测量不确定度评定实例
测量不确定度评定例
相对频率偏差的测量不确定度评定1. 测量方法相对频率偏差:参考频标:铯原子频率标准5071A 被检频标:铷原子频率标准 频标比对器:PO7D 2. 测量结果测量10次,数据如下:oox f f f y -=)(τ3. 测量不确定度来源(1)铯原子频标不准引入的不确定度1u铯原子频标检定证书给出其频率准确度为5×10-13, 按B 类方法进行不确定度评定。
视其为均匀分布,包含因子3=k ,则有:13131109.23/105--⨯=⨯=u(2)铯原子频标不稳引入的不确定度2u测量相对频率偏差的取样时间为100s 。
铯原子频标检定证书给出其100s 频率稳定度为4.9×10-13,按A 类方法进行评定,k=1,则有:132109.4-⨯=u(3)频标比对器引入的不确定度3u频标比对器检定证书100s 比对不确定度为1.2×10-13,按A 类方法进行不确定度评定,k=1,则有:133102.1-⨯=u(4)测量重复性引入的不确定度4u实验标准偏差)(x s n1212109.11)()(-=⨯=--=∑n y yx s ni i in对于平均值,重复性测量引入的不确定度为:13124100.610/109.1--⨯=⨯=u3. 合成标准不确定度c u相对频率偏差测量结果的不确定度分量如下表:以上各不确定度分量互相独立各不相关,可得合成标准不确定度c u :21321321321324232221)100.6()102.1()109.4()109.2(----⨯+⨯+⨯+⨯=++++=u u u u u c 13104.8-⨯= 4. 扩展不确定度取k=2, 则扩展不确定度: 12102-⨯=U 5. 结论相对频率偏差:11100.7-⨯ 不确定度: 12102-⨯ (k=2)频率稳定度的测量不确定度评定1. 测量方法参考频标:高稳晶振8607 被检频标:铷原子频率标准 频标比对器:5120A 2. 测量结果3.不确定度来源(1) 参考频标引入的不确定度测量频率稳定度时使用的参考源为高稳晶振8607,根据其检定证书,其1 s 频率稳定度为7.2E-14,按B 类方法进行评定,k=1,则有:141102.7-⨯=u(2) 测量装置引入的不确定度测量装置使用5120,实测1 s 比对不确定度为1.19E-13,按A 类方法进行不确定度评定,k=1,则有:1321019.1-⨯=u(3) 有限次测量引入的不确定度按A 类方法进行有限次测量不确定度的评定。
力学性能测量不确定度评定中的几个实例
⑵试样的标距
试样原始标距由划线操作和测量来决 定的,因此量化该项不确定度分量时 仅仅考虑量具是远远不够的。
按GB/T 228–2002标准中规定 原始标距的标记应准确到±1%
⑶断后伸长率不确定度的评定
GB/T 228-2002国家标准中, 对断后伸长的规定有误。
如果按照该标准的规定来评定不确定度, 即使方法正确,也不能得到正确的结果。
CSM 01 01 02 03 -2006 钢绞线弹性模量测量结果不确定度评定
CSM 01 01 02 04 -2006 金属薄板和薄带塑性应变比(r值)测量结果不确定 度评定
⑴ 各种参数都有明确的物理公式作为数学模型。
⑵ 拉伸试验机力值的不确定度分项都是通过标准测 力仪进行检定来评定的。
⑶ 在B类不确定度分量的量化过程中,由于测量方 法和条件的限制,测量的结果往往不是由量具的 误差决定的。也就是说合乎要求的量具仅仅是达 到技术文件规定的保证。
(绝对不可以不考虑)
在“金属材料拉伸试验测量结果不确定 度评定”中采用了25个试样。为了示 范评定A类不确定度中的合并样本标准 差,在 “金属洛氏硬度试验(HRC) 测量结果不确定度评定” 中采用了3个 样本。 绝大多数项目的A类不确定度评定都是 采用5或6个测量点为测量列,并用极 差法来计算标准偏差。
GB/T 228-2002标准B4中给出, 测定原始横截面积时,
测量每个得出的, 在评定工作中可直接引用。
试样断后横截面积的测量误差不取决于量具, 断后缩径处最小直径测量用卡尺,
由于断口配接存在一定困难, 实际的测量误差要远大于量具的误差。
GB/T 228–2002标准19.1中规定 断裂后最小横截面积的测定应准确到±2%。
3.3 硬度试验
测量不确定度评定的方法以及实例
测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。
标准不确定度包含随机误差和系统误差等。
例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。
其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。
该方法适用于一些简单的测量,如长度、质量等物理量的测量。
例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。
则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。
该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。
例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。
若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。
总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。
