初中数学八年级《轴对称》优秀教学设计

合集下载

人教版数学八年级上册教学设计13.1《轴对称》

人教版数学八年级上册教学设计13.1《轴对称》

人教版数学八年级上册教学设计13.1《轴对称》一. 教材分析人教版数学八年级上册第13.1节《轴对称》是初中数学中的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称解决实际问题。

本节内容通过具体的实例,引导学生探究轴对称的性质,培养学生的观察能力、操作能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,对图形的性质有一定的了解。

但轴对称作为一个全新的概念,对学生来说还是有一定难度的。

因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解轴对称的概念,逐步掌握轴对称的性质。

三. 教学目标1.了解轴对称的概念,能够识别生活中的轴对称现象。

2.掌握轴对称的性质,能够运用轴对称解决实际问题。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.轴对称的概念和性质。

2.运用轴对称解决实际问题。

五. 教学方法1.采用情境教学法,从生活实例出发,引导学生发现轴对称现象。

2.采用探究教学法,让学生通过合作交流,自主发现轴对称的性质。

3.采用实践教学法,让学生动手操作,巩固对轴对称的理解。

4.采用问题教学法,引导学生运用轴对称解决实际问题。

六. 教学准备1.准备相关的多媒体教学课件,展示生活中的轴对称现象。

2.准备一些实际的例子,用于引导学生发现轴对称的性质。

3.准备一些练习题,用于巩固学生对轴对称的理解。

七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现并理解轴对称的概念。

2.呈现(10分钟)呈现一些实际的例子,让学生观察并探讨轴对称的性质。

如:轴对称图形的大小、形状、位置关系等。

3.操练(10分钟)让学生分组进行操作,通过实际动手,发现并验证轴对称的性质。

可以让学生剪出一些轴对称的图形,观察并总结其性质。

4.巩固(10分钟)让学生解决一些实际问题,运用轴对称的知识。

如:设计一个轴对称的图案,或解决一些与轴对称相关的几何问题。

最新《轴对称图形》教案优秀

最新《轴对称图形》教案优秀

最新《轴对称图形》教案优秀一、教学内容本节课我们将学习人教版初中数学八年级上册《轴对称图形》章节。

具体内容包括:轴对称图形的定义与性质;寻找对称轴;判断轴对称图形;应用轴对称解决实际问题。

二、教学目标1. 理解并掌握轴对称图形的定义,能够识别常见的轴对称图形。

2. 学会寻找轴对称图形的对称轴,了解轴对称图形的性质。

3. 能够运用轴对称知识解决实际问题,提高解决问题的能力。

三、教学难点与重点教学重点:轴对称图形的定义、性质及识别。

教学难点:寻找轴对称图形的对称轴,运用轴对称知识解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。

2. 学具:练习本、铅笔、橡皮、直尺、圆规等。

五、教学过程1. 实践情景引入:利用多媒体课件展示一组轴对称图形,引导学生观察并思考:这些图形有什么共同特征?2. 例题讲解:(1)讲解轴对称图形的定义,引导学生理解并掌握。

(2)通过示例,讲解如何寻找轴对称图形的对称轴。

(3)讲解轴对称图形的性质。

3. 随堂练习:(1)让学生在练习本上画出一个轴对称图形。

(2)判断给定图形是否为轴对称图形,并找出其对称轴。

4. 小组讨论:5. 课堂小结:六、板书设计1. 板书《轴对称图形》2. 主要内容:(1)轴对称图形的定义(2)轴对称图形的性质(3)寻找对称轴的方法(4)轴对称图形的识别七、作业设计1. 作业题目:(2)运用轴对称知识,设计一个图案。

