最新沪科版2020年安徽中考数学一模模拟试卷(卷一)含答案解析

合集下载

2020年安徽省中考数学一模试卷(含答案解析)

2020年安徽省中考数学一模试卷(含答案解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。

安徽省2020年中考数学第一次模拟考试试题含答案解析

安徽省2020年中考数学第一次模拟考试试题含答案解析

2020年中考数学第一次模拟考试【安徽卷】
数学
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符
合题目要求的)
1.|﹣9|的值是
A.9 B.﹣9
C.
1
9D .﹣
1
9
2.计算:(﹣a3)2÷a2=
A.﹣a3B.a3
C.a4D.a7
3.如图,是一个水平放置的几何体,它的俯视图是
A.B.
1。

2020年安徽省中考数学模拟试卷(一)

2020年安徽省中考数学模拟试卷(一)

2020年安徽省中考数学模拟试卷(一)副标题题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.合肥市某日的气温是−2℃~6℃,则该日的温差是()A. 8℃B. 5℃C. 2℃D. −8℃2.计算−a2⋅a3的结果是()A. a5B. −a5C. −a6D. a63.在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是()A. B. C. D.4.太阳中心的温度高达19200000℃,有科学记数法将19200000℃可表示为()A. 1.92×106B. 1.92×107C. 19.2×106D. 19.2×1075.如图,已知AB//CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=48°,则∠2的度数是()A. 64°B. 65°C. 66°D. 67°6.不等式组{2(x+3)≥25−x>4的解集是()A. −2≤x<1B. −2<x≤1C. −1<x≤2D. −1≤x<27.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是()A. 被抽取的天数为50天B. 空气轻微污染的所占比例为10%C. 扇形统计图中表示优的扇形的圆心角度数57.6°D. 估计该市这一年(365天)达到优和良的总天数不多于290天8.某商品原价300元,连续两次降价a%后售价为260元,下面所列方程正确的是()A. 300(1+a%)2=260B. 300(1−a2%)=260C. 300(1−2a%)=260D. 300(1−a%)2=2609.若函数y=ax−c与函数y=b的图象如右图所示,则函数y=ax2+bx+c的大致x图象为()A. B.C. D.10.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2√3,Q为AC上的动点,P为Rt△ABC内一动点,且满足∠APB=120°,若D为BC的中点,则PQ+DQ的最小值是()A. √43−4B. √43C. 4D. √43+4二、填空题(本大题共4小题,共20.0分)11.要使式子√a+1有意义,则a的取值范围是______.a−112.分解因式:a3−4ab2=______.13.如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则劣弧CE⏜的长=______.14.对于一个函数,如果它的自变量x与函数值y满足:当−1≤x≤1时,−1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=−x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,−1)和点B(−1,1),则a的取值范围是______.三、解答题(本大题共8小题,共78.0分)15.计算:√9+(π−3)0−|−5|+(−1)2019+(12)−2.16.先化简,再求值:(xx+1−3xx−1)÷xx2−1,其中x=−2.17.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC为格点三角形(顶点在网格线的交点).(1)将△ABC向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕着某点O逆时针方向旋转90°后,得到△A2B2C2,请画出旋转中心O,并直接写出在此旋转过程中,线段AB扫过的区域的面积.18.观察以下等式:第1个等式:11−11×2+12=1,第2个等式:12−12×3+23=1,第3个等式:13−13×4+34=1,第4个等式:14−14×5+45=1,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n(n为正整数)个等式:(用含n的等式表示),并证明.19.为了测量山坡上的电线杆PQ的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为30°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是60°,求信号塔PQ得高度.20.如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:PA=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=12(90°−∠P)成立.请你写出推理过程.21.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了______名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.22.定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC中,AC>AB,DE是△ABC在BC边上的中分线段,F为AC中点,过点B作DE的垂线交AC于点G,垂足为H,设AC=b,AB=c.①求证:DF=EF;②若b=6,c=4,求CG的长度;(2)若题(1)中,S△BDH=S△EGH,求b的值.c2323.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.答案和解析1.【答案】A【解析】解:6−(−2)=8(°C).故选:A.根据:温差=最高气温−最低气温,计算即可.本题主要考查了有理数减法,掌握计算温差的公式和有理数的减法法则是解决本题的关键.2.【答案】B【解析】解:−a2⋅a3=−a5故选:B.根据同底数幂的乘法法则求解即可求得答案.本题主要考查了同底数幂的乘法知识,解题的关键是熟记法则.3.【答案】A【解析】解:“阳马”的俯视图是一个矩形,还有一条看得见的棱,故选:A.找到从上面看所得到的图形即可.本题考查了学生的思考能力和对几何体三种视图的空间想象能力与及考查视图的画法,看得到的棱画实线,看不到的棱画虚线.4.【答案】B【解析】解:将19200000用科学记数法表示为:1.92×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】C【解析】解:∵AB//CD,∴∠BEF=180°−∠1=180°−48°=132°,∵EG平分∠BEF,∴∠BEG=132°÷2=66°,∴∠2=∠BEG=66°.故选:C.根据平行线的性质和角平分线的定义求解.此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等,以及角平分线的定义.6.【答案】A【解析】解:由①得:x≥−2由②得:x<1,所以不等式组的解集为:−2≤x<1.故选:A.根据不等式的性质求出每个不等式的解集,根据找不等式组的解集的规律找出即可.本题主要考查利用不等式的性质解一元一次不等式,根据找不等式组的解集的规律找出不等式组的解集是解此题的关键.7.【答案】D【解析】解:A、被抽查的天数是:32÷64%=50(天),则命题正确;B、空气轻度微污染的天数是:50−8−32−3−1−1=5,则所占的比例是:5×100%=10%,则命题正确;50=57.6°,则命题正确;C、表示优的扇形统计图的圆心角是:360°×850=292(天),则命题错误.D、一年中达到优和良的天数是365×8+3250故选D.(1)根据空气是良的天数是32天,所占的百分比是64%,即可求得调查的总天数;(2)利用调查的总天数减去其它类型的天数即可求得空气轻度微污染的天数,然后利用百分比的意义求解;(3)利用360°乘以对应的百分比即可求得;(4)利用365天乘以达到优和良的天数所占的比例即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8.【答案】D【解析】解:当商品第一次降价a%时,其售价为300−300a%=300(1−a%);当商品第二次降价a%后,其售价为300(1−a%)−300(1−a%)a%=300(1−a%)2.∴300(1−a%)2=260.故选:D.根据降价后的价格=原价(1−降低的百分率),本题可先用a%表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.本题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于260即可.9.【答案】D【解析】解:∵一次函数的图象经过一、三、四象限,∴a>0,c>0,∴二次函数的图象开口向上,淘汰A、C选项;∵反比例函数的图象位于二、四象限,∴b<0,>0,∴对称轴x=−b2a∴对称轴位于y轴的右侧.故选:D.首先根据一次函数和反比例函数图象确定a、c和b的符号,然后判断二次函数的图象即可.本题考查了一次函数、反比例函数及二次函数的图象与比例系数的关系,牢记系数的符号对图象的影响是解题的关键.10.【答案】A【解析】解:如图以AB为边,向左边作等边△ABE,作△ABE的外接圆⊙O,连接OB,则点P在⊙O上.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,BC=2√3,∴AB=4√3,则易知OB=4,OB⊥BC,作点D关于AC的对称点D′,连接OD′,OP,PD′,PD′交AC于Q,则PQ+QD=PQ+ QD′=PD′,∵PD′≥OD′−OP,OP=OB=4,OD′=√42+(3√3)2=√43,∴PD′≥√43−4,∴PQ+DQ的最小值为√43−4,故选:A.如图以AB为边,向左边作等边△ABE,作△ABE的外接圆⊙O,连接OB,则点P在⊙O 上.作点D关于AC的对称点D′,连接OD′,OP,PD′,PD′交AC于Q,则PQ+QD= PQ+QD′=PD′,根据PD′≥OD′−OP,求出OP,OD′即可解决问题.本题考查轴对称−最短问题,解直角三角形等知识,解题的关键是学会利用轴对称解决最短问题,属于中考选择题中的压轴题.11.【答案】a≥−1且a≠1【解析】解:由题意,得a+1≥0,a−1≠0,解得a≥−1且a≠1,故答案为:a≥−1且a≠1.根据分子的被开方数不能为负数,分母不能为零,可得答案.本题考查了分式有意义的条件,利用分子的被开方数不能为负数,分母不能为零得出不等式是解题关键.12.【答案】a(a+2b)(a−2b)【解析】解:a3−4ab2=a(a2−4b2)=a(a+2b)(a−2b).故答案为:a(a+2b)(a−2b).观察原式a3−4ab2,找到公因式a,提出公因式后发现a2−4b2符合平方差公式的形式,再利用平方差公式继续分解因式.本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.13.【答案】2√33πcm【解析】解:连接OC、OE,作AD⊥BC于D,作OF⊥AC于F,在Rt△ABD中,AD=AB⋅sinB=2√3,∴OC=OE=√3,∵BC为⊙O的切线,∴OC⊥BC,∴∠OCE=90°−60°=30°,∵OC=OE,∴∠COE=120°,∴劣弧CE⏜的长=120π×√3180=2√33π,故答案为:2√33πcm.连接OC、OE,作AD⊥BC于D,作OF⊥AC于F,根据正弦的定义求出AD,根据题意求出⊙O的半径,根据切线的性质得到OC⊥BC,根据弧长公式计算即可.本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.14.【答案】−12≤a<0或0<a≤12【解析】解:∵抛物线y=ax2+bx+c(a≠0)经过点A(1,−1)和点B(−1,1),∴a+b+c=−1①a−b+c=1②①+②得:a+c=0即a与c互为相反数,①−②得:b=−1;所以抛物线表达式为y=ax2−x−a(a≠0),∴对称轴为x=12a,当a<0时,抛物线开口向下,且x=12a<0,∵抛物线y=ax2−x−a(a≠0)经过点A(1,−1)和点B(−1,1),画图可知,当12a ≤−1时符合题意,此时−12≤a<0,当−1<12a<0时,图象不符合−1≤y≤1的要求,舍去同理,当a>0时,抛物线开口向上,且x=12a>0,画图可知,当12a ≥1时符合题意,此时0<a≤12,当0<12a<1时,图象不符合−1≤y≤1的要求,舍去,综上所述:a的取值范围是−12≤a<0或0<a≤12,故答案为:−12≤a<0或0<a≤12.把A、B的坐标代入函数解析式,即可求出a+c=0,b=−1,代入得出抛物线表达式为y=ax2−x−a(a≠0),得出对称轴为x=12a,再进行判断即可.本题考查了二次函数的图象和性质和二次函数图象上点的坐标特征,能灵活运用性质和已知函数的新定义求解是解此题的关键.15.【答案】解:原式=3+1−5−1+4=2.【解析】原式利用算术平方根定义,零指数幂、负整数指数幂法则,绝对值的代数意义,以及乘方的意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.【答案】解:原式=x2−x−3x2−3x(x+1)(x−1)⋅(x+1)(x−1)x=−2x−4,当x=−2时,原式=0.【解析】根据分式的混合运算法则化简,然后代入计算即可.本题考查分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.17.【答案】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:点O即为所求;线段AB扫过的区域的面积为:90⋅π⋅(√62+12)2360−90⋅π⋅(√42+22)2360=17π4.【解析】(1)首先确定A、B、C三点关于平移后的对应点位置,再连接即可;(2)根据对应点到旋转中心距离相等确定O的位置.根据扇形面积公式,利用线段AB 所扫过的面积等于两个扇形的面积差.本题考查了作图−旋转变换和对称变换,关键是确定对称点和旋转后对应点的位置.18.【答案】解:(1)第5个等式为:15−15×6+56=1;(2)第n个等式为:1n −1n(n+1)+nn+1=1;证明:左边=n+1n(n+1)−1n(n+1)+n2n(n+1) =n2+nn(n+1) =n(n+1)n(n+1)=1=右边∴等式成立;【解析】(1)根据提供的算式写出第5个算式即可;(2)根据规律写出通项公式然后证明即可.本题考查了数字的变化类问题,解题的关键是仔细观察各个等式并从中找到规律.19.【答案】解:延长PQ交直线AB于点M,连接AQ,如图所示:则∠PMA=90°,设PM的长为x米,在Rt△PAM中,∠PAM=45°,∴AM=PM=x米,∴BM=x−100(米),在Rt△PBM中,∵tan∠PBM=PMBM,∴tan60°=xx−100=√3,解得:x=50(3+√3),在Rt△QAM中,∵tan∠QAM=QMAM,∴QM=AM⋅tan∠QAM=50(3+√3)×tan30°=50(√3+1)(米),∴PQ=PM−QM=100(米);答:信号塔PQ的高度约为100米.【解析】延长PQ交直线AB于点E,连接AQ,设PM的长为x米,先由三角函数得出方程求出PM,再由三角函数求出QM,得出PQ的长度即可.本题考查解直角三角形的应用、三角函数;由三角函数得出方程是解决问题的关键,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.20.【答案】解:(1)∵AB是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=12AB,∴PA=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=90°−∠P,∴∠BCP=12(90°−∠P)【解析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与PA的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.21.【答案】(1)200(2)④所在扇形的圆心角70200×360°=126°,③的人数200×9%=18人,②的人数200−18−2−70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p=110200=1120,他属于第②种情况的概率为1120.【解析】解:(1)2÷1%=200(名).故答案为200;(2)见答案(3)见答案(1)根据①种的人数除以①所占的百分比,可得答案;(2)④种情况的人数除以总人数乘以360°,可得答案,总人数乘以第③种情况所占的百分比,可得第③种情况的人数,根据总人数减去第①种情况的人数,减去第③种情况的人数,减法第④种情况的人数,可得第②中情况的人数;(3)根据概率的意义:②的人数除以总人数,可得答案.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】(1)①证明:∵F为AC中点,DE是△ABC在BC边上的中分线段,∴DF是△CAB的中位线,∴DF=12AB=12c,AF=12AC=12b,CE=12(b+c),∴AE=b−CE=b−12(b+c)=12(b−c),∴EF=AF−AE=12b−12(b−c)=12c,∴DF=EF;②解:过点A作AP⊥BG于P,如图1所示:∵DF是△CAB的中位线,∴DF//AB,∴∠DFC=∠BAC,∵∠DFC=∠DEF+∠EDF,EF=DF,∴∠DEF=∠EDF,∴∠BAP+∠PAC=2∠DEF,∵ED⊥BG,AP⊥BG,∴DE//AP,∴∠PAC=∠DEF,∴∠BAP=∠DEF=∠PAC,∵AP⊥BG,∴AB=AG=4,∴CG=AC−AG=6−4=2;(2)解:连接BE、DG,如图2所示:∵S△BDH=S△EGH,∴S△BDG=S△DEG,∴BE//DG,∵DF//AB,∴△ABE∽△FDG,∴ABDF =AEFG=21,∴FG=12AE=12×12(b−c)=14(b−c),∵AB=AG=c,∴CG=b−c,∴CF=12b=FG+CG=14(b−c)+(b−c),∴3b=5c,∴bc =53.【解析】(1)①由题意得出DF是△CAB的中位线,得出DF=12AB=12c,AF=12AC=1 2b,CE=12(b+c),AE=12(b−c),求出EF=AF−AE=12c,即可得出结论;②过点A作AP⊥BG于P,由中位线定理得出DF//AB,得出∠DFC=∠BAC,求出∠DEF=∠EDF,∠BAP+∠PAC=2∠DEF,由ED⊥BG,AP⊥BG,得出DE//AP,得出∠PAC=∠DEF,∠BAP=∠DEF=∠PAC,再由AP⊥BG,得出AB=AG=4,即可得出结果;(2)连接BE、DG,由S△BDH=S△EGH,得出S△BDG=S△DEG,推出BE//DG,再由DF//AB,得出△ABE∽△FDG,得出ABDF =AEFG=21,推出FG=14(b−c),CF=12b=FG+CG=14(b−c)+(b−c),即可得出结果.本题是三角形综合题,考查了新定义、等腰三角形的判定与性质、平行线的判定与性质、三角形中位线定理、相似三角形的判定与性质、同底三角形面积相等则高相等等知识;熟练掌握中位线定理与平行线的性质是解题的关键.23解:(1)当每吨售价是240元时,此时的月销售量为:45+×7.5=60;(2)设当售价定为每吨x元时,由题意,可列方程(x-100)(45+×7.5)=9000.化简得x2-420x+44000=0.解得x1=200,x2=220.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.(3)我认为,小静说的不对.∵由(2)知,x2-420x+44000=0,∴当月利润最大时,x为210元.理由:方法一:当月利润最大时,x为210元,而对于月销售额=来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325元<18000元,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)。

