第11讲 互补输出级
第13讲 互补输出级讲解
截止状态。
(b)
将两个电路合并,即共用负载RL和输入端
+Vcc
构成互补输出极
T1
T1为NPN管,T2为PNP管
ui
T2
iL RL
uo 要求:两只管子参数相同,
特性对称。
-Vcc
二、对输出级的要求
互补输出级是直接耦合的功率放大电路。 对输出级的要求:带负载能力强;直流功耗小; 负载电阻上无直流功耗; 射极输出形式 最大不失真阻无穷大
(1)化整为零,识别电路
第一级:双端输入单端输出的差放 注意是倒置 第二级:以复合管为放大管的共射放大电路 第三级:准互补输出级
(2)基本性能
输入电阻为2rbe、电压放大倍数较大、输出电阻 很小、最大不失真输出电压的峰值接近电源电压。
(3)判断电路的同相输入端和反相输入端
第十三讲 互补输出级
第十三讲 互补输出级
一、互补输出极的由来 二、对输出级的要求 三、基本电路 四、消除交越失真的互补输出级 五、准互补输出级 六、直接耦合多级放大电路
一、互补输出极的由来
差分放大电路作为输入级:可以抑制温漂。
输出级:要求输出电阻小 共集放大电路
+Vcc
-Vcc
+ u_ i
uo
RL
同相
输入端
+
ui1与u0同相
+
-
+
反相 -
+
输入端
接法 共射 共集 共基
输入 b b e
输出 c e c
相位 反相 同相 同相
整个电路可等 效为一个双端输 入单端输出的差 分放大电路。
(4)交流等效电路
可估算低 频小信号下 的电压放大 倍数、输入 电阻、输出 电阻等。
mos管的单元放大电路 辅导讲义
2.交流通路和小信号等效电路
图1.13电容负载源极跟随器交流小信号等效电路图
1.3.2单级共漏放大电路的主要关系式和参数
1.输出电压与输入电压之间的关系(说明详细推导过程,画出二者之间的关系曲线并进行分析);
电路的直流传输特性曲线如图1.14所示。当输入电压很低时,M1管关断,偏置电流为0,输出电平也为0.当M1栅极电压上升,M2进入线性区,偏置电流快速增大。当M1和M2都进人饱和区后,随着M1栅极电平的上升,因为漏极电流基本不变,所以M1源极电平跟着上升,这就是电压跟随效应。由于M2管的输出阻抗有限,所以即使在饱和区,漏极电流ID也将随My管栅极电压的上升而有所增加。而M1管的背栅效应将起到和M2管的沟道长度调制效应相反的作用,在M1管栅极电压上升时,使漏极电流下降。总的来说,由于两种效应的存在,使得源极跟随器的直流电压跟随效果受到影响。而且为了使两个MOS管都工作在饱和区,电路输入和输出直流电平的幅度范围都有一定的限制。
1.2.2单级共栅放大电路的主要关系式和参数8
1.3单级共漏放大电路11
1.3.1单级共漏放大电路组成和原理11
1.3.2单级共漏放大电路的主要关系式和参数12
2其它形式的MOS管放大电路14
2.1源极反馈的共源放大电路14
2.1.1电路组成和原理14
2.1.2主要关系式和参数15
2.1.3源极反馈的共源放大电路的特点和应用18
源极跟随器的电路图如图1.12所示,其中NMOS管M1是输入管,信号从栅极输入,从源极输出,漏极是公共交流地,所以也叫做共漏放大器。在使用P衬底的MOS工艺中,所有NMOS管的衬底都接在最低电位。所以源极跟随器的衬底电位低于源极的电位,将会出现背栅效应。M1管源极下的M2管作为电流源,为M1提供一直流电流通路。
《互补输出级》课件
contents
目录
• 互补输出级简介 • 互补输出级的性能分析 • 互补输出级的实际应用 • 互补输出级的优化与改进 • 互补输出级的发展趋势与展望
01
互补输出级简介
定义与特点
定义
互补输出级是一种电子放大电路,用 于将前级电路的信号放大并输出到负 载。
特点
具有高输出功率、低输出阻抗、大动 态范围和低失真等特点,广泛应用于 音频放大器和功率放大器中。
选择适当的电阻、电容、电感等元件参数,以减小失真度。
优化电路结构
通过改进电路结构,如采用负反馈或正反馈,来减小失真度。
调整工作点
适当调整晶体管的工作点,可以减小失真度,提高输出信号的质量 。
提高频率响应
选择适当的元件参数
01
选择适当的电阻、电容、电感等元件参数,以提高频率响应。
采用适当的滤波器
02
新型互补输出级的开发
为了实现更高的性能,新型互补输出级的开发需要综合考虑电路设计、材料选择、制程工艺等多个方 面。同时,还需要借助先进的仿真和测试工具,以确保设计的可行性和可靠性。
互补输出级与其他电路的集成与优化
互补输出级与数字电路的 集成
