深圳坪山培英学校初中部数学圆 几何综合单元测试题(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳坪山培英学校初中部数学圆 几何综合单元测试题(Word 版 含
解析)
一、初三数学 圆易错题压轴题(难)
1.已知:
图1 图2 图3
(1)初步思考:
如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12
PN PC = (2)问题提出:
如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求
12
PD PC +的最小值. (3)推广运用: 如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动
点,求12
PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】
【分析】
(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到
PN BN PC BP =,即可得到结论成立;
(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =
,当D 、P 、G 共线时,12
PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =
,当点P 在DG 的延长线上时,12
PD PC -
的值最大,即可得到答案. 【详解】
(1)证明:∵2,1,4PB BN BC ===,
∴2
4,4PB BN BC =⋅=,
∴2PB BN BC =⋅, ∴
BN BP BP BC
=, ∵B B ∠=∠, ∴BPN BCP ∆∆∽,
∴12PN BN PC BP ==, ∴12
PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,
∵
242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB
=∠=∠, ∴PBG CBP ∆∆∽,
∴12
PG BG PC PB ==, ∴12
PG PC =, ∴12
PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +
的值最小, ∴最小值为:22435DG =+=;
(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,
与(2)同理,可证
1
2
PG PC
=,
在Rt△CDF中,∠DCF=60°,CD=4,
∴DF=CD•sin60°=23,CF=2,
在Rt△GDF中,DG=22
(23)537
+=,
∴
1
2
PD PC PD PG DG -=-≤,
当点P在DG的延长线上时,
1
2
PD PC
-的值最大,
∴最大值为:37
DG=.
【点睛】
本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
2.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.
(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.
(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.
(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.
【答案】(1)圆心C的坐标为(1,);
(2)抛物线的解析式为y=x2﹣x;
(3)点D、E均在抛物线上;
(4)﹣1<x0<0,或2<x0<3.
【解析】
试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;
(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;
(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;
(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.
试题分析:(1)∵⊙C经过原点O
∴AB为⊙C的直径
∴C为AB的中点
过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1
∴圆心C的坐标为(1,).
(2)∵抛物线过O、A两点,
∴抛物线的对称轴为x=1,
∵抛物线的顶点在直线y=﹣x上,
∴顶点坐标为(1,﹣).
把这三点的坐标代入抛物线y=ax2+bx+c,得,
解得,
∴抛物线的解析式为y=x2﹣x.
(3)∵OA=2,OB=2,
∴AB==4,即⊙C的半径r=2,
∴D(3,),E(﹣1,),
代入y=x2﹣x检验,知点D、E均在抛物线上.
(4)∵AB为直径,
∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,