浅析测量不确定度在检测工作中的意义和应用实例
浅析测量不确定度在检测工作中的意义和应用实例近年来,工程检测机构或者实验室对测量不确定度的应用处于起步阶段,多数检测人员认为测量不确定度评定是对校准实验室而言的,与本检测机构在日常检测过程没有什么关系,对测量不确定度的概念模糊,可能会与测量误差产生混淆,对评定方法不甚了解。
为了强化理解,本文开篇点题首先阐述一下测量不确定度的定义和进行测量不确定评定的意义,并简单区分一下测量不确定度和测量误差两者的区别,进而在概念上可以更加深入理解测量不确定度;并且通过介绍测量不确定度A类和B类评定方法的异同点,以及浅析如何进行检测结果测量不确定度的评定,进而使检测人员初步认知测量不确定度的评定方法,为今后开展测量不确定度的评定工作打下基础。
1.测量不确定度在检测工作中的意义测量不确定度是指表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。
测量不确定度包括由系统影响引起的分量,如与修正量和测量标准所赋量值有关的分量及定义的不确定度。
有时对估计的系统影响未作修正,而是当作不确定度分量处理。
通常意义上,不确定度这一词汇与怀疑一词的概念接近。
不确定度一词可能指上述定义中的有关参数,或是指对于一个特定量的有限知识。
测量不确定度一词没有对测量有效性怀疑的意思,正相反,对不确定度的了解表明对测量结果有效性的信心增加了。
此参数可以是诸如称为标准测量不确定度的标准偏差(或其特定倍数),或是说明了包含概率的区间半宽度。
与测量不确定度相比,测量误差是“测量结果减去被测量的真值”,简称误差。
一个量的真值,是在被观测时本身所具有的真实大小,只有完整的测量才能得到真值,而实际上任何测量都有缺陷,因此,真值是一个理想化的概念。
由于真值无法确切地知道,所以误差也无法准确知道。
由定义可知误差是两个量值之差,即误差表示的是一个差值,而不是区间。
实际检测工作中,不要将测量误差和测量不确定混淆。
测量不确定度一般由若干分量组成。
其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定进行评定,并可用标准差表征。
不确定度评定举例
举例
• 数字多用表为 位,其最大允许差为 数字多用表为5.5位 • ±(0.005%×读数 ×最小分度 ×读数+3×最小分度) • 数字多用表最小分度为 数字多用表最小分度为0.01 k • 在相同条件下用数字多用表测量电阻器 次电阻, 在相同条件下用数字多用表测量电阻器10次电阻 次电阻, 得到平均值和平均值的标准偏差为: 得到平均值和平均值的标准偏差为: •
举例
不确定度评定
举例
• 例1.用K型热电偶数字式温度计直接测量温度示 . 型热电偶数字式温度计直接测量温度示 值400℃的工业容器的实际温度,分析其测量不 ℃的工业容器的实际温度, 确定度。 确定度。K型热电偶数字式温度计其最小分度为 0.1℃,在400℃经校准修正值为0.5℃,校准的不 确定度为0.3℃; • 测量的数学模型为: • t=d+b…………………………(1) • 式中:t——实际温度,℃ • d——温度计读取的示值,℃ • b——修正值,℃,b=0.5℃
举例
• 引用最大允许差按均匀分布得校准产生的标准不确 定度为
将以上两项合成得: 将以上两项合成得:
举例
• 取K=2,则有 ,
结果表示成: 结果表示成:
谢谢!
举例
• 第三,温度计最小分度为0.1℃,假定读取到其一 第三,温度计最小分度为 ℃ 半,接均匀分布则读数产生的标准不确定度为 :
将以上三项合成得
举例
• 取K=2,则有 • U(t)=0.37×2=0.74≈0.8℃ • 结果表达为 • (400.7±0.8) ℃
测量不确定度案例分析
标准不确定度A类评定的实例【案例】对一等活塞压力计的活塞有效面积检定中,在各种压力下,测得10次活塞有效面积与标准活塞面积之比l(由l的测量结果乘标准活塞面积就得到被检活塞的有效面积)如下:0.250670 0.250673 0.250670 0.250671 0.250675 0.250671 0.250675 0.250670 0.250673 0.250670问l的测量结果及其A类标准不确定度。
【案例分析】由于n =10, l 的测量结果为l ,计算如下∑===ni i .l n l 125067201由贝塞尔公式求单次测量值的实验标准差()612100521-=⨯=--=∑.n l l )l (s ni i由于测量结果以10次测量值的平均值给出,由测量重复性导致的测量结果l 的A 类标准不确定度为610630-=⨯=.)l (u n )l (s A 【案例】对某一几何量进行连续4次测量,得到测量值:0.250mm 0.236mm 0.213mm0.220mm ,求单次测量值的实验标准差。
【案例分析】由于测量次数较少,用极差法求实验标准差。
)()(i i x u C Rx s ==式中,R——重复测量中最大值与最小值之差;极差系数c及自由度ν可查表3-2表3-2极差系数c及自由度ν查表得c n =2.06mm ../mm )..()x (u CR )x (s i i 018006221302500=-=== 2)测量过程的A 类标准不确定度评定对一个测量过程或计量标准,如果采用核查标准进行长期核查,使测量过程处于统计控制状态,则该测量过程的实验标准偏差为合并样本标准偏差S P 。
若每次核查时测量次数n 相同,每次核查时的样本标准偏差为Si ,共核查k 次,则合并样本标准偏差S P 为k s s ki ip ∑==12此时S P 的自由度ν=(n -1)k 。
