新人教版七年级几何图形初步单元测试
新人教版七年级数学上册第4章《几何图形初步》单元质量检测试卷(含答案)
D CB AB A第1题图会社谐和设建C BAβββααα第3题图 七年级数学单元质量检测 第4章·几何图形初步(问卷)第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分)1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是() A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个1乙甲N M PD C B A B ()D C AD CBA第9题图BA 第19题D C BA O 第20题CB A8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( ) A. 3cm B. 4cm C. 5cm D. 6cm9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( ) A. 91°20/24// B. 91°34/ C. 91°20/4// D. 91°3/4//11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图), 两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题(每小题3分,共24分)13.下列各图形中, 不是正方体的展开图(填序号).14.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6cm ,则AB = cm.15.已知线段AB ,延长AB 到C ,使BC =2AB ,D 为AB 的中点,若BD =3cm ,则AC 的长为 cm.16.若时针由2点30分走到2点55分,则时针转过 度,分针转过 度.17.一个角的补角是这个角的余角的4倍,则这个角的度数是 .D CB A OD CB A b a DC18.如图,已知点O 是直线AD 上的点,∠AOB 、∠BOC 、∠COD 三个角从小到大依次相差25°,则这三个角的度数分别为.19.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB = .20.如图所示,一艘船从A 点出发,沿东北方向航行至点B ,再从B 点出发沿南偏东 15°方向行至点C ,则∠ABC = 度.三、解答题:(本大题共52分)21.(每小题3分,共6分)根据下列语句,画出图形.⑴已知四点A 、B 、C 、D.① 画直线AB ;② 连接AC 、BD ,相交于点O ; ③ 画射线AD 、BC ,交于点P.⑵如图,已知线段a 、b ,画一条线段,使它等于2a -b.(不要求写画法)22.计算题:(每小题5分,共20分)⑴ (180°-91°32/24//)×3⑵ 34°25/×3+35°42/⑶ 一个角的余角比它的补角的31还少20°,求这个角.⑷ 如图,AOB 为直线,OC 平分∠AOD ,∠BOD =42°,求∠AOC 的度数.第24题图3x -2A 1-2x 3第25题图E A /DC B A23.(本大题9分)如图,是由7块正方体木块堆成的物体,请说出图⑴、图⑵、图⑶分别是从哪一个方向看得到的?⑴⑵ ⑶24.(本大题7分)如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面与右面标注的式子相等. ⑴ 求x的值. ⑵ 求正方体的上面和底面的数字和.25.(本大题10分)探究题:如图,将书页一角斜折过去,使角的顶点A 落在A /处,BC 为折痕,BD 平分∠A /BE ,求∠CBD 的度数.三、解答题(共52分)D CB A b a DCBA 21.(每小题3分,共6分)根据下列语句,画出图形. ⑴已知四点A 、B 、C 、D.① 画直线AB ;② 连接AC 、BD ,相交于点O ;③ 画射线AD 、BC ,交于点P 。
人教版七年级上册数学《几何图形初步》单元综合检测(带答案)
人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.参考答案一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.【答案】B【解析】【分析】根据五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱的面数进行判断.【详解】依题意得,有六个面的立体图形为:①正方体,③四棱柱,④长方体,共有3个.故答案选:B.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握立体图形概念.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.【答案】C【解析】【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∵三角板的度数为30°,60°,90°;45°,45°,90°∴可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定【答案】C【解析】本题考查了角的大小比较根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对【答案】A【解析】【分析】根据补角定义,两个不相等的角的和为180°,则这两个角是一个锐角,一个钝角,由此选择答案即可.【详解】∵两个不相等的角的和为180°,∴这两个角是一个锐角(小于直角),一个钝角(大于直角).故答案选:A.【点睛】本题考察的知识点是余角和补角,解题的关键是熟练的掌握余角和补角的定义与计算.5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°【答案】C【解析】【分析】根据余角和补角的概念列式计算即可.【详解】解:∵∠α=35°,∴∠α的余角为:90°-35°=55°,∴∠α的余角的补角为:180°-55°=125°,故选:C.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,”们”与”中”是相对面,”我”与”梦”是相对面,”的”与”国”是相对面.故选D.考点:正方体相对两个面上的文字.【此处有视频,请去附件查看】7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选C.点睛:此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等,等角的余角相等.二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.【答案】或【解析】【分析】根据题意画出图形,根据点C在线段AB上和在线段AB外两种情况进行解答即可.【详解】解:当如图1所示点C在线段AB的外时,∵AB=6cm,BC=8cm,∴AC=6+8=14(cm);当如图2所示点C在线段AB上时,∵AB=6cm,BC=8cm,∴AC=8-6=2(cm).故答案为:14cm或2cm.【点睛】本题考查的是两点间的距离,解答此题时要注意进行分类讨论,不要漏解.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..【答案】40或80【解析】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴BP=30cm,AP=10cm.∴绳子的原长=2AB=80cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴2BP=30cm,∴BP=15cm,AP=5cm.∴绳子的原长=2AB=40cm.11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.【答案】两点之间线段最短【解析】试题分析:根据线段的性质:两点之间线段最短填空即可.解:从A到B有多条道路,人们会走中间的直路,而不会走其他曲折的路,这是因为两点之间,线段最短.故答案为:两点之间,线段最短.考点:线段的性质——两点之间,线段最短12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______【答案】南偏西60°【解析】【分析】根据方向角的定义即可解答.【详解】由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故答案为:南偏西60°.