2020年中考数学全真模拟试卷(安徽专用)(一)(解析版)

2020年中考数学全真模拟试卷(安徽专用)(一)(解析版)

(k> 0)的图象上 ,当垂足为点C.D ,QDA.增大C.先减小后增大m> 1 时,过点 P 分别作 x 轴 .y 轴的垂线 ,垂足为点 A.B;过点 Q 分别作 x 轴 .y 轴的垂线 ,交 PA 于点 E,随着 m 的增大 ,四边形 ACQE 的面积 ()B.减小D.先增大后减小【答案】 A【解析】首先利用m 和 n 表示出 AC 和 CQ 的长 ,那么四边形 ACQE 的面积即可利用m.n 表示 ,然后根据函数的性质判断.【解答】由题意得AC=m﹣1,CQ= n,那么 S 四边形ACQE= AC?CQ= (m﹣ 1)n= mn﹣ n.∵P(1,4).Q(m,n)在函数 y= (x> 0)的图象上 ,∴ mn= k= 4(常数 ) .∴ S 四边形ACQE= AC?CQ= 4﹣ n,∵当 m> 1 时,n 随 m 的增大而减小,∴ S 四边形ACQE= 4﹣ n 随 m 的增大而增大.应选:A.【点睛】此题考察了反比例函数面积问题,正确的识图和运用k 的几何意义是解题的关键.10.[ XX省二十所初中名校教育联盟中考数学一模]在 Rt△ ABC 中 ,∠ ACB= 90°,AC= 8,BC= 3,点 D 是 BC 边上一动点 ,连接 AD 交以 CD 为直径的圆于点E.那么线段BE 长度的最小值为 ()A.B.1C.D.【答案】 B【解析】作AC 为直径的圆 ,即可得当O.E.B 三点共线时 ,BE 是最短 ,也即求 OB 的长度即可求.【解答】解 :如图 ,作以 AC 为直径的圆 ,圆心为 O∵ E 点在以 CD 为直径的圆上∴∠ CED= 90°∴∠ AEC= 180°﹣∠CED = 90°∴点 E 也在以 AC 为直径的圆上,若BE 最短 ,那么 OB 最短∵ AC= 8,∴OC=4∵BC= 3,∠ACB= 90°∴OB===5∵OE= OC=4∴BE= OB﹣ OE=5﹣ 4= 1应选 :B.【点睛】此题主要考察勾股定理,圆的性质.利用构造法是解题的关键.二 .填空题 (本大题共 4 小题 ,每题 5 分 ,总分值 20 分 )11. [XX省XX市瑶海区一模]分解因式 :x3﹣4x2+4 x=.【答案】 x(x﹣ 2)2【解析】首先提取公因式x,然后利用完全平方式进展因式分解即可.【解答】解 :x3﹣ 4x2+4x=x(x2﹣ 4x+4)=x(x﹣ 2)2,故答案为x(x﹣ 2)2.【点睛】此题考察了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进展二次分解,注意分解要彻底.12. [ XX省XX市一模21 个单位 ,所得的新抛物线的解析式为______.]抛物线 ??= ??向左平移【答案】 ??= (??+ 1) 2【解析】先确定抛物线2的顶点坐标为(0,0) ,再利用点平移的规律得到点(0,0) 平移后对应点的坐标为??= ??(-1,0),然后根据顶点式写出平移后的抛物线解析式.2的顶点坐标为 (0,0) ,把点 (0,0)向左平移 1 个单位所得对应点的坐标为(-1,0) ,所以新【解答】解 :抛物线 ??= ??抛物线的解析式为??= (??+ 1) 2.故答案为 ??= (??+ 1) 2.【点睛】此题考察了二次函数图象与几何变换:由于抛物线平移后的形状不变,故 a 不变 ,所以求平移后的抛物线解析式通常可利用两种方法: 一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13. [2021年XX省XX市高台县中考数学模拟试卷] 如图 ,在 Rt△ ABC 中 ,∠ACB= 90°,∠ A= 56°,以 BC 为直径的⊙O 交 AB 于点 D ,E 是⊙O 上一点 ,且=,连接 OE.过点 E 作 EF⊥OE ,交 AC 的延长线于点F,那么∠F 的度数为.【答案】 112°【解析】直接利用互余的性质再结合圆周角定理得出∠ COE 的度数 ,再利用四边形内角和定理得出答案.【解答】∵∠ ACB= 90°,∠ A= 56°,∴∠ ABC= 34°,∵=,∴2∠ ABC=∠ COE= 68°,又∵∠ OCF=∠ OEF = 90°,∴∠ F= 360°﹣ 90°﹣ 90°﹣68°= 112°.故答案为 :112 °.【点睛】此题主要考察了圆周角定理以及四边形内角和定理等根本性质,熟练掌握相关定理内容是解题关键.14. [2021XX一六八中学一模] 如图 ,在矩形 ABCD 中 ,AB= 6,BC= 4,点 E 是边 BC 上一动点 ,把△DCE 沿 DE 折叠得△ DFE ,射线 DF 交直线 CB 于点 P,当△ AFD 为等腰三角形时,DP 的长为.【答案】或.【解析】先根据AD =BC= 4,DF = CD = AB= 6,得出 AD< DF ,再分两种情况进展讨论:①当 FA= FD 时 ,过F 作 GH⊥AD 与 G,交 BC 于 H,根据△DGF∽△ PHF ,得出=,即=,进而解得 PF =﹣6,进而得出 DP 的长 ;②当 AF= AD = 4 时 ,过 F 作 FH ⊥ BC 于 H,交 DA 的延长线于G,根据勾股定理求得FG =,FH =6﹣,再根据△ DFG ∽△ PFH ,得出=,即=,进而解得PF =﹣6,即可得出PD 的长.【解答】解 :∵ AD = BC= 4,DF = CD= AB= 6,∴AD<DF,故分两种情况:①如下列图 ,当 FA = FD 时 ,过 F 作 GH ⊥ AD 与 G,交 BC 于 H ,那么 HG ⊥BC ,DG=AD=2,∴ Rt△DFG 中 ,GF ==4,∴FH =6﹣4,∵DG ∥PH,∴△ DGF ∽△ PHF ,∴=,即=,解得 PF=﹣6,∴DP=DF+PF=6+﹣6=;②如下列图 ,当 AF = AD= 4 时 ,过 F 作 FH ⊥BC 于 H,交 DA 的延长线于G,那么Rt△ AFG 中 ,AG2+FG2= AF2,即 AG2+FG2= 16;Rt△ DFG 中 ,DG 2+FG2= DF 2,即 (AG+4) 2+FG2= 36;联立两式 ,解得 FG =,∴FH =6﹣,∵∠ G=∠ FHP = 90°,∠ DFG =∠ PFH ,∴△ DFG ∽△ PFH ,∴=,即=,解得 PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.【点睛】此题是折叠问题,主要考察了相似三角形的判定与性质,勾股定理 ,等腰三角形的性质以及矩形的性质的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,运用相似三角形的对应边成比例列出方程,求得线段的长.解题时注意分类思想的运用.三 .(本大题共 2 小题 ,每题 8 分 ,总分值 16 分 )15. [2021XX省原创 ] 计算 :sin30 +(2021)°0﹣+()﹣1【答案】【解析】根据零指数幂和负指数幂的运算法那么,算术平方根的定义及特殊角的三角函数值求解即可.【解答】解 :原式=+1﹣ 2+2=.【点睛】此题主要考察了实数的运算,正确化简各数是解题的关键.16.[2021年XX省XX市洞口县中考数学模拟试卷(二 )改编?] 九章算术? 是中国古代数学专著?,九章算术?方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之 ,问几何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质何步及之 ?〞这是一道行程问题,意思是说 :走路快的人走100 步的时候 ,走路慢的才走了60 步 ; 走路慢的人先走100 步 ,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】 250 步【解析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走100 步的时候 ,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60, 利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程 ,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了步,根据题意 ,得 x=+100,整理 ,得=.解得x=250.【点睛】此题考察?九章算术?一元一次方程的应用题.根据题意列出相关方程是解题关键.四 .(本大题共 2 小题 ,每题 8 分 ,共 16 分 )17.[2021年XX省XX市东台市第四联盟中考数学模拟试卷] 从一幢建筑大楼的两个观察点A,B 观察地面的花坛 (点 C),测得俯角分别为15°和 60°,如图 ,直线 AB 与地面垂直 ,AB = 50 米 ,试求出点 B 到点 C 的距离.(结果保存根号 )【答案】 (25+25)米【解析】作AD⊥BC 于点 D ,根据正切的定义求出BD,根据正弦的定义求出AD ,根据等腰直角三角形的性质。

2020年安徽省中考数学模拟试卷(一)

2020年安徽省中考数学模拟试卷(一)