则在此测量过程中,测量结果的A 类标准不确定度为 n S A P u '=式中的n '为本次获得测量结果时的测量次数。
测量不确定度评定的方法以及实例
第一节有关术语的定义3.量值 value of a quantity一般由一个数乘以丈量单位所表示的特定量的大小。
例: 5.34m 或 534cm, 15kg, 10s,- 40℃。
注:对于不可以由一个乘以丈量单位所表示的量,能够参照商定参照标尺,或参照丈量程序,或二者参照的方式表示。
4.〔量的〕真值 rtue value〔of a quantity〕与给定的特定量定义一致的值。
注:(1)量的真值只有经过完美的丈量才有可能获取。
(2)真值按其天性是不确立的。
(3)与给定的特定量定义一致的值不必定只有一个。
5.〔量的〕商定真值 conventional true value〔of a quantity〕对于给定目的拥有适合不确立度的、给予特定量的值,有时该值是商定采纳的。
例: a) 在给定地址,取由参照标准复现而给予该量的值人作为给定真值。
b) 常数委员会 (CODATA)1986年介绍的阿伏加得罗常数值 6.0221367 × 1023mol-1。
注:(1)商定真值有时称为指定值、最正确预计值、商定值或参照值。
(2)经常用某量的多次丈量结果来确立商定真值。
13.影响量 influence quantity不是被丈量但对丈量结果有影响的量。
例: a) 用来丈量长度的千分尺的温度;b)沟通电位差幅值丈量中的频次;c)丈量人体血液样品血红蛋浓度时的胆红素的浓度。
14.丈量结果 result of a measurement由丈量所获取的给予被丈量的值。
注:(1)在给出丈量结果时,应说明它是示值、示修正丈量结果或已修正丈量结果,还应表示它能否为几个值的均匀。
(2)在丈量结果的完好表述中应包含丈量不确立度,必需时还应说明有关影响量的取值范围。
15.〔丈量仪器的〕示值 indication〔of a measuring instrument〕丈量仪器所给出的量的值。
注:(1)由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。
测量不确定度评估实例M
三针法外螺纹中径测量不确定度评估实例1、测量概述:测量温度条件:符合表1规定的高准确度测量的温度要求。
测量设备及技术指标:测长仪最大允许示值误差为±(0.5μm+L 6105-⨯);三针直径 d D = 3.464 mm (最佳直径 d 0 = 3.4641 mm),三针直径测量不确定度≤0.4μm ; 测量力1.5 N ;螺纹塞规M64x6,其名义值d 2 = 60.1336 mm ,P = 6 mm , α= 60°;测量方法:外螺纹(螺纹塞规)可以利用两个平面测帽和直径为d D 的三针测量(图1)。
图1. 利用三针测量螺纹塞规2、建立数学模型假设用图A2所示方法测量外螺纹,其中径计算利用公式(1),其中m = ΔL +d D假设各输入量不相关,中径d2的合成标准不确定度:其中:u (ΔL )是被测位移量ΔL 的标准不确定度,包括测量仪器校准和温度效应的影响; u (d D ) 是探针直径校准值的标准不确定度。
这个不确定度假设完全正确,因为其灵敏系数c dD = 1/sin(α/2)+1。
u (P )是螺距测量的标准不确定度,其灵敏系数c P = cot(α/2)/2;u (α/2)是牙侧角α/2测量的标准不确定度。
这可能有许多不同的值,特别是采用光学测量方法时,与螺距的大小成反比。
灵敏系数与测球直径d D 对最佳球径d 0的差相关。
注意牙型角α的单位: [α] = rad.d D cos(a/2)/sin2(a/2)-P/2sin2(a/2) ;P/2=d0*cos(a/2) (B8)u(A1) 是进行升角修正时采用近似公式引入的不确定度;u(A2) 是测量力修正引入的不确定度;u(δB)是被校螺纹量规不完善、校准程序等所有未明确分离的因素引入的不确定度。
B4.4 不确定度报告的数字示例按照组合3校准螺纹塞规M64x6,其名义值d2 = 60.1336 mm,P = 6 mm,α= 60°。
评定测量不确定度的两个应用实例之比较
在不 确定度 的评 定 中 , 不能 遗漏 或忽 略重
要 的分量 。 因此 , 通过 以 上分析 我们认 为 ,
在评 定 对 测 量结 果 有 影 响 的标 准 不 确定
《 确 定 度 》 例 除 了对 以 上 三个 分 量 进 不 一
行 评 定 外 , 引 入 了 另 外 三 个 分 量 , 调 还 即
0 1 , 程 为 5 的 交 直 流 电 流 表 ( 评 定 直 流 部 分 )两 .级 量 A 仅 ; 例 所 建 立 的 数 学 模 型 皆 为 : =, 一 V / △ R 。
H( =【 cU ,2)+( l(x )+( ( ) △) ( l(x cu ,) cu Ⅳ ) ) 2
+ ( ( ~ )】 CU 尺 ) 。 3
=
( . 1+4.2 +0.6 . 8)/×1 4 5 6 0 6 5 +5 7 2 0— A
9. 3× 1 4 0 0— A
=
显然 这 个 数 值要 比不 考 虑 U , 时 所得 到 的 u( ( ) △)
=70 .7×1 — 0 4 大得 多 。 A要 若再 考虑 调整 器 调节 细 度 引起
的 不 确定 度 分量 U ,。和 标 准 数 字多 用 ( ) 表误 差 引起 的 不 确 定 度 分 量 U 。, ( ) 则
但 在 评 定 对 测 量 结 果 有 影 响 的标 准
