好二次函数的基础知识和经典练习题

合集下载

二次函数知识点梳理及经典练习(超详细)

二次函数知识点梳理及经典练习(超详细)

二次函数知识点梳理及经典练习【知识点梳理】一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,叫做,,是常数,0二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4.()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)2. 平移规律: “h 值正右移,负左移;k 值正上移,负下移”.即“左加右减,上加下减”.四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,、()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而增大; 当2bx a>-时,y 随x 的增大而减小; 当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法 1.二次函数解析式表示方法:(1)一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 2.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般有如下几种情况:(1) 已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x 轴的两个交点的横坐标,一般选用两根式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a : 0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口大小. 2. 一次项系数b : 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结:在a 确定的前提下,b 决定了抛物线对称轴的位置.▲ab 符号判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,即“左同右异”.3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结:c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称:(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物线的对称抛物线的表达式时,习惯上先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图像与x 轴的交点个数:(1) 当240b ac ∆=->时,图像与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.(2)当0∆=时,图像与x 轴只有一个交点; (3)当0∆<时,图像与x 轴没有交点.①当0a >时,图像落在x 轴的上方,无论x 为任何实数,都有0y >; ②当0a <时,图像落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图像与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图像与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图像的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图像关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:【基础题型概览】一、二次函数的基本概念 1、y=mx m2+3m+2是二次函数,则m 的值为( )A 、0,-3B 、0,3C 、0D 、-32、关于二次函数y=ax 2+b ,命题正确的是( ) A 、若a>0,则y 随x 增大而增大 B 、x>0时y 随x 增大而增大。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。

二次函数知识点总结及练习题

二次函数知识点总结及练习题

二次函数考点1、二次函数的概念定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 注意: (1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0, 而b 、c 为任意实数。

(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。

(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)例1: 函数y=(m +2)x 22-m +2x -1是二次函数,则m= _______.例2:已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a____时,是二次函数;当a______,b_____时,是一次函数;当a_______,b_______,c_________时,是正比例函数.例3:函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数 例4: 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=2x1+x . A .1个 B .2个 C .3个 D .4个考点2、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab 2- 顶点坐标:( a b ac a b 4422--,) (2)顶点式:()k h x a y +-=2(a ≠0), 对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x1)(x-x2)(a ≠0),对称轴:直线x=22x1x + (其中x1、x2是二次函数与x 轴的两个交点的横坐标).例1:抛物线822--=x x y 的顶点坐标为____________;对称轴是___________。

二次函数知识点总结与典型例题

二次函数知识点总结与典型例题

二次函数知识点总结及典型例题一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

如果没有交点,则不能这样表示。

三、抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴所在直线;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 四、二次函数的性质 1、二次函数的性质典型例题1. 如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是 ( )A .a +b =-1B . a -b =-1C . b <2aD . ac <02. 二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( ).3. 如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是 .4. 在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++5. 已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a ,则正确的结论是( )c+A ①②③④B ②④⑤C ②③④D ①④⑤6.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大. 7. 如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是(-2,4),过点A 作AB ⊥y 轴,垂足为B ,连结OA . (1)求△OAB 的面积;(2)若抛物线22y x x c =--+经过点A . ①求c 的值;②将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在△OAB 的内部(不包括△OA B 的边界),求m 的取值范围(直接写出答案即可).练习:1.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定2.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限3.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m4.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题5.若A(-134,y 1)、B(-1,y 2)、C(53,y 3)为二次函数y=-x 2-4x+5的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3.6.某大学的校门是一抛物线形水泥建筑物(如图所示),大门的地面宽度为8m ,两侧距地面4米高处各有一个挂校名匾用的铁环,两铁环的水平距离为6 m ,则校门的高为(精确到0.1 m ,水泥建筑物的厚度忽略不计)( )A .5.1 mB .9 mC .9.1 mD .9.2 m 7.二次函数c bx ax y ++=2的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( ) A .1个 B .2个 C .3个 D .4个8.已知函数y=x 2-2x -2的图象如图2示,根据其中提供的信息,可求得使y ≥1成立的x的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥3(第6题) (第7题) (第8题)2.53.05m lxyO作业:1,二次函数y =(x -1)2+2的最小值是( )A.-2B.2C.-1D.12,已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是( ) A.(-2,1) B.(2,1) C.(2,-1) D.(1,2)4,在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为( )A.28米B.48米C.68米D.88米5,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 .其中所有正确结论的序号是( )A. ③④B. ②③C. ①④D. ①②③6,二次函数y =ax 2+bx +c 的图象如图3所示,若M =4a +2b +c ,N =a -b +c ,P =4a +2b ,则( )A.M >0,N >0,P >0B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <07,如果反比例函数y =kx的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )8,用列表法画二次函数y =x 2+bx +c 的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是( )A. 506B.380C.274D.18图3图4B .图5图1。