2020年安徽省中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题4分,满分40分) 1.(4分)合肥市某日的气温是2C ~6C ︒︒-,则该日的温差是( ) A .8C ︒B .5C ︒C .2C ︒D .8C ︒-2.(4分)计算23a a -g 的结果是( ) A .5aB .5a -C .6a -D .6a3.(4分)在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是( )A .B .C .D .4.(4分)太阳中心的温度高达19200000C ︒,有科学记数法将19200000C ︒可表示为( ) A .61.9210⨯B .71.9210⨯C .619.210⨯D .719.210⨯5.(4分)如图,已知//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若148∠=︒,则2∠的度数是( )A .64︒B .65︒C .66︒D .67︒6.(4分)不等式组2(3)254x x +⎧⎨->⎩…的解集是( )A .21x -<„B .21x -<„C .12x -<„D .12x -<„7.(4分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是( ) A .被抽取的天数为50天B .空气轻微污染的所占比例为10%C .扇形统计图中表示优的扇形的圆心角度数57.6︒D .估计该市这一年(365天)达到优和良的总天数不多于290天8.(4分)某商品原价300元,连续两次降价%a 后售价为260元,下面所列方程正确的是()A .2300(1%)260a +=B .2300(1%)260a -=C .300(12%)260a -=D .2300(1%)260a -=9.(4分)若函数y ax c =-与函数by x=的图象如右图所示,则函数2y ax bx c =++的大致图象为( )A .B .C .D .10.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,23BC =,Q 为AC 上的动点,P 为Rt ABC ∆内一动点,且满足120APB ∠=︒,若D 为BC 的中点,则PQ DQ +的最小值是( )A .434-B .43C .4D .434+二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)要使式子1a +有意义,则a 的取值范围是 . 12.(5分)分解因式:324a ab -= .13.(5分)如图,一个边长为4cm 的等边三角形ABC 的高与O e 的直径相等.O e 与BC 相切于点C ,与AC 相交于点E ,则劣弧¶CE的长= .14.(5分)对于一个函数,如果它的自变量x 与函数值y 满足:当11x -剟时,11y -剟,则称这个函数为“闭函数”.例如:y x =,y x =-均是“闭函数”.已知2(0)y ax bx c a =++≠是“闭函数”,且抛物线经过点(1,1)A -和点(1,1)B -,则a 的取值范围是 . 三、(本大题共2小题,每小题8分,满分16分) 15.(802019219(3)|5|(1)()2π-+---+-+.16.(8分)先化简,再求值:23()111x x xx x x -÷+--,其中2x =-. 四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,ABC ∆为格点三角形(顶点在网格线的交点).(1)将ABC ∆向上平移2个单位得到△111A B C ,请画出△111A B C ;(2)将ABC ∆绕着某点O 逆时针方向旋转90︒后,得到△222A B C ,请画出旋转中心O ,并直接写出在此旋转过程中,线段AB 扫过的区域的面积.18.(8分)观察以下等式: 第1个等式:11111122-+=⨯,第2个等式:11212233-+=⨯, 第3个等式:11313344-+=⨯,第4个等式:11414455-+=⨯, ⋯⋯按照以上规律,解决下列问题: (1)写出第5个等式:;(2)写出你猜想的第(n n 为正整数)个等式:(用含n 的等式表示),并证明. 五、(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量山坡上的电线杆PQ 的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A 处测得信号塔顶端P 的仰角是45︒,信号塔底端点Q 的仰角为30︒,沿水平地面向前走100米到B 处,测得信号塔顶端P 的仰角是60︒,求信号塔PQ 得高度.20.(10分)如图,点P在Oe外,PC是Oe的切线,C为切点,直线PO与Oe相交于点A、B.(1)若30A∠=︒,求证:3PA PB=;(2)小明发现,A∠在一定范围内变化时,始终有1(90)2BCP P∠=︒-∠成立.请你写出推理过程.六、(本题满分12分)21.(12分)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.七、(本题满分12分)22.(12分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 八、(本题满分14分)23.(14分)定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,ABC ∆中,AC AB >,DE 是ABC ∆在BC 边上的中分线段,F 为AC 中点,过点B 作DE 的垂线交AC 于点G ,垂足为H ,设AC b =,AB c =. ①求证:DF EF =;②若6b =,4c =,求CG 的长度; (2)若题(1)中,BDH EGH S S ∆∆=,求bc的值.2020年安徽省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分) 1.(4分)合肥市某日的气温是2C ~6C ︒︒-,则该日的温差是( ) A .8C ︒B .5C ︒C .2C ︒D .8C ︒-【解答】解:6(2)8()C --=︒. 故选:A .2.(4分)计算23a a -g 的结果是( ) A .5aB .5a -C .6a -D .6a【解答】解:235a a a -=-g 故选:B .3.(4分)在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是( )A .B .C .D .【解答】解:“阳马”的俯视图是一个矩形,还有一条看得见的棱, 故选:A .4.(4分)太阳中心的温度高达19200000C ︒,有科学记数法将19200000C ︒可表示为( ) A .61.9210⨯B .71.9210⨯C .619.210⨯D .719.210⨯【解答】解:将19200000用科学记数法表示为:71.9210⨯. 故选:B .5.(4分)如图,已知//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若148∠=︒,则2∠的度数是( )A .64︒B .65︒C .66︒D .67︒【解答】解://AB CD Q ,180118048132BEF ∴∠=︒-∠=︒-︒=︒, EG Q 平分BEF ∠, 132266BEG ∴∠=︒÷=︒, 266BEG ∴∠=∠=︒.故选:C .6.(4分)不等式组2(3)254x x +⎧⎨->⎩…的解集是( )A .21x -<„B .21x -<„C .12x -<„D .12x -<„【解答】解:由①得:2x -… 由②得:1x <,所以不等式组的解集为:21x -<„. 故选:A .7.(4分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是( ) A .被抽取的天数为50天B .空气轻微污染的所占比例为10%C .扇形统计图中表示优的扇形的圆心角度数57.6︒D .估计该市这一年(365天)达到优和良的总天数不多于290天 【解答】解:A 、被抽查的天数是:3264%50÷=(天),则命题正确;B 、空气轻度微污染的天数是:508323115-----=,则所占的比例是:5100%10%50⨯=,则命题正确;C 、表示优的扇形统计图的圆心角是:836057.650︒⨯=︒,则命题正确; D 、一年中达到优和良的天数是83236529250+⨯=(天),则命题错误. 故选:D .8.(4分)某商品原价300元,连续两次降价%a 后售价为260元,下面所列方程正确的是()A .2300(1%)260a +=B .2300(1%)260a -=C .300(12%)260a -=D .2300(1%)260a -=【解答】解:当商品第一次降价%a 时,其售价为300300%300(1%)a a -=-; 当商品第二次降价%a 后,其售价为2300(1%)300(1%)%300(1%)a a a a ---=-.2300(1%)260a ∴-=. 故选:D .9.(4分)若函数y ax c =-与函数by x=的图象如右图所示,则函数2y ax bx c =++的大致图象为( )A .B .C .D .【解答】解:Q 一次函数的图象经过一、三、四象限, 0a ∴>,0c >,∴二次函数的图象开口向上,淘汰A 、C 选项;Q 反比例函数的图象位于二、四象限,0b ∴<,∴对称轴02bx a=->, ∴对称轴位于y 轴的右侧.故选:D .10.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,23BC =,Q 为AC 上的动点,P 为Rt ABC ∆内一动点,且满足120APB ∠=︒,若D 为BC 的中点,则PQ DQ +的最小值是( )A 434B 43C .4D 434【解答】解:如图以AB 为边,向左边作等边ABE ∆,作ABE ∆的外接圆O e ,连接OB ,则点P 在O e 上.在Rt ABC ∆中,90ACB ∠=︒Q ,60ABC ∠=︒,23BC = 43AB ∴=则易知4OB =,OB BC ⊥,作点D 关于AC 的对称点D ',连接OD ',OP ,PD ',PD '交AC 于Q ,则PQ QD PQ QD PD +=+'=',PD OD OP ''-Q …,4OP OB ==,224(33)43OD '+434PD ∴'…,PQ DQ ∴+434,故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(51a +a 的取值范围是 1a -…且1a ≠ . 【解答】解:由题意,得10a +…,10a -≠,解得1a -…且1a ≠, 故答案为:1a -…且1a ≠.12.(5分)分解因式:324a ab -= (2)(2)a a b a b +- . 【解答】解:324a ab -22(4)a a b =- (2)(2)a a b a b =+-.故答案为:(2)(2)a a b a b +-.13.(5分)如图,一个边长为4cm 的等边三角形ABC 的高与O e 的直径相等.O e 与BC 相切于点C ,与AC 相交于点E ,则劣弧¶CE的长= 233cm π .【解答】解:连接OC 、OE ,作AD BC ⊥于D ,作OF AC ⊥于F , 在Rt ABD ∆中,sin 23AD AB B ==g , 3OC OE ∴==,BC Q 为O e 的切线, OC BC ∴⊥,906030OCE ∴∠=︒-︒=︒, OC OE =Q , 120COE ∴∠=︒,∴劣弧¶CE的长120323ππ⨯==, 故答案为:23cm π.14.(5分)对于一个函数,如果它的自变量x 与函数值y 满足:当11x -剟时,11y -剟,则称这个函数为“闭函数”.例如:y x =,y x =-均是“闭函数”.已知2(0)y ax bx c a =++≠是“闭函数”,且抛物线经过点(1,1)A -和点(1,1)B -,则a 的取值范围是 102a -<„或102a <„. 【解答】解:Q 抛物线2(0)y ax bx c a =++≠经过点(1,1)A -和点(1,1)B -, 1a b c ∴++=-①1a b c -+=②①+②得:0a c += 即a 与c 互为相反数, ①-②得:1b =-;所以抛物线表达式为2(0)y ax x a a =--≠,∴对称轴为12x a=, 当0a <时,抛物线开口向下,且102x a=<, Q 抛物线2(0)y ax x a a =--≠经过点(1,1)A -和点(1,1)B -,画图可知,当112a -„时符合题意,此时102a -<„,当1102a-<<时,图象不符合11y -剟的要求,舍去 同理,当0a >时,抛物线开口向上,且102x a=>, 画图可知,当112a …时符合题意,此时102a <„,当1012a<<时,图象不符合11y -剟的要求,舍去, 综上所述:a 的取值范围是102a -<„或102a <„,故答案为:102a -<„或102a <„.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:02019219(3)|5|(1)()2π-+---+-+.【解答】解:原式315142=+--+=. 16.(8分)先化简,再求值:23()111x x xx x x -÷+--,其中2x =-. 【解答】解:原式2233(1)(1)(1)(1)x x x x x x x x x---+-=+-g24x =--,当2x =-时,原式0=.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,ABC ∆为格点三角形(顶点在网格线的交点).(1)将ABC ∆向上平移2个单位得到△111A B C ,请画出△111A B C ;(2)将ABC ∆绕着某点O 逆时针方向旋转90︒后,得到△222A B C ,请画出旋转中心O ,并直接写出在此旋转过程中,线段AB 扫过的区域的面积.【解答】解:(1)如图所示:△111A B C 即为所求;(2)如图所示:点O 即为所求;线段AB 22222290(61)90(42)174πππ++=g g g g .18.(8分)观察以下等式: 第1个等式:11111122-+=⨯,第2个等式:11212233-+=⨯, 第3个等式:11313344-+=⨯,第4个等式:11414455-+=⨯, ⋯⋯按照以上规律,解决下列问题: (1)写出第5个等式:;(2)写出你猜想的第(n n 为正整数)个等式:(用含n 的等式表示),并证明. 【解答】解:(1)第5个等式为:11515566-+=⨯;(2)第n 个等式为:111(1)1nn n n n -+=++;()()()()()()2211:1111111n n n n n n n n n n n n n n n n +=-+++++=++===+证明左边右边∴等式成立;五、(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量山坡上的电线杆PQ 的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A 处测得信号塔顶端P 的仰角是45︒,信号塔底端点Q 的仰角为30︒,沿水平地面向前走100米到B 处,测得信号塔顶端P 的仰角是60︒,求信号塔PQ得高度.【解答】解:延长PQ 交直线AB 于点M ,连接AQ ,如图所示: 则90PMA ∠=︒, 设PM 的长为x 米,在Rt PAM ∆中,45PAM ∠=︒, AM PM x ∴==米, 100BM x ∴=-(米),在Rt PBM ∆中,tan PMPBM BM∠=Q , tan 603100xx ∴︒==-,解得:50(33)x =+, 在Rt QAM ∆中,tan QMQAM AM∠=Q , tan 50(33)tan 3050(31)QM AM QAM ∴=∠=+⨯︒=+g (米),100PQ PM QM ∴=-=(米);答:信号塔PQ 的高度约为100米.20.(10分)如图,点P 在O e 外,PC 是O e 的切线,C 为切点,直线PO 与O e 相交于点A 、B .(1)若30A ∠=︒,求证:3PA PB =;(2)小明发现,A ∠在一定范围内变化时,始终有1(90)2BCP P ∠=︒-∠成立.请你写出推理过程.【解答】解:(1)AB Q 是直径 90ACB ∴∠=︒, 30A ∠=︒Q , 2AB BC ∴= PC Q 是O e 切线 30BCP A ∴∠=∠=︒, 30P ∴∠=︒, PB BC ∴=,12BC AB =, 3PA PB ∴=(2)Q 点P 在O e 外,PC 是O e 的切线,C 为切点,直线PO 与O e 相交于点A 、B , BCP A ∴∠=∠,180A P ACB BCP ∠+∠+∠+∠=︒Q ,且90ACB ∠=︒, 290BCP P ∴∠=︒-∠,1(90)2BCP P ∴∠=︒-∠六、(本题满分12分)21.(12分)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题. (1)该记者本次一共调査了 200 名行人; (2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【解答】解:(1)21%200÷=(名).故答案为200;(2)④所在扇形的圆心角70360126 200⨯︒=︒,③的人数2009%18⨯=人,②的人数20018270110---=人,第②种情况110人,第③种情况18,补全图形如图:.(3)1101120020p==,他属于第②种情况的概率为11 20.七、(本题满分12分)22.(12分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?(3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 【解答】解:(1)当每吨售价是240元时, 此时的月销售量为:260240457.56010-+⨯=;(2)设当售价定为每吨x 元时, 由题意,可列方程260(100)(457.5)900010xx --+⨯=. 化简得2420440000x x -+=. 解得1200x =,2220x =.当售价定为每吨200元时,销量更大, 所以售价应定为每吨200元.(3)我认为,小静说的不对. Q 由(2)知,2420440000x x -+=,∴当月利润最大时,x 为210元.理由:方法一:当月利润最大时,x 为210元, 而对于月销售额22603(457.5)(160)19200104x W x x -=+⨯=--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元; 而当x 为200元时,月销售额为18000元.17325Q 元18000<元,∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分) 八、(本题满分14分)23.(14分)定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,ABC ∆中,AC AB >,DE 是ABC ∆在BC 边上的中分线段,F 为AC 中点,过点B 作DE 的垂线交AC 于点G ,垂足为H ,设AC b =,AB c =. ①求证:DF EF =;②若6b =,4c =,求CG 的长度; (2)若题(1)中,BDH EGH S S ∆∆=,求bc的值.【解答】(1)①证明:F Q 为AC 中点,DE 是ABC ∆在BC 边上的中分线段,DF ∴是CAB ∆的中位线,1122DF AB c ∴==,1122AF AC b ==,1()2CE b c =+,11()()22AE b CE b b c b c ∴=-=-+=-,111()222EF AF AE b b c c ∴=-=--=,DF EF ∴=;②解:过点A 作AP BG ⊥于P ,如图1所示:DF Q 是CAB ∆的中位线,//DF AB ∴, DFC BAC ∴∠=∠,DFC DEF EDF ∠=∠+∠Q ,EF DF =,DEF EDF ∴∠=∠,2BAP PAC DEF ∴∠+∠=∠, ED BG ⊥Q ,AP BG ⊥, //DE AP ∴, PAC DEF ∴∠=∠, BAP DEF PAC ∴∠=∠=∠, AP BG ⊥Q ,第21页(共21页)4AB AG ∴==,642CG AC AG ∴=-=-=;(2)解:连接BE 、DG ,如图2所示: BDH EGH S S ∆∆=Q ,BDG DEG S S ∆∆∴=,//BE DG ∴,//DF AB Q ,ABE FDG ∴∆∆∽, ∴21AB AE DF FG ==,1111()()2224FG AE b c b c ∴==⨯-=-, AB AG c ==Q ,CG b c ∴=-,11()()24CF b FG CG b c b c ∴==+=-+-, 35b c ∴=,∴53b c =.。

2020年安徽省中考数学一模试卷 (含解析)

