3、25-4、。
陕西省安康市2019-2020学年中考数学二月模拟试卷含解析
![陕西省安康市2019-2020学年中考数学二月模拟试卷含解析](https://img.taocdn.com/s3/m/a4a1b76aaf45b307e9719710.png)
陕西省安康市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于数据:6,3,4,7,6,0,1.下列判断中正确的是()A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是72.已知反比例函数y=8kx-的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<83.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是()A.B.C.D.4.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是()A2cm B.2cm C.3D10cm5.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1086.下列各数是不等式组32123xx+⎧⎨--⎩fp的解是()A.0 B.1-C.2 D.37.下列运算正确的是()A.a2•a4=a8B.2a2+a2=3a4C.a6÷a2=a3D.(ab2)3=a3b6 8.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+99.按一定规律排列的一列数依次为:﹣23,1,﹣107,179、﹣2611、3713…,按此规律,这列数中的第100个数是()A.﹣9997199B.10001199C.10001201D.999720110.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A.4200.5x+-420x=20 B.420x-4200.5x+=20C.4200.5x--420x=20 D.420420200.5x x-=-11.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是()A.若AB=CD,则四边形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;C.若AO COOB OD=,则四边形ABCD一定是矩形;D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.12.计算﹣8+3的结果是()A.﹣11 B.﹣5 C.5 D.11二、填空题:(本大题共6个小题,每小题4分,共24分.)13.出售某种手工艺品,若每个获利x元,一天可售出(8)x-个,则当x=_________元,一天出售该种手工艺品的总利润y最大.14.已知x ay b=⎧⎨=⎩是方程组2325x yx y-=⎧⎨+=⎩的解,则3a﹣b的算术平方根是_____.15.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)16.分解因式:2288a a-+=_______17.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.18.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数; (3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.(6分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+m≠03个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点. (1)直接写出点A 的坐标;(2)过点(03x 轴的直线l 与抛物线G 2交于B ,C 两点. ①当∠BAC =90°时.求抛物线G 2的表达式; ②若60°<∠BAC <120°,直接写出m 的取值范围.21.(6分)现有一次函数y =mx+n 和二次函数y =mx 2+nx+1,其中m≠0,若二次函数y =mx 2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y =mx+n 经过点(2,0),且图象经过第一、三象限.二次函数y =mx 2+nx+1经过点(a ,y 1)和(a+1,y 2),且y 1>y 2,请求出a 的取值范围.若二次函数y =mx 2+nx+1的顶点坐标为A (h ,k )(h≠0),同时二次函数y =x 2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围.22.(8分)先化简,再求值:2441x x x +++÷(31x +﹣x+1),其中x=sin30°+2﹣14. 23.(8分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A ;音乐类记为B ;球类记为C ;其他类记为D .根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.24.(10分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o ①如图1,DCB ∠=o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论; (2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<o o,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明) 25.(10分)已知关于x 的一元二次方程kx 2﹣6x+1=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.26.(12分)某保健品厂每天生产A ,B 两种品牌的保健品共600瓶,A ,B 两种产品每瓶的成本和利润如表,设每天生产A 产品x 瓶,生产这两种产品每天共获利y 元.