二次函数知识点归纳及相关习题(含答案)

二次函数知识点归纳及相关习题(含答案)
2

a 的符号
开口方向 向上
顶点坐标
对称轴
性质
a0
0 ,0 0 ,0
y轴
x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小;x 0 时,y 有最小值 0 . x 0 时, y 随 x 的增大增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最 大值 0 .
2
二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
关于 x 轴对称 y ax 2 bx c 关于 x 轴对称后,得到的解析式是 y ax 2 bx c ;
y a x h k 关于 x 轴对称后,得到的解析式是 y a x h k ;
2
二次函数由特殊到一般, 可分为以下几种形式: ① y ax ; ② y ax k ; ③ y ax h ;
2 2
2
b 4ac b 2 . ,k 2a 4a
2

顶点式: y a( x h) 2 k ( a , h , k 为常数, a 0 ) ; 两根式: y a( x x1 )( x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交 2 点式,只有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次 函数解析式的这三种形式可以互化. 二次函数 y ax 的性质
抛物线与 x 轴的交点:二次函数 y ax bx c 的图像与 x 轴的两个交点的横坐标 x1 、 x 2 ,

二次函数知识点总结和分类试题【精华篇】

二次函数知识点总结和分类试题【精华篇】

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点总结及练习

二次函数知识点总结及练习

二次函数知识点总结及练习知识点1:二次函数的概念(1)一般地,形如 (a,b,c 是常数, )的函数,叫做二次函数。

注意:①a ②最高次数为 ③代数式一定是 (2)二次函数的一般形式是 (a,b,c 是常数, ) 是二次项系数, 是一次项系数, 是常数项.练习:1.已知函数35)1(12-+-=+x x m y m 是二次函数,求m 的值。

2.若函数y=(m 2+2m-7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

知识点2:二次函数的图像和性质(1)y=ax 2的图像和性质:练习:1. y=-2x 2的对称轴是 ,顶点坐标是 ;当 时,y 的值随x 值的增大而减小 2.当m= 时,抛物线mm x m y +-=2)1(开口向下,对称轴为 ,当x<0时,y 随x 的增大而 ;当x>0时,y 随x 的增大而 .3.已知点(x 1,y 1),(x 2,y 2)在二次函数y=-2x 2图象上,当x 1>x 2>0时,则y 1与y 2的大小关系是 .4.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=5x 2的图象上,则则y 1与y 2,y 3的大小关系是 . (2)y=ax 2+c 的图像和性质:1.二次函数y=-2x 2+6图象的对称轴是 ,顶点坐标是 ,当 时,y 随x 的增大而增大. 2.已知y=ax 2+c 的图象上有A(-3,y 1),B(1,y 2),C(2,y 3)三点,且y 2<y 3<y 1,则a 的取值范围是 . 3.将二次函数y=2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数表达式为 .4.已知抛物线y=(m-1)x 2+m 2-2m-2的开口方向向下,且经过点(0,1). (1)求m 的值;(2)求此抛物线的顶点坐标及对称轴; (3)当x 为何值时,y 随x 的增大而增大?(3)y=a(x-h)2+k 的图像和性质:1.抛物线y=-12(x +4)2的顶点坐标为 ,当x >-4时,y 随x 的增大而 .2.抛物线y=-2(x-1)2-3的开口方向是 ,其顶点坐标是 ,对称轴是直线 ,当 时,函数值y 随自变量x 的值的增大而减小.3.若抛物线y=(x-m)2+(m +1)的顶点在第一象限,则m 的取值范围为 .4.已知A(1,y 1)、B(-12,y 2)、C(-2,y 3)在函数y=a(x +1)2+k(a>0)的图象上,则y 1、y 2、y 3的大小关系是 .(4)二次函数c bx ax y ++=2(a ≠0)的图像和性质练习:1.抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 , 函数值得最大值是 。