不 确 定 度 分 量 时 ,评 定 》 例 认 为 测 量 结 《 一 果 的 不 确 定 度 主 要 取 决 于 三 个 标 准 不 确
一
两例 中所引起 的不确 定 度分 量 1 , 的大小 也 应 该是 相 . ) Z (
ห้องสมุดไป่ตู้
例是 《 用测 量不 确 定度 评定 方 法及 应 用实 例》 同的 , 常 中 即都为 H , =5 6 ×1 — 。 在《 ( ) . 1 0 4 若 A 评定 》 例 中增 一
不确定度评估实例
不确定度评估实例1、测量问题本次评定实验以物资(商品)检验所游标卡尺09059为测试量具,用游标卡尺测量结构长度270mm的长度ι。
已知卡尺的最大误差为1mm。
用6次测量的平均值作为测量结果。
卡尺的温度效应、弹性效应及其他不确定度来源均忽略不计。
2、数学模型卡尺上得到的读数χ即为测量结果,故得被测长度ι=χ。
但除了读数χ可能引入测量不确定度外,卡尺刻度误差对测量结果也会有影响。
由于卡尺的校准证书未给出其示值误差,因此只能根据其最大允许误差来估计它对测量结果的影响。
若卡尺刻度误差对测量结果的影响διS,则数学模型可以表示为ι=χ+διS式中διS的数学期望值为零,即Ε(διS)=0,但需考虑其不确定度,即μ(διS)≠0。
数学模型是相对的,即使对于同样的被测量,当要求的测量准确度不同时,需要考虑的测量不确定度来源也会有相应的增减,因此数学模型也会不同。
3、测量不确定度分量本测量共有两个不确定度分量,由读数的重复性引入的不确定度μ(χ)和卡尺刻度误差所引起的不确定度μ(διS)。
⑴读数χ的不确定度,μ1(ι)=μ(χ)6次测量结果分别为270、3mm270、1mm270mm271、4mm269、8mm271、2mm则6次测量结果的平均值为==270、47mm平均值的实验标准差为 s()==0、074mm故μ1(ι)=μ()=s()=0、074mm⑵卡尺误差引入的不确定度, μ2(ι)=μ(διS)由于证书未给出卡尺的示值误差,故卡尺刻度误差引入的不确定度由卡尺的最大允许误差得到。
已知卡尺的最大误差为1mm,并以矩形分布估计,于是μ2(ι)=μ(διS)==0、577mm下表给出不确定度分量汇总表符号栏中u1=s1 意为用实验标准s来表示不确定度,言外之意是该不确定度分量有A类评定得到的。
反之,对于未标u=s的不确定度分量,则表示是由B 类评定得到的。
这是经常采用的标明A类评定和B类评定不确定度分量的方法之一。
测量不确定度评定例
一、力学测量应用实例用拉力试验机测量金属试件拉伸强度。
已知试件的标准直径mm d 10=,断裂时拉力为40kN 。
拉力试验机的量程为200kN ,分度值为0.5kN ,示值误差为F %1+,示值误差的不确定度为0.2%F 。
试件直径用千分尺测量,其示值误差为m μ3+。
求拉伸强度的测量不确定度。
2.1 数学模型 24d FA F R m π==m R — 拉伸强度 (Mpa )A — 试件截面积 (2mm )d — 试件直径 (mm )F — 拉力 (N )2.2 不确定度传播律)(4)()(222d u F u R u rel rel m rel c +=2.3 求相对标准不确定度分量)(d u rel2.3.1 千分尺示值误差导致的不确定度 )(1d u以均匀分布估计 m d u μ73.133)(1==2.3.2 由操作者引起的测量不确定度)(2d u经验估计,该测量误差在m μ10+范围内,以均匀分布估计, m d u μ77.5310)(2==以上二者合成 m d u μ02.677.573.1)(22=+=以上相对不确定度表示: %06.01010*02.6)(3==-d u rel2.4 求拉力F 的测量不确定度 )(F u rel2.4.1 拉力机的示值误差引入的测量不确定度)(1F u由于仪器说明书未说明置信概率,故取2=k%5.0%1)(1==k F u2.4.2 拉力机校准的不确定度)(2F u这是由上一级标准器对拉力机校准时产生的不确定度,即拉力机示值误差的不确定度,校准证书亦未给出置信概率,故取2=k%1.0%2.0)(2==k F u2.4.3 拉力机读数不准产生的不确定度)(3F u人工读数可以估计到刻度的五分之一,即0.1kN ,读数误差的不确定度可按均匀分布估计,3=k %144.03401.0)(3==F u以上三者合成 %53.0)144.0(%)1.0(%)5.0()(222=++=F u rel2.5 合成标准不确定度c u %543.0%)06.0(4%)53.0()(4)()(2222=+=+=d u F u R u rel rel m rel c 223.5094mm N d F R m ==π 28.2%543.0*3.509)(mmN R u R u m rel c m c === 2.6 扩展不确定度 U取包含因子 2=k26.58.2*2mm N ku U c ===2.7 测量结果报告 2)6.53.509(mm N R m +=……二、 电学测量应用实例用数学电压表测量电压9次,得到平均值V v 928571.0=,标准偏差V v s μ36)(=。
测量不确定度评定举例
欢迎阅读测量不确定度评定举例A.3.1 量块的校准通过这个例子说明如何建立数学模型及进行不确定度的评定;并通过此例说明如何将相关的输入量经过适当处理后使输入量间不相关,这样简化了合成标准不确定度的计算。
最后说明对于非线性测量式中:L—被校量块长度;L s—标准量块在20℃时的长度,由标准量块的校准证书给出;?—被校量块的热膨胀系数;?s—标准量块的热膨胀系数;?—被校量块的温度与20℃参考温度的差值;?s —标准量块的温度与20℃参考温度的差值。