2. 答案:(1)图形1、图形3为轴对称图形,对称轴分别为x轴、y 轴。

图形2、图形4不是轴对称图形。

(2)答案不唯一,合理即可。

八、课后反思及拓展延伸1. 课后反思:(1)学生对轴对称图形的定义和性质掌握程度。

(2)学生寻找对称轴的准确性。

(3)学生对轴对称图形在实际生活中的应用了解程度。

2. 拓展延伸:(1)研究其他类型的对称图形,如中心对称图形。

(2)探讨轴对称与中心对称的关系。

(3)了解轴对称在艺术、建筑等领域的应用。

人教版八年级数学上册13.1.1《轴对称》一等奖优秀教学设计

人教版八年级数学上册13.1.1《轴对称》一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级上册13.1.1轴对称教学设计一、教材分析1、地位作用:《轴对称》与现实生活联系紧密,在小学已有初步的渗透,初中阶段,它既是前面全等三角形概念的拓展与延伸,又是图形全等的具体应用,是与平移、旋转等相关联的又一种图形变换方式,也是今后研究等腰三角形、特殊四边形等图形性质的重要依据和基础。

因此本节课起着承上启下的作用。

同时这节课对于培养学生的数学审美能力和动手能力,拓展学生的空间想象力也有十分重要的意义。

2、教学目标:①理解轴对称图形,两个图形关于某直线对称的概念;②掌握轴对称图形与两个图形关于某直线对称的区别和联系;③经历操作、观察、分析,探究思考轴对称的性质;④应用垂直平分线的定义和轴对称的性质解决简单的问题。

目标分析:由于学生对学过的平面图形有了初步的认识,对生活中一些常见的图案以及一些装饰都比较熟悉,在此基础上学习轴对称图形一般能达到水到渠成的效果。

但由于缺乏空间概念,学生在学习这部分内容时可能会遇到这样或那样的困难,尤其是一些学困生对剪、画轴对称图形会感到吃力。

因此,在教学过程中力求体现以下几方面的理念:为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用电化教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

3、教学重、难点教学重点:①轴对称图形和两个图形关于某直线对称的概念;②经历探索轴对称的性质的过程。

教学难点:①比较观察轴对称图形和两个图形关于某直线对称的区别和联系。

②经历探索轴对称的性质的过程。

突破难点的方法:让学生在“观察----比较一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

二、教学准备:多媒体课件、等腰直角三角板、几何图形纸片等三、教学过程一、创设情景引入课题我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物。

人教版八年级上数学教学设计《第13章轴对称》

人教版八年级上数学教学设计《第13章轴对称》

人教版八年级上数学教学设计《第13章轴对称》一. 教材分析人教版八年级上数学第13章《轴对称》是初中数学的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能运用轴对称解决实际问题。

本章内容涉及图形变换,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析八年级的学生已经掌握了基本的平面几何知识,具备一定的观察和分析能力。

但学生在学习过程中,可能对轴对称的概念和性质理解不深,因此在教学过程中,需要教师引导学生通过观察、操作、思考、交流等活动,体会轴对称的性质。

三. 教学目标1.知识与技能:理解轴对称的概念,掌握轴对称的性质,能运用轴对称解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:轴对称的概念,轴对称的性质。

2.难点:轴对称的性质在实际问题中的应用。

五. 教学方法1.情境教学法:通过引导学生观察实际问题,激发学生的学习兴趣。

2.探究式教学法:引导学生通过操作、思考、交流等活动,自主探究轴对称的性质。

3.案例教学法:通过典型例题,引导学生运用轴对称解决实际问题。

六. 教学准备1.教学素材:收集相关的实际问题,准备典型例题。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如剪纸、折叠等,引导学生观察并思考:这些实际问题有什么共同特点?学生可能回答出:这些实际问题都涉及到图形的对称性。

教师总结:对称性是这些实际问题的共同特点,今天我们要学习的就是关于对称性的一种重要类型——轴对称。

2.呈现(10分钟)教师通过多媒体展示轴对称的定义和性质,引导学生观察并思考:轴对称的定义是什么?轴对称的性质有哪些?学生可能回答出:轴对称的定义是图形关于某条直线对称;轴对称的性质有对称轴上的点不变,对称轴两侧的点关于对称轴对称。

《轴对称》教学设计(15篇)

《轴对称》教学设计(15篇)

《轴对称》教学设计《轴对称》教学设计(15篇)作为一位兢兢业业的人民教师,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。

那么什么样的教学设计才是好的呢?下面是小编收集整理的《轴对称》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《轴对称》教学设计1【教学内容】教材第83页例2。