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习

二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。

然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及练习

二次函数各知识点、考点、典型例题及对应练习题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 题型2 二次函数的性质例2 若二次函数24y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( )A .y 1 <y 2 B. y 1 =y 2 C. y 1 >y 2 D.不确定 题型3 二次函数图像性质(共存问题、符号问题)例3、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )例4 已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2B 3C 、4D 、5题型4 二次函数的平移例5.将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-题型65 二次函数应用销售利润类问题例6 某商品的进价每件为50元,现在的售价为每件60元,每星期可卖出70件.如果每件的售价每涨10元(售价每件不能高于140元),那么每星期少卖5 B . C .⑴ 求y 与x 的函数关系式及自变量x 的取值范围。

⑵ 如何定价才能使每周的利润最大且每周销量较大?每周的最大利润是多少?【基础达标训练】 一、选择题1.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 2.二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .233.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数()A .4个B .3个 C2个 D .1个 5. 二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( )A .21y y <B .21y y =C .21y y >D .不能确定 6.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x =7.把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x yB.()42412+-=x yC.()42412++-=x yD.321212+⎪⎭⎫ ⎝⎛-=x y二、填空题8.图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是_____________9. 把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________10.抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)11.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.12.若抛物线23y ax bx =++与232y x x =-++的两交点关于原点对称,则a b 、分别为 .图6(1) 图6(2)三、解答题13.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价x 的范围.14.心理学家发现,学生对概念接受能力y 与提出概念所用时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x <30)。

二次函数知识点、考点、典型试题集锦(带详细解析解答)

二次函数知识点、考点、典型试题集锦(带详细解析解答)

二次函数知识点、考点、典型试题集锦(带详细解析答案)考点1:二次函数的图象和性质一、考点讲解:1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.2.二次函数的图象及性质:⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。

⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2b a ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2ba ,y 随x 的增大而增大.⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2b a 时,函数有最大值244ac b a -。

3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.注意:二次函数y=ax 2 与y =-ax 2 的图像关于x 轴对称。

二次函数知识点总结及典型练习

二次函数知识点总结及典型练习

二次函数知识点总结及典型练习二次函数知识点总结及典型练习二次函数知识点总结一.定义:一般地,如果ya某2b某c(a,b,c是常数,a0),那么y叫做某的二次函数.练习:当m取何值时,函数是y(m2)某m22是二次函数?二、几种特殊的二次函数的图像特征如下:函数解析式开口方对称轴顶点坐标向某0(0,0)(y轴)ya某2当a0某0(y轴)(0,k)ya某2k时2某m(m,0)ya某m开口向2某m上(m,k)ya某mk当a0ya某某1某某2时某某2某12开口向2b下ya某2b某cb4acb某,()最值2a2a4a二次函数的最值问题(1)一般式:y=a某2+b某+c中,当a>0时,某=___________,y时,某=___________,y 最大=___________.(2)顶点式:ya某mk,若a>0,当某=___________,y2最小最小=___________;当a2.抛物线y=某2+a某+b向左平移2个单位再向上平移3个单位得到抛物线y=某2-2某+1,则()A.a=2,b=-2B.a=-6,b=6C.a=-8,b=14D.a=-8,b=18四、函数的增减性1.已知(-2,y1),(-1,y2),(3,y3)是二次函数y=某2-4某+m上的点,则y1,y2,y3从小到大用“2.已知二次函数y=a某+b某+c的图象如图所示,下面结论:(1)a+b+c0;(3)abc>0;(4)b=2a.其中正确的结论有()A.4个B.3个C.2个D.1个3.已知二次函数y=a某2+b某+c(a≠0)的图象如右上图所示,给出以下结论:①a+b+c八.求当某为何值时,y>0,y=0,y扩展阅读:二次函数知识点总结及典型练习二次函数知识点总结一.定义:一般地,形如___________________________________,那么y 叫做某的二次函数.练习:当m取何值时,函数是y(m2)某二、几种特殊的二次函数的图像特征如下:函数解析式ya某2m22是二次函数?开口方向对称轴顶点坐标最值当a0时开ya某2k口_______ya某m2ya某hk2当a0时开口________ya某某1某某2ya某2b某c二次函数的最值问题(1)一般式:y=a某2+b某+c中,当a>0时,某=___________,y时,某=___________,y最大=___________.(2)顶点式:ya某hk,若a>0,当某=___________,y2最小最小=___________;当a1.抛物线y11(某2)21可由抛物线y某2()而得到。