在上述测量模型中,由于被校量块与标准量块处于同一温度环境中,所以?与?s 是相关的量;两个量块采用同样的材料,?与?s 也是相关的量。
为避免相关,设被校量块与标准量块的温度差为??,??= ?-?s ;他们的热膨胀系数差为??,??= ?-?s ;将?s = ?-?? 和 ?=??+?s 代入式(A.1),由此,数学模型可改写成:34s 量结果的不确定度没有影响。
合成标准不确定度公式可写成(A.5):)()()()()(22222222θαδαδθu l u l d u l u l u s s s s c +++= (A.5)4).标准不确定度分量的评定○1标准量块的校准引入的标准不确定度u (l s )标准量块的校准证书给出:校准值为l s =50.000623mm ,U = 0.075?m (k =3),有效自由度为?eff (l s )=18。
则标准量块校准引入的标准不确定度为:u (L s )=0.075/3=25nm , ?eff (L s )=18 ○2测得的长度差引入的不确定度u (d ) a. 用对两个量块的长度差进行25次独立重复观测,用贝塞尔公c. 由以上分析得到长度差引入的标准不确定度分量u (d )为: 8.97.85.4)()()(2222=+=+=d u d u d u nm 自由度?eff (d )为:○3膨胀系数差值引入的标准不确定度u (??)估计两个量块的膨胀系数之差在?1×10-6℃-1区间内,假设在区间内为均匀分布,则标准不确定度为: u (??)=1×10-6℃-1/3=0.58×10-6℃-1自由度:估计u (??)的不可靠程度⎦⎤⎢⎣⎡∆)()(ααδδu u 为10%,计算得到?(??)=50%)10(12=- u(△)= 0.5℃/2 =0.35℃ θ的标准不确定度可由下式得到:u(θ)= 41.035.02.0)()(2222=+=∆+u u θ℃ 由于c 4 = c θ=0=-=∂∂θδθs l f, 这个不确定度对l 的不确定度不引入一阶的贡献, 然而它具有二阶贡献.○6 热膨胀系数引入的标准不确定度u (αS ) 标准量块的热膨胀系数给定为αS =11.5×10-6℃-1, 具有一个矩形分布的不确定度,其界限为?2×10-6℃-1, 则标准不确定度为: u (αS )= 2×10-6℃-1/3 = 1.2×10-6℃-1 由于c 3 = c αs =0=-=∂∂θδαs Sl f, 这个不确定度对L 的不确定度不?eff (l )=3.172)6.16(50)9.2(12)8.9(18)25()32(44444=+++ 取?eff (l )=17 6)确定扩展不确定度要求包含概率P 为0.99,由?eff (l )=17,查表得:t0.99(17)=2.90,取k99= t0.99(17)=2.90,扩展不确定度U99= k99u c(l)= 2.90,×32nm=93nm。
不确定度的案例3个(供参考)
气相色谱法测定绝缘油溶解气体含量测量不确定度的评定(供参考)一、概述1.1 目的评定绝缘油溶解气体含量测量结果的不确定度。
1.2 依据的技术标准GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》。
1.3 使用的仪器设备(1) 气相色谱分析仪HP5890,经检定合格。
(2) 多功能全自动振荡仪ZHQ701,经检定合格,允差±1℃,分辨力0.1℃。
(3) 经检验合格注射器,在20℃时,体积100mL±0.5mL;体积5mL±0.05mL;体积1mL±0.02mL。
1.4 测量原理气相色谱分析原理是利用样品中各组分,在色谱柱中的气相和固定相之间的分配及吸附系数不同,由载气把绝缘油中溶解气体一氧化碳、二氧化碳、甲烷、乙烷、乙烯、乙炔、氢气带入色谱柱中进行分离,并经过电导和氢火焰检测器进行检测,采用外标法进行定性、定量分析。
1.5 测量程序(1) 校准。
采用国家计量部门授权单位配制的甲烷标准气体。
进样器为1mL玻璃注射器,采用外标气体的绝对校正因子定性分析。
(2) 油样处理。
用100mL玻璃注射器A,取40mL油样并用胶帽密封,并用5mL玻璃注射器向A中注入5mL氮气。
将注入氮气的注射器A放入振荡器中振荡脱气,在50℃下,连续振荡20分钟,静止10分钟。
(3) 油样测试。
然后用5mL玻璃注射器将振荡脱出的气体样品取出,在相同的色谱条件下,进样量与标准甲烷气体相同,对样品进行测定,仪器显示谱图及测量结果。
气体含量测定过程如下。
1.6 不确定度评定结果的应用符合上述条件或十分接近上述条件的同类测量结果,一般可以直接使用本不确定度评定测量结果。
二、 数学模型和不确定度传播律2.1 根据GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》试验方法,绝缘油中溶解气体含量C 的表示式为S s=⨯hC C h μL/L (1) 式中,C ——被测绝缘油中溶解气体甲烷含量,μL/L ;C S ——标准气体中甲烷含量,μL/L ; h ——被测气体中甲烷的峰高A ; h s ——标准气体中甲烷的峰高A 。
测量不确定度评定及实例分析
下, 可使水样 中含 氮化 合 物 的氮元 素 转化 为硝 酸盐 。 并且在 此过程 中有 机物 同 时被 氧化 分解 。可 用紫 外 分光光 度法 于波 长 20和 25n 处 , 别测 出 吸光 2 7 m 分 度A 及 A , 出校正吸光度 A 。 求
4 13 主要仪 器及 实验 条件 ..