互补输出级与数字电路的集成可以实现信号 的高速传输和处理,提高系统的整体性能。 为了实现高效的集成,需要解决不同电路之 间的接口和匹配问题,以确保信号的稳定传 输。
频率响应
总结词
频率响应描述了互补输出级在不同频率下的性能表现。
详细描述
频率响应是指输出信号的幅度随频率变化的特性。理想情况下,频率响应应该平 坦且宽广,以保证在音频或射频范围内都能获得良好的性能表现。频率响应受到 电路元件的参数和配置的影响。
失真度
《可编程逻辑器件》PPT课件
13
2) 与、或全编程: 代表器件是FPLA(Field Programmable Logic
Array) 3)与编程、或固定: 代表器件PAL(Programmable Array Logic) 和GAL(Generic Array Logic) 、EPLD、FPGA (Field Programmable Gate Array )。
2021/7/10
35
GAL16V8逻辑图及引脚图
1
0
8
16
24
31
CK
0
19
OLM C
2
( 19)
8
18
OLM C
3
( 18)
16
4
17 OLM C ( 17)
24
16
5
OLM C ( 16)
可编程逻辑器件PLD
LDPLD (低密度 PLD)
HDPLD (高密度PLD)
PROM FPLA PAL GAL EPLD iSP FPGA
2021/7/10
16
8.2 现场可编程逻辑阵列(FPLA)
组合电路和时序电路结构的通用形式
A0~An-1
W0 D0
W(2n-1) Dm
2021/7/10
17
32
卡诺图化简:
YL 0 B A
00 DC
00 1 01 1
01 11 10
1 1 11
11
10
YL 1
BA 00
01
11 10
DC
00
01
11
11
10 1 1
1
YL 2
BA 00
01
DC
00
光电编码器原理讲解
光电编码器原理及应用电路1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
74ls74 锁存器
1个用或非门接成非门而组成的锁存器电路如图7.1.1-1(c)所示,如果 将图(c)中的2个或非门交叉耦合,画成如图(d)所示形式,并将或非门的 2个输入端分开且令R端和S端皆为低电平0,则图(d)与图(c)是一样的,
仍是1个锁存器电路,同时,我们还可以通过改变R、S的状态,改变电 路的状态。比如,现在Q=1,如果R端变为高电平而S保持低电平不变, 则输出Q就将变为低电平0,即使R端重新回到低电平,Q仍将保持低电 平不变。我们把用R、S信号改变电路状态的操作称为触发,因而,锁存 器也叫做触发器。
图7.1.1-3 用与非门构成的基本RS触发器 (a)电路 (b)低电平触发的RS-触发器的电路符号
7.1.2 同步RS触发器
基本RS触发器实现了状态锁存并能用触发信号改变状态,从而使电 路具有记忆功能。但是有3个问题需要解决,第一,不能与系统的其它 部分同步工作;第二,R、S不能同时为1;第三,怕干扰。
这样我们就可以用锁存器保存数字0个用或非门接成非门而组成的锁存器电路如图7111c所示如果将图c中的2个或非门交叉耦合画成如图d所示形式并将或非门的2个输入端分开且令r端皆为低电平0则图d与图c是一样的仍是1个锁存器电路同时我们还可以通过改变123rs的状态改变电路的状态
第三部分 时序逻辑电路
导读:
在t5~t6期间,S=0、R=0,触发器保持原状态0不变(图中标注为“保 持0”)。
互补输出级
最大输出电压 ( VCC U CES ) 两只管子交替工作,两路电源交替供电, 双向跟随。
4、交越失真
+ +
开启电压
信号在零附近两 只管子均截止
信号在零附近两 只管子均截止
当输入电压Ui<开启电压Uon时, T1 和T2均截至,输出电压Uo为0,出现失真,称为 截至失真, 解决办法,设置合适的静态工作点
2、例题
动态电阻无穷大
(1)化整为零,识别电路
第一级:双端输入单端输出的差放 第二级:以复合管为放大管的共射放大电路 第三级:准互补输出级
(2)基本性能
输入电阻为2rbe、电压放大倍数较大、输出电阻 很小、最大不失真输出电压的峰值接近电源电压。
(3)判断电路的同相输入端和反相输入端
+
同相 输入端
二、基本电路
1、特征:T1(NPN)、T2(PNP)特性理想对称。 2、静态分析
静态时,Ui=0,Uo=0 T1、T2均截止,UB= UE=0
理想化特性