(1)请求出y 关于x 的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A ,B 两种产品被某经销商全部订购,厂家对A 产品进行让利,每瓶利润降低100x元,厂家如何生产可使每天获利最大?最大利润是多少?A B 成本(元/瓶) 50 35 利润(元/瓶)201527.(12分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C【解析】【分析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是:034667957++++++=,中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.2.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx-的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3.C【解析】【分析】根据主视图的定义判断即可.【详解】解:从正面看一个正方形被分成三部分,两条分别是虚线,故C正确.故选:C.【点睛】此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键. 4.B 【解析】 【分析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高. 【详解】解:设圆锥母线长为Rcm ,则2π=120180Rπ︒⨯︒,解得R=3cm ;设圆锥底面半径为rcm ,则2π=2πr ,解得r=1cm.故选择B. 【点睛】本题考查了圆锥的概念和弧长的计算. 5.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:5300万=53000000=75.310⨯. 故选C. 【点睛】在把一个绝对值较大的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ).6.D 【解析】 【分析】求出不等式组的解集,判断即可. 【详解】32123x x ①②+>⎧⎨-<-⎩, 由①得:x >-1, 由②得:x >2,则不等式组的解集为x >2,即3是不等式组的解, 故选D . 【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键. 7.D 【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断: A 、a 2•a 4=a 6,故此选项错误; B 、2a 2+a 2=3a 2,故此选项错误; C 、a 6÷a 2=a 4,故此选项错误; D 、(ab 2)3=a 3b 6,故此选项正确.. 故选D .考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方. 8.D 【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可. 试题解析:x 2-6x+9=(x-3)2. 故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法. 9.C 【解析】 【分析】根据按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,21n +型;分子为21n +型,可得第100个数为210011000121001201+=⨯+. 【详解】按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,21n +型;分子为21n +型,可得第n 个数为2121n n ++,∴当100n =时,这个数为2211001100012121001201n n ++==+⨯+,故选:C.【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.10.C【解析】【分析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买420x瓶,经过还价,可买4200.5x-瓶.方程可表示为:4200.5x-﹣420x=1.故选C.【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.11.C【解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由AO COBO OD=结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.故选C.12.B【解析】【分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,∴y=(8-x)x,即y=-x2+8x,∴当x=- b82a2-=-=1时,y取得最大值.故答案为:1.14.22.【解析】【分析】灵活运用方程的性质求解即可。
安康市中考数学二模考试试卷
![安康市中考数学二模考试试卷](https://img.taocdn.com/s3/m/3558af5443323968001c9216.png)
安康市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题共16分,每小题2分)第1-8题均有四个选。