水平。
3 测量 结果不确定 度的评定 步骤
评定步骤包括 : 概述 ( 法 依 据 、 法 原 理 、 方 方 主 要 仪器 及 实 验 条 件 、 作 步 骤 ) 数 学模 型 ; 确 定 操 ; 不 度 分量 的来 源分 析 ; 确定 度分 量 的评 定 ; 成 不确 不 合 定度 ; 扩展 不确 定度 及报告 与表 示 。
u c ranywee iu tae n h n e anyrs l r ban d n etit r l srtd a d teu c r it e ut weeo tie . l t s
Ke r : n e an y;a a y i n v l ai n;me s r me tmeh d y wo ds u c r i t t n l ss a d e a u t o au e n to s
4 2 2 不确定 度数 学模 型 ..
行 平行 操作 。 () 2 总氮 标 准溶 液 的配 制 : 酸 钾 标 准 贮 备 液 硝
C =1 0mg L 硝 酸钾 ( N 3 在 1 5 ~10 烘 0 / : K O) 0% 1%
总氮 不确定 度数 学模 型为 :
=
㈩
箱 中干 燥 3 , h 在干燥 器 中冷 却后 , 取07 18g溶 称 .2 , 于去 离子水 中 , 至 100mL容 量 瓶 中 , 去 离 子 移 0 用 水 稀 释至 标 线在 O ~1% 暗处 保存 , 加入 1~2 ℃ 0 或
材料理化检测量不确定度评估指南及实例GL10
材料理化检测测量不确定度评估指南及实例(GL10)修订说明一、任务来源本修订任务是中国合格评定国家认可委员会2015年度工作计划内容,也是中国合格评定国家认可委员会专业技术委员会化学分委员会2015~2017年的主要工作内容。
由中国合格评定国家认可中心和宝山钢铁股份有限公司研究院负责修订。
二、修订原因2008年至2012年间,GUM和技术规范JJF1059均有重大修订,包括针对模型及概率密度分布的不同进行了细化规定等,都增加了相应附件。
目前已发布的《材料理化检验测量不确定度评定指南及实例》已不再适应这些的变化,且未将非金属材料领域理化检测的不确定度评估包含在内。
三、修订的主要依据1.ISO/IEC Guide 98-3:2008 Uncertainty of measurement - Part 3: Guide to theexpression of uncertainty in measurement (GUM:1995)(导则98测量不确定度-第三部分:测量不确定度表示指南)2.JJF1059.1-2012测量不确定度评定与表示3.JJF1059.2-2012用蒙特卡罗法评定测量不确定度4.GB/T 27411-2012检测实验室中常用不确定度评定方法与表示AS-GL06化学分析中不确定度的评估指南四、主要修订内容1.增加了新GUM法(2008版GUM)与旧GUM法的主要区别,对主要技术差异进行了解读。
2.增加了对蒙特卡洛评定法的详细解读。
3.增加了Globe(Top-down)评定法中在材料理化检验领域应用广泛的精密度法的解读及应用方法。
4.增加了“术语和定义”章节。
5.对引用的相关标准文件有修订的部分,如部分技术术语已改、CNAS-GL05已作废等,在本指南文件中进行了相应修改。
6.删除了对校准实验室测量不确定度评定的相关要求。
7.统一了各案例中关于天平称量测量不确定度分量的评定描述。
测量不确定度评定实例行业使用
s2
A
0.2
3
分度头度盘不准
u1
u3 U p / k p 0.01m / 2.57 3.9nm , 3 6 1 5
b) 由系统效应引起的分量
比较仪检定证书给出由系统效应引起的不确定度为
0.02m,k 3 ,故
u4 0.02m / 3 6.7nm
优质荟萃
11
此分量为 B 类不确定度,自由度证书中未给出,故采
用B =
时,锥体实际旋转角度与度盘实际旋转角度产生u6 ,则
u6
sin
sin 2 i cos i
当 很小时 90 0 ,i 4'
u6 0.3''
优质荟萃
23
2.3 各项不确定度及总不确定度
五、测量不确定度应用实例 序 号
不确定度来源
符号
类别
数'' 值
1
测微器不准
s1
A
2.0
2
水平仪水泡合像不准
,当 1 x
x
<< 1 时,
1 x
有
① 对d 项,在正常情况下d 很小,而量块是恒温室检
定,温度条件要求高,故 也很小,且 很小,故相比
于主要项ls d ,这项可忽略;
②
对 项,虽然 lss s
ls
较大,但ss 为二次项,非常小,
故次项也可忽略;
③ 对ls (ss ) ,虽然(ss ) 项较小,但它为一次项,故应
≈ ls (1 s s ) d (1 )
= ls d ls s s ls d ls s s = (ls d ) ls ( s s ) d ls s s ≈ (ls d ) ls ( s s )
测量结果的不确定度评定实例分析
2021 June第测量结果的不确定度评定实例分析刘海利中国石化销售股份有限公司油品技术研究所以GB/T 261—2008《闪点的测定 宾斯基-马丁闭口杯法》测量车用柴油闭口闪点为例,按照JJF 1059.1—2012《测量不确定度与表示》要求进行检测实验室测量不确定度评定,通过对实验室测量结果的不确定度评定,实现测量结果不确定度规范与正确表达,进而提升实验室测量结果质量。
作者简介:刘海利,硕士,高级工程师,现主要从事油品质量管理与应用研究工作。