二次函数知识点总结及相关典型题目

二次函数知识点总结及相关典型题目

二次函数知识点总结及相关典型题目第一部分 二次函数基础知识✧ 第一天✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.第二天.✧ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. ✧ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 第三天✧ 用待定系数法求二次函数的解析式一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --= (讲解)三点式。

二次函数知识点总结和相关练习

二次函数知识点总结和相关练习

二次函数知识点总结和相关练习二次函数知识点总结和相关练习1)配方:1、将二次函数y2、将二次函数y141某2某7配成顶点式,并求对称轴和最值。

某2配成顶点式,并求顶点坐标和最值。

2)平移、对称、旋转变换:抓顶点和开口方向1、函数y某24某3关于某轴对称的函数的解析式为;关于Y轴对称的函数的解析式为2、将二次函数位,得到抛物的图像向下平移2个单位,再向右平移3个单,则3、若抛物线向左又向上各平移4个单位,再绕顶点旋转180°,得到新的图像的解析式是________.3)二次函数图像与系数a、b、c之间的关系:①a决定抛物线的形状和大小,a的正负决定开口方向。

②a、b共同决定对称轴:同左异右③c决定抛物线与y轴交点位置④b24ac的正负决定抛物线与某轴的交点个数⑤伟达定理:某1某2ba,某1某2ca一、1、二次函数ya某2某a21的图像可能是()22、二次函数ya某b某c图像如图所示,则直线ya某b与反比例函数yac某在同一直角坐标系内大致图像为()3、一次函数ya某b和二次函数ya某b某c,那么他们在同一直角坐标系内的大致图像是()二1、二次函数图象如图所示,则下列结论:①abc0②abc1③abc0④4a2bc0⑤ca12、二次函数ya某2b某c图象如图,则下例结论不正确的是()A.a0B.abc0C.abc0Db24ac03、二次函数ya某22某3图象与轴有一个交点在0、1之间,a范围是()A、a>13B、0-13且a04、二次函数ya某2b某c图象如图,则下例结论正确的是()A、ac0B、当某1时,y0C、方程a某2b某c0(a0)有两个大于1的实根D、存在一个大于1的实数某0,使某时,y随某增大而增大。

三、函数增减性:1、已知A( 343某0时,y随某的增大而减少,当某某0,y1)B(12,y2)C(34,y3)在函数y某212某3图像上,比较yyy12的大小关系2、二次函数y3(某1)2k的图像上有三点A(2,则yy1)B(2,y2)C(5y3) 1yy23的大小关系四、二次函数与方程、不等式之间的联系21、ya某a某3某1的图像与某轴有且只有一个交点,则a交点坐标为2、二次函数yk某6某3的图像与某轴有交点,则k的取值范围()A、k3B、k3且k0C、k3D、k3且k03、二次函数y某2某2的图像如图,则y1时某的范围24、二次函数ya某b某c图象与某轴交点横坐标分别是与某1,某2则(1)y0时22某的范围(2)y0时,某=5、根据表格求a某b某c0的一个解某的范围()6.17某6.18D、6.18某6.19A、6某6.17B、6.17某6.18C、6、用图像法解不等式某24某307、函数y(m6)某22(m1)某m1图象与某轴总有交点(1)求m的取值范围(2)若图象与某轴有2个交点,且交点的横坐标的倒数和等于4,求m值五、求函数解析式1、正方形ABCD,E在BC上,F在AC上,且AE=AF,AB=4,设EC=某,ABC的面积为y则y与某之间函数解析式为2、矩形周长为12cm,则它的面积是S与边长某之间函数关系式为3、二次函数图象过坐标原点,顶点(1,-2),求这个二次函数的解析式4、二次函数过原点和(12,14),且图象与某轴的另一个交点到原点距离为1,则二次函数解析式六、二次函数实际应用(最值问题)1、如图,用一段长为24米的篱笆围成一个一边靠墙的矩形ABCD,设AB边长为某米,菜园的面积为ym2,(1)求与之间的函数关系式(2)如果要围成45m2的菜园,则AB长是多少米?(3)某为何值时,花圃面积最大?2、某商店购进单价为16元的日用品,若每件20元价格售出,每天可售出360件,若每件25元的价格售出,每天可卖出210件,假设每天销售件数y是销售单价某的一次函数(1)试求y与某的函数关系式(2)问销售价定位多少元时,每天获利最多为多少?3、正方形ABCD中,AB=2,E是AD边上一点(不与A、D 重合),BE的垂直平分线交AB于M,交DC于N.(1)设AE=某,四边形ADNM的面积为S,写出S与某的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大面积是多少?4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?【变式训练】某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AEMN.准备在形如Rt△AEH的四个全等三角形内种植红色花草,在形如Rt△AEH的四个全等三角形内种植黄色花草,在正方形MNPQ内种植紫色花草,每种花草的价格如下表:品种价格(元/米2)红色花草60黄色花草80紫色花草120设AE的长为某米,正方形EFGH的面积为S平方米,买花草所需的费用为W元,解答下列问题:(1)S与某之间的函数关系式为S;(2)求W与某之间的函数关系式,并求所需的最低费用是多少元;(3)当买花草所需的费用最低时,求EM的长.A红EQ黄P紫MNFHDGCB扩展阅读:二次函数知识点归纳及相关习题(含答案)二次函数知识点归纳及相关习题第一部分二次函数基础知识相关概念及定义b,c是常数,a0)的函数,叫做二二次函数的概念:一般地,形如ya某2b某c(a,c可以为零.二次次函数。