2020年安徽省中考数学一模试卷 (含解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。

2020学年安徽省中考第一次调研模拟数学试题及参考答案

2020学年安徽省中考第一次调研模拟数学试题及参考答案

2020学年安徽省中考第一次调研模拟数学试题1.如图,已知////AB CD EF ,:1:2BD DF =,那么下列结论正确的是( )A .:1:3AC AE =B .:1:3CE EA =C .:1:2CD EF =D .:1:2AB CD =2.下列命题中,正确的是( ) A .两个直角三角形一定相似 B .两个矩形一定相似C .两个等边三角形一定相似D .两个菱形一定相似3.已知二次函数y =ax 2﹣1的图象经过点(1,﹣2),那么a 的值为( )A .a =﹣2B .a =2C .a =1D .a =﹣14.如图,直角坐标平面内有一点(2,4)P ,那么OP 与x 轴正半轴的夹角α的余切值为( )A .2B .12CD 5. 设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r ()=()B . m n a ma na ++r r r ()=C .m a b ma mb +r r r r (+)=D .若0ma =r r ,那么0a =r r6.若⊙A 的半径为5,圆心A 的坐标是(1,2),点P 的坐标是(5,2),那么点P 的位置为( )A .在⊙A 内B .在⊙A 上C .在⊙A 外D .不能确定 7.二次函数21y x =-图像的顶点坐标是_________.8.将二次函数y =2x 2的图象向右平移3个单位,所得图象的对称轴为_________.9.请写出一个开口向下,且经过点(0,2)的二次函数解析式_________.10.若2||3a =r ,那么3||a =r_________.11.甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10 cm ,那么地图上距离为4.5 cm 的两地之间的实际距离为__________千米.12.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于_________. 13.Rt △ABC 中,90C ∠=︒,2AB AC =,那么sin B =_________.14.直角三角形的重心到直角顶点的距离为4cm ,那么该直角三角形的斜边长为_________.15.如图,四边形ABCD 中,AB ∥CD ,点E 在CB 延长线上,ABD CEA ∠=∠,若3AE=2BD ,BE=1,那么DC=_________.16.⊙O 的直径6AB =,C 在AB 延长线上,2BC =,若⊙C 与⊙O 有公共点,那么⊙C 的半径r 的取值范围是_________.17.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.18.如图,Rt △ABC 中,90ACB ∠=︒,4AC =,5BC =,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C 落在C '处,连接AC ',若AC '∥BC ,那么CP 的长为_________.19.计算:sin30tan30cos60cot30︒⋅︒+︒⋅︒.20.已知:如图,在△ABC 中,AB =AC ,点E 、F 在边BC 上,∠EAF =∠B .求证:BF•CE =AB 2.21.如图,已知,△ABC 中,点D 、E 分别在AB 、AC 上,9AB =,6AC =,2AD =,3AE =(1)求DE BC 的值; (2)设AB a =u u u r r ,AC b =u u u r r ,求DE u u u r .(用含a r 、b r 的式子表示)22.如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.24.如图,已知,二次函数2y x bx =+的图像交x 轴正半轴于点A ,顶点为P ,一次函数132y x =-的图像交x 轴于点B ,交y 轴于点C ,OCA ∠的正切值为23. (1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ',若ABP BCP S S ''=V V ,求m 的值.25.如图,已知:梯形ABCD 中,∠ABC =90°,∠DAB =45°,AB ∥DC ,DC =3,AB =5,点P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 于射线CB 交于点F .(1)若AP 13=,求DE 的长;(2)联结CP ,若CP =EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似?若相似,求FG 的值;若不相似,请说明理由.2020学年安徽省中考第一次调研模拟数学试题参考答案1.A【解析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质对各选项进行判断.∵AB∥CD∥EF,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:CE=1:3,CE:EA=2:3.故选:A.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.2.C【解析】利用反例可分析排除判断.等腰直角三角形和非等腰直角三角形显然不相似,故A错误;正方形和长方形都是矩形,显然不相似,故B错误;内角分别是60°,120°,60°,120°的菱形和内角分别是80°,100°,80°,100°的菱形显然不相似,故D错误;故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.D【解析】将点带入函数表达式即可求得a的值.将点(1,-2)代入二次函数y=ax2-1得a-1=-2解得a=-1.故答案为D.【点睛】本题考查的知识点是二次函数图像上点的坐标特征,解题关键是熟记二次函数图像点的坐标特征.4.B【解析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.5.D【解析】空间向量的线性运算的理(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同.根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v 是有方向的,而0没有,所以错误.∵A 、B 、C 均属于向量运算的性质,是正确的;∵D 、如果a v =0v ,则m=0或a v =0v.∴错误.故选D .【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.6.A【解析】先根据两点间的距离公式计算出PA 的长,然后比较PA 与半径的大小,再根据点与圆的关系的判定方法进行判断.∵圆心A 的坐标是(1,2),点P 的坐标是(5,2),∴<5,∴点P 在⊙A 内,故选A .【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上,当d <r 时,点在圆内.也考查了坐标与图形性质.7.(0,-1)【解析】二次函数的性质类型的题目,根据题意,把二次函数的一般形式转化为顶点式解析式; 再根据顶点式解析式即可求出二次函数的顶点坐标.因为y =x 2-1=(x -0)2-1,即当x =0时,y =-1,所以二次函数y =x 2-1的顶点坐标为(0,-1).答案为:(0,-1).【点睛】本题考查的知识点是二次函数的性质,解题关键是要把二次函数解析式转化为顶点式. 8.直线x =3【解析】先利用顶点式得到y=2x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后的对应点的坐标为(3,0),然后根据顶点式即可得到平移后的抛物线解析式,再将其改写成顶点式即可得.二次函数y=2x 2的顶点坐标为(0,0),点(0,0)沿y 轴向右平移3个单位所得对应点的坐标为(3,0),所以所得图象的函数解析式y=2(x−3)2 ,故对称轴为:直线x=3.故答案为直线x=3.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是将函数图像的几何变换转化为点的变换.9.22y x =-+(答案不唯一)【解析】根据二次函数开口向下,所写出的二次函数a <0即可.二次函数y=-x 2+2开口向下,且经过(0,2).故答案为:y=-x 2+2(答案不唯一).【点睛】本题考查的知识点是二次函数的性质,解题关键是利用二次函数图象开口方向和二次函数图象上点的坐标特征.10.92【解析】 先求出a v 的值,随之即可解答. 已知23a =v, 可得a v =32, 所以3a v =3·32=92. 【点睛】读懂题目求出关键值是解答本题的关键.11.225【解析】根据地图上距离的比值等于实际距离的比值即可求解.设A、B两地的实际距离为x千米.根据题意得到:105004.5x.解得x=225千米.【点睛】本题主要考查了地图上距离的比值等于实际距离的比值.12.1:16【解析】根据相似三角形的性质即可得出结论.∵两个相似三角形的周长之比是1:4,∴其相似比等于1:4,∴它们的面积比是21:24=1:16,故答案为1:16.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比是解答此题的关键.13.1 2【解析】在直角△ABC中,AB2=AC2+BC2,且AB=2AC,利用勾股定理即可解答. ∵△ABC为直角三角形,且∠C=90°,∴AB2=AC2+BC2,∵AB=2AC,∴sin B=ACAB=12.【点睛】掌握勾股定理是解答本题的关键.14.12cm【解析】根据三角形重心的性质可求得这条中线的长,再根据三角形斜边上的中线等于斜边的一半即可求得斜边的长.重心到顶点的距离与重心到对边中点的距离之比为2∶1, 又因为三角形的重心到直角顶点的距离为4, 可得这条中线长6cm(斜边上的中线). 即斜边长12cm. 【点睛】此题主要考查直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1. 15.32【解析】根据平行线定理和三角形相似相关知识即可解答. 由题知AB ∥CD ,可得∠ABE=∠DCB ,∠ABD=∠BDC , 又因为ABD CEA ∠∠=,所以∠CEA=∠BDC , 根据∠CEA=∠BDC ,∠ABE=∠DCB ,可判定△AEB ∽△BDC , 因为3AE=2BD ,BE=1, 可得3BE=2DC ,解得DC=32. 【点睛】掌握平行线定理和三角形相似相关知识是解答本题的关键. 16.28r ≤≤ 【解析】利用⊙C 与⊙O 相切或相交,即可确定r 的范围. ∵⊙O 的直径AB=6,C 在AB 延长线上,BC=2, ∴CA=8,∵⊙C 与⊙O 有公共点,即⊙C 与⊙O 相切或相交, ∴r=2或r=8或2<r <8, 即2≤r≤8. 故答案为:2≤r≤8. 【点睛】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R >r);⑤两圆内含⇔d<R-r(R>r).17.15或45【解析】将情况分为腰比底边长和腰比底边短两种情况来讨论,根据题意求出底边的长进而求出余弦值即可.当腰比底边长长时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为2,所以这个等边三角形底角的余弦值为15;当腰比底边长短时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为8,所以这个等边三角形底角的余弦值为4 5 .【点睛】本题主要考查对新定义的理解能力、角的余弦的意义,熟练掌握角的余弦的意义是解答本题的关键.18.2.5【解析】如图所示,过点C′作C′D⊥AC,垂足为D,先由勾股定理求出BD的长,进而可得AC′的长,设CP=x,则AP=4-x,C′P=CP=x,根据勾股定理列方程解出x的值即可.如图所示,过点C′作C′D⊥AC,垂足为D.由题意可知BC=BC′=5,C′D=AC=4,∴BD3,AC′=CD=BC-BD=5-3=2.设CP=x,则AP=4-x,根据翻折的性质易知,C′P=CP=x,根据勾股定理有x2=22+(4-x)2,解得x=2.5.【点睛】本题主要考查翻折的性质和勾股定理,熟练掌握翻折的性质是解答本题的关键.19.3【解析】根据30°角和60°角的三角函数值进行计算即可.sin30°∙tan30°+cos60°∙cot30°=11×2323=. 【点睛】本题主要考查特殊角的三角函数值,熟记特殊角的三角函数值是解答本题的关键. 20.证明见解析. 【解析】利用两角对应成比例可得△ABF ∽△ECA ,对应边成比例可得相应的比例式,整理可得所求的乘积式.证明:∵∠AEC =∠B+∠BAE =∠EAF+∠BAE =∠BAF , 又∵AB =AC , ∴∠B =∠C , ∴△ABF ∽△ECA , ∴AB :CE =BF :AC , ∴BF•EC =AB•AC =AB 2. 【点睛】本题考查的知识点是相似三角形的判定与性质, 等腰三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质, 等腰三角形的性质. 21.(1)13;(2)1229b a v v- 【解析】(1)根据两组对应边成比例且对应边的夹角相等证△ADE ∽△ACB ,即可得到DEBC;(2)根据对应边成比例,进行计算即可. (1)∵13AD AE AC AB ==,且∠A =∠A , ∴△ADE ∽△ACB , ∴DE BC =13. (2)∵AB =9,AD =2,AC =6,AE =3,∴2192AD a AE b u u u v u u u v vv =,=,∴1229DE AE AD b au u u v u u u v u u u v v v =-=-,【点睛】本题主要考查相似三角形的判定及性质和向量,熟练掌握有关知识点并灵活应用是解答的关键.22.(1)94;(2)12.【解析】(1)由∠ACB=90°,AD⊥AB,易证:△ABC∽△F AC,得:AC BCCF AC=,即可得到答案;(2)过点C作CH⊥AB于点H,根据面积法,可得:CH125=,进而得到:AH95=,EH6=5,根据正切三角函数的定义,即可求解.(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴AC BCCF AC=,即343CF=,解得:CF94 =;(2)如图,过点C作CH⊥AB于点H,则AD∥CH,即:∠D=∠ECH,∵AC=3,BC=4,∴AB=5,∴CH125 AC BCAB⋅==,∴AH95==,EH=AE﹣AH96355=-=,∴tan D=tan∠ECH12 EHCH==.【点睛】本题主要考查相似三角形的判定和性质定理以及三角函数的定义,添加辅助线,把∠D的正切值化为∠ECH的正切值,是解题的关键.23.tan∠BAC512=,AB=19.5米.【解析】如图所示,延长PA,过B点作BC⊥PA,垂足为C,过Q点作QD∥PC,过A点作EA⊥PC,EA与QD相交于F,根据EF∥BD证得△QEF∽△QBD,根据相似比求得QD的长,进一步得到AC的长,最后求出AB的长和坡度.如图所示,延长PA,过B点作BC⊥PA,垂足为C,过Q点作QD∥PC,过A点作EA⊥PC,EA与QD相交于F.依题意易知,BC=7.5,BD=6,EF=APtan14°=6×0.25=1.5,∵EF∥BD,∴△QEF∽△QBD,∴EF QFBD QD=,∴QD=24,∴AC=QD-PA=18,∴AB19.5米,坡度为tan∠BAC=BCAC=7.551812=.【点睛】本题主要考查了相似三角形的判定与性质,解题关键是掌握相似三角形判定定理,证明△QEF∽△QBD.24.(1)二次函数解析式为y=x2-2x,顶点P的坐标是(1,-1);(2)m=5 6 .【解析】(1)先根据题中所给条件求出A点坐标,再利用待定系数法求出函数解析式,将求出的函数解析式化为顶点式,即可得到顶点P的坐标;(2)用含m的代数式表示出P′的坐标,用含m的代数式表示S△ABP′和S△BCP′,根据S△ABP′=S△B CP′求出m的值即可.(1)∵一次函数解析式为y=12x-3,∴OC=3,∵tan∠OCA=23 OAOC=,∴OA=2,∴A点坐标为(2,0),将A点坐标代入函数解析式得4+2b=0,解得:b=﹣2,∴二次函数解析式为y=x2-2x,将二次函数解析式化为顶点式,得y=(x-1)2-1,∴顶点P的坐标为(1,﹣1).(2)如图所示,其中l为抛物线的对称轴,D为l与x轴的交点,当y=0时,12x-3=0,解得x=6,∴B点坐标为(6,0),∴AB=6-2=4,在Rt△BOC中,BC∵P′是将二次函数图像向下平移m个单位后得到的抛物线的顶点,∴P′的坐标为(1,﹣1-m),∴DP′=1+m∴S△ABP′=12×AB×DP′=12×4×(1+m)=2+2m,当P′在直线y=12x-3的左侧时,S△BCP′=S△BOC-(S梯形ODP′C+S△BDP′)=111×3?6[?(13)?1?5?(1)]222m m-++++=92-3m,∵S△ABP′=S△BCP′,∴2+2m=92-3m,解得m=12,当P′在直线y=12x-3的右侧时,S△BCP′=(S梯形ODP′C+S△BDP′)-S△BOC=111[?(13)?1?5?(1)]?3?6222m m++++-=92﹣+3m,∵S△ABP′=S△BCP′,∴2+2m=﹣92+m,解得m=132,综上,m=12或132.【点睛】本题主要考查一次函数的图像与性质、二次函数的图像与性质、图像的平移、三角形面积公式,解题的关键是:(1)求出二次函数解析式;(2)用含m的代数式表示S△ABP′和S△BCP.′25.(1)1;(2)AP=;(3)FG=1.【解析】(1)如图,过点A,作AH//BC,交CD的延长线于点H,在Rt△AHE中求出AE,即可求解;(2)设:AP=x,利用△APE∽△PEC,得出PC2=CE⋅AP,利用勾股定理得出PC2=PB2+BC2,即可求解;(3)利用△ADE∽△FGE,得到3α=45°,进而求出相应线段的长度,再利相似比AD DE FG GE=,即可求解.(1)如图1中,过点A,作AH∥BC,交CD的延长线于点H.∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP=根据勾股定理得,HE==3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EP A=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴PE AE EC PE=,即:PE2=AE•CE,而EC =2PB =2(5﹣x ), 即:PC 2=CE •AP =2(5﹣x )x ,而PC 2=PB 2+BC 2,即:PC 2=(5﹣x )2+22, ∴2(5﹣x )x =(5﹣x )2+22,解得:x 103+=(不合题意值已舍去),即:AP =; (3)如图3中,在线段CF 上取一点G ,连接EG .设∠F =α,则∠APE =∠AEP =∠BPF =90°﹣α, 则:∠EAP =180°﹣2∠APE =2α, ∵△ADE ∽△FGE ,设∠DAE =∠F =α, 由∠DAB =45°,可得3α=45°,2α=30°, 在Rt △ADH 中,AH =DH =2,在Rt △AHE 中,∠HEA =∠EAB =2α=30°,∠HAE =60°,∴HE =AH •tan ∠HAE =∴DE =HE ﹣HD =2,EC =HC ﹣HE =5﹣, ∵△ADE ∽△FGE , ∴∠ADC =∠EGF =135°, 则∠CEG =45°,∴EG ==,∴AD DE FG GE=,即:FG=,解得:FG=1.【点睛】本题属于三角形相似综合题,涉及到解直角三角形、勾股定理等知识点,其中(3)中,利用三角形相似,确定α的大小,是本题的突破点,属于中考压轴题。

(安徽卷)学科网2020年中考数学第一次模拟考试(全解全析)

(安徽卷)学科网2020年中考数学第一次模拟考试(全解全析)

学科网2020年中考数学第一次模拟考试【安徽卷】数学·全解全析1.【答案】A【解析】∵|﹣9|=9,∴|﹣9|的值是9,故选:A.2.【答案】C【解析】(﹣a3)2÷a2=a6÷a2=a4,故选:C.3.【答案】A【解析】从上边看时,是一个正方形分成了左右两个长方形,分开的线条是实线,故选A.4.【答案】C【解析】,故选C.5.【答案】C【解析】∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣48°=132°,∵EG平分∠BEF,∴∠BEG=132°÷2=66°,∴∠2=∠BEG=66°.故选C.6.【答案】A【解析】原式()2112111a a a a a +-⎛⎫=÷+ ⎪--⎝⎭- ()()221111111111a a a a a a a a a +++-=÷=⋅=-+---, 故选A . 7.【答案】B【解析】根据题意可知6月份760分以上的学生人数是:2300(15%)(1)x ++. 故选B . 8.【答案】B【解析】在ABC V 中,∴3AB =,4BC =,5AC =,∴22225AB BC AC +==. ∴ABC V 为直角三角形,且90B ∠=︒. ∵四边形ADCE 是平行四边形, ∴OD OE =, 2.5OA OC ==.∴当OD 取最小值时,DE 线段最短,此时OD BC ⊥. ∴OD 是ABC V 的中位线. ∴11.52OD AB ==.∴23DE OD ==. 故选B . 9.【答案】D【解析】当a >0时,函数y =ax的图象位于一、三象限,y =﹣ax 2+a 的开口向下,交y 轴的正半轴,没有符合的选项, 当a <0时,函数y =ax的图象位于二、四象限,y =﹣ax 2+a 的开口向上,交y 轴的负半轴,D 选项符合;故选D . 10.【答案】D【解析】设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x整理得:y =−14(x −3)2+94根据函数关系式可看出D 中的函数图象与之对应. 故选D .11.【答案】1036810.⨯【解析】将368亿用科学记数法表示为1036810.⨯. 故答案为:1036810.⨯. 12.【答案】59【解析】∵大圆半径为3,小圆半径为2,∴S 大圆239ππ==n (m 2),S 小圆224ππ==n (m 2), S 圆环=9π﹣4π=5π(m 2), ∴掷中阴影部分的概率是5599ππ=. 故答案为:59. 13.【答案】50【解析】连接OD ,如图所示,∵∠BED =40°, ∴∠BOD =80°, ∵AB 为直径, ∴∠AOB =180°, ∴∠AOD =100°, ∴∠ACD =50°. 故答案为50. 14.【答案】294【解析】∵y =﹣x 2+3x +2=231724x ⎛⎫--+ ⎪⎝⎭,∴317,24B ⎛⎫⎪⎝⎭,对称轴为直线32x =∴当BD ⊥x 轴时,BD 最小,BD =174令x =0,则y =2,∵C 与点A 是抛物线上关于对称轴对称的两个点,对称轴为直线32x =, ∴C (3,2) ∴AC =3,四边形ABCD 的两条对角线的长度之和AC +BD 的最小值为1729344+=, 故答案为294.15.【解析】原式2⨯=4-1+4 369=+=16.【解析】(1)30,312(2)猜想:2222121n n n ⨯-+=-()()证明:左边22222121n n n =-⨯+=-=()()右边,故2222121n n n ⨯-+=-()()17.【解析】由题意知∠CAD =45°,∠CBD =60°设BD =x 米,在Rt △CBD 中,∵BD =x ,∠CBD =60o∴CD在Rt △CAD 中,∠CAD =45°, ∴∠ACD =∠CAD =45°, ∴AD =CD ,∴200+x ,∴)x又3 1.732≈,∴x≈273,答:还要沿绿道走约273m才能到达桥头.18.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).故答案为(﹣2,﹣2).19.【解析】(1)∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵BC是⊙O的切线,∴∠BCA=90°,∴∠B+∠A=90°,∴∠B+∠FED=90°;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴DE DF AC FC=,∴326 AC=,解得:AC=9,即⊙O的直径为9.20.【解析】(1)∵A类5人,占10%,∴八(1)班共有学生有:5÷10%=50(人);∴在扇形统计图中,表示“B类别”的扇形的圆心角的度数为:1050×360°=72°;故答案为50,72°;(2)D 类:50﹣5﹣10﹣15=20(人),如图:(3)计划“五一”小长假随父母到这三个景区游玩的学生人数是1000×(1﹣2050)=600(人). 答:计划“五一”小长假随父母到这三个景区游玩的学生人数是600人. 21.【解析】(1)∵点()2,B n ,()34,1P n -在双曲线()0my x x=>上,∴234n n =-,解得4n =. (2)由(1)知点()2,4B ,()8,1P .如图,过点P 作PD BC ⊥,垂足为D ,并延长交AB 于点P '.在BDP V 和BDP 'V 中,PBD P BD BD BD BDP BDP ∠=∠⎧⎪=⎨⎪∠'=∠⎩', ∴BDP BDP ≅'V V . ∴6DP DP '==. ∴点()4,1P '-.将点()2,4B ,()4,1P '-代入y kx b =+,得2441k b k b +=⎧⎨-+=⎩,解得123k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为132y x =+. 22.【解析】(1)设B 型汽车的进货单价为x 万元,根据题意得502x +=40x,解得x =8, 经检验x =8是原分式方程的根.答:A 、B 两种型号汽车的进货单价为:10万元、8万元. (2)设两种汽车的总利润为w 万元,根据题意得 w =(x +2﹣10)[﹣(x +2)+18]+(x ﹣8)(﹣x +14) =﹣2x 2+48x ﹣256 =﹣2(x ﹣12)2+32∵﹣2<0,当x =12时,w 有最大值为32.答:A 、B 两种型号的汽车售价各为14万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是32万元.23.【解析】(1)问题发现:①如图1,∵∠AOB =∠COD =40°, ∴∠COA =∠DOB , ∵OC =OD ,OA =OB , ∴△COA ≌△DOB (SAS ), ∴AC =BD , ∴1ACBD,= ②∵△COA ≌△DOB , ∴∠CAO =∠DBO , ∵∠AOB =40°,∴∠OAB +∠ABO =140°,在△AMB 中,∠AMB =180°-(∠CAO +∠OAB +∠ABD )=180°-(∠DBO +∠OAB +∠ABD )=180°-140°=40°, (2)类比探究: 如图2,3ACBD=,∠AMB =90°,理由是: Rt △COD 中,∠DCO =30°,∠DOC =90°, ∴303OD tan OC ︒==, 同理得:303OB tan OA ︒==, ∴OD OB OC OA=, ∵∠AOB =∠COD =90°, ∴∠AOC =∠BOD , ∴△AOC ∽△BOD , ∴3AC OCBD OD==,∠CAO =∠DBO , 在△AMB 中,∠AMB =180°-(∠MAB +∠ABM )=180°-(∠OAB +∠ABM +∠DBO )=90°; (3)拓展延伸:①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD , ∴∠AMB =90°,3ACBD= 设BD =x ,则AC 3,Rt △COD 中,∠OCD =30°,OD =1, ∴CD =2,BC =x -2,Rt △AOB 中,∠OAB =30°,OB 7,∴AB =2OB =27,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, (3x )2+(x −2)2=(27)2, x 2-x -6=0,(x -3)(x +2)=0, x 1=3,x 2=-2, ∴AC =33;②点C 与点M 重合时,如图4,同理得:∠AMB =90°,3ACBD= 设BD =x ,则AC 3,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, 3x )2+(x +2)2=(7)2. x 2+x -6=0,(x +3)(x -2)=0, x 1=-3,x 2=2, ∴AC 3综上所述,AC 的长为3或3。