E-mail:liuhaili119@163.com测量不确定度是表征检测和校准实验室测量结果的质量参数,对于一定的测量结果而言,它的不确定度值越小,其质量就越高,使用价值也越高;反之则低。
在CNAS-CL01:2018《检测和校准实验室能力认可准则》中,要求实验室应制定与检测工作相适应的测量不确定度评定程序,对每一项有数值要求的结果进行测量不确定度评定。
因此,测量不确定度评定在检测和校准实验室认可中是一项不可缺少的重要工作[1]。
JJF 1059.1—2012《测量不确定度评定与表示》是评定不确定度最常用、最基本的方法[2]。
闭口闪点是轻质油品运输、储存和使用安全的重要指标,本文以GB/T 261—2008《闪点的测定 宾斯基-马丁闭口杯法》测量车用柴油闭口闪点不确定度为例,阐述测量闭口闪点不确定度步骤,为实验室开展所有测量项目结果的不确定度评定提供参考,提高实验室检测能力。
Teat and Appraisal测试与评定8282三期83一2021 June第各不确定度分量的评定重复性测量引入的标准不确定度分量u 1(T c )车用柴油闭口闪点测量时,试样量、加热速率、搅拌速率、试验过程中温度计深入位置、温度计读数、压力表读数等随机因素带来的不确定度,一并列入重复性测量不确定度分量中进行评定。
试验用温度计修正值∆T =0.0 ℃,压力表修正值∆p =0.1 kPa,在重复性试验条件下,对同一试样独立重复测量10次,结果见表1。
八个不确定度评定实例
2020/7/12
13
表1 定容体积V不确定度预估
标准不确定度
序
号
不确定度来源
类型
分布
包含 因子
数值
1
测量重复性
A 正态 1 0.3mL
2
定容仪器不确定度
B 三角 6 0.16mL
3 定容时室温与检定时不同 B 均匀 3 0.61mL
ቤተ መጻሕፍቲ ባይዱ
4
合成标准不确定度
——
uC0.69mL
12
三、 定容体积V不确定度预估和来源
定容体积V不确定度来自3个方面:
(1) 测量重复性引起的不确定度分量,可以通过多 次独立重复测量,采用A类评定方法求出;
(2) 仪器的不确定度,由容量瓶最大允许误差引入 的标准不确定度分量,按B类方法评定;
(3) 容量瓶是在室温20 ℃时检定合格的,实际定容 时的室温为(205 )℃,不进行温度修正,因此温度 将引入标准不确定度分量,按B类方法评定。
3.2 电子天平引入的标准不确定度分量uB1
电子天平的最大允许误差为±0.5mg,区间半宽
度a1= 0.5mg,m测量值落在该区间的概率分布为均匀 分布,包含因子 k1 3 。其标准不确定度uB1为:
uB1
a1 k1
0.5mg 3
0.29mg
2020/7/12
8
四、 m称量不确定度评定(续)
3.3 天平分辨力引入的标准不确定度分量uB2
标准不确定度
序
号
不确定度来源
类型
分布
包含 因子
数值
1
测量重复性
A 正态 1 0.11mg
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/6/14
1
五、测量不确定度应用实例
一、长度测量中的应用
1.在比较仪上校准量块 (1) 问题的提出 量块的校准不确定度分析,已广泛的出现在多个国家
有关不确定度评估的技术资料中。GUM 的第一实例就 选用了它,原因是该实例几乎涉及了 GUM 所有章节的 基本内容(除标准不确定度的相对形式以外),因而具有 较理想的指导作用。下面依据 JJF 1059 — 1999,对量 块的校准不确定度加以完整叙述和分析。
得,五为 s、(d ) 测 13n量m ,不自由确度定 25度1 应24 (用注:实这是以往的统 例 计结果,参见 JJF 1059 — 1999,4.3 节)。
本例作 5 次重复观测并采用平均值,平均值的标准不确定度 及自由度分别为
u2 s(d)/ 5 13nm/ 5 5.8nm;
(5.3)
如此,各分量(输入量)ls , d, s , , , 互不相关。按不确定度传播律,输出量 估计值l 的方差为
2019/6/14
7
五、测量不确定度应用实例
其中,各分量灵敏度系数为
c1
l ls
1
s
1
c2
l d
1
c3
l
ls
五、测量不确定度应用实 达到 75%(意即不确定度的不确定度),则不可靠性为
例 25%,于是自由度
4
1 2
1 (25 %) 2
8
于是
, u 4 6 . 7 nm
4 8
2019/6/14
13
④ 膨胀系数差的不确定度
已知 在1106 ℃1 范围内按均匀分布变化,故
五、测量不确定度应用实 u( ) 1106 ℃1 / 3 = 0.577×106 ℃1 (注意单位)
ls
较大,但ss 为二次项,非常小,
故次项也可忽略;
③ 对ls (ss ) ,虽然(ss ) 项较小,但它为一次项,故应
保留。因此,我们有
l ls d ls (ss )
(5.2)
2019/6/14
6
五、测量不确定度应用实例
因为 与 s 来源于同一只温度计而相关,由于 JJF 1059 — 1999 中对相关项的 数学处理过程非常复杂,故我们采用下述方法将相关转换成不相关,以简化数学处
b) 由系统效应引起的分量
比较仪检定证书给出由系统效应引起的不确定度为
0.02m,k 3 ,故
u4 0.02m / 3 6.7nm
2019/6/14
12
此分量为 B 类不确定度,自由度证书中未给出,故采
用B =
1 u2(x) 估算。我们假定证书给出的不确定度可靠性
2 2u(x)
d l(1 ) ls (1 s s )
式中 l — 被较量块在 20℃时的长度;
(5.1)
— ls 标准量块在 20℃时的长度; — 被较量块的温度热膨胀系数;
s — 标准量块的温度热膨胀系数;