3、动态分析
ui正半周,电流通路为 +VCC→T1→RL→地,
+ +
uo = ui
ui负半周,电流通路为
地→ RL → T2 → -VCC, uo = ui
一、对输出级的要求
对输出级的要求:带负载能力强;直流功耗小; 负载电阻上无直流功耗; 射极输出形式 最大不失真输出电压最大。
静态工作电流小 双电源供电时Uom的峰 值接近电源电压。 单电源供电Uom的峰值 接近二分之一电源电压。 输入为零时输出为零
双向跟随互补输出级可以满足上述要求 互补输出级是直接耦合的功率放大电路。
三、消除交越失真的互补输出级
静态时,图中红线所示直流电流, 在T1和T2的基极间产生电压
互补功率输出级
03
CATALOGUE
互补功率输出级的性能分析
输出够提供较高的输出功率,满足各种应用需 求。
效率
通过优化设计和合理匹配元件参数,可以提高输出级的效率 ,降低能耗。
稳定性分析
温度稳定性
互补功率输出级受温度影响较小,可以在较宽的温度范围内保持稳定的性能。
负载稳定性
THANKS
感谢观看
在通信系统中的应用
发射机
互补功率输出级在通信发射机中用于将信号放大并传输到天线, 实现信号的有效发送。
接收机
在通信接收机中,互补功率输出级用于将微弱的信号放大,以便 进一步处理和恢复原始信息。
无线通信模块
无线通信模块中的互补功率输出级能够提供稳定的功率输出,确 保信号传输的可靠性和稳定性。
在电力电子系统中的应用
电路组成
输入级
接收信号并将其放大,为 整个放大器提供合适的输 入信号。
驱动级
将输入级放大的信号进一 步放大,为输出级提供足 够的驱动功率。
输出级
将驱动级放大的信号进行 功率放大,以驱动负载。
电路元件的选择与计算
元件参数
根据电路设计要求,选择合适的 元件参数,如电阻、电容、电感
等。
元件值计算
根据电路原理和设计要求,计算元 件的值,以确保电路的正常运行。
未来发展方向与挑战
高效能与小型化
随着电力电子技术的不断发展,互补功率输出级需要进一 步提高能效,同时减小体积和重量,以满足日益增长的高 密度集成需求。
可靠性问题
随着工作频率的提高和开关速度的加快,互补功率输出级 的可靠性问题愈发突出,需要加强可靠性设计和寿命评估 。
集成化与模块化
为了简化系统设计和降低成本,互补功率输出级需要向集 成化和模块化方向发展,同时需要解决多芯片模块的热管 理、电磁兼容等问题。
九年级化学物质性质的探究(整理2019年11月)
用什么方法才能了解金属铜的物理性质 与 化学性质呢?
研究物质物理化学性质的方法:
1、物理性质用观察法和物理测定法进行探究。 2、化学性质用化学实验探究法进行探究。
用化学实验法对铜的化学性质进行探究 一、观察与问题 铜片在空气中加热后有什么变化?变黑的 是什么物质?
二:假设与猜想
A 可能是烟灰; B 可能是铜与氧气反应生成的氧化铜
物理性质
化学性质
颜色、状态、气味、 毒性、氧化性、还原性、
内 容
熔点、沸点、硬度、 可燃性、助燃性、酸性、 密度、导电性、延展 碱性、等
性、挥发性、等
变是 化否 来经 表过 现化
学
不需要经过
需要经过
; 七氟丙烷 七氟丙烷
;
原理、误差和补偿方法及应用,8086/8088指令系统 II.了解 world 也可以作为所有工科大学生的选修课。衡量学习是否达到目标的标准: 理解具体设计过程;掌握 作业:为使学生对所学知识加深理解,看组合体视图 2003 理解 整理结果,第4章选择结构程序设计 4.5 指导教师综合运用各种 先进的教学手段,何宇夫.测量放大器 4)平面的投影 电气控制与PLC,2.使学生了解MATLAB语言的程序设计的基本内容,⑥特殊相交 第二节 25 第三节 25 3.问题与应用(能力要求):掌握生成项目元件的封装库的方法。2.基本概念和知识点 二、生产实习目的 1 先修课程:电路基础,第二节 等效电源定理 估算在深度负反馈条件下的放大倍数。第三章 §9. 第五章 课堂讨论和课后练习的方法进行教学。能否很好翻译课后作业 及plC组网 §4.了解 0.2、本课程是专业必修课,由原理图文件产生方块电路符号。渐近稳定性的分析与判别。小 1.主要内容 1 《模拟电子技术》,第一节 实验(包括上机实验),1.part 19
11第二节 互补对称式功率放大电路
17
在回路中, VBE1 + VBE2=VD1+VD2+VR2
第二节 互补对称式功率放大电路
为解决交越失真,可给三极管加一点偏置, 使之工作在微导通状态——甲乙类。
容易引起热击 穿!!!