正确 (共8题;共16分)1. (2分)下列图形中可以作为一个三棱柱的展开图的是()A .B .C .D .2. (2分) (2017·宿州模拟) 估计的值在()A . 2到3之间B . 3到4之间C . 4到5之间D . 5到6之间3. (2分) (2018七上·郑州期中) 钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A .B .C .D .4. (2分)如图,直线l1//l2 ,则α为()A . 150°B . 140°C . 130°D . 120°5. (2分) (2016八上·岑溪期末) 某工厂现在平均每天比原计划多生产60台机器,现在生产900台机器所需时间与原计划生产750台机器所需时间相同.设原计划平均每天生产x台机器,则可列方程为()A .B .C .D .6. (2分)掷一枚均匀的骰子(正方体),骰子的每个面上分别标有数字1、2、3、4、5、6,则3的倍数朝上的概率为()A .B .C .D .7. (2分)(2017·宝山模拟) 已知非零向量、之间满足 =﹣3 ,下列判断正确的是()A . 的模为3B . 与的模之比为﹣3:1C . 与平行且方向相同D . 与平行且方向相反8. (2分) (2015八下·滦县期中) 如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A . (0,0)B . (,﹣)C . (﹣,﹣)D . (﹣,﹣)二、填空题(本题共16分,每小题2分) (共8题;共16分)9. (2分) (2019八下·番禺期末) 等式成立的条件是________.10. (2分)(﹣)0的平方根是________,的算术平方根是________;16的平方根是________.11. (2分) (2019七上·桐梓期中) 已知x2+3x+5的值是7,则式子x2+3x﹣2的值为________.12. (2分)用来说明命题“n<1,则n2 -1 <0”是假命题的反例可以是________.13. (2分)(2018·重庆) 某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是________个.14. (2分)(2017·营口模拟) 如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为________.15. (2分) (2017八下·扬州期中) 如图,□ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是________.16. (2分)(2017·启东模拟) 如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE 与△ABC的面积之比为________.三、解答题(本题共68分) (共12题;共63分)17. (5分) (2020八上·苏州期末) 计算:|π﹣3|+()2+(﹣1)0.18. (5分) (2017七下·丰台期中) 已知且,求的取值范围.19. (5.0分) (2017八上·伊宁期中) 如图所示,107国道OA和320国道OB在某巿相交于O点,在∠AOB 的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹,写出结论)20. (5.0分)(2017·古田模拟) 已知甲同学手中藏有三张分别标有数字、、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果;(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.21. (5.0分) (2019八上·香洲期末) 如图,在等腰△ABC中,AB=AC ,过点B作BD⊥AB ,过点C作CD⊥BC ,两线相交于点D , AF平分∠BAC交BC于点E ,交BD于点F .(1)若∠BAC=68°,求∠DBC;(2)求证:点F为BD中点;(3)若AC=BD,且CD=3,求四边形ABDC的面积.22. (5.0分)如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.(1)求证:AB=CD;(2)若∠BED=60°,EO=2,求DE﹣AE的值.23. (6分)(2018·阳新模拟) 如图1,已知(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B 坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.(1)如图2,连结BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.24. (6分) (2016七上·宁德期末) 为了解某中学男生的身高情况,随机抽取若干名男生进行身高测量,将所得到的数据整理后,画出频数分布直方图(如图),图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名男生测量身高?(2)身高在哪个范围内的男生人数最多?(答出是第几小组即可)(3)若该中学有300名男生,请估计身高为170cm及170cm以上的人数.25. (6分)已知抛物线y=(x﹣1)2﹣1.(1)该抛物线的对称轴是________,顶点坐标________;(2)选取适当的数据填入下表,并在图中的直角坐标系内描点画出该抛物线的图象;x……y……(3)根据图象,直接写出当y<0时,x的取值范围.26. (6分) (2019九上·綦江期末) 如图,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点.对称轴为直线,点在抛物线上.(1)求直线的解析式;(2)为直线下方抛物线上的一点,连接、.当的面积最大时,在直线上取一点,过作轴的垂线,垂足为点,连接、.若时,求的值;(3)将抛物线沿轴正方向平移得到新抛物线,经过原点.与轴的另一个交点为.设是抛物线上任意一点,点在直线上,能否成为以点为直角顶点的等腰直角三角形?若能,直接写出点的坐标.若不能,请说明理由.27. (2分) (2017九上·婺源期末) 如图,△ABC的顶点都在方格线的交点(格点)上.(1)①将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′.②将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″.(2)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是________.28. (7.0分)(2017·新吴模拟) 如图,A(0,2),B(1,0),点C为线段AB的中点,将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)若该抛物线经过原点O,且a=﹣,求该抛物线的解析式;(2)在(1)的条件下,点P(m,n)在抛物线上,且∠POB锐角,满足∠POB+∠BCD<90°,求m的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选。