二次函数知识点及重点题练习答案解析

二次函数知识点及重点题练习答案解析
在第一象限内,图象都下凹.
答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,

初三数学二次函数知识点总结及经典习题

初三数学二次函数知识点总结及经典习题

《二次函数》知识点总结一. 二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2。

二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二。

二次函数的图像和性质表达式(a≠0) a值图像开口方向对称轴顶点坐标增减性最值①y=ax2a>0 向上y轴(0,0)①当x>0时,y随x的增大而增大②当x<0时,y随x的增大而减小当x=0时,y有最小值,即最小值y=0 a<0 向下y轴(0,0)①当x>0时,y随x的增大而减小②当x<0时,y随x的增大而增大当x=0时,y有最大值,即最大值y=0②y=ax2+k a>0 向上y轴(0,k)①当x>0时,y随x的增大而增大②当x<0时,y随x的增大而减小当x=0时,y有最小值,即最小值y=k a<0 向下y轴(0,k)①当x>0时,y随x的增大而减小②当x<0时,y随x的增大而增大当x=0时,y有最大值,即最大值y=k③y=a(x—h)2a>0 向上直线x=h (h,0)①当x>h时,y随x的增大而增大②当x<0时,y随x的增大而减小当x=h时,y有最小值,即最小值y=0 a<0 向下直线x=h (h,0)①当x>h时,y随x的增大而减小②当x<0时,y随x的增大而增大当x=h时,y有最大值,即最大值y=0④y=a(x-h)2+k a>0 向上直线x=h (h,k)①当x>h时,y随x的增大而增大②当x<h时,y随x的增大而减小当x=h时,y有最小值,即最小值y=ka <0向下 直线x=h (h,k )①当x >h 时,y 随x的增大而减小 ②当x <h 时,y 随x 的增大而增大当x=h 时,y 有最大值,即最大值y =k⑤y=ax 2+bx+c 可化为: y=a (x+)2ab 2+a >0 向上直线x=-ab 2(—ab 2,ab ac 442-)①当x >-ab 2时,y随x 的增大而增大 ②当x <-ab 2时,y随x 的增大而减小当x=—ab 2时,y 有最小值,最小值y =a b ac 442- a <0向下直线x=—ab2(-ab 2,ab ac 442-) ①当x >—a b 2时,y随x 的增大而减小②当x <—a b2时,y随x 的增大而增大当x=-ab 2时,y 有最大值,即 y 最大值=ab ac 442-三。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数一、基础知识1•定义:一般地,如果y ax2 bx c(a,b,c是常数,a 0),那么y叫做x的二次函数.2. 二次函数的表示方法:数表法、图像法、表达式•3•二次函数由特殊到一般,可分为以下几种形式:①y ax2(a 0);②y ax2 k ;(a 0)③y a x h (a 0)顶点式);④y a x h 2 k ;( a 0)⑤y ax2 bx c •它们的图像都是对称轴平行于(或重合)y轴的抛物线•4•各种形式的二次函数的图像性质如下表:1. 抛物线y ax2 bx c中的系数a,b,c(1)a决定开口方向:几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同•当a 0时,抛物线开口向上,顶点为其最低点;当a 0时,抛物线开口向下,顶点为其最高点.在y 轴左侧;当a 、b 异号时,对称轴在y 轴右侧.半轴;当c 0时,则相交于y 轴的负半轴. 2. 求抛物线的顶点、对称轴的方法(3) 运用抛物线的对称性:抛物线是轴对称图形,所以对称点的连线的垂直平分线就是抛物线的 对称轴,对称轴与抛物线的交点是顶点.. 