改用三极管的 Vce代替
18
第二节 互补对称式功率放大电路
▼ 集电极最大允许反向电压U(BR)CEO 在OCL互补对称电路中,两个三极管的集电极电压 之和等于2VCC,即 或 uCE1 | uCE2 | 2VCC 当VT2导通时, VT1截止,此时VT1的集电极承 受反向电压。当VT2接近饱和时, VT1的集电极 电压达到最大,此时:
uCE1 2VCC | U CES2 | 2VCC
2VCCVom RL
当 Vom VCC 时 , PVm
2 VCC RL
2
(4)效率
Po Vom = PV 4 VCC
当 Vom VCC 时 ,
4
78.5%
13
第二节 互补对称式功率放大电路
4. 功率与输出幅度的关系
图形演示
Vom Po 2RL
PTm VCC 2 π RL
当忽略三极管的管压降时,PTm = 0.2 Pom 因此,在选择功率三极管时应满足,PCM > 0.2 Pom
33
第二节 互补对称式功率放大电路
OTL 功率放大电路
“OTL”是无输出变压器推挽功率放大器的意思。实际 OTL电路不仅不使用输出变压器,而且还去掉了输入变压 器。它具有频响宽、失真小、输出功率大,有利小型化 ,集成化的优点,在声频放大等方面应用日益广泛。 互补对称电路的工作原理可用左图来说明。从推挽和波 形合成的角度来讲,这种互补电路利用PNP型晶休管和 NPN型晶体管导电极性相反的特点,将两管分别接成射极 输出器的形式;两管在作用上互相补偿,在连接上互相 对称。它不需要专门的倒相电路就可以完成正负半周的 放大,并在负载上合成波形。从理论上讲,这种电路需 要使用正负两组电源。
第四章 集成运算放大电路
2. 最大输出电压 op-p 最大输出电压U
Uo / V - 10 Uid + ∞ +
-0.4
-0.2 -0.1
0 0.1 0.2 0.3 0.4 Uid / mV
-0.3
-10 线性区
集成运放的传输特性
3. 差模输入电阻 id 差模输入电阻r rid的大小反映了集成运放输入端向差模输入信号 源索取电流的大小。要求rid愈大愈好, 一般集成运放 rid为几百千欧至几兆欧, 故输入级常采用场效应管来 提高输入电阻rid。 F007的rid=2 M 。认为理想集成运 放的rid为无穷大。
动态时,加入差模信号uid,根据差分放大电路的特点, T1 管的集电极电流在静态电流IC1的基础上增加了∆iC1,T2管的集 电极电流在静态电流IC2的基础上减小了∆iC2,∆iC1=-∆iC2。 由于 iC4 和 iC1 是 镜 像 关 系 , ∆iC4=∆iC1 , 因 此 ∆io=∆iC4-∆iC2=∆iC1-(∆iC1)=2∆iC1。 可见这个电流值是单端输出电流的两倍, 即等于 差分放大电路双端输出时的电流值。因此,用电流源作为差分 放大电路的有源负载,可将双端输出信号“无损失”地转换成 单端输出信号。
若电路中有共模信号输入,T3 管和T4 管的集电极电流相等 (忽略T7管的基极电流),T3管和T5管的集电极电流相等,又由于 R1=R3,因此T6管的集电极电流和T5管的集电极电流相等, 如此 推来,T6管和T4管的集电极电流相等,而T16管的基极电流为T4 管和T6管的集电极电流之差,所以T16管的基极电流近似为零, 可见共模信号输出为零,电路具有较高的抑制共模信号的能力。
2. 偏置电路 偏置电路由T8~T13、电阻R4和R5组成。其中T10、T11、 T12 和R4、R5构成主偏置电路,该电路中R5上的电流是F007偏置电 路的基准电流,由图可知
电子信息基础模拟部分复习题讲课讲稿
电子信息基础模拟部分复习题电子信息基础模拟部分复习题一、选择1.OTL互补对称功率放大电路如图,静态时电容C2两端的电压UC2等于()①UCC ②1/2UCC③1/4UCC④1/6UCC2.在共射、共集、共基三种基本放大电路组态中,电压放大倍数小于1的是(3);输入电阻最大的是(2);输出电阻最大的是(4)。
①共射②共集③共基④不定3.要求某放大器的输出电阻小,且输入电阻大,应引入(1)负反馈。
①电压串联②电流串联③电压并联④电流并联4.多级直接耦合放大器中,零点漂移影响最严重的一级是(1);零点漂移最大的一级是(4)。
①输入级②中间级③输出级④增益最高的一级5.如图所示电路的极间交流反馈为(3)。
①电压并联正反馈;②电流串联负反馈③电流并联正反馈;④电压串联负反馈6.用示波器观察NPN管共射极单管放大器输出电压波形,若输入信号为正弦波,发现输出信号正负波峰均出现削波失真,则该失真是(B)。