陕西省安康市数学中考二模试卷
![陕西省安康市数学中考二模试卷](https://img.taocdn.com/s3/m/aa123dc76edb6f1aff001ff0.png)
陕西省安康市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)计算:(﹣5)×(﹣4)×(﹣6)×(﹣5)的结果是()A . 600B . ﹣600C . 20D . -202. (2分)钓鱼岛是我国的固有领土.这段时间,钓鱼岛事件成了各大新闻网站的热点话题.某天,小芳在“百度”搜索引擎中输入“钓鱼岛事件最新进展”,能搜索到相关结果约7050000个,7050000这个数用科学记数法表示为()A . 7.05×105B . 7.05×106C . 0.705×106D . 0.705×1073. (2分)某几何体的三视图如图所示,该几何体是()A .B .C .D .4. (2分)某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2005. (2分) (2018七上·大庆期中) 汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A .B .C .D .6. (2分)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要()位.A . 3位B . 2位C . 9位D . 10位7. (2分)如图是一个圆形的街心花园,A、B、C是圆周上的三个娱乐点,且A、B、C三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的,,三条道路,一天早晨,有甲、乙两位晨练者同时从A点出发,其中甲沿着圆走回原处A ,乙沿着,,也走回原处,假设他们行走的速度相同,则下列结论正确的是().A . 甲先回到AB . 乙先回到AC . 同时回到AD . 无法确定8. (2分)若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A . 16B . 17C . 16或17D . 159. (2分) (2020九上·昌平期末) 已知抛物线y=ax2+bx+c的图象如图所示,则a、b、c的符号为()A . a>0,b>0,c>0B . a>0,b>0,c=0C . a>0,b<0,c=0D . a>0,b<0,c<010. (2分)(2016·武汉) 如图,在等腰Rt△ABC中,AC=BC=2 ,点P在以斜边AB为直径的半圆上,M 为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A .B . πC . 2D . 2二、填空题 (共6题;共6分)11. (1分)分解因式4b2﹣a2=________12. (1分) (2020八下·泗辖月考) 运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是________.13. (1分)(2017·鄂州) 一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________.14. (1分)如图,已知点A、B为⊙O上的两点,且∠A=40°,直线l经过圆心O,与AB相交于点P,若直线l绕点O旋转,当△OBP为等腰三角形时,∠AOP=________.15. (1分)(2020·商城模拟) 如图,将长方形沿折叠,点C落在点Q处,点D落在AB边上的点E处.若,则的等于________ .16. (1分) (2020八下·哈尔滨月考) 如图,正方形ABCD ,点E在CD上,连接AE , BD ,点G是AE中点,过点G作FH⊥AE , FH分别交AD , BC于点F , H , FH与BD交于点K ,且HK=2FG ,若EG=,则线段AF的长为________.三、解答题 (共9题;共85分)17. (10分)(2014·防城港) 计算:(﹣2)2﹣• +(sin60°﹣π)0 .18. (10分)(2020·路北模拟) 如图,在中,,点从点出发沿向点运动,点从点出发沿向点运动,点和点同时出发,速度相同,到达点或点后运动停止.(1)求证:;(2)若,求的度数;(3)若的外心在其内部时,直接写出的取值范围.19. (10分)(2018·黄梅模拟) 某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有________人,在扇形统计图中,“乒乓球”的百分比为________%,如果学校有800名学生,估计全校学生中有________人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20. (10分)(2020·绥化)(1)如图,已知线段和点O ,利用直尺和圆规作,使点O是的内心(不写作法,保留作图痕迹);(2)在所画的中,若,则的内切圆半径是________.21. (10分) (2016九上·自贡期中) 已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.22. (10分) (2018九上·宜昌期中) 如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1) P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.23. (10分)将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子;(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.24. (10分) (2020七下·越秀期中) 如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b , 0)满足.D为线段AC的中点.在平面直角坐标系中,以任意两点P(x1 , y1)、Q(x2 , y2)为端点的线段中点坐标为,.(1)则A点的坐标为________;点C的坐标为________.D点的坐标为________.