安徽2020中考数学综合模拟测试卷1(含答案及解析)

安徽2020中考数学综合模拟测试卷1(含答案及解析)

2020安徽省初中毕业学业模拟考试数学(满分:150分时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下面的数中,与-3的和为0的是()A.3B.-3C.D.-2.下面的几何体中,主(正)视图为三角形的是()3.计算(-2x2)3的结果是()A.-2x5B.-8x6C.-2x6D.-8x54.下面的多项式中,能因式分解的是()A.m2+nB.m2-m+1C.m2-nD.m2-2m+15.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%.则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元6.化简-+-的结果是()A.x+1B.x-1C.-xD.x7.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a28.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为()A. B. C. D.9.如图,A点在半径为2的☉O上,过线段OA上的一点P作直线l,与☉O过A点的切线交于点B,且∠APB=60°.设OP=x,则△PAB的面积y关于x的函数图象大致是()10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.4C.10或4D.10或2第Ⅱ卷(非选择题,共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是.12.甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为甲=36,乙=25.4,丙=16.则数据波动最小的一组是.13.如图,点A、B、C、D在☉O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=°.14.如图,P是矩形ABCD内的任意一点,连结PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4.给出如下结论:①S1+S4=S2+S3②S2+S4=S1+S3③若S3=2S1,则S4=2S2④若S1=S2,则P点在矩形的对角线上其中正确结论的序号是(把所有正确结论的序号都填在横线上).三、解答题(本大题共9小题,满分90分)15.(本题满分8分)计算:(a+3)(a-1)+a(a-2).16.(本题满分8分)解方程:x2-2x=2x+1.17.(本题满分8分)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f.(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:m n m+n f猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n 的关系式是(不需证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否仍然成立.7B18.(本题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.19.(本题满分10分)如图,在△ABC中,∠A=30°,∠B=45°,AC=2.求AB的长.20.(本题满分10分)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.25<x≤3020.04请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求月均用水量不超过15t的家庭数占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?21.(本题满分12分)甲、乙两家商场进行促销活动.甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…….乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为,写出p与x之间的函数关系式,并说明p随x的变化情况;p优惠金额购买商品的总金额(3)品牌、质量、规格等都相同的某种商品,在甲、乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买该商品花钱较少?请说明理由.22.(本题满分12分)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等.设BC=a,AC=b,AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连结CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.23.(本题满分14分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.一、选择题1.A互为相反数的两数之和为0,-3的相反数是3,故选A.2.C圆柱的主视图是长方形;正方体的主视图是正方形;圆锥的主视图是三角形;三棱柱的主视图是含有实线的长方形.综上所述应选C.3.B(-2x2)3=(-2)3(x2)3=-8x6,故选B.4.D A、B、C三个选项中的多项式既不含有公因式,又不能利用平方差、完全平方公式进行分解,而m2-2m+1=(m-1)2,故选D.5.B4月份的产值可以表示为a×(1-10%)万元,5月份的产值可以表示为a×(1-10%)(1+15%)万元,故选B.6.D-+-=---=--=--=x,故选D.7.A n边形的内角和公式为(n-2)·180°,所以正八边形的每个内角均为-=135°,由此易得外围阴影的三角形均为斜边长为a的等腰直角三角形,每个这样的三角形的面积均为(a×sin 45°)2=a2,所以四个三角形的面积和为4×a2=a2;中间正方形的面积为a2,所以阴影部分的面积为2a2,故选A.评析本题综合考查正多边形的性质,多边形的内角和,三角函数及三角形、正方形的面积等知识,利用三角函数知识求得等腰直角三角形的直角边长是关键,属中等难度题.8.B第一个电话可以打给甲或乙或丙,事件有三个等可能的结果,所以第一个打给甲的概率为.9.D因为AB是☉O的切线,所以OA⊥AB,在Rt△APB中,∠APB=60°,AP=2-x,所以AB=(2-x),S△PAB=AP·AB=··(2-x)2=(2-x)2=x2-2x+2(0≤x<2),根据解析式可判断选项D正确.评析本题是圆的切线、三角函数及函数图象的综合应用题,以圆的知识为背景,应用三角函数的知识求得函数解析式,并利用函数解析式及自变量的取值范围找到对应的函数图象,设计巧妙,知识点覆盖面广,属难度较大题.10.C根据题意复原直角三角形可能有以下两种情况:根据题目条件知,点M、N分别是三角形斜边的中点,由相似三角形的性质可以得到如图所示的各线段的长度,从而由勾股定理得到三角形的斜边长是10或4.评析本题考查相似三角形的判定及性质,同时考查学生的动手操作,对图形的空间想象等能力,题目难点多,对学生的要求较高,难度大.二、填空题11.答案 3.78×105解析科学记数法即将数字写成a×10n(1≤|a|<10,n为整数)的形式,378000=3.78×105.12.答案丙组解析方差的大小反映一组数据的波动大小,方差越大,波动越大,方差越小,波动越小,因为丙组数据的方差最小,所以丙组数据的波动最小.13.答案60解析四边形OABC是平行四边形,所以∠AOC=∠B;∠AOC和∠D是同弧所对圆心角和圆周角,所以∠D=∠AOC;由题意得∠D+∠B=180°,所以∠D=60°;连结OD,△AOD和△COD 均为等腰三角形,所以∠CDO=∠DCO,∠ADO=∠DAO.综上所述,∠OAD+∠OCD=∠D=60°.14.答案②④解析因为△APB和△CPD的高线和恰好等于AD的长,△APD和△CBP的高线和恰好等于AB的长,易得S1+S3=S ABCD,S2+S4=S ABCD,S1+S3=S2+S4,故②正确,①③错误;若S1=S2,则S1+S3=S2+S3=S ABCD,所以P点在矩形的对角线上,故④正确.评析本题利用三角形、矩形之间的面积关系考查学生整体代入求值的思想,利用整体求值是解决本题的关键,属中等难度题.三、解答题15.解析原式=a2+2a-3+a2-2a(4分)=2a2-3.(8分)16.解析方程可化为x2-4x-1=0.(2分)∵Δ=(-4)2-4×1×(-1)=20,∴x==2±,∴x1=2-,x2=2+.(8分)17.解析(1)表中填6;6.(2分)关系式为f=m+n-1.(4分)注:若猜想出的是其他关系式,只要这个关系式对表中5种情况都成立就可酌情给分.(2)当m、n不互质时,关系式f=m+n-1不成立.例如:当m=2,n=2时,图形如图.(6分)对角线所穿过的小正方形的个数f=2,而m+n=4,等式f=m+n-1不成立.(8分)评析本题属于探究规律问题,通过简单图形总结发现其中的规律是解决问题的关键,考查学生的观察、归纳、分析问题的能力,难度较大.18.解析(1)本题是开放题,答案不唯一.图中给出了两个满足条件的三角形,其他解答只要正确就相应给分.(4分)(2)D点如图所示.(6分)AD是由AB绕A点逆时针旋转90°而得到的,或AD是由AB绕A点顺时针旋转270°而得到的.(8分)19.解析作CD⊥AB于D点(如图).在Rt△ACD中,∠A=30°,AC=2,所以AD=ACcos30°=2×=3,CD=ACsin30°=.(6分)在Rt△BCD中,∠B=45°,所以BD=CD=,∴AB=AD+CD=3+.(10分)20.解析(1)表中填12;0.08.补全的图形如图.(4分)(2)0.12+0.24+0.32=0.68.即月均用水量不超过15t的家庭数占被调查的家庭总数的68%.(7分)(3)(0.08+0.04)×1000=120.所以根据调查数据估计,该小区月均用水量超过20t的家庭大约有120户.(10分)21.解析(1)510-200=310(元),付款时应付310元.(3分)(2)p与x之间的函数关系式为p=.当400≤x<600时,p随x的增大而减小.(6分)(3)设在甲、乙两家商场购买该商品实付款分别为y1、y2元,则y1=x-100,y2=0.6x,y1-y2=0.4x-100=0.4(x-250).(9分)当200≤x<250时,y1<y2,选择甲商场花钱较少;当x=250时,y1=y2,选择两家商场花钱相同;当250<x<400时,y1>y2,选择乙商场花钱较少.(12分)评析本题考查学生构建函数模型,通过函数与方程、不等式的关系对实际问题进行优化设计的能力.22.解析(1)∵△BDG与四边形ACDG的周长相等,且BD=DC,∴BG=AG+AC=(AB+AC)=(b+c).(3分)(2)证明:∵点D、F分别是BC、AB的中点,∴DF=AC=b.又∵FG=BG-BF=(b+c)-c=b,∴DF=FG,∴∠FDG=∠FGD.(6分)∵点D、E分别是BC、AC的中点,∴DE∥AB,∴∠EDG=∠FGD,∴∠FDG=∠EDG,即DG平分∠EDF.(8分)(3)证明:∵△BDG与△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),∴∠B=∠FDG.由(2)知∠FGD=∠FDG,∴∠FGD=∠B,∴DG=BD.(10分)∵BD=DC,∴DG=BD=DC,∴B、G、C三点在以BC为直径的圆周上,∴∠BGC=90°,即BG⊥CG.(12分)评析本题考查三角形的中位线、平行线的性质及判定以及三角形相似的性质等知识,对学生的逻辑推理能力有较高的要求,属较难题.23.解析(1)h=2.6时,y=a(x-6)2+2.6.由其图象过点(0,2),得36a+2.6=2,解得a=-.所以y=-(x-6)2+2.6.(3分)(2)当h=2.6时,由(1)知y=-(x-6)2+2.6.当x=9时,y=-(9-6)2+2.6=2.45>2.43,所以球能越过球网;(6分)由-(x-6)2+2.6=0,x>0,得x=6+>18.或当x=18时,y=-(18-6)2+2.6=0.2>0,所以球落地时会出界.(8分)(3)根据题设知y=a(x-6)2+h.由图象经过点(0,2),得36a+h=2,①由球能越过球网,得9a+h>2.43,②由球不出边界,得144a+h≤0.③(11分)由①②③解得h≥,所以h的取值范围是h≥.(14分)评析本题以实际问题为背景,考查二次函数与方程、不等式的综合应用,并应用二次函数的知识解决实际问题,对学生的能力要求较高,题目难度较大.解决本题的关键在于正确理解球是否出界与二次函数的对应关系.。