【教学目标】1.让学生通过认识一些简单轴对称图形,会画这些简单图形的对称轴。

2.根据对称轴所在的位置画出图形的另一半,并借此加深对轴对称图形的理解和认识。

3.让学生在数学活动中动手实践、观察分析,提高学生的综合数学能力。

【重点难点】在方格纸上画出一个图形的轴对称图形。

【情景导入】1.在方格纸上画出简单图形的轴对称图形。

2.提问:轴对称图形的特征是什么?轴对称图形的性质是什么?【新课讲授】出示课本例题让学生自己在方格纸画一下,看能否画出轴对称图形。

学生画完,同位的两名互相对照一下,看画的图形是不是一样。

教师在每一小组中抽查一些学生,看他们画得如何,然后请画得好的同学说说画的`方法,教师作简单小结。

画图形的轴对称图形的步骤和方法是怎样的?小组讨论、交流,全班归纳总结:画轴对称图形的步骤和方法是,先画出几个关键的对称点,然后再连线。

【课堂作业】完成教材第83页“做一做”第2题。

【课堂小结】通过这节课的学习,你学会了画对称图形的方法吗?说说画对称图形的方法。

小结:画轴对称图形的方法:①找出关键对称点;②连结各对称点。

【课后作业】教材第84~85页练习二十第4-6题。

2.完成练习册中本课时练习。

《轴对称》教学设计2教学目标1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。

2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。

3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。

教学准备教师:多媒体教学课件等。

八年级上册数学轴对称标准教案

八年级上册数学轴对称标准教案

八年级上册数学轴对称标准教案一、教学目标知识与技能:1. 让学生理解轴对称的概念,识别轴对称图形。

2. 学会画轴对称图形,并找出对称轴。

3. 能够运用轴对称的性质解决实际问题。

过程与方法:1. 通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。

2. 学会用坐标表示对称点,理解对称点坐标之间的关系。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的观察力和创造力。