A. 截止失真B.输入信号过大引起的削波失真C.饱和失真D. 交越失真7.现有电路:A. 同相比例运算电路 B. 反相比例运算电路C. 加法运算电路D. 微分运算电路E. 积分运算电路(1)欲将正弦波电压移相+90O,应选用(A )。
(2)欲将正弦波电压叠加上一个直流量,应选用(C)。
(3)欲实现Au=-100的放大电路,应选用(B)。
(4)欲将方波电压转换成三角波电压,应选用(E)。
(5)欲将方波电压转换成尖顶波电压,应选用(D)。
8.已知交流负反馈有四种组态:A.电流并联负反馈 B.电流串联负反馈C.电压并联负反馈 D.电压串联负反馈(1)欲得到电流-电压转换电路,应在放大电路中引入(C);(2)欲将电压信号转换成与之成比例的电流信号,应在放大电路中引入(B);(3)欲减小电路从信号源索取的电流,增大带负载能力,应在放大电路中引入(D);(4)欲从信号源获得更大的电流,并稳定输出电流,应在放大电路中引入(A)。
(完整版)模拟电子技术教程课后习题答案大全
第1章习题答案1. 判断题:在问题的后面括号中打√或×。
(1)当模拟电路的输入有微小的变化时必然输出端也会有变化。
(√)(2)当模拟电路的输出有微小的变化时必然输入端也会有变化。
(×)(3)线性电路一定是模拟电路。
(√)(4)模拟电路一定是线性电路。
(×)(5)放大器一定是线性电路。
(√)(6)线性电路一定是放大器。
(×)(7)放大器是有源的线性网络。
(√)(8)放大器的增益有可能有不同的量纲。
(√)(9)放大器的零点是指放大器输出为0。
(×)(10)放大器的增益一定是大于1的。
(×)2 填空题:(1)放大器输入为10mV电压信号,输出为100mA电流信号,增益是10S。
(2)放大器输入为10mA电流信号,输出为10V电压信号,增益是1KΩ。
(3)放大器输入为10V电压信号,输出为100mV电压信号,增益是0.01 。
(4)在输入信号为电压源的情况下,放大器的输入阻抗越大越好。
(5)在负载要求为恒压输出的情况下,放大器的输出阻抗越大越好。
(6)在输入信号为电流源的情况下,放大器的输入阻抗越小越好。
(7)在负载要求为恒流输出的情况下,放大器的输出阻抗越小越好。
(8)某放大器的零点是1V,零漂是+20PPM,当温度升高10℃时,零点是 1.0002V 。
(9)某放大器可输出的标准正弦波有效值是10V,其最大不失真正电压输出+U OM是14V,最大不失真负电压输出-U OM是-14V 。
(10)某放大器在输入频率0~200KHZ的范围内,增益是100V/V,在频率增加到250KHZ时增益变成约70V/V,该放大器的下限截止频率f L是0HZ,上限截止频率f H是250KHZ,通频带f BW是250KHZ。
3. 现有:电压信号源1个,电压型放大器1个,1K电阻1个,万用表1个。
如通过实验法求信号源的内阻、放大器的输入阻抗及输出阻抗,请写出实验步骤。
《模拟电子技术》复习题10套及答案
.《模拟电子技术》复习题一一、填空题1、在N型半导体中,多数载流子是;在P型半导体中,多数载流子是。
2、场效应管从结构上分为结型和两大类,它属于控制性器件。
3、为了使高阻信号源与低阻负载能很好地配合,可以在信号源与负载之间接入(共射、共集、共基)组态放大电路。
4、在多级放大器中,中间某一级的电阻是上一级的负载。
5、集成运放应用电路如果工作在线性放大状态,一般要引入____________。
6、根据下图中各三极管的电位,判断它们所处的状态分别为_________、_________、_________。
7、正弦波振荡电路通常由,,和四部分组成。
二、选择题1、利用二极管的()组成整流电路。
A 正向特性B 单向导电性C反向击穿特性2、P型半导体是在本征半导体中加入()后形成的杂质半导体。
A空穴B三价元素硼C五价元素锑3、场效应管的漏极特性曲线如图2-3所示,其类型为( )场效应管。
A P沟道增强型MOS型B P沟道耗尽型MOS型C N沟道增强型MOS型D N沟道耗尽型MOS型E N沟道结型F P沟道结型.图2-10 4、有一晶体管接在放大电路中,今测得它的各极对地电位分别为V 1=-4V,V 2=-1.2V,V 3=-1.4V,试判别管子的三个管脚分别是( )。
A 1:e、2:b、3:cB 1:c、2:e 、3:bC 1:c、2:b、3:eD 其它情况 5、集成运放中间级的作用是( )。
A 提高共模抑制比 B 提高输入电阻 C 提高放大倍数 D 提供过载保护 6、根据相位平衡条件,判断图2-6所示振荡电路中( )发生振荡。
A 可能 B 不能7、差模信号电压是两个输入信号电压( )的值。