(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t ,使S△ODP=S△ODQ ,若存在,请求出t的值;若不存在,请说明理由.(3)点F是线段AC上一点,满足∠FOC=∠F CO ,点G是第二象限中一点,连OG ,使得∠AOG=∠AOF .点E是线段OA上一动点,连CE交OF于点H ,当点E在线段OA上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.25. (5分)如图,在平面直角坐标系中,点,的坐标分别为,,将线段先向上平移个单位长度,再向右平移个单位长度,得到线段,连接,,构成平行四边形 .(1)请写出点的坐标为________,点的坐标为________, ________;(2)点在轴上,且,求出点的坐标;(3)如图,点是线段上任意一个点(不与、重合),连接、,试探索、、之间的关系,并证明你的结论.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共85分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
2023年陕西省安康市汉阴县中考二模数学试题
![2023年陕西省安康市汉阴县中考二模数学试题](https://img.taocdn.com/s3/m/c21c79fe4128915f804d2b160b4e767f5acf8032.png)
2023年陕西省安康市汉阴县中考二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,点A 、B 在数轴上对应的数分别是2-和3,则AB 的长为()A .1B .5C .2D .32.小丽将“有”“志”“者”“事”“竟”“成”六个字分别写在一个正方体的表面上,如图是它的一种展开图,则在原正方体中,与“志”字所在面相对的面上的汉字是()A .有B .事C .竟D .成3.如图,已知直线a b ∥,124∠=︒,266∠=︒,则A ∠的度数为()A .42°B .44°C .46°D .48°4.计算()23a b ab ⋅的结果是()A .52a b B .43a b C .33a b D .53a b 5.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点E 为AD 的中点,若2OE =,则菱形ABCD 的周长是()A .8B .12C .16D .206.如图,一次函数21y x =+的图象与y kx b =+的图象相交于点A ,则方程组21x y kx y b-=-⎧⎨-=-⎩A .31x y =⎧⎨=⎩B .13x y =⎧⎨=⎩7.如图,四边形ABCD 是O 的内接四边形,则ABC ∠的度数是()A .100︒B .110︒8.已知二次函数224y x bx =--的值为()A .52B .2二、填空题9.比较大小∶13-( 3.14π-10.如图,一个正方形剪去四个角后形成一个边长为边长为.11.高斯被认为是历史上最杰出的数学家之一,享有义的计算式,已知[]x 表示不超过的结果为.三、解答题14.计算:227-+15.求不等式2 4 x-16.解方程:22 4x-17.尺规作图:如图,已知点作法,保留作图痕迹)18.如图,在四边形ABCD中,19.对于任意一个三位正整数,(1)甲坐在①号座位上的概率是(2)用列表法或画树状图的方法,求甲、乙两人恰好相邻而坐的概率.21.兴教寺塔(图1)位于陕西省西安市长安区少陵原畔兴教寺内,兴教寺塔并非单指玄奘舍利塔,而是兴教寺唯识宗祖师玄奘及其弟子窥基和圆测的三座灵塔的总称,现存最古老的楼阁式塔.在一次综合实践活动中,了如下测量.如图2,在C 处测得塔顶端()21m 21m CD =到D 处有一棵树,在距地面端B 的仰角为30︒,已知DE 该小组计算玄奘舍利塔的高度22.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h 是指距d 的一次函数.下表是测得的指距与身高的一组数据:指距(cm)d 20212223身高)(cm h 160169178187(2)①小明爸爸的指距是②若小明身高为142cm 23.【问题背景】某市教体局为全面了解学生的体质情况,从某校九年级学生中随机抽取20%的学生进行体质监测;【评分标准】《中学生体质健康标准》80分~89分为良好;图表:【图表信息】等级频数频率不及格40.08及格180.36良好a 0.24优秀16(1)填空:=a _______,b =_________;(2)求参加本次测试学生的平均成绩;(3)请估计该校九年级学生体质未达到“良好24.如图,AB 为O 的直径,DE 与O 相切于点连接OE BE ,.(1)求证:BE 平分ABC ∠;(2)若106AB BC ==,,求CD 的长.25.陕西大樱桃发展十分迅速,后来居上,成为我国三大樱桃产地之一,其中,铜川大樱桃最为出名,先后荣获“国家地理标志保护产品”“中国优质甜樱桃之都”等殊荣,每到樱桃成熟的季节,就会有大批的水果商收购樱桃.今年某村在销售前对本地市场进行调查发现:当批发价为2.4万元/吨时,每天可售出13吨,每吨每涨0.2万元,每天的销量将减少1吨,据测算,每吨平均投入成本1万元,为了抢占市场,薄利多销,该村产业合作社决定,批发价不低于2.4万元/吨,不高于4.5万元/吨.设樱桃的批发价为x (万元/吨),每天获得的利润为y (万元),请解答下列问题:(1)用含x 的代数式表示每天樱桃的销售量为_______(吨),并求出每天获得的利润y (万元)与批发价x (万元/吨)之间的函数关系式;(2)若该村每天批发樱桃要盈利15万元,求樱桃的批发价应定为多少万元/吨?(3)当樱桃的批发价定为多少万元时,每天所获的利润最大,并求出最大利润.26.【定义新知】如图1,将矩形纸片ABCD 沿BE 折叠,点A 的对称点F 落在BC 边上,再将纸片沿CE 折叠,点D 的对称点也与F 重合,折叠后的两个三角形拼合成一个三角形(BCE ),这个三角形称为叠合三角形.类似地,对多边形进行折叠,若折叠后的图形恰好可以拼合成一个无缝隙、无重叠的矩形,则这样的矩形称为叠合矩形.(1)图1中叠合BCE 的底边BC 与高EF 的长度之比为_______;(2)将ABCD Y 纸片按图2中的方式折叠成一个叠合矩形MNPQ ,若AD =13,MN =5,求叠合矩形MNPQ 的面积;【问题解决】(3)已知四边形ABCD 纸片是一个直角梯形,满足AB CD ,AB BC ⊥,AB 点F 为BC 的中点,EF ⊥BC ,小明把该纸片折叠,得到叠合正方形.①如图3,若线段EF 是其中的一条折痕,请你在图中画出叠合正方形的示意图,并求出AB 和CD 的长;②如图4,若线段EF 是叠合正方形的其中一条对角线,请你在图中画出叠合正方形的示意图,并求出此时AB和CD的长.。