— 校准时的被较量块温度与 20℃的温度偏差;
s — 校准时的标准量块温度与 20℃的温度偏差。
从上级证书中已知 20℃时标准量块的长度为ls = 50.000 623mm,扩展不确定度为 U =0.075μ m,k = 3。被校准的是名 义值(标称值)为 50mm 的量块。
2019/6/14
3
五、测量不确定度应用实例
(2) 数学模型的建立
两量块直接比较的输出是被较量块与标准量块的长度差 d
例 a) 即由随机效应引起的分量
比较仪证书说明,由随机效应引起的不确定度为
U95 0.01m ,它由重复 6 次测量得到,置信概率 95%,由 t 分
布临界值k p t99 (5) 2.57 。于是
u3 U p / k p 0.01m / 2.57 3.9nm , 3 6 1 5
2019/6/14
20
方(向五2)旋在、转进,行测使第锥量二体次母不检线测再确时次,处定夹于具水度仍平按应位第置一用,次其实检分测度旋头转示
值为1' 。则有:
例
2
2
' 1
2 180 0 2
那么,锥角的实际值为:
1 2 2
2019/6/14
21
(2) B 类不确定度
k=3。故标准量块的标准不确定度u1 为
u1 u(ls ) U / k 0.075 m / 3 0.025 m
证书还指出,它的自由度1 18 。于是
u1 0.025 m,1 18
2019/6/14
10
② 测量长度差的不确定度
量块长度差的实际标准差,通过(以往)独立重复观测 25 次而
由于各标准不确定度分量互不相关,故长度的合成标
准不确定度uc(l) 按式(5.5)得出
uc (l)
u12
u
2 2
u
2 3
u
2 4
u
2 5
u
2 6
31.7nm
取两位有效数字,uc (l) 32nm ,有效自由度eff 为
= 16.8 eff
u
4 c
6
u
4 i
i1 i
考虑,不可遗漏,也不可重复。很明显函数表达式(5.3)未能全面包括所有不确定度 的来源,遗漏了比较仪(设备)及校准者(人员)读数因素。而的获得是通过多次测量(读 数)获得,故我们认为人员读数因素已包含在u(d ) 中,而比较仪的不确定度分量应从 函数表达式(5.3)以外加入(灵敏系数为 1)。所以,不确定度的来源应包括
五、测量不确定度应用实例 ① 分度头度盘示值存在的不确定度u1 ; 由光学分度头规程中查出分度值' 2 的最大示值为' 4.0 。 ② 多面棱体检定存在的不确定度u2 ; 由多面棱体检定规程得u2 0.3'' 。 ③ 自准直仪示值存在的不确定度u3 ; 由自准直仪检定规程中查得:分度值为' 1 它在'任意 1 范围内的示值 。 u3 1.0''
2019/6/14
4
三、由于校准时的环境温度不一定正好是 20℃,故有 与s ,
五、测量不确定度应用实 又由于存在温度梯度,故 与s 可能不一致。当被较量块温
度与标准量块温度由同一温度计给出时,与相关,当被较量
例 块温度与标准量块温度由不同温度计给出时, 与s 不相
关。本例假定是用同一只温度计,即 与s 相关。 对式(5.1)进行数学变换得
五、测量不确定度应用实 u( ) 0.05 ℃/ 3 =0.028 9℃(注意单位)
同上,认为 50%可靠,故自由度
例 6 2
s
11.5
10 6
1
℃
故,
u6 ls s u( ) 16.6nm , 6 2
2019/6/14
1确定度
理过程。 令 s ,由于 与 s 相减,故来源于同一只温度计的相同因素被抵消,
消去相关性。
令 s ,由式(5.2),有
l f (ls , d , s , , , )
= ls d ls ( s ) = (1 s l)s +d
2019/6/14
5
五、测量不确定度应用实例
在变换过程中,因为
<< 1,应用近似 1
,当 1 x
x
<< 1 时,
1 x
有
① 对d 项,在正常情况下d 很小,而量块是恒温室检
定,温度条件要求高,故 也很小,且 很小,故相比
于主要项ls d ,这项可忽略;
②
对 项,虽然 lss s
l ls (1 s s ) d 1
≈ ls (1 s s ) d (1 )
= ls d ls s s ls d ls s s = (ls d ) ls ( s s ) d ls s s ≈ (ls d ) ls ( s s )
例 此分量为 B 类,同上假定其可靠性为 90%,则自由度
5
1 2
1 (10 %) 2
50
若 = 19.9℃ - 20℃ - = - 0.1℃,则有 u5 ls u( ) 2.9nm , 5 50
2019/6/14
14
⑤ 块间温差的不确定度
经验表明,温差以等概率落于区间- 0.05℃至 0.05℃之间,为均匀分布,故
2019/6/14
2
五、测量不确定度应用实例
在比较仪上,对标准量块与被检量块进行比较,求出两量 块的长度差值。考虑长度的温度修正,由标准量块的已知长 度,获得被较量块的长度。
这里指明了测量方法,直接测量的是两量块的长度差值, 即修正值 d : l ls d,l 是被较量块长度,ls 是标准量块长度(由上 级证书给出),d 即是多次重复测量数据列的算术平均值。
例 JJF 1059 — 1999 第 8.13 节)。 (7) 不确定度报告 已知标准量块长度ls = 50.000 623mm,d = 215nm,故被较量l块长度 =50.000 623mm + 215nm = 50.000 838mm,扩展不确定度U99 93nm 。l这里对 不用修约,
u
2 c
(l
)
u 2 (ls )
u 2 (d)
l s2
2u 2 (
)
l
s2
2 s