2. 让学生感受数学在生活中的应用,体会数学的乐趣。

二、教学重点与难点重点:1. 轴对称的概念及性质。

2. 轴对称图形的识别及其对称轴的确定。

难点:1. 对称点的坐标表示及对称点坐标之间的关系。

2. 运用轴对称性质解决实际问题。

三、教学准备教师准备:1. 教学课件或黑板。

2. 轴对称图形的相关图片或实物。

3. 练习题及答案。

学生准备:1. 笔记本用于记录。

2. 尺子、圆规等绘图工具。

四、教学过程1. 导入新课:通过展示一些生活中的轴对称图形,如剪刀、飞机模型等,引导学生观察并思考这些图形的特征。

2. 探究新知:1. 介绍轴对称的概念,让学生尝试解释轴对称的含义。

2. 引导学生通过观察和操作,发现轴对称图形的性质。

3. 讲解如何找出轴对称图形的对称轴,并让学生在纸上画出对称轴。

3. 巩固练习:设计一些练习题,让学生独立完成,检验学生对轴对称概念的理解和运用情况。

4. 课堂小结:对本节课的主要内容进行总结,强调轴对称的概念及其在实际中的应用。

五、课后作业1. 完成练习册上的相关题目。

2. 收集生活中的轴对称图形,下节课分享。

注意:教师在教学过程中要关注学生的学习情况,及时解答学生的疑问,引导学生主动参与课堂活动。

在设计练习题时,要考虑题目的难易程度,尽量让所有学生都能参与到课堂中来。

六、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习积极性、对轴对称概念的理解程度以及课堂互动情况。

针对反思结果,调整教学方法,以便更好地指导学生学习。

八年级数学上册 《轴对称》优秀教学设计

八年级数学上册 《轴对称》优秀教学设计

《轴对称》优秀教学设计【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。

(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。

(3)了解轴对称的性质。

2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。

3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。

【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。

【教学难点】轴对称的性质。

【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。

八年级数学上册轴对称的教案3篇

八年级数学上册轴对称的教案3篇

八年级数学上册轴对称的教案3篇八年级数学上册轴对称的教案篇1一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999 (2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2第三十五学时:4.2.2. 完全平方公式(一)一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.二、重点难点:重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用难点:理解完全平方公式的结构特征并能灵活应用公式进行计算三、合作学习Ⅰ.提出问题,创设情境一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?Ⅱ.导入新课计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;(5)(a+b)2=________;(6)(a-b)2=________.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992随堂练习第三十六学时:14.2.2 完全平方公式(二)一、学习目标:1.添括号法则.2.利用添括号法则灵活应用完全平方公式二、重点难点重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.三、合作学习Ⅰ.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;如果括号前是负号,去掉括号后,括号里的各项都要变号。

八年级轴对称数学活动教学设计3篇

八年级轴对称数学活动教学设计3篇

八年级轴对称数学活动教学设计3篇八年级轴对称数学活动教学设计3篇作为一名人民教师,常常要根据教学需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

那要怎么写好教学设计呢?下面是小编整理的八年级轴对称数学活动教学设计3篇,希望能够帮助到大家。

八年级轴对称数学活动教学设计3篇1教学内容:人教版小学数学二年级下册第29页例1及相关内容。

教学目标:1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

教学重点:认识对称现象和轴对称图形的特点。

教学难点:掌握识别轴对称图形的方法。

教具准备:多媒体课件、实物图片等。

教学过程:一、谈话引入,激发兴趣1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

2、从蝴蝶形状的风筝引出“对称”二、合作探究,学习新知(一)观察图形,认识对称1、观察几幅对称图形,引导学生感悟对称。

2、说一说生活中的对称现象(二)动手操作,认识轴对称图形1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

2、动手操作,剪出轴对称图形(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。

(2)生动手剪出自己喜欢的轴对称图形。

(3)交流展示学生的作品3、认识对称轴(1)看一看,摸一摸,说一说(2)画一画:师示范画出对称轴,然后学生自己画,再交流。

4、初步理解轴对称图形(1)说一说轴对称图形的特点,初步理解轴对称图形。

(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

(3)举一举身边的轴对称图形的例子。

三、巩固练习,拓展延伸1、判一判:哪些是轴对称图形。

2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

八年级数学上册轴对称教案

八年级数学上册轴对称教案

八年级数学上册轴对称教案八年级数学上册轴对称教案作为一名教师,常常需要准备教案,借助教案可以更好地组织教学活动。

快来参考教案是怎么写的吧!下面是小编收集整理的八年级数学上册轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级数学上册轴对称教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。

2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。

3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。

教学重点:理解对称图形的概念,能正确找、画对称轴。

教学难点:准确找对称轴。

教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。

师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。

]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。

生2:我发现年年有鱼的纸花的左右两边是不一样的。

生3:我发现京剧脸谱的左右两边是一样的。

让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。

[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。

9 人教初中数学八上 13.1 轴对称教案 【2023,最新经典教案】

9 人教初中数学八上 13.1 轴对称教案 【2023,最新经典教案】

《轴对称》一、教材分析1、地位与作用《轴对称》是第一节,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,将为学生以后学习“空间与图形”奠定基础;同时这一节也是联系数学与生活的桥梁。

2、教学目标根据上述教材分析,考虑到学生已有的认知心理特征,制定如下教学法目标:(一)知识与技能认识生活中的轴对称图形,初步理解轴对称的概念,并能深刻体会轴对称图形和两面三刀个图形成轴对称的区别与联系。

(二) 过程与方法通过大量的现实生活右的图形来认识轴对称图形及轴对称的概念,让学生体验轴对称在现实生活中的广泛应用,在具体教学过程中,可在教材的基础上适当拓展,使内容更为丰富。

(三) 情感与价值观通过本节学习,应达到培养学生体会数学美感的价值观。

3、重点、难点本着课程标准,在吃透教材的基础上,确立如下教学重点与难点:重点:掌握轴对称图形和成轴对称这二个概念的实质。

难点:轴对称图形和轴对称的区别与联系。

二、教法与学法分析1、教学方法的设计新课程理念强调“经历过程与获得结论同样重要”,但我觉得有时过程比结论更有意义,教学时我采用了探究式教学方法,整个探究的过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、学法指导本节课针对学生的认知规律,根据学法指导自主性和差异性原则,教学时指导他们动手操作、合作交流,体验发现问题、探索问题和解决问题的学习过程,参与知识的发生、发展、形成的过程,使学生掌握知识。