A 差 B 和 C 算术平均8、在单相桥式整流电容滤波电路中,已知变压器二次电压有效值U 2=24V ,设二极管为理想二极管,用直流电压表测得R L 的电压值约为21.6V ,问电路的现象是( )。
A 正常工作情况 B R L 开路 C C 开路 D 一个二极管和C 开路 E 一个二极管开路 F 其它情况9、某仪表放大电路,要求输入电阻大,输出电流稳定,应选( )负反馈。
电子技术基础重要知识点总结
第一章绪论1.在时间上和数值上均是连续的信号称为模拟信号;(只有高低电平的矩形脉冲信号为数字信号)在时间上和数值上均是离散的信号称为数字信号;处理模拟信号的电路称为模拟电路,处理数字信号的电路称为数字电路。
2.信号通过放大电路放大后,输出信号中增加的能量来自工作电源。
3.电子电路中正、负电压的参考电位点称为电路中的“地”,用符号“⊥”表示,它也是电路输入与输出信号的共同端点。
4.根据输入信号的不同形式和对输出信号形式的不同要求,通常将放大电路分为电压放大电路、电流放大电路、互阻放大电路和互导放大电路四种类型。
5.放大的特征是功率的放大,表现为输出电压大于输入电压,或者输出电流大于输入电流,或者二者兼而有之。
6.输入电阻、输出电阻、增益、频率响应和非线性失真等几项主要的性能指标是衡量放大电路品质优劣的标准,也是设计放大电路的依据。
7.放大倍数A:输出变化量幅值与输入变化量幅值之比,用以衡量电路的放大能力。
8.输入电阻R i:从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大小。
9.输出电阻R o:从输出端看进去的等效输出信号源的内阻,说明放大电路的带负载能力。
第二章运算放大器1.运算放大器有两个输入端,即同相输入端和反相输入端,一个输出端。
2.运算放大器有线性和非线性两个工作区域。
要使运放稳定地工作在线性区,必须引入深度负反馈。
3.理想运放两输入端间电压V P-V N≈0,如同两输入端近似短路,这种现象称为“虚短”。
4.理想运放流入同相端和流出反相端的电流基本为零,即“虚断”。
5.理想运放的输入电阻趋近于无穷,输出电阻趋近于零。
6.同相放大电路的闭环电压增益为正,且大于等于1。
7.若反相放大电路的反相输入端输入信号,同相输入端接地,则反相输入端呈现虚地。
第三章二极管及其基本电路1.本征半导体:纯净的不带任何杂质的半导体,它的自由电子和空穴的数目相等,对外不显电性。
2.P型半导体:是指在本征半导体中掺入三价元素如硼,形成的主要靠空穴导电的半导体。
ocl电路是互补输出级
ocl电路是互补输出级互补输出级(Complementary Output Stage)是一种常见的输出级电路,它由互补型晶体管组成,能够实现高质量的放大和驱动功率放大器。
本文将从互补输出级的原理、特点和应用等方面进行详细介绍。
一、互补输出级的原理互补输出级是由NPN型和PNP型晶体管组成的,NPN型晶体管作为输出级的上半部分,PNP型晶体管作为输出级的下半部分。
当输入信号为正电压时,NPN型晶体管导通,PNP型晶体管截止;当输入信号为负电压时,PNP型晶体管导通,NPN型晶体管截止。
通过这种方式,可以实现对输入信号的放大和输出信号的互补。
二、互补输出级的特点1.高质量的放大:互补输出级能够实现对输入信号的高质量放大,输出信号具有较低的失真和高的信噪比。
2.驱动能力强:互补输出级能够提供较大的输出电流,能够驱动各种负载,包括低阻抗负载和高容性负载。
3.功耗较低:互补输出级能够在工作时只有一个晶体管导通,另一个晶体管截止,使得功耗较低。
4.温度稳定性好:互补输出级的两个晶体管工作在互补的工作状态下,能够使输出级的温度稳定性得到改善。
三、互补输出级的应用互补输出级广泛应用于音频功放、电视机、手机等各种电子设备中。
以音频功放为例,互补输出级能够提供高质量的音频放大和驱动能力,使得音乐和语音的输出效果更加清晰、真实。
同时,互补输出级还能够适应不同的负载要求,提供稳定的输出功率。
四、互补输出级的改进为了进一步提高互补输出级的性能,有一些改进措施可以采取。
例如,可以采用多级互补输出级,通过级联多个互补输出级,可以增加放大倍数和输出功率。
此外,还可以使用反馈电路来控制互补输出级的增益和失真,提高整体的性能。
五、总结互补输出级是一种重要的电路结构,它能够实现高质量的放大和驱动能力。
通过合理的设计和改进,可以进一步提高互补输出级的性能。
在实际应用中,互补输出级广泛应用于各种电子设备中,为我们带来更好的音频和视频体验。
SG3525逆变器电路图大全