3. 用待定系数法求二次函数的解析式(1) 一般式:y ax 2 bx c .已知图像上三点或三对x 、y 的值,通常选择一般式. (2) 顶点式:y ax h 2 k .已知图像的顶点或对称轴,通常选择顶点式.(3) 两点式:已知图像与x 轴的交点坐标X !、X 2,通常选用交点式:y a x X ! x x 2 . 4. 抛物线与x 轴的交点设二次函数y ax 2 bx c 的图像与x 轴的两个交点的横坐标 X !、x ?,是对应一元二次方程ax 2 bx c 0的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来 判定:(1) b 2 4ac 0 抛物线与x 轴有两个交点;(2) b 和a 共同决定抛物线对称轴的位置:当b0时,对称轴为y 轴;当a 、b 同号时,对称轴(3) c 决定抛物线与y 轴交点位置:当c0时, 抛物线经过原点;当c 0时,相交于y 轴的正(1) 公式法:y ax 2bx cb 2a4ac b 2 4ab 4ac b 2,顶点是(2a ,4a ),对称轴是直线(2) b 2a配方法:运用配方的方法, 将抛物线 ax 2 bxc 的解析式化为y ax h 2 k 的形式,得 到顶点为(h,k),对称轴是直线xh.其中h24ac b 4a(2) b 2 4ac 0 抛物线与x 轴有一个交点(顶点在x 轴上); (3) b 2 4ac 0 抛物线与x 轴没有交点.5. 二次函数的应用一、y ax 2 bx c 的性质2 __1.已知二次函数y kx 7 x 7与x 轴有交点,则k 的取值范围是解:22.二次函数 y ax bx c 的图象如图,则直线y ax bc 的图象不经过第 限。

理由:理由:3.二次函数y ax 2bx c 的图象如图,试判断a 、b 、c 和的符号。

解:4.二次函数y ax 2 bx c 的图象如图,下列结论(1)2v 0,其中正确的是:( )A . 1个B . 2个C . 3 个 D.4个c v 0; ( 2) b > 0 ; ( 3) 4a+2b+c > 0;( 4) ( a+c )5.二次函数y ax 2bx c 的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有D .③④16 .下列命题中,正确的是( )① 若 a + b + c = 0,贝U b 2 — 4ac v 0;② 若b = 2a + 3c ,则一元二次方程 ax 2 + bx + c = 0有两个不相等的实数根; ③ 若b 2— 4ac >0,则二次函数y = ax 2 + bx + c 的图象与坐标轴的公共点的个数是 2或3;④ 若b >a + c ,则一元二次方程 ax 2 + bx + c = 0,有两个不相等的实数根. A .②④B .①③C .②③D .③④二、y ax 2 bx c 的最值1.心理学家发现,学生对概念的接受能力 y 和提出概念所用的时间 x (单位:分)之间大体满足函数关系式2y 0.1x 2.6x 43 (0<x <30)。

y 的值越大,表示接受能力越强。

试根据关系式回答:A . h = m C . k = n15.已知二次函数y = ax 2+ bx +b v 1.其中正确的结论是(A .①②D . h >0, k >01c (a 丸)的图象如图所示,有下列结论:①abc >0•,②a + b + c = 2;③a :④2B .②③C .②④(1)若提出概念用10分钟,学生的接受能力是多少?(2)概念提出多少时间时?学生的接受能力达到最强?2.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子0A , O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示。