三、教学流程探究活动(一)(一)轴对称图形1、视图激趣,设疑导入(课件)今天,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。

八年级数学上册《轴对称基本知识结构》优秀教学案例

八年级数学上册《轴对称基本知识结构》优秀教学案例
(二)问题导向
在教学过程中,我将设计一系列具有启发性的问题,引导学生进行探究。问题设计遵循由浅入深的原则,从基本的轴对称概念到性质、应用,逐步拓展。通过问题导向,激发学生的思维,培养他们主动探究、积极思考的习惯。同时,鼓励学生提出自己的疑问,形成良好的课堂互动氛围。
(三)小组合作
小组合作学习是本章节教学的重要策略。我将根据学生的学习能力和特点,合理分组,确保每个小组成员都能在合作中发挥自己的优势。在合作学习过程中,引导学生相互讨论、交流、分享,共同解决难题。通过小组合作,培养学生的团队协作能力、沟通能力和解决问题的能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣和热情,培养他们勇于探索、积极进取的学习态度。
2.通过欣赏轴对称图形的美,提高学生的审美能力,培养他们发现美、创造美的意识。
3.培养学生的团队协作精神,让他们在合作学习中学会尊重他人、倾听他人意见。
4.培养学生面对问题时的自信心和坚持到底的精神,让他们在克服困难中体验成功的喜悦。
(四)反思与评价
在教学过程中,我将注重学生的反思与评价。在每个环节结束后,引导学生回顾自己的学习过程,总结收获和不足,以便及时调整学习方法。同时,组织学生进行自评、互评和教师评价,全面客观地评价学生的学习成果。评价过程中,关注学生的个体差异,鼓励进步,激发潜能,促进学生的全面发展。
四、教学内容与过程
a.这些图形的对称轴在哪里?
b.对称轴将图形分成了哪两部分?
c.怎样运用轴对称性质计算这些图形的面积?
3.成果分享:每个小组将讨论成果进行汇报,其他小组成员可提出疑问或补充,共同解决问题。
(四)总结归纳
在学生小组讨论结束后,我将带领学生共同总结本节课所学的内容,包括轴对称的定义、性质、符号语言表示以及应用等方面。通过总结归纳,帮助学生梳理知识体系,巩固所学内容。

《13.1.1轴对称》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《13.1.1轴对称》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《轴对称》教学设计方案(第一课时)一、教学目标本课教学目标是让学生理解轴对称图形的概念,掌握轴对称图形的性质和特点。