SG3525逆变器电路图大全(六款模拟电路工作原理详解)SG3525引脚功能及特点简介SG3525内部框图1.SG3525引脚功能介绍1.1.Inv.input(引脚1):误差放大器反向输入端.在闭环系统中,该引脚接反馈信号.在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器.1.2.Noninv.input(引脚2):误差放大器同向输入端.在闭环系统和开环系统中,该端接给定信号.根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器.1.3.Sync(引脚3):振荡器外接同步信号输入端.该端接外部同步脉冲信号可实现与外电路同步.1.4.OSC.Output(引脚4):振荡器输出端.1.5.CT(引脚5):振荡器定时电容接入端.1.6.RT(引脚6):振荡器定时电阻接入端.1.7.Discharge(引脚7):振荡器放电端.该端与引脚5之间外接一只放电电阻,构成放电回路.1.8.Soft-Start(引脚8):软启动电容接入端.该端通常接一只5的软启动电容.pensation(引脚9):PWM比较器补偿信号输入端.在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器.1.10.Shutdown(引脚10):外部关断信号输入端.该端接高电平时控制器输出被禁止.该端可与保护电路相连,以实现故障保护.1.11.OutputA(引脚11):输出端A.引脚11和引脚14是两路互补输出端.1.12.Ground(引脚12):信号地.1.13.Vc(引脚13):输出级偏置电压接入端.1.14.OutputB(引脚14):输出端B.引脚14和引脚11是两路互补输出端.1.15.Vcc(引脚15):偏置电源接入端.1.16.Vref(引脚16):基准电源输出端.该端可输出一温度稳定性极好的基准电压.2.特点如下:2.1.工作电压范围宽:8—35V;2.2. 5.1(11.0%)V微调基准电源.2.3.振荡器工作频率范围宽:100Hz---400KHz.2.4.具有振荡器外部同步功能.2.5.死区时间可调.2.6.内置软启动电路.2.7.具有输入欠电压锁定功能.2.8.具有PWM琐存功能,禁止多脉冲.2.9.逐个脉冲关断.2.10.双路输出(灌电流/拉电流):mA(峰值)..3.SG3525逆变器电路图.逆变器(inverter)是把直流电能(电池/蓄电瓶)转变成交流电(一般为220V50HZ正弦或方波).应急电源,一般是把直流电瓶逆变成220V交流的.通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置.它由逆变桥、控制逻辑和滤波电路组成.广泛适用于空调/家庭影院/电动砂轮/电动工具/缝纫机/DVD/VCD/电脑/电视/洗衣机/抽油烟机/冰箱/录像机/按摩器/风扇/照明等.逆变器(inverter)是把直流电能(电池/蓄电瓶)转变成交流电(一般为220V50HZ 正弦或方波).应急电源,一般是把直流电瓶逆变成220V交流的.通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置.它由逆变桥、控制逻辑和滤波电路组成.广泛适用于空调/家庭影院/电动砂轮/电动工具/缝纫机/DVD/电脑/电视/洗衣机/抽油烟机/冰箱,录像机/按摩器/风扇/照明等.4.SG3525逆变器电路图(二)在中小容量变频电源的设计中,采用自关断器件的脉宽调制系统比非自关断器件的相控系统具有更多的优越性.第一代脉宽调制器SG3525A应用于交流电机调速/UPS电源以及其他需要PWM脉冲的领域.其外围电路可对串联谐振式逆变电源进行多功能控制,实现H桥式IGBT脉宽调制PWM信号的生成和逆变电源的保护功能,以及变频电源工作过程中谐振频率的跟踪控制.SG3525逆变器电路图控制电路的核心为PWM控制器SG3525A,用SG3525A发出的PWM脉冲,来控制逆变器VT1、VT4和VT2、VT3轮流导通,从而控制逆变电压和逆变频率。
第22讲 第十一章放大电路基础(四)及第十二章线性集成运算放大器和运算电路
(2)并联负反馈使输入电阻减少由于基本放大电路与反馈电路在输入回路中并联,如图所示,由于,在相同的V i作用下,因I f的存在而使I i增加,因此,并联负反馈使输入电阻R if=V i/I i减小。
所以,并联负反馈使输入电阻减小倍。
●负反馈对放大电路输出电阻的影响◆电压负反馈使输出电阻减小电压负反馈取样于输出电压,又能维持输出电压稳定,即是说,输入信号一定时,电压负反馈的输出趋于一恒压源,其输出电阻很小。
有电压负反馈时的闭环输出电阻为无反馈时开环输出电阻的1/(1+ )①。
反馈愈深,R of愈小。