2020-2021学年安徽省中考第一次数学模拟试卷含答案解析

2020-2021学年安徽省中考第一次数学模拟试卷含答案解析

安徽省第一次中考(数学)模拟试卷(含答案)数学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.2-的倒数是)A (21-)B (21)C (2)D (2-2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为)A (91021⨯.)B (71012⨯)C (910120⨯.)D (81021⨯.3. 下列图形中,既是轴对称图形又是中心对称图形的是)A ()B ()C ()D (4.含︒30角的直角三角板与直线1l 、2l 的位置关系如图1所示,已知21//l l ,A ACD ∠=∠,则1∠=)A (︒70)B (︒60)C (︒40)D (︒305. 下列说法正确的是)A (打开电视,它正在播广告是必然事件)B (要考察一个班级中的学生对建立生物角的看法适合用抽样调查 )C (在抽样调查过程中,样本容量越大,对总体的估计就越准确)D (甲、乙两人射中环数的方差分别为2S 2=甲,4S 2=乙,说明乙的射击成绩比甲稳定6. 若02=-ab a ()0≠b ,则=+ba a)A (0)B (21 )C (0或21)D (1或 2 7.图2是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,250.CD AB ==米,51.BD =米,且AB 、CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离 地面的距离是)A (2米 )B (52.米)C (42.米)D (12.米8. 已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有)A (0个)B (1个)C (2个)D (3个9. 已知二次函数mx x y 22-=(m 为常数),当21≤≤-x 时,函数值y 的最小值为2-,则m 的值是)A (23)B (2)C (23或2)D (23-或2 10. 如图3,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为()46,,反比例函数xy 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将BDE ∆沿DE 翻折至DE B '∆处,点B '恰好落在正比例函数kx y =图象上,则k 的值是)A (52-)B (211-)C (51-)D (241-第二部分(非选择题 共120分)注意事项1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤. 4.本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分.11.计算:=-23 ____. 12.二元一次方程组2322+=-=+x yx y x 的解是____. 13.如图4,直线b a 、垂直相交于点O ,曲线C 关于点O 成中心对称,点A 的对称点是点'A ,a AB ⊥于点B ,b D A ⊥'于点D .若3=OB ,2=OC , 则阴影部分的面积之和为____.14.点A 、B 、C 在格点图中的位置如图5所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是_____.15. 庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将 事物无限分割的思想,用图形语言表示为图6.1, 按此图分割的方法,可得到一个等式(符号语言):⋅⋅⋅++⋅⋅⋅+++=n 32212121211.图6.2也是一种无限分割:在ABC ∆中,ο90=∠C ,ο30=∠A ,过点C 作AB CC ⊥1于点1C ,再过点1C 作BC C C ⊥21于点2C ,又过点2C 作AB C C ⊥32于点3C ,如此无限继续下去,则可将利ABC ∆分割成1ACC ∆、21C CC ∆、321C C C ∆、432C C C ∆、…、n n n C C C 12--∆、….假设2=AC ,这些三角形的面积和可以得到一个等式是_________.16.对于函数m n x x y +=,我们定义11--+='m n mx nx y (n m 、为常数).例如24x x y +=,则x x y 243+='. 已知:()x m x m x y 223131+-+=. (1)若方程0='y 有两个相等实数根,则m 的值为___________;(2)若方程41-='m y 有两个正数根,则m 的取值范围为__________. 三、本大题共3小题,每小题9分,共27分.17. 计算:272017316020-+-+︒sni .18. 求不等式组⎪⎩⎪⎨⎧≥--+<+02251,312x x x x 的所有整数解.19. 如图7,延长□ABCD 的边AD 到点F ,使DC DF =,延长CB 到点E ,使BA BE =,分别连结点A 、E 和点C 、F . 求证:CF AE =.四、本大题共3小题,每小题10分,共30分.20. 化简:12121222222-÷⎪⎪⎭⎫ ⎝⎛+----+a aa a a a a a a .21. 为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图8所示.请根据图表信息解答下列问题: (1)在表中:=m ,=n ; (2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A 、C 两组学生的概率是多少?并列表或画树状图说明.22. 如图9,在水平地面上有一幢房屋BC 与一棵树DE ,在地面观测点A 处测得屋顶C 与树梢D 的仰角分别是︒45与︒60,︒=∠60CAD ,在屋顶C 处测得︒=∠90DCA .若房屋的高6=BC米.求树高DE的长度.五、本大题共2小题,每小题10分,共20分.23、某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:律,给出理由,并求出其解析式;(2)按照这种变化规律,若已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).24.如图10,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且ο60=∠ACP ,PD PA =.(1)试判断PD 与⊙O 的位置关系,并说明理由;(2)若点C 是弧AB 的中点,已知4AB =,求CP CE ⋅的值.六、本大题共2小题,第25题12分,第26题13分,共25分.25.在四边形ABCD 中,︒=∠+∠180D B ,对角线AC 平分BAD ∠.(1)如图11.1,若︒=∠120DAB ,且︒=∠90B ,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图11.2,若将(1)中的条件“︒=∠90B ”去掉,(1)中的结论是否成立?请说明理由. (3)如图11.3,若︒=∠90DAB ,探究边AD 、AB 与对角线AC 的数量关系并说明理由.26.如图12.1,抛物线1C :ax x y +=2与2C :bx x y +-=2相交于点O 、C ,1C 与2C 分别交x 轴于点B 、A ,且B 为线段AO 的中点.(1)求ba的值; (2)若AC OC ⊥,求OAC ∆的面积;(3)抛物线2C 的对称轴为l ,顶点为M ,在(2)的条件下:①点P 为抛物线2C 对称轴l 上一动点,当PAC ∆的周长最小时,求点P 的坐标; ②如图12.2,点E 在抛物线2C 上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.第一次中考(数学)模拟试卷数学参考答案及评分意见第一部分(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.1. )(A2. )(D3. )(D4. )(B5. )(C6. )(C7. )(B8. )(C9. )(D 10.)(B第二部分(非选择题共120分)二、填空题:本大题共6小题,每小题3分,共18分. 11.91; 12.⎩⎨⎧-=-=15y x ;13. 6; 14.553; 15.⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=ΛΛn 434343431233232; 16.(1)21=m ;(2)43≤m 且21≠m . 注:(1)第14题,若给出的是化简后正确的等式,也视为正确;(2)第16题,第(1)问1分,第(2)问2分.三、本大题共3小题,每小题9分,共27分.17.解:原式33113232-+-+⨯=……………………………………(8分) =3-.………………………………(9分)18.解:解不等式①得:1->x ……………………………………(3分)解不等式②得:4≤x ……………………………………(6分)所以,不等式组的解集为41≤<-x ……………………………………(8分) 不等式组的整数解为43210,,,,. ……………………………………(9分)19. 证明:□ABCD 中,CD AB =,ΘBE AB =,DF CD =,∴DF BE =.ΘBC AD =, ∴EC AF =………………(6分)又ΘAF ∥EC ,∴四边形AECF 是平行四边形. ………………(8分)∴CF AE =………………………(9分)四、本大题共3小题,每小题10分,共30分.20. 解:原式=()()()()()121111122-÷⎥⎦⎤⎢⎣⎡----++a a a a a a a a a ………………(2分) =12112-÷⎪⎭⎫ ⎝⎛---a a a a a a ………………(4分) =121-÷-a a a a ………………(6分) =a a a a 211-⋅-………………(8分) =21…………………………(10分) 21.解:(1)120=m ,30.n =………………(2分)(2);如图2 ………………(4分)(3)C ;………………(6分)(4)………………(9分)∴抽中A ﹑C 两组同学的概率为122=P =61…………(10分) 22.解:如图3,在ABC Rt ∆中,︒=∠45CAB ,m BC 6=,∴26=∠=CABsin BC AC ()m ;…………………(3分) 在ACD Rt ∆中,︒=∠60CAD , ∴212=∠=CADcos AC AD ()m ;…………………(6分) 在DEA Rt ∆中,︒=∠60EAD ,()m sin AD DE 662321260=⋅=︒⋅=…………………(9分) 答:树DE 的高为66米.…………………(10分)五、本大题共2小题,每小题10分,共20分23.解:(1)设b kx y +=,(b k 、为常数,0≠k )∴⎩⎨⎧+=+=645436k .b k ,解这个方程组得⎩⎨⎧=-=51051.b .k , ∴51051.x .y +-=.当52.x =时,4756≠=.y .∴一次函数不能表示其变化规律. ……………………………………(2分) 设x k y =,(k 为常数,0≠k ),∴5227.k .=, ∴18=k ,∴x y 18=. 当3=x 时,6=y ;当4=x 时,54.y =;当54.x =时,4=y ; ∴所求函数为反比例函数xy 18=……………………………………(5分) (2)①当5=x 时,63.y =; 40634..=-(万元)∴比2016年降低40.万元. ……………………………………(7分)②当23.y =时,6255.x =; 630625056255...≈=-(万元)∴还需要投入技改资金约630.万元. ……………………………………(9分)答:要把每件产品的成本降低到23.万元,还需投入技改资金约630.万元. …………………(10分)24.解:(1)如图4,PD 是⊙O 的切线.证明如下:……………………………………(1分)连结OP ,οΘ60=∠ACP ,∴ο120=∠AOP ,OP OA =Θ,∴ο30=∠=∠OPA OAP ,ΘPD PA =,∴ο30=∠=∠D PAO , ∴ο90=∠OPD ,∴PD 是⊙O 的切线. ……………………………………(4分)(2)连结BC ,AB Θ是⊙O 的直径, ∴ο90=∠ACB ,又C Θ为弧AB 的中点, ∴ο45=∠=∠=∠APC ABC CAB ,4=AB Θ,2245==οsin AB AC .APC CAB C C ∠=∠∠=∠,Θ,∴CAE ∆∽CPA ∆,……………………………………(8分) ∴CACE CP CA =,∴82222===⋅)(CA CE CP .……………………………………(10分)六、本大题共2小题,第25题12分,第26题13分,共25分25.解:(1)AB AD AC +=.证明如下:在四边形ABCD 中,︒=∠+∠180B D ,︒=∠90B ,∴︒=∠90D .Θ︒=∠120DAB ,AC 平分DAB ∠,∴ο60=∠=∠BAC DAC ,︒=∠90B Θ,∴AC AB 21=,同理AC AD 21=.∴AB AD AC +=.……………………………(4分)(2)(1)中的结论成立,理由如下: 以C 为顶点,AC 为一边作ο60=∠ACE ,ACE ∠的另一边交AB 延长线于点E ,οΘ60=∠BAC ,∴AEC ∆为等边三角形,∴CE AE AC ==,︒=∠+∠180B D Θ,︒=∠120DAB ,∴ο60=∠DCB ,∴BEC DAC ∆≅∆,∴BE AD =,∴AB AD AC +=.……………………………………(8分)(3)AC AB AD 2=+.理由如下:过点C 作AC CE ⊥交AB 的延长线于点E , ︒=∠+∠180B D Θ,︒=∠90DAB ,∴ο90=DCB ,οΘ90=∠ACE ,∴BCE DCA ∠=∠,又AC Θ平分DAB ∠,∴ο45=∠CAB ,∴ο45=∠E .∴CE AC =.又︒=∠+∠180B D Θ,CBE D ∠=∠,∴CBE CDA ∆≅∆,∴BE AD =,∴AE AB AD =+.在ACE Rt ∆中,ο45=∠CAB ,∴AC cos AC AE 245==ο, ∴AC AB AD 2=+. ……………………………………(12分) 26.解:(1)ax x y +=2,当0=y 时,02=+ax x ,01=x ,a x -=2,∴()0,a B -bx x y +-=2,当0=y 时,02=+-bx x ,01=x ,b x =2,∴()b ,A 0∵B 为OA 的中点,∴a b 2-=.∴21-=b a .……………………………………(2分) (2)解⎪⎩⎪⎨⎧--=+=axx y ax x y 222得:ax x ax x 222--=+ ,0322=+ax x , 01=x ,a x 232-=, 当a x 23-=时,243a y =, ∴⎪⎭⎫ ⎝⎛-24323a ,a C . ……………………………(3分) 过C 作x CD ⊥轴于点D ,∴⎪⎭⎫ ⎝⎛-023,a D . ∵︒=∠90OCA ,∴OCD ∆∽CAD ∆,∴CDOD AD CD =, ∴OD AD CD ⋅=2,即⎪⎭⎫ ⎝⎛-⋅-=⎪⎭⎫ ⎝⎛a a a 23214322, ∴01=a (舍去),3322=a (舍去),3323-=a ……………………………(5分) ∴3342=-=a OA ,1432==a CD ,∴33221=⋅=∆CD OA S OAC ……………………………………(6分) (3)①x x y C 334:22+-=,对称轴332:2=x l ,点A 关于2l 的对称点为)0,0(O ,)1,3(C , 则P 为直线OC 与2l 的交点,设OA 的解析式为kx y =,∴k 31=,得33=k , 则OA 的解析式为x y 33=, 当332=x 时,32=y ,∴),(P 32332. ……………………………………(8分) ②设)3320(),334,(2≤≤+-m m m E , 则m m m S OBE 3433)334(3322122+-=+-⋅⨯=∆, 而)0,332(B ,)1,3(C , 设直线BC 的解析式为b kx y +=,由⎪⎩⎪⎨⎧+=+=b k b k 332031,解得2,3-==b k , ∴直线BC 的解析式为23-=x y . ……………………………………(9分)过点E 作x 轴的平行线交直线BC 于点N , 则233342-=+-x m m , 即=x 33234332++-m m ,∴=EN 3323133332343322++-=-++-m m m m m , ∴336163332313312122++-=++-⋅⋅=∆m m )m m (S EBC ∴EBC OBE OBCE S S S ∆∆+=四边形)336163()3433(22++-++-=m m m m 24317)23(2333232322+--=++-=m m m ,……………………………………(11分)3320≤≤m Θ,∴当23=m 时,24317=最大S , 当23=m 时,4523334)23(2=⋅+-=y , ∴),(E 4523,24317=最大S . ……………………………………(13分)。

2020年中考数学全真模拟试卷(安徽)(一)(解析版)

2020年中考数学全真模拟试卷(安徽)(一)(解析版)

2020年中考数学全真模拟试卷(安徽)(一)(考试时间:120分钟;总分:150分)班级:___________姓名:___________座号:___________分数:___________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.[2020安徽中考原创]|﹣2020|=()A.0B.﹣2020C.2020D.±2020【答案】C【解析】根据绝对值的定义进行填空即可.【解答】解:|﹣2020|=2020,故选:C.【点睛】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.[2019安庆市一模]下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=a6C.a8÷a2=a6D.(a+b)2=a2+b2【答案】C【解析】根据同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式分别求每个式子的值,再判断即可.【解答】解:A、a2•a3=a5,故本选项不符合题意;B、(﹣a2)3=﹣a6,故本选项不符合题意;C、a8÷a2=a6,故本选项符合题意;D、(a+b)2=a2+2ab+b2,故本选项不符合题意;故选:C.【点睛】本题考查了同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.[2020安徽中考原创]数据显示,冠状肺炎疫情之前,我国口罩总体产能是每天2000多万只,产能为全球最高,占全球近半产能规模。

而目前,我国口罩日产量已经达到1.16亿只,而这一产值的提高仅仅用了9天的时间!让全世界见证了中国速度和中国制造的价值所在!将数据1.16亿用科学计数法表示为()A. 1.16×108 B. 11.6×107 C. 0.116×109 D. 1.16×107【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10<n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:116000000=1.17×108<故选A<【点睛】本题考查了科学计数法,表示时关键要正确确定a的值以及n的值.4.[2019合肥包河区一模]从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.[2019合肥一六八中学一模]小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°【解析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点睛】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.[2019安徽省芜湖二十九中一模]“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.【答案】B【解析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下123456 1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果, 所以至少有一枚骰子的点数是3的概率为,故选:B .【点睛】此题主要考查了列表法求概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.[2019年福建省龙岩市武平县中考数学模拟试卷]如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E 是CD 的中点,则△ODE 与△AOB 的面积比为( )A .1:2B .1:3C .1:4D .1:5【答案】A【解析】由题意可得:S △AOB =S △COD ,由点E 是CD 中点,可得S △ODE =S △COD =S △AOB .即可求△ODE 与△AOB 的面积比.【解答】∵四边形ABCD 是平行四边形∴AO =CO ,BO =DO∴S △AOB =S △BOC ,S △BOC =S △COD .∴S △AOB =S △COD .∵点E 是CD 的中点 ∴S △ODE =S △COD =S △AOB .∴△ODE 与△AOB 的面积比为1:2故选:A .【点睛】本题主要考查了三角形的中线性质以及平行四边形的性质,能够熟练掌握是解题关键.8.[2019年海南省中考数学模拟试卷(一)]某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x ,根据题意,可得方程( ) A .81(1+x )2=100 B .8l (1﹣x )2=100C .81(1+x %)2=100D .81(1+2x )=100【答案】A【解析】由两次涨价的百分率都为x ,结合文化衫原价及两次涨价后的价格,即可列出关于x 的一元二次方程,此题得解.【解答】∵两次涨价的百分率都为x ,∴81(1+x )2=100.故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.[2019年湖北省武汉市武昌区中考数学模拟试卷]如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q 分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小【答案】A【解析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.=AC•CQ=(m﹣1)n=mn﹣n.【解答】由题意得AC=m﹣1,CQ=n,则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE=4﹣n随m的增大而增大.故选:A.∵当m>1时,n随m的增大而减小,∴S四边形ACQE【点睛】本题考查了反比例函数面积问题,正确的识图和运用k的几何意义是解题的关键.10.[安徽省二十所初中名校教育联盟中考数学一模]在Rt△ABC中,∠ACB=90°,AC=8,BC=3,点D 是BC边上一动点,连接AD交以CD为直径的圆于点E.则线段BE长度的最小值为()A.B.1C.D.【答案】B【解析】作AC为直径的圆,即可得当O、E、B三点共线时,BE是最短,也即求OB的长度即可求.【解答】解:如图,作以AC为直径的圆,圆心为O∵E点在以CD为直径的圆上∴∠CED=90°∴∠AEC=180°﹣∠CED=90°∴点E也在以AC为直径的圆上,若BE最短,则OB最短∵AC=8,∴OC=4∵BC=3,∠ACB=90°∴OB===5∵OE=OC=4∴BE=OB﹣OE=5﹣4=1故选:B.【点睛】此题主要考查勾股定理,圆的性质.利用构造法是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.[安徽省合肥市瑶海区一模]分解因式:x3﹣4x2+4x=.【答案】x(x﹣2)2【解析】首先提取公因式x,然后利用完全平方式进行因式分解即可.【解答】解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,故答案为x(x﹣2)2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.[安徽省芜湖市一模]抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为______.【答案】y=(x+1)2【解析】先确定抛物线y=x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(−1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(−1,0),所以新抛物线的解析式为y=(x+1)2.故答案为y=(x+1)2.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.[2019年甘肃省张掖市高台县中考数学模拟试卷]如图,在Rt△ABC中,∠ACB=90°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为.【答案】112°【解析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故答案为:112°.【点睛】本题主要考察了圆周角定理以及四边形内角和定理等基本性质,熟练掌握相关定理内容是解题关键.14.[2019合肥一六八中学一模]如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.【答案】或.【解析】先根据AD=BC=4,DF=CD=AB=6,得出AD<DF,再分两种情况进行讨论:①当FA=FD 时,过F作GH⊥AD与G,交BC于H,根据△DGF∽△PHF,得出=,即=,进而解得PF=﹣6,进而得出DP的长;②当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,根据勾股定理求得FG=,FH=6﹣,再根据△DFG∽△PFH,得出=,即=,进而解得PF=﹣6,即可得出PD的长.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.【点睛】本题是折叠问题,主要考查了相似三角形的判定与性质,勾股定理,等腰三角形的性质以及矩形的性质的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,运用相似三角形的对应边成比例列出方程,求得线段的长.解题时注意分类思想的运用.三、(本大题共2小题,每小题8分,满分16分)15.[2020安徽省原创]计算:sin30°+(2020)0﹣+()﹣1【答案】【解析】根据零指数幂和负指数幂的运算法则,算术平方根的定义及特殊角的三角函数值求解即可.【解答】解:原式=+1﹣2+2=.【点睛】此题主要考查了实数的运算,正确化简各数是解题的关键.16.[2019年湖南省邵阳市洞口县中考数学模拟试卷(二)改编]《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】250步【解析】设走路快的人要走x步才能追上走路慢的人,根据走路快的人走100步的时候,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x步才能追上走路慢的人,而此时走路慢的人走了步,根据题意,得x=+100,整理,得=.解得x=250.【点睛】本题考察《九章算术》一元一次方程的应用题。

2020年安徽省中考数学一模试卷(有答案解析)

2020年安徽省中考数学一模试卷(有答案解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,,b,按照从小到大的顺序排列A. B.C. D.3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示A. B. C. D.4.若是关于x的一元一次方程的解,则的值是A. B. C. 8 D. 45.如图,,A在DE上,C在GF上为等边三角形,其中,则度数为A. B. C. D.6.二次函数的图象如图所示,现有以下结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为A. B. C. D.8.如图,中,BD是的平分线,交BC于E,,,则AB长为A. 6B. 8C.D.9.如图,在等腰中,,,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发,以的速度沿方向运动到点C停止,若的面积为,运动时间为,则下列最能反映y与x之间函数关系的图象是A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角中,,,,将绕点B按逆时针方向旋转,得到点E为线段AB中点,点P是线段AC上的动点,在绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是______.11.把多项式分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式______.14.如图,在等腰中,,,点D在底边BC 上,且,将沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:16.九章算术是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为,,.请画出关于原点O对称的;直接写出把绕点O顺时针旋转后,点C旋转后对应点的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第个图形中有1个正方形;第个图形有个小正方形;第个图形有个小正方形;第个图形有小正方形;根据上面的发现我们可以猜想:______用含n的代数式表示;请根据你的发现计算:;.19.如图,在同一平面内,两条平行高速公路和间有一条“Z”型道路连通,其中AB段与高速公路成角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离结果保留根号.20.如图,AC是的直径,AB与相切于点A,四边形ABCD是平行四边形,BC交于点E.证明直线CD与相切;若的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且,AF是的平分线,交BC于点F,交DE于点G.求证:;.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表所示.大中小载重吨台201512运费元辆150012001000司机及领队往返途中的生活费单位:元与货车台数单位:台的关系如图所示.为此,公司支付领队和司机的生活费共8200元.求出y与x之间的函数关系式及公司派出货车的台数;设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为元,求W与小型货车台数P之间的函数关系式.不写自变量取值范围;若本次派出的货车每种型号不少于3台且各车均满载.求出大、中、小型货车各多少台时总运费最少及最少运费?由于油价上涨,大、中、小三种型号货车的运费分别增加500元辆、300元辆、a元辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.求证:;求证:∽;如图2,若AD、BC所在直线互相垂直,求的值。