通过实例分析,培养学生观察、分析和归纳的能力,激发学生对数学的兴趣和好奇心。

同时,通过小组合作,提高学生的协作和交流能力。

二、教学重难点教学重点:理解轴对称图形的定义,掌握其基本性质和特点。

教学难点:通过具体实例,引导学生发现轴对称图形的规律,并能够正确判断和制作轴对称图形。

三、教学准备1. 教材与教具准备:准备初中数学教材中关于轴对称的章节,准备图形卡片、剪刀、胶水等手工制作材料。

2. 课前预习:布置预习任务,让学生提前了解轴对称图形的基本概念。

3. 教学环境准备:确保教室有多媒体设备,以便展示轴对称图形的图片和实例。

四、教学过程:1. 导入新课在课堂开始之初,教师首先可以通过展示一系列轴对称的实物图片,如蝴蝶、树叶、建筑物等,引导学生观察这些图片的共同特征。

通过观察和讨论,引出轴对称的概念。

同时,教师可以简单介绍轴对称在生活中的广泛应用和重要性,以此激发学生的学习兴趣和好奇心。

2. 概念讲解接着,教师将详细讲解轴对称的定义、性质和分类。

在讲解过程中,应注重使用通俗易懂的语言和生动的实例,帮助学生更好地理解和掌握。

此外,教师还可以借助几何图形、模型等教学工具,直观地展示轴对称的特点,帮助学生形成清晰的印象。

3. 互动探究为了加深学生对轴对称概念的理解,教师可以设计一些互动探究活动。

例如,可以让学生自己动手制作简单的轴对称图形,如剪纸、绘制图案等。

在制作过程中,学生可以观察、思考、交流,从而更深入地理解轴对称的特性和应用。

此外,教师还可以引导学生通过小组讨论、角色扮演等方式,进行更深入的探究和交流。

4. 案例分析为了让学生更好地理解和掌握轴对称的应用,教师可以结合实际生活中的案例进行分析。

例如,可以分析建筑物、艺术品、自然景观等中的轴对称现象,让学生观察、思考这些现象中的轴对称元素和特点。

初中数学轴对称教案

初中数学轴对称教案

初中数学轴对称教案初中数学轴对称教案(精选10篇)作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。

那么大家知道正规的教案是怎么写的吗?下面是小编整理的初中数学轴对称教案,欢迎阅读与收藏。

初中数学轴对称教案篇1教学目的1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。

重点、难点判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。

教学过程一、知识回顾问题1:轴对称图形的定义是什么?它是判断图形是否是轴对称图形的依据。

问题2:是否会画轴对称图形的对称轴?找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

问题3:轴对称图形对称点的连线与对称轴有什么关系?轴对称图形对称点的连线被对称轴垂直平分。

问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

问题5:等腰三角形有什么性质?等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。

问题6:如何判断三角形是等腰三角形?等边三角形?如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。

二、例题1.书本中下列是轴对称图形的有( )A.1个 D.2个 C.3个 D.4个2.所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么(1)DEF与DFE相等吗?为什么?(2)OE与OF相等吗?为什么?三、巩固练习所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。

轴对称的教案八年级

轴对称的教案八年级

八年级数学《轴对称》教案本教案旨在帮助八年级学生掌握轴对称的概念、性质和应用,培养学生的几何直观能力和解题能力。

下面是本店铺为大家精心编写的5篇《八年级数学《轴对称》教案》,供大家借鉴与参考,希望对大家有所帮助。

《八年级数学《轴对称》教案》篇1一、教学目标1. 知识与技能目标:理解轴对称的概念,掌握轴对称的性质和应用,能运用轴对称解决简单的几何问题。

2. 过程与方法目标:通过观察、操作、讨论等方式,培养学生的几何直观能力和解题能力。

3. 情感态度和价值观目标:培养学生对数学的兴趣,提高学生的审美观念和学习兴趣。

二、教学重点和难点1. 教学重点:理解轴对称的概念和性质,掌握轴对称的应用。

2. 教学难点:运用轴对称解决简单的几何问题。

三、教学准备1. 教师准备:课件、方格纸、彩色笔。

2. 学生准备:笔记本、笔。

四、教学过程1. 导入新课 (5 分钟)教师通过图片或视频的形式,向学生展示一些具有轴对称性的事物,如飞机、鸟巢、雪花等,引导学生观察并思考这些事物的共同特点。

2. 学习新知 (30 分钟)(1) 教师通过课件向学生介绍轴对称的概念,引导学生理解轴对称的定义和特点。

(2) 教师通过实例讲解轴对称的性质,如对称轴、对称点、对称线等,引导学生掌握轴对称的性质。

(3) 教师通过例题讲解轴对称的应用,如求解线段中点、求解面积等,引导学生掌握轴对称的应用。

3. 巩固练习 (20 分钟)教师通过课件出示一些练习题,让学生运用轴对称的概念和性质解决实际问题。

4. 小组讨论 (15 分钟)教师将学生分成小组,让他们讨论轴对称的一些应用问题,如“如果一个长方形有一条对称轴,那么它是否一定是矩形?”、“如果一个正方形有一条对称轴,那么它是否一定是菱形?”等。

5. 总结反思 (5 分钟)教师引导学生总结本节课所学的知识点,反思自己的学习过程,检查是否达到教学目标。

五、教学评价1. 课堂练习:学生能熟练运用轴对称的概念和性质解决实际问题。

轴对称教学设计(实用17篇)