安康市中考二模数学考试试卷
![安康市中考二模数学考试试卷](https://img.taocdn.com/s3/m/4cd854a27fd5360cbb1adb48.png)
安康市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)实数7的相反数是()A .B . -C . -7D . 72. (2分)(2018·宁波) 2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕。
本次博览会为期四天,参观总人数超55万人次.其中55万用科学记数法表示为()A . 0.55×106B . 5.5×105C . 5.5×104D . 0.55×1043. (2分)(2019·大连) 计算的结果是()A .B .C .D .4. (2分)(2019·龙湾模拟) 如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是()A .B .C .D .5. (2分)已知三角形的三边长分别为1,2,x,则x的取值范围在数轴上表示为()A .B .C .D .6. (2分) (2020九上·秦淮期末) 某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()操作组管理组研发组日工资(元/人)260280300人数(人)444A . 团队平均日工资不变B . 团队日工资的方差不变C . 团队日工资的中位数不变D . 团队日工资的极差不变7. (2分)关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值是()A . 1B . -1C . 1或-1D . -1或08. (2分) (2019九上·天津期中) 将抛物线y=-3x2平移,得到抛物线y=-3(x-1)2-2,下列平移方式中,正确的是()A . 先向左平移1个单位,再向上平移2个单位B . 先向左平移1个单位,再向下平移2个单位C . 先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位9. (2分)(2020·金东模拟) 如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A,D分别落在点A',D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,的值为()A .B .C .D .10. (2分) (2016九上·路南期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)若点(x1 , y1),(x2 , y2)在图象上,当x2>x1>0时,y2>y1;(2)当x<﹣1时,y>0;(3)4a+2b+c>0;(4)x=3是关于x方程ax2+bx+c=0的一个根,其中正确的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)11. (1分)(2018·丹棱模拟) 分解因式: ________.12. (1分)(2012·北海) 在函数y= 中,自变量x的取值范围是________.13. (1分)(2019·温州模拟) 如图,四边形ABCD内接于半径为2的⊙O,E为CD延长线上一点.若∠ADE=120°,则劣弧AC的长为________.14. (1分)如图,AC为正方形ABCD的对角线,延长AB到E,使AE=AC,以AC为一边作菱形AEFC,若菱形的面积为,则正方形边长________.15. (1分)如图,已知点A在反比例函数y=(x<0)的图象上,AD∥x轴,AB∥y轴,点B在反比例函数y=(x<0)的图象上,过点B作BC∥x轴,交y轴于点C,若四边形ABCD的面积为8,则k的值为________16. (1分) (2017九上·宁县期中) 如图,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).17. (1分) (2018九上·建平期末) 如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是________m.18. (1分) (2020九下·中卫月考) 如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为________ .三、解答题 (共8题;共67分)19. (10分)(2017·邗江模拟)(1) +()﹣1﹣2cos60°+(2﹣π)0(2)解不等式组.20. (5分)(2017·景德镇模拟) 化简:(x﹣4+ )÷(1﹣),并从0,1,2,中直接选择一个合适的数代入x求值.21. (5分)小明上超市买饮料,他看中了盒装牛奶和冰茶,他买了3盒牛奶和4瓶冰茶,共花了29元,已知一盒牛奶和一瓶冰茶价格和为8.5元.一盒牛奶和一瓶冰茶分别需要多少元?22. (10分) (2019八下·余姚期末) 如图,直线y=3x与反比例函数y= (k≠0)的图象交于A(1,m)和点B。
陕西省安康市九年级数学中考二模试卷
![陕西省安康市九年级数学中考二模试卷](https://img.taocdn.com/s3/m/5158c4bfa45177232e60a24f.png)