2020年安徽省九年级数学中考模拟测试卷(一)(含答案)

2020年安徽省九年级数学中考模拟测试卷(一)(含答案)

2020年安徽省中考九年级数学模拟测试卷(一)时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.2020的倒数是()A.-2020B.12020-C.2020D.120202.化简-ab-2ab 的结果是()A.-1 B.ab C.-3ab D .-ab3.2020年2月11日,世卫组织总干事谭德赛在全球研究与创新论坛记者会上宣布,将新型冠状病毒引发的疾病命名为“COVID-19”.已知冠状病毒直径约80~120nm(1nm=10-9m).“120nm”用科学记数法可表示为()A.1.2×10-7m B.1.2×10-11m C.0.12×10-10m D.12×10-11m4.如图是由若干个大小相同的小立方块组成的几何体的三视图,则构成该几何体的小立方块的个数是()A.3 B.4 C.5D .6第4题图第6题图第7题图5.将一条直的等宽纸带,按如图所示方式折叠,则a 的度数为()A.80° B.65° C.60°D .45°6.甲、乙、丙三位同学通过“手心手背”游戏“找朋友”,规定:当恰好只有两个人所出的手势相同时,这两个人就成为“朋友”,若三人同时出手势一次,则甲、乙两位同学成为“朋友”的概率是()A.12B.13C.14D .237.如图,四边形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若DOCADO S S ∆∆=,则BC AD的值为()A .B .C .D .8.某企业2017年给希望工程捐款a 万元,之后捐款金额逐年增加,且每年的增长率为10%,从2017年到2019年,该企业共给希望工程捐款b 万元,则()A.b=a(1+10%)2B.b=a+a(1+10%)+a(1+10%)2C.b=a(1+10%×2)D.b=a+a(1+10%)+a(1+10%x2)9.若抛物线y1=a1x2+b1x+c1,y2=a2x2+b2x+c2满足111222(0,1)a b c k ka b c===≠,则称抛物线y1,y2互为”友好抛物线”.对于“友好抛物线”y1,y2,有下列说法:①开口方向相同;②开口大小可能相同;③对称轴相同;④若y2有最大值,且最大值为m,则y1有最大值,且最大值为km.其中正确说法的个数是()A.1B.2C.3D.410.如图,在矩形ABCD中,AB=8,BC=6,点P为直线AB外一点,且∠APB=90°,则满足PC=4的点P的个数是()A.0B.1C.2D.3二、填空题(本大题共4小题,每小题5分,满分20分)11.计算÷的结果是.PE为边作正方形PEDQ,使点Q恰好在半圆上,则OP的长为.14.在平面直角坐标系xOy中,点A(1.1)在反比例函数y=kx(k=0)的图象上,过点A作AB⊥x轴于点B.分别作点O,B关于直线y=-x+a的对称点O',B',当线段O'B'与反比例函数y=kx的图象有公共点时,a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.解方程:3x(x-3)=x2-9.16.《九章算术》中有这样一道题,原文如下:今有不善行者先行一十里,善行者追之一百里,先至不善行者二十里.问善行者几何里及之?大意为:走路慢的人先走10里,走路快的人追了100里,超过走路慢的人20里,问:走路快的人走多少里时追上走路慢的人?请解决下列问题:(1)走路快的人走100里的时间内,走路慢的人走了里;(2)请解答《九章算术》中的这道题.四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,每个小正方形的边长都是1,已知点A,B,C,D均为网格线的交点.(1)在网格中将△ABC绕点D顺时针旋转90°,画出旋转后得到的△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)在网格中画出△DEF,使△DEF∽△ABC,且相似比为2:1(点E,F为格点);(3)若M是线段AB上的一个动点(可以与两端点重合),△A1DM的面积为S,则S的取值范围是.18.在平面直角坐标系中,一只蚂蚁从原点O出发,沿着O→A1→A2→A3→A4→A5→A6→…的路线运动,每次移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A1,A3,A9;(2)请直接写出点A2n的坐标(n是正整数);(3)当蚂蚁运动到A2020时停止运动,此时蚂蚁的运动轨迹是中心对称图形还是轴对称图形?如果是中心对称图形,求出其对称中心的坐标;如果是轴对称图形,写出其对称轴.五、(本大题共2小题,每小题10分,满分20分)19.小明在一块空地上试飞一架无人机。

安徽省2020年中考数学全真模拟试卷(一)含解析

安徽省2020年中考数学全真模拟试卷(一)含解析

安徽省2020年中考数学全真模拟试卷(一)一、选择题(共10小题,每小题4分,共40分)1.(4分)的值为()A.±3B.3C.﹣3D.92.(4分)下列运算中正确的是()A.(﹣a)2=a2B.3﹣2=﹣6C.(π﹣1)0=0D.(a3)2=a5 3.(4分)如图中几何体的左视图是()A.B.C.D.4.(4分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.076微克,用科学记数法表示是()A.0.76×10﹣2微克B.7.6×10﹣2微克C.76×102微克D.7.6×102微克5.(4分)若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<36.(4分)如图,l1∥l2,等边△ABC的顶点A、B分别在直线l1、l2,则∠1+∠2=()A.30°B.40°C.50°D.60°7.(4分)方程2x(x+3)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(4分)如表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140160169170177180人数111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.众数是177B.平均数是170C.中位数是173.5D.方差是1359.(4分)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B、C不重合)EF∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A.B.C.D.10.(4分)在一张长为8cm,宽为6cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形,等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上.这个等腰三角形剪法有()A.1B.2C.3D.4二、填空题(共4小题,每小题5分,共20分)11.(5分)方程x2=x的解是.12.(5分)合肥市2013年平均房价为6500元/m2.若2014年和2015年房价平均增长率为x,则预计2015年的平均房价y(元/m2)与x之间的函数关系式为.13.(5分)如图,A、B、C为⊙O上三点,∠ACB=20°,则∠BAO的度数为度.14.(5分)如图,E、F是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q.若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.三、(本题每小题8分,共16分)15.(8分)计算:(﹣2020)0﹣3tan30°﹣|﹣2|.16.(8分)我国古代数学著作《九章算术》中记载:“今有人共买鸡,人出九;盈十一;人出六;不足十六,问人数、鸡价各几何?”其大意是:今有人合伙买鸡,若每人出9钱,则多11钱:若每人出6钱,则差16钱,问合伙人数、鸡价各是多少?四、解答题:(每小题8分,共16分)17.(8分)如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米.地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.73).18.(8分)如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),结合所给的平面直角坐标系解答下列问题:(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;(2)以点P(﹣1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.五、(本题每小题10,满分20分)19.(10分)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数最多是个,最少是个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是个,最少是个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是个;最少是个.(n是正整数)20.(10分)如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.(1)求证:E为BC的中点;(2)若BC=8,DE=3,求AB的长度.六、(本题满分12分)21.(12分)2016年3月22日式第24个“世界水日”,校学生会主席小明同学就“节水方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.(2)2016年该初中九年级共有学生400人,按此调查,可以估计2016年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.七、(本题满分12分)22.(12分)某公司销售一种新型产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=﹣x+150,成本为50元/件,无论销售多少,每月还需支出广告费90000元,设月利润为w内(元),若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.八、(本题满分14分)23.(14分)如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=F A,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽∽;②求证:△CDE∽△CBA;(2)求证:△FBD≌△EDC;(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.(4分)的值为()A.±3B.3C.﹣3D.9【分析】根据算术平方根的定义进行解答.【解答】解:的值为3.故选:B.2.(4分)下列运算中正确的是()A.(﹣a)2=a2B.3﹣2=﹣6C.(π﹣1)0=0D.(a3)2=a5【分析】各式计算得到结果,即可作出判断.【解答】解:A、(﹣a)2=a2,正确;B、3﹣2=,错误;C、(π﹣1)0=1,错误;D、(a3)2=a6,错误;故选:A.3.(4分)如图中几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:左视图可得一个矩形,中间有提条看不到的线,用虚线表示,故D正确,故选:D.4.(4分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.076微克,用科学记数法表示是()A.0.76×10﹣2微克B.7.6×10﹣2微克C.76×102微克D.7.6×102微克【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.076=7.6×10﹣2,故选:B.5.(4分)若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的范围【解答】解:①x+8<4x﹣1﹣3x<﹣9x>3②x>m∵不等式组的解集为x>3∴m≤3故选:C.6.(4分)如图,l1∥l2,等边△ABC的顶点A、B分别在直线l1、l2,则∠1+∠2=()A.30°B.40°C.50°D.60°【分析】首先根据平行线的性质确定∠1+∠CBA+∠BAC+∠2=180°,然后根据等边三角形的性质确定∠CBA=∠BAC=60°,从而确定正确的答案.【解答】解:∵l1∥l2,∴∠1+∠CBA+∠BAC+∠2=180°,∵△ABC是等边三角形,∴∠CBA=∠BAC=60°,∴∠1+∠2=180°﹣(∠CBA+∠BAC)=180°﹣120°=60°,故选:D.7.(4分)方程2x(x+3)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先将方程整理为一般形式,再根据根的判别式的值与零的大小关系即可判断.【解答】解:原方程可化为2x2+6x=0,∵△=b2﹣4ac=36﹣4×2×0=36>0,∴方程有两不相等的实数根.故选:A.8.(4分)如表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140160169170177180人数111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.众数是177B.平均数是170C.中位数是173.5D.方差是135【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:A、这组数据中177出现次数最多,即众数为177,此选项正确;B、这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,此选项正确;C、∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;此选项正确;D、方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;此选项错误;故选:D.9.(4分)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B、C不重合)EF∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A.B.C.D.【分析】根据△DEF的面积=菱形的面积﹣△ADF的面积﹣△CDE的面积﹣△BEF的面积,表示出△DEF的面积即可.【解答】解:∵菱形ABCD中,∠B=60°,∴△ABC是等边三角形,∵EF∥AC,∴△BFE是等边三角形,∴BE=BF=x,∵BE=x,∴,∵AB=1,∴EC=AF=1﹣x,∴,∵,∴(其中0<x<1).故选:C.10.(4分)在一张长为8cm,宽为6cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形,等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上.这个等腰三角形剪法有()A.1B.2C.3D.4【分析】分为两种情况:①当∠A为顶角时,②当∠A为底角时,画出图形,即可得出选项.【解答】解:有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,有两种情况:如图2,图3,此时AE=EF=5cm.故选:C.二、填空题(共4小题,每小题5分,共20分)11.(5分)方程x2=x的解是x1=0,x2=1.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=112.(5分)合肥市2013年平均房价为6500元/m2.若2014年和2015年房价平均增长率为x,则预计2015年的平均房价y(元/m2)与x之间的函数关系式为y=6500(1+x)2.【分析】首先根据题意可得2014年的房价=2013年的房价×(1+增长率),2015年的房价=2014年的房价×(1+增长率),由此可得2015年的平均房价y=6500(1+x)2.【解答】解:由题意得:y=6500(1+x)2,故答案为:y=6500(1+x)2.13.(5分)如图,A、B、C为⊙O上三点,∠ACB=20°,则∠BAO的度数为70度.【分析】根据圆周角定理先求出∠O,再利用三角形内角和定理和等腰三角形的性质求解.【解答】解:连接OB,∵∠ACB=20°∴∠AOB=2∠C=40°∵OB=OA∴∠BAO=∠OAB==70°.14.(5分)如图,E、F是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q.若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为40cm2.【分析】作出辅助线EF,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【解答】解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF,即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.三、(本题每小题8分,共16分)15.(8分)计算:(﹣2020)0﹣3tan30°﹣|﹣2|.【分析】原式利用零指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=1﹣3×﹣2+=1﹣﹣2+=﹣1.16.(8分)我国古代数学著作《九章算术》中记载:“今有人共买鸡,人出九;盈十一;人出六;不足十六,问人数、鸡价各几何?”其大意是:今有人合伙买鸡,若每人出9钱,则多11钱:若每人出6钱,则差16钱,问合伙人数、鸡价各是多少?【分析】设合伙人数为x,根据题意给出的等量关系即可求出答案.【解答】解:设合伙人数为x,根据题意可知:9x﹣11=6x+16,解得:x=9,∴鸡价为9x﹣11=70,答:合伙人数为9人,鸡价为70钱;四、解答题:(每小题8分,共16分)17.(8分)如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米.地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.73).【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长.【解答】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=1.2米,∴AC=AB﹣BC=6.8(米),∵∠DCA=90°﹣∠A=30°,∴CD=AC×cos∠DCA=6.8×≈5.9(米).答:该校地下停车场的高度AC为6.8米,限高CD约为5.9米.18.(8分)如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),结合所给的平面直角坐标系解答下列问题:(1)将△ABC绕O点逆时针旋转90°,得到△A1B1C1;(2)以点P(﹣1,1)为位似中心,在△ABC的异侧作位似变换,且使△ABC的面积扩大为原来的4倍,得到△A2B2C2,并写出点A2的坐标.【分析】(1)利用旋转的性质得出对应点位置进而得出答案;(2)利用△ABC的面积扩大为原来的4倍,得出相似比为:1:2,进而得出对应点位置即可得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2的坐标为:(1,﹣5).五、(本题每小题10,满分20分)19.(10分)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数最多是10个,最少是4个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是14个,最少是5个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是4n+2个;最少是n+2个.(n是正整数)【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.【解答】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.20.(10分)如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.(1)求证:E为BC的中点;(2)若BC=8,DE=3,求AB的长度.【分析】(1)根据直径所对的圆周角是直角求出∠C=90°,根据平行线的性质求出∠OEB=90°,即OD⊥BC,根据垂径定理即可证得结论;(2)设圆的半径为x,则OB=OD=x,OE=x﹣3,根据勾股定理求出答案.【解答】解:(1)∵AB是半圆O的直径,∴∠C=90°,∵OD∥AC,∴∠OEB=∠C=90°,∴OD⊥BC,∴BE=CE,∴E为BC的中点;(2)设圆的半径为x,则OB=OD=x,OE=x﹣3,∵BE=BC=4,在Rt△BOE中,OB2=BE2+OE2,∴x2=42+(x﹣3)2,解得x=,∴AB=2x=.六、(本题满分12分)21.(12分)2016年3月22日式第24个“世界水日”,校学生会主席小明同学就“节水方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.(2)2016年该初中九年级共有学生400人,按此调查,可以估计2016年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.【分析】(1)根据题意确定出样本的容量,进而求出选B与D的人数,求出各自占的百分比,补全扇形与条形统计图即可;(2)由“了解较多”与“非常了解”的百分比,乘以400即可得到结果;(3)列出得出所有等可能的情况数,找出恰好是一名男生一名女生的情况数,即可求出所求概率.【解答】解:(1)由条形统计图中A对应的数据和扇形统计图中A对应的百分比可知,抽取的样本容量为2÷10%=20,故选B的有20×30%=6(人),选D的有20﹣2﹣6﹣8=4(人),选C的百分比为8÷20=0.4=40%;选D的百分比为4÷20=0.2=20%;(2)∵选项“了解较多”以上的学生占抽取样本容量的(2+4)÷20=0.3=30%,∴九年级学生中节水方式“了解较多”以上的学生约有400×30%=120人;(3)选A的是一男一女,记作男1,女1,根据题意可知选择D的有4人且2男2女,分别记作男2,男3,女2,女3,列表如下:男2男3女2女3男1(男1,男2)(男1,男3)(男1,女2)(男1,女3)女1(女1,男2)(女1,男3)(女1,女2)(女1,女3)由上面可得共有8种等可能的情况,其中1男1女的有4种,则选择1男1女的概率P==.七、(本题满分12分)22.(12分)某公司销售一种新型产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=﹣x+150,成本为50元/件,无论销售多少,每月还需支出广告费90000元,设月利润为w内(元),若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).(1)当x=1000时,y=140元/件,w内=0元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.【分析】(1)将x=1000代入求值即可;(2)根据“利润=销售额﹣成本﹣广告费”可求出w内与x间的函数关系式,根据“利润=销售额﹣成本﹣附加费”可求出w外与x间的函数关系式;(3)先运用二次函数的性质求出w内取最大值时x的值,再根据w外的最大值等于w内的最大值,列出关于a的方程,解方程即可求出a的值;【解答】解:(1)当x=1000时,y=﹣×1000+150=140元/件,w内=1000×(140﹣50)﹣90000=0元;(2)w内=x(y﹣50)﹣90000=x(﹣x+150﹣50)﹣90000=﹣x2+100x﹣90000,即w内=﹣x2+100x﹣90000,w外=x(150﹣a)﹣x2=﹣x2+(150﹣a)x,即w外=﹣x2+(150﹣a)x;(3)∵w内=﹣x2+100x﹣90000,∴当x=﹣=5000时,w内最大;∵在国外销售月利润的最大值与在国内销售月利润的最大值相同,∴=,整理,得(150﹣a)2=13600,解得a1=34,a2=284(不合题意,舍去).∴a=34.八、(本题满分14分)23.(14分)如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=F A,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽△ABF∽△BCD;②求证:△CDE∽△CBA;(2)求证:△FBD≌△EDC;(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.【分析】(1)①根据等腰三角形的性质得到∠DBC=∠DCB,∠FBA=∠F AB,∠ACE =∠EAC,等量代换得到∠F AB=∠BCD=∠EAC,于是得到结论;②根据相似三角形的性质得到,根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到∠EDC=∠FBD,∠FDB=∠ACB等量代换得到∠FDB =∠ACB,根据全等三角形的判定即可得到结论;(3)根据全等三角形的性质得到FB=DE,DF=CE,等量代换得到FD=AE,F A=DE,推出四边形AFDE是平行四边形,连接AD,于是得到AD平分∠BAC,根据菱形的判定定理即可得到结论.【解答】解:(1)①∵DB=DC,∴∠DBC=∠DCB,∵FB=F A,EA=EC,∴∠FBA=∠F AB,∠ACE=∠EAC,∵∠FBA=∠DBC=∠ECA,∴∠F AB=∠BCD=∠EAC,∴△ACE∽△ABF∽△BCD;故答案为:△ABF,△BCD;②由①知,△ACE∽△BCD,∴,即,∵∠ECA=∠DCB,∴∠ECD=∠ACB,∴△CDE∽△CBA;(2)∵△CDE∽△CBA,∴∠ABC=∠EDC,∵∠ABC=∠FBD,∴∠EDC=∠FBD,同理△BFD∽△BAC,∴∠FDB=∠ACB,∵∠ACB=∠ECD,∴∠FDB=∠ACB,在△FBD与△EDC中,∴△FBD≌△EDC;(3)四边形AFDE是菱形,理由:∵△FBD≌△EDC,∴FB=DE,DF=CE,∵FB=F A,EA=EC,∴FD=AE,F A=DE,∴四边形AFDE是平行四边形,连接AD,则AD平分∠BAC,即∠BAD=∠CAD,∵∠BAF=∠CAE,∴∠DAF=∠DAE,∵AF∥DE,∴∠DAF=∠ADE,∴∠EAD=∠ADE,∴EA=ED,∴▱AFDE是菱形.。