图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系是2 5y x 2x 一。

请回答下列问题:4(1)柱子OA的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?1 23.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线yx2 x 2的一部分,根12 据关系式回答:(1) 该同学的出手最大高度是多少 ?(2) 铅球在运行过程中离地面的最大高度是多少 ?(3)该同学的成绩是多少?(2) 正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,说明理由。

三、函数解析式的求法(1 )1 .某菜农搭建了一个横截面为抛物线的大棚 ,尺寸如图:(1) 根据如图直角坐标系求该抛物线的解析式;(2)若菜农身高为1.60米,则在他不弯腰的情况下,在棚内的横向活动范围有几米?(精确到0.01米)4. 如图,正方形EFGH 的顶点在边长为 的面积为y 。

(1) 求出y 与x 之间的函数关系式;a 的正方形 ABCD 的边上,若AE=x ,正方形 CEFGH4.已知二次函数的图象与x轴交于A (-2 , 0)、B ( 3, 0)两点,且函数有最大值是2。

(1)求二次函数的图象的解析式;(2)设次二次函数的顶点为P,求厶ABP的面积。

5.如图:(1)求该抛物线的解析式;(2)根据图象回答:当x为何范围时,该函数值大于0。

6.已知抛物线经过A (-3 , 0)、B (0 , 3)、C (2, 0)三点。

(1)求这条抛物线的解析式;(2)如果点D (1, m )在这条抛物线上,求m值和点D关于这条抛物线对称轴的对称点E的坐标,并求出tan ZADE 的值。

四、函数解析式的求法(2)1.已知某绿色蔬菜生产基地收获的大蒜,从四月一日起开始上市的30天内,大蒜每10千克的批发价y (元)是上市时间x (天)的二次函数,有近几年的行情可知如下信息X (天)51525y (元)151015(1)求y与x的函数关系式;(2)大蒜每10千克的批发价为10.8元时,问此时是在上市的多少天?2.如图,某建筑物从10m高的窗口A用水管向外喷水,喷出的水呈抛物线状,如果抛物线的最高点M离墙1m ,离地面40m ,求水流落点B离墙的距离0B的长。

53.一男生推铅球,成绩为10米,已知该男生的出手高度为米,且当铅球运行的水平距离为4米时达到最大高3度,试求铅球运行的抛物线的解析式。

4.某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8米,两侧距地面3米高处各有一个壁灯,两壁灯之间的水平距离为6米,试求厂门的高度。

5.抛物线经过A、B、C三点,顶点为D,且与x轴的另一个交点为E。

(1)求该抛物线的解析式;(2)求四边形ABDE的面积;(3)求证:△AOB s^BDE。

36.已知二次函数y= ax2+ bx + c(a丸)的图象经过一次函数y _x 3的图象与x轴、y轴的交点,并也经过(1 ,21)点.求这个二次函数解析式,并求x为何值时,有最大(最小)值,这个值是什么?m 17.已知抛物线y= —x2+ bx + c与x轴的两个交点分别为A(m, 0), B(n, 0),且m n 4,n 3(1)求此抛物线的解析式;⑵设此抛物线与y轴的交点为C,过C作一条平行x轴的直线交抛物线于另一点P,求厶ACP的面积.& 已知抛物线y= ax2+ bx + c经过点A(—1 , 0),且经过直线y= x —3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;⑵求抛物线的顶点坐标;(3)若点M 在第四象限内的抛物线上 ,且OM 丄BC,垂足为D ,求点M 的坐标.9 .某商业公司为指导某种应季商品的生产和销售 ,对三月份至七月份该商品的售价和生产进行了调研 ,结果如下:一件商品的售价 M (元)与时间t (月)的关系可用一条线段上的点来表示 (如图甲),一件商品的成本 Q (元)与 时间t (月 )的关系可用一条抛物线上的点来表示 ,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题(1)一件商品在3月份出售时的利润是多少元 ?(利润=售价一成本)⑵求出图(乙)中表示的一件商品的成本 Q (元)与时间t (月)之间的函数关系式;⑶你能求出3月份至7月份一件商品的利润 W (元)与时间t (月)之间的函数关系式吗?若该公司能在一个月 内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?761 2 3 4 5 6 7 S甲 卓議(元)乙。

相关文档
最新文档