陕西省安康市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020八下·广州期中) 实数的值是()A .B . 8C .D . 42. (2分)(2020·黔东南州) 下列运算正确的是()A . (x+y)2=x2+y2B . x3+x4=x7C . x3•x2=x6D . (﹣3x)2=9x23. (2分)茂名市人口大约有680万人,用科学记数法可表示为()A . 6.8×102人B . 6.8×103人C . 6.8×106人D . 6.8×107人4. (2分) (2019七上·沙雅期末) 如图中几何体从正面看能得到A .B .C .D .5. (2分) (2020八下·金华期中) 若一组数据x1+1,x2+1,…,xn+1的平均数为16,方差为2,则另一组数据x1+2,x2+2,…,xn+2的平均数和方差分别为()A . 17,2B . 17,3C . 16,2D . 16,36. (2分) (2017八下·桐乡期中) 在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2 ,设金色纸边的宽为xcm,那么x满足的方程(化为一般形式)是()A .B .C .D .7. (2分)(2020·哈尔滨模拟) 如图,在平行四边形ABCD中,点E在 CD延长线上,点 H在 CB延长线上,连接 AC,EH分别交AD,AC、AB于点 F、K、G,则下列结论错误的是()A .B .C .D .8. (2分)如图,在△ABC中,AB=AC=5,P是BC边上除B、C点外的任意一点,则代数式AP2+PB•PC等于()A . 25B . 15C . 20D . 30二、填空题 (共8题;共11分)9. (1分) (2019七上·保山月考) 已知5x+7与2﹣3x互为相反数,则x=________.10. (1分)(2019·温州模拟) 因式分解:4-9x2=________.11. (1分)(2020·贵州模拟) 已知函数,则的取值范围是________ .12. (2分) (2015九上·重庆期末) 如图,若四边形ABCD、四边形GFED都是正方形,AD=4,,当正方形GFED绕D旋转到如图的位置,点F在边AD上,延长CE交AG于H,交AD于M.则CM的长为________.13. (1分)(2017·黄冈模拟) 如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为________(结果用含π的式子表示).14. (1分) (2016七下·白银期中) 已知变量y与x的关系式是,则当x=2时,y=________.15. (2分)(2019·青羊模拟) 如图,△ABC内接于⊙O.AB为⊙O的直径,BC=3,AB=5,D、E分别是边AB、BC上的两个动点(不与端点A、B、C重合),将△BDE沿DE折叠,点B的对应点B′恰好落在线段AC上(包含端点A、C),若△ADB′为等腰三角形,则AD的长为________.16. (2分)(2019·琼中模拟) 如图,在△ABC中,DE是AC的垂直平分线且分别交BC , AC于点D和E ,∠B=60°,∠C=25°,则∠BAD的度数为________.三、解答题 (共11题;共68分)17. (5分)(2018·扬州) 计算或化简.(1);(2) .18. (5分) (2020七上·黄浦期末) 计算:19. (6分) (2019九上·高邮期末) 为积极配合我市文明城市创建,居委会组织了两个检查组,分别对辖区内新华园、清华园、德才园、御花园四个小区“垃圾分类”和“违规停车”的情况进行抽查,每个检查组随机抽取辖区内的一个小区进行检查.(1)“违规停车”检查组抽到新华园小区的概率为;(2)求两个组恰好同时抽到御花园小区进行检查的概率.20. (5分)(2019·成都)(1)计算: .(2)解不等式组:21. (11分)(2019·乌鲁木齐模拟) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.22. (10分)已知矩形ABCD中,AF为∠DAC的角平分线,CP⊥AF于点F,且交AD的延长线于P.连接BF交对角线AC于点O.(1)若BC=4,tan∠ACB= ,求S△DCP的值;(2)求证:∠AOB=3∠PAF.23. (2分)(2020·恩施) 某校足球队需购买A、B两种品牌的足球.已知品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?24. (6分) (2018九上·扬州期中) 如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.25. (2分)(2017·温州模拟) 如图1,直线y=﹣ x+8,与x轴、y轴分别交于点A、C,以AC为对角线作矩形OABC,点P、Q分别为射线OC、射线AC上的动点,且有AQ=2CP,连结PQ,设点P的坐标为P(0,t).(1)求点B的坐标.(2)若t=1时,连接BQ,求△ABQ的面积.(3)如图2,以PQ为直径作⊙I,记⊙I与射线AC的另一个交点为E.①若 = ,求此时t的值.②若圆心I在△ABC内部(不包含边上),则此时t的取值范围为是多少?26. (10分) (2020九下·龙江期中) 综合与探究已知:p、q是方程的两个实数根,且,抛物线的图像经过点、.(1)求这个抛物线的解析式;(2)设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和的面积;(3) P是线段OC上的一点,过点P作轴,与抛物线交于H点,若直线BC把分成面积之比为的两部分,请直接写出P点的坐标________;(4)若点M在直线CB上,点N在平面上,直线CB上是否存在点M,使以点C、点D、点M、点N为顶点的四边形为菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.27. (6分)(2017·岳麓模拟) 如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共68分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、26-4、27-1、27-2、27-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省安康市中考数学二模复习卷(一)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)(2019·重庆模拟) 在﹣3、、、3四个实数中,最小的数是()
A . ﹣3
B . ﹣
C .
D . 3
2. (2分)(2020·潍坊) 今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()
A .
B .
C .