轴对称教学设计(实用17篇)

轴对称教学设计(实用17篇)轴对称教学设计第1篇教学目标1.通过观察和操作认识轴对称图形和轴对称的含义. 2.会画出轴对称图形的对称轴.3.使学生在操作中加深对图形的认识,建立空间观念.教学重点认识轴对称图形,并能正确画对称图.教学难点认识图形,建立空间观念.教学过程一、复习准备口算二、新授教学(一)出示图片:树叶、蜻蜓、天平(二)分组讨论1.这些图形有什么特点?2.找出一些生活中实例图形.(三)学生汇报图形左右部分一样(四)出示图片:实验先把一张纸对折,在折好的一侧画出图形,剪下来,再把纸打开,看一看能得到一个什么样的图形?(五)小结:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴.(六)练习1.下面哪些图形是轴对称图形?找出它们的对称轴.(出示图片:练习一)2.画出下面图形的对称轴.(出示图片:练习二)3.下面的图形,哪些是轴对称图形?(出示图片:练习三)(七)分组实验.1.出示图片:几何图形2.哪些图形是轴对称图形?画出它们的对称轴.3.小结:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形.有的轴对称图形有不止一条对称轴.三、课堂练习1.下面的数字,哪些是轴对称图形?它们各有几条对称轴?(出示图片:练习五)2.画出下面每组图形的对称轴.各能画几条?(出示图片:练习六) 3.把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?(出示图片:练习四)四、课后作业运用学过的知识,用纸剪去一个对称图形,可以怎样剪?五、板书设计轴对称图形轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.对称轴:折痕所在的这条直线叫做对称轴.轴对称教学设计第2篇1、教学内容分析轴对称图形是一种常见的平面图形,在日常生活中有着广泛的应用。

它是在学生学习了一些平面图形的特征,形成了一定空间观念的基础上,学习轴对称图形的相关知识的。

新课程理念一直强调发挥学生的主观能动性,激发学生的学习兴趣,让学生在动手操作、猜测、验证中自己寻找解决问题的方法,本节课正是很好地利用了学生的求知欲和动手操作能力,体现学生主体、教师主导的教学地位。

《轴对称》数学教案设计

《轴对称》数学教案设计

《轴对称》數學教案設計标题:《轴对称》數學教案设计一、教学目标:1. 知识与技能:使学生理解轴对称的定义,能够识别和画出轴对称图形,并掌握轴对称图形的基本性质。

2. 过程与方法:通过观察、操作、推理等数学活动,培养学生的空间观念和几何直观能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养他们的创新意识和合作精神。

二、教学重难点:重点:轴对称图形的识别和基本性质的理解。

难点:轴对称图形的绘制和实际应用。

三、教学过程:1. 导入新课:通过展示一些生活中的轴对称实例,引导学生思考这些实例的特点,引出轴对称的概念。

2. 新课讲解:(1)介绍轴对称的定义,强调轴对称图形的两个部分是完全一样的。

(2)演示如何识别轴对称图形,引导学生自己尝试识别。

(3)讲解轴对称图形的基本性质,如对称轴两边的点到对称轴的距离相等等。

3. 实践操作:(1)让学生在纸上画出一些常见的轴对称图形,如矩形、正方形、等腰三角形等。

(2)布置小组活动,让每个小组选择一个轴对称图形,然后用剪纸的方式制作出来。

4. 巩固练习:给出一些轴对称图形,让学生判断是否为轴对称图形,如果是,找出其对称轴。

5. 课堂小结:回顾本节课的主要内容,强调轴对称的重要性和应用。

四、作业布置:1. 完成课本上的相关习题。

2. 在生活中找寻更多的轴对称实例,并尝试解释为什么它们是对称的。

五、教学反思:通过对轴对称的教学,我希望能帮助学生建立良好的空间观念,提高他们的观察能力和动手能力。

同时,我也希望通过各种实践活动,激发他们对数学的兴趣,培养他们的创新思维和团队协作精神。

八年级轴对称图形教案

八年级轴对称图形教案

八年级轴对称图形教案【篇一:新人教版八年级轴对称教案】12.3.1 等腰三角形教学目标知识与技能说出等腰三角形,总结出等腰三角形性质并会进行有关的计算;过程与方法经历折叠后剪纸、展开后得到等腰三角形的过程,体验等腰三角形的对称性;情感态度与价值观学生对图形的观察、发现,激发起好奇心和求知欲。