2020年安徽省中考数学模试题(含答案)

2020年安徽省中考数学模试题(含答案)

2020年安徽省中考模拟考试数学试题一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.5 2.0 1.2 2.4?0 0 0 0绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.数学试题含答案解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°= .【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD 面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新沪科版2020年安徽中考数学一模模拟试卷(卷一)一、选择题(本大题共10小题,每小题4分,共40分)1.﹣20201的相反数是( )A .20201B .﹣20201C .2020D .﹣20202.计算a 3(﹣ab 2)2的结果是( ) A .a 5b 4 B .a 4b 4 C .﹣a 5b 4D .﹣a 4b 43.如图,直线a ∥b ,若∠1=50°,∠3=95°,则∠2的度数为( ) A .35° B .40° C .45 °D .55°4.今年安徽省省级一般公共预算支出预算数为673亿元,比2017年预算数增长10.9%,其中673亿用科学记数法表示为( ) A .0.673×1011 B .0.673×1010C .6.73×1010D .6.73×10115.方程=的解是( )A .﹣B .C .﹣D .6.安徽省作为首批国家电子商务进农村示范省之一,先后携手阿里巴巴、苏宁云商等电商巨头,推动线上线下融合发展,激发农村消费潜力,实现“安徽特产卖全国”.根据某淘宝农村超市统计十月份的营业额为38万元,十二月份的营业额为50万元.设每月的平均增长率为x ,则可列方程为( )A .50(1+x )2=38B .38(1﹣x )2=50C .38(1+x )2=50D .50(1﹣x )2=38 7.如图,在▱ABCD 中,∠A =70°,将▱ABCD 绕点B 顺时针旋转到▱A 1BC 1D 1的位置,此时C 1D 1恰好经过点C ,则∠ABA 1=( ) A .30° B .40° C .45°D .50°8.在一次学校运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m ) 1.20 1.25 1.30 1.35 1.40 1.45 跳高人数132351这些运动员跳高成绩的中位数和众数分别是( ) A .1.35,1.40 B .1.40,1.35C .1.40,1.40D .3,59.(4分)如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( ) A .主视图是轴对称图形B .左视图是轴对称图形C .俯视图是轴对称图形D .三个视图都不是轴对称图形10.(4分)已知菱形ABCD 的边长为1,∠DAB =60°,E 为AD 上的动点,F 在CD 上,且AE +CF=1,设△BEF 的面积为y ,AE =x ,当点E 运动时,能正确描述y 与x 关系的图象是( )A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分) 11.16的平方根是 . 12.因式分解:3a 3﹣3a = .13.如图四边形ABCD 中,AD ∥BC ,连接AC ,E ,F 分别为AC ,CB 的中点,BC =2AD ,S △CEF =2,△ADC 的面积为 .14.数学的美无处不在,数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so ,研究15、12、10这三个数的倒数发现:﹣=﹣.我们称15、12、10这三个数为一组调和数.现有两个数5,3,再加入一个数x ,使三个数组成一组调和数,则x 的值是 .三、解答题(本大题共2小题,每小题8分,满分16分) 15.计算:(﹣2018)0﹣+3tan30°+|1﹣|16.解不等式并把解集在数轴上表示出来<x ﹣四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)写出点A的对应点A1的坐标,A2的坐标.(3)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P2的坐标.18.(8分)如图,在直角坐标系xOy中,一次函数y1=k1x+b的图象与反比例函数y2=的图象交于A(﹣1,6),B(a,﹣2)两点.(1)分别求一次函数与反比例的解析式;(2)当x满足时,0<y1≤y2.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(10分)如图,AB是半圆的直径,O是圆心,C是半圆上一点,D是弧AC中点,OD交弦AC于E,连接BE,若AC=8,DE=2,求(1)求半圆的半径长;(2)BE的长度.六、解答题(本题满分12分)21.(12分)合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.组号分组频数一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103七、解答题(本题满分12分)22.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:国外品牌国内品牌进价(元/部)44002000售价(元/部)50002500该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.八、解答题(本题满分14分)23.(14分)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B,P,D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙也是一个“三垂图”,上述结论还成立吗?请说明理由.(3)已知抛物线交x轴于A(﹣1,0),B(3,0)两点,交y轴于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,设AQ与y轴相交于D,且∠QAP=90°,利用上述结论求D点坐标.最新沪科版2020年中考数学一模试卷(卷一)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分) 1.【分析】根据相反数的定义,即可解答.【解答】解:﹣20201的相反数是20201,故选:A .【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义. 2.【分析】首先计算积的乘方,然后再计算同底数幂的乘法即可. 【解答】解:a 3(﹣ab 2)2=a 3•a 2b 4=a 5b 4, 故选:A .【点评】此题主要考查了积的乘方和同底数幂的和乘法,关键是掌握计算法则.3.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:根据三角形外角性质,可得∠3=∠1+∠4, ∴∠4=∠3﹣∠1=95°﹣50°=45°, ∵a ∥b ,∴∠2=∠4=45°. 故选:C .【点评】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.4.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:将673亿用科学记数法表示为:6.73×1010. 故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x +2),得:2(2x ﹣1)=x +2, 解得:x =,当x =时,2(x +2)≠0, 所以x =是分式方程的解, 故选:D .【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.6.【分析】为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每月的平均增长率为x ,根据“十二月份的营业额为50万元”,即可得出方程. 【解答】解:设每月的平均增长率为x , 根据题意,得:38(1+x )2=50, 故选:C .【点评】本题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.7.【分析】直接利用旋转的性质结合平行四边形的性质得出∠A =∠C 1=70°,BC =BC 1,进而得出答案.【解答】解:∵将▱ABCD 绕点B 顺时针旋转到▱A 1BC 1D 1的位置, ∴∠A =∠C 1=70°,BC =BC 1, ∴∠BCC 1=∠C 1=70°,∴∠ABA 1=∠CBC 1=180°﹣70°﹣70°=40°. 故选:B .【点评】此题主要考查了旋转的性质以及平行四边形的性质,正确得出∠BCC 1=∠C 1是解题关键.8.【分析】根据中位数和众数的定义,第8个数就是中位数,出现次数最多的数为众数.【解答】解:在这一组数据中1.40是出现次数最多的,故众数是1.40;在这15个数中,处于中间位置的第8个数是1.35,所以中位数是1.35.所以这些运动员跳高成绩的中位数和众数分别是1.35,1.40.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.9.【分析】根据从正面看得到的图形是主视图,左边看得到的图形是左视图,从上边看得到的图形是俯视图,再根据轴对称图形的定义可得答案.【解答】解:如图所示:左视图是轴对称图形.故选:B.【点评】此题考查了轴对称图形,以及学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.10.【分析】证明△BEF是等边三角形,求出△BEF的面积y与x的函数关系式,即可得出答案.【解答】解:连接BD,如图所示:∵菱形ABCD的边长为1,∠DAB=60°,∴△ABD和△BCD都为正三角形,∴∠BDE=∠BCF=60°,BD=BC,∵AE+DE=AD=1,而AE+CF=1,∴DE=CF,在△BDE和△BCF 中,,∴△BDE≌△BCF(SAS);∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;∴BE=EF,△BEF的面积y =BE2,作BE'⊥AD于E',则AE'=AD =,BE'=,∵AE=x,∴EE'=﹣x,∴BE2=(﹣x)2+()2,∴y =(x ﹣)2+(0≤x≤1);故选:A.【点评】此题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、动点问题的函数图象、三角形的面积问题.求出y与x的函数关系式是解决问题的关键.二、填空题(本大题共4小题,每小题5分,共20分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】首先提取公因式3a,进而利用平方差公式分解因式得出答案.【解答】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案为:3a(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.【分析】根据三角形中位线定理和相似三角形的判定与性质求得三角形ABC的面积,然后结合同高三角形的面积的计算方法来求三角形ADC的面积;【解答】解:∵E、F分别为AC、CB的中点,∴EF的△ABC的中位线,∴EF∥AB,且EF =AB,∴△CEF∽△CAB ,且相似比是.又S△CEF=2,∴S△CEF:S△ABC=1:4,∴S△ABC=8.∵AD∥BC,BC=2AD,∴S△ACD =S△ABC=4,故答案为4.【点评】本题考查了三角形中位线定理,三角形的面积,相似三角形的判定与性质.解题时,利用了分割法求得四边形ABCD的面积.14.【分析】根据调合数的定义,分三种情况讨论:①当x>5时,x=15;②3<x<5时,得x =;③当x<3时,得x =.【解答】解:根据题意,得:①当x>5时,.解得:x=15,经检验:x=15为原方程的解;②3<x<5时,,解得x =,经检验:x =为原方程的解;③当x<3时,,解得x =,经检验:x =为原方程的解.故答案是15或或.【点评】本题考查了分式方程的应用,正确列出分式方程是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【解答】解:原式=1﹣2+3×+﹣1=1﹣2++﹣1=﹣+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】不等式两边都乘以6去分母后,去括号,移项合并,将x系数化为1求出解集,在数轴上表示出解集即可.【解答】解:去分母得:2(2x﹣3)<6x﹣3,去括号得:4x﹣6<6x﹣3,移项合并得:﹣2x<3,解得:x >﹣,表示在数轴上,如图所示:【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,是一道基本题型.四、解答题(本大题共2小题,每小题8分,满分16分)17.【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)点A的对应点A1的坐标(4,3),A2的坐标(2,﹣2);(3)由图可得:P1 (b,﹣a),P2(b﹣2,﹣a﹣5).故答案为:(4,3);(2,﹣2)【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.18.【分析】(1)先将A点坐标代入y2=求出k2,确定反比例函数解析式为y2=﹣;再把B(a,﹣2)代入y2=﹣求出a,确定B点坐标为(3,﹣2),然后利用待定系数法确定一次函数解析式;(2)观察函数图象,当﹣1≤x<0时,反比例函数图象落在一次函数图象的上方并且两个函数都在x轴的上方.【解答】解:(1)把A(﹣1,6)代入y2=,得k2=﹣1×6=﹣6,所以反比例函数解析式为y2=﹣;把B(a,﹣2)代入y2=﹣,得﹣2a=﹣6,解得a=3,所以B点坐标为(3,﹣2),把A(﹣1,6)和B(3,﹣2)代入y1=k1x+b,得,解得,所以一次函数解析式为y1=﹣2x+4;(2)由图象可知,当﹣1≤x<0时,0<y1≤y2.故答案为﹣1≤x<0.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.五、解答题(本大题共2小题,每小题10分,满分20分)19.【分析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【解答】解:(1)在Rt△ADF中,由勾股定理得,AD ===15(cm;(2)AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH =,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.【点评】本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键.20.【分析】(1)根据垂径定理的推论得到OD⊥AC,AE =AC,设圆的半径为r,根据勾股定理列出方程,解方程即可;(2)根据圆周角定理得到∠ACB=90°,根据勾股定理计算即可.【解答】解:(1)设圆的半径为r,∵D是弧AC中点,∴OD⊥AC,AE =AC=4,在Rt△AOE中,OA2=OE2+AE2,即r2=(r﹣2)2+42,解得,r=5,即圆的半径长为5;(2)连接BC,∵AO=OB,AE=EC,∴BC=2OE=6,∵AB是半圆的直径,∴∠ACB=90°,∴BE ==2.【点评】本题考查的是圆心角、弧、弦的关系定理、垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.六、解答题(本题满分12分)21.【分析】(1)由总班数20﹣1﹣2﹣8﹣3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)a=20﹣1﹣2﹣8﹣3=6;(2)第三小组对应的扇形的圆心角度数=×360°=108°;(3)画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率==.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.七、解答题(本题满分12分)22.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a 的关系式,由一次函数的性质就可以求出最大利润.【解答】解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用及一次函数的性质的运用,解答本题时灵活运用一次函数的性质求解是关键.八、解答题(本题满分14分)23.【分析】(1)根据同角的余角相等求出∠A=∠CPD,然后求出△ABP和△PCD相似,再根据相似三角形对应边成比例列式整理即可得证;(2)与(1)的证明思路相同;(3)利用待定系数法求出二次函数解析式,根据抛物线解析式求出点P的坐标,再过点P作PC⊥x轴于C,设AQ与y轴相交于D,然后求出PC、AC的长,再根据(2)的结论求出OD 的长,从而得到点D的坐标,利用待定系数法求出直线AD的解析式,与抛物线解析式联立求解即可得到点Q的坐标.【解答】(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(2)AB•CD=PB•PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(3)设抛物线解析式为y=ax2+bx+c(a≠0),∵抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),∴,解得,所以,y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4),过点P作PC⊥x轴于C,设AQ与y轴相交于D,则AO=1,AC=1+1=2,PC=4,根据(2)的结论,AO•AC=OD•PC,∴1×2=OD•4,解得OD =,∴点D的坐标为(0,),设直线AD的解析式为y=kx+b(k≠0),则,解得,所以,y =x +,联立,解得,(为点A坐标,舍去),所以,点Q的坐标为(,).【点评】本题是二次函数综合题型,主要考查了相似三角形的判定与性质,待定系数法求二次函数解析式,待定系数法求一次函数解析式,联立两函数解析式求交点坐标,综合题,但难度不大,根据同角的余角相等求出两个角相等得到两三角形相似是解题的关键.。

相关文档
最新文档