D .
3. (2分) (2019七下·抚州期末) 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()
A . 32°
B . 68°
C . 60°
D . 58°
4. (2分)如图是由四个相同的小正方体组成的立体图形,它的左视图为()
A .
B .
C .
D .
5. (2分)如图是赛车跑道的一部分路段,已知AB∥CD,则∠A=110°, ∠E=80°,则∠D的度数为()
A . 40°
B . 30°
C . 20°
D . 10°
6. (2分)(2018·伊春) 如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB= BC=1,则下列结论:
①∠CAD=30°②BD= ③S平行四边形ABCD=AB•AC④OE= AD⑤S△APO= ,正确的个数是()
A . 2
B . 3
C . 4
D . 5
7. (2分)(2018·平南模拟) 如图,将函数y= (x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()
A .
B .
C .
D .
8. (2分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t
变化的函数图象大致是()
A .
B .
C .
D .
9. (2分)(2018·平南模拟) 如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()
A . 120°
B . 135°
C . 140°
D . 150°
10. (2分)(2019·枣庄模拟) 新能源汽车环保节能,越来越受到消费者的喜爱。
各种品牌相继投放市场。
一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元。
销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()
A .
B .
C .
D .
11. (2分)(2017·深圳模拟) 如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()
⑴DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4)S△AOE= SABCD .
A . 1个
B . 2个
C . 3个
D . 4个
12. (2分)对于函数y=﹣,下列说法错误的是()
A . 它的图象分布在第二、四象限
B . 它的图象与直线y=x无交点
C . 当x>0时,y的值随x的增大而增大
D . 当x<0时,y的值随x的增大而减小
二、填空题 (共4题;共4分)
13. (1分) (2018八上·天台月考) 把多项式3x2﹣12因式分解的结果是________.
14. (1分) (2018八上·汕头期中) 如图,在长方形纸片ABCD中,AB=12,BC=5,点E在边AB上,将△DEA 沿DE折叠,使点A落在对角线BD上的点A'处,则AE的长为________。
15. (1分) (2020九上·滨海月考) 如图,四边形ABCD为圆的内接四边形,DA,CB的延长线交于点P,∠P =30°,∠ABC=100°,则∠C= ________.
16. (1分)(2018·绍兴模拟) 如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为________.
三、解答题 (共7题;共66分)
17. (5分) (2018七上·凉州期中) 计算
① ﹣|﹣1 |﹣(+2 )﹣(﹣2.75)
②﹣6²+3× ﹣(﹣4)×5
18. (5分)(2020·连山模拟) 先化简,再求值:,其中
19. (10分)(2017·长春模拟) 将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.
(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.
(2)摸出的两个球上数字之和为多少时的概率最大?
20. (10分)(2019·平江模拟) 如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y= 的图象在第一象限内交于点C(1,n).
(1)求一次函数y=kx+2与反比例函数y= 的表达式;
(2)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y= 交于P、Q两点,且PQ=2QD,求点D的坐标.
21. (10分) (2019七下·新华期末) 一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.
(1)求生产1个甲种零件,1个乙种零件分别获利多少元?
(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?
22. (11分) (2016九上·萧山月考) 如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A (0,2),B(4,2)C(6,0),解答下列问题:
(1)请在图中确定该圆弧所在圆心D点的位置,则D点坐标为________ ;
(2)连结AD,CD,求⊙D的半径(结果保留根号);
(3)求扇形DAC的面积. (结果保留π)
23. (15分)(2019·白山模拟) 如图,在平面直角坐标系中,把抛物线先向右平移1个单位长度,再向下平移4个单位长度,得到抛物线,所得抛物线与x轴交于A、B两点(点A在点B的左边),
与y轴交于点C,顶点为M.
(1)写出h、k的值及点A、B的坐标;
(2)判断的形状,并计算其面积;
(3)点P是抛物线上的一动点,在y轴上存在点Q,使以点A、B、P、Q为顶点组成的四边形是平行四边形,求点P的坐标.
参考答案一、选择题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共7题;共66分)
答案:17-1、
考点:
解析:
答案:18-1、
考点:
解析:
答案:19-1、
答案:19-2、
考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:
答案:22-1、答案:22-2、
答案:22-3、考点:
解析:
答案:23-1、
答案:23-2、
答案:23-3、考点:
解析:。