教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,?并且能够作出一个简单平面图形关于某一直线的轴对称图形,?还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.满足轴对称的条件的三角形就是轴对称图形,?也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课要求学生通过自己的思考来做一个等腰三角形.aabic作一条直线l,在l上取点a,在l外取点b,作出点b关于直线l的对称点c,连结ab、bc、ca,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗??底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,?而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、?底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在△abc中,ab=ac,作底边bc的中线ad,因为c?ab?a,?, ?bd?cd?ad?a,d?ab 所以△bad≌△cad(sss). dc所以∠b=∠c.]如右图,在△abc中,ab=ac,作顶角∠bac的角平分线ad,因为 c?ab?a,?, d ??bad??ca[例1]如图,在△abc中,ab=ac,点d在ac上,且bd=bc=ad,求:△abc各角的度数.分析:根据等边对等角的性质,我们可以得到∠a=∠abd,∠abc=∠c=∠bdc,?把∠a设为x的话,那么∠abc、∠c都可以用x来表示,这样过程就更简捷.解:因为ab=ac,bd=bc=ad, badc所以∠abc=∠c=∠bdc.∠a=∠abd(等边对等角).设∠a=x,则∠bdc=∠a+∠abd=2x,从而∠abc=∠c=∠bdc=2x.于是在△abc中,有[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本p51练习 1、2、3.(二)阅读课本p49~p51,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.作业(一)课本p56─1、3、4、8题.课后作业:<<课堂感悟与探究>>一、选择题1.如果△abc是轴对称图形,则它的对称轴一定是()a.某一条边上的高;b.某一条边上的中线c.平分一角和这个角对边的直线;d.某一个角的平分线二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.求这个等腰三角形的边长.解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4cm、6cm和6cm.12.3.1 等腰三角形(二)教学目标知识与技能总结出等腰三角形的判定定理,并会进行有关的计算;能运用等腰三角形性质和判定证明两条线段相等、两角相等的问题;过程与方法通过用等腰三角形的性质进行证明或计算,体会几何证题的基本方法:分析法和综合法;情感态度与价值观学生在运用数学知识解答问题的活动中获取成功的体验、建立学习的自信心;教学重点等腰三角形的判定定理及推论的运用教学难点正确区分等腰三角形的判定与性质.能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:i提出问题,创设情境学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.ii引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△abc 中,苦∠b=∠c,则ab= ac吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系? 2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.iii例题与练习1.如图2其中△abc是等腰三角形的是 [ ]④若已知 ad=4cm,则bc______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗? iv课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?v布置作业1.阅读教材2.书面作业:教材第58页第12题3、《课堂感悟与探究》【篇二:苏教版八年级上册第一章轴对称图形全章教案】轴对称图形1.1轴对称与轴对称图形【学习目标】:1、能够认识轴对称和轴对称图形,并能找出对称轴2、知道轴对称与轴对称图形的区别与联系3、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:13.1 轴对称
学习目标:1、根据实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念;
2、能识别轴对称图形,并能找出轴对称图形的对称轴、对应点;
3、培养学生的观察能力、思维能力、操作能力、归纳能力;
学习重点:能识别轴对称图形并找出轴对称图形的对称轴.
学习难点:会找特殊图形的对称轴.
学习方法:操作、归纳、练习
一、自主学习:
阅读课本P58---P59,你认为本节课我们要掌握哪些知识?
1、
2、
3、
4、
二、探究交流:
探究一:轴对称图形
1、思考:仔细观察下列图形,你能发现它们有什么共同特征吗?
2、如果一个图形沿着一条折叠,两旁的部分能够,这图形
就叫做;这条就是它的。

练习:
1、辨析PPT上图形是否为轴对称图形
:2、画出下列图形的对称轴。

相关文档
最新文档