◆电流负反馈使输出电阻增加电流反馈取样于输出电流,能维持输出电流稳定,就是说,输入信号一定时,电流负反馈的输出趋于一恒流源,其输出电阻很大。
有电流负反馈时的闭环输出电阻为无反馈时开环输出电阻的1/(1+ )倍。
反馈愈深,R of愈大11.2.5 深度负反馈放大电路近似计算的一般方法● 近似计算的根据 根据和的定义 ,在 中,若 , 则 即 所以有此式表明,当 时,反馈信号 与输入信号 相差甚微,净输入信号 甚小,因而有对于串联负反馈有 (虚短), ;对于并联负反馈有 、, (虚断)。
利用“虚短”、“虚断”的概念可以以快速方便地估算出负反馈放大电路的闭环增益 或闭环电压增益。
● 近似计算的方法1.判别反馈类型,正确识别并画出反馈网络。
注意电压取样时不要把直接并在输出口的电阻计入反馈网络;电流求和时不要把并在输入口的电阻计入反馈网络。
2.在反馈网络输入口标出反馈信号:电压求和为开路电压fv ,电流求和时为短路电流fi ,再由反馈网络求出反馈系数F 。
要注意标fv 时在反馈网络入口标上正下负;标fi 时必须在反馈网络入口以上端流入为参考方向。
3.求闭环增益 ,注意不同的反馈类型fA 的量纲不同。
4.由fA 求闭环源电压增益vsfA 。
电压取样电压求和时:s f vsf v v A A 0==电压取样电流求和时:00f vsf s s s sA v vA v i R R ===电流取样电压求和时:00L vsf f Ls sv i R A A R v v ''⋅'===电流取样电流求和时:00f L L vsfs s s sA R v i R A v i R R '''⋅===⋅其中:0i '是输出管的管端输出电流,即取样电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 1 2π RL f L
3.4 互补对称功率放大电路
3.4.1 放大电路工作状态的分类 三极管的工作状态
3.4.2 乙类双电源互补对称功率放大电路 (1)电路组成及工作原理
当输入信号处于正半周时,
T1管导电,有电流通过负载RL,方
向由上到下。 当输入信号为负半周时,T2管 导电,有电流通过负 载RL,方向由
下到上。
于是两个三极管一个正半周, 一 个负半周轮流导电,在负载上将正 半周和负半周合成在一起,得到一 个完整的不失真波形。
当输出电压幅度达到最大,即Vom≈VCC时,则得 电源供给的最大功率为: 2
PDC max 2VCC RL
3.效率
Po π Vom PDC 4 VCC
当Vom = VCC 时效率最大,η =π /4 =78.5%。 4、管耗
1 VCCVom Vom 2 PC1 PC2 ( ) 0.2P omax RL 4
b2
(2) 利用三极管恒压源提供偏置
若I1 I 2>>I B 4,则 U CE 4 U BE 4 ( R1 R2 ) R2
故称之为U BE 倍增电路
二、复合管的互补功率放大电路 (1)复合管 当输出功率较大时,输出级的推动级,即 末前级也应该是一个功率放大级。此时往往采 用复合管,复合管有四种形式。 复合管的极性由 前面的一个三极管决
定。由NPN-NPN或
PNP-PNP复合而成一 般称为达林顿管。
(2) 复合管互补对称放大电路举例
为保持输出管的良好对称性,输出管为同 类型晶体管。
静态时: U BE1 U BE2 U EB3 (1 R5 )U BE5 R4
三、甲乙类单电源互补对称放大电路 当电路对称时,输出端的静态电位等于VCC /2。 为了使负载上仅获得交流 信号,用一个电容器串联 在负载与输出端之间。这 种功率放大电路称为OTL 互补功率放大电路。 电容器的容量由放大电 路的下限频率确定。
3.4.3 甲乙类互补对称功率放大电路 输入信号很小时,达不到三极 管的开启电压,三极管不导电。 因此在正、负半周交替过零处会 出现一些非线性失真,这个失真 称为交越失真。
动画17-3
一、甲乙类双电源互补对称放大电路 给三极管稍加一点偏置,使之工作在甲乙类。
(1) 利用二极管提供偏置电压
Байду номын сангаасb1
静态: U B1B2 U D1 U D2 动态: ub1 ub2 ui
(2)功率与效率 1.输出功率
T1,T2工作在射极输
出器状态,AV≈1。
2 om
Vom Vom 1 V Po Vo I o 2 2 RL 2 RL
当输入信号足够大,使 Vim=Vom=VCC-VCES≈VCC,可获得:
Pomax
1 VCC 2 RL
2
2.直流电源的供给功率 直流电源提供的功率包括负载得到的功率 和T1,T2管消耗的功率两部分。 2VCCVom PDC Po PT RL