【点睛】本题考查了方向角的概念,熟知方向角的概念是解答本题的关键.13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.【答案】120°【解析】【分析】根据周角的定义及已知条件可得∠AOC+∠BOD=180°,再由∠AOC︰∠BOD=1︰2即可求得∠BOD的度数.【详解】∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=360°-(∠AOB+∠COD)=180°,∵∠AOC︰∠BOD=1︰2,∴∠BOD=2∠AOC,∴∠AOC+2∠AOC=180°,即∠AOC=60°,∴∠BOD=2∠AOC=120°.故答案为:120°.【点睛】本题考查了角的计算,根据平角的定义求得∠AOC+∠BOD=180°是解决问题的关键.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.【答案】7 cm.【解析】【分析】由线段中点的定义知AM=MB=AB=4cm,BN=NC=BC=3cm.然后结合图示中的”MN=MB+BN”来求线段MN的长度.【详解】解:∵M是线段AB的中点,AB=8cm,∴MB=AB=4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC=BC=3cm;∴MN=MB+BN=4+3=7cm.故答案为7.【点睛】本题考查了两点间的距离和线段中点的性质.注意”数形结合”的数学思想在本题中的应用.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】小马不会得满分的.见解析.【解析】试题分析:在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB 的外部.试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.考点:角的计算.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′;(2)131°14′30″.【解析】试题分析:(1)根据余角的定义即可求解;(2)根据题意列出式子求解即可.试题解析:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(2)∵∠α=76°,∠β=41°31′,∴2∠α-∠β=2×76°-×41°31′=152°-20°45′30″=131°14′30″.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【答案】(1)线段AB的长为11cm;(2)2b﹣a.【解析】【分析】(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.【解析】【分析】(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,由于n°+25°=90°,所以n=65°,(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°. 【详解】(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,n°+25°=90°,∴n=65°,(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点睛】本题主要考查角平分线的定义和角的和差关系,解决本题的关键是要熟练掌握角平分线的定义,并能结合图形分析角的和差关系.。
第4章 几何图形初步 人教版数学七年级上册单元测试及答案(3份)
七年级上册第4章单元同步检测(一)一.选择题1.下列各图中,不是正方体的平面展开图的是()A.B.C.D.2.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.3.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′4.如图,OA是表示北偏东55°方向的一条射线,则OA的反向延长线OB表示的是()A.北偏西55°方向上的一条射线B.北偏西35°方向上的一条射线C.南偏西35°方向上的一条射线D.南偏西55°方向上的一条射线5.如图,点O在直线AB上,若∠BOC=89°50’,则∠AOC的大小是()A.90°50’B.90°10'C.90°D.89°10’6.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.17.下列说法中,正确的个数是()①同一个柱体的两个底面一定一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤三棱柱有三条棱.A.1 个B.2 个C.3 个D.4 个8.如图,某同学家在A处,现在该同学要去位于D处的同学家,请帮助他选择一条最近的路线是()A.A→B→M→D B.A→B→F→D C.A→B→E→F→D D.A→B→C→D 9.下列说法中,不正确的有()(1)正方体有8个顶点和6个面(2)两个锐角的和一定大于90°(3)若∠AOB=2∠BOC,则OC是∠AOB的平分线(4)两点之间,线段最短(5)钝角的补角一定大于这个角的本身(6)射线OA也可以表示为射线AOA.2个B.3个C.4个D.5个10.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长二.填空题11.一个长方体的长是5dm,宽是4dm,高是2dm,它的棱长之和是dm.12.若一个角的补角加上10°后等于这个角的4倍,则这个角的度数为.13.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.14.时钟的时间是3点30分,时钟面上的时针与分针的夹角是.15.如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”.已知点D是折线A﹣C﹣B的“折中点”,点E为线段AC的中点,CD=3,CE=5,则线段BC的长为.三.解答题16.如图,将一副三角尺的直角顶点重合在一起.(1)若OB是∠DOC的角平分线,求∠AOD的补角的度数.(2)若∠COB与∠DOA的比是2:7,求∠BOC的度数.17.如图,已知点A为线段CB上的一点.(1)根据要求画出图形(不要求写法):延长AB至点D,使BD=AB;反向延长CA 至点E,使CE=CA;(2)如果ED=18,BD=6,求CA的长18.如图,已知线段AB、a、b.(1)请用尺规按下列要求作图:(不要求写作法,但要保留作图痕迹)①延长线段AB到C,使BC=a;②反向延长线段AB到D,使AD=b.(2)在(1)的条件下,如果AB=8cm,a=6m,b=10cm,且点E为CD的中点,求线段AE的长度.19.计算:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7)(2)(﹣2)2÷4+(﹣3)(3)(4)22°53′×3+107°45′÷520.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE°.(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,则∠COD=°.(3)如图③,将直角三角板DOE绕点O顺时针方向转动到某个位置,0°<∠AOD<180°,如果∠COD=∠AOE,求∠COD的度数.参考答案一.选择题1.解:根据正方体展开图中的“田凹应弃之”得,D不符合题意,故选:D.2.解:A、不能折叠成正方体,故选项错误;B、不能折成圆锥,故选项错误;C、能折成圆柱,故选项正确;D、不能折成三棱柱,故选项错误.故选:C.3.解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.4.解:OA的反向延长线OB表示的是:南偏西55°方向上的一条射线.故选:D.5.解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=89°50′,∴∠AOC=180°﹣89°50′=90°10′,故选:B.6.解:∵AB=10cm,BC=4cm.∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=AC=7cm;∵M是AB的中点,∴AM=AB=5cm,∴DM=AD﹣AM=2cm.故选:C.7.解:根据柱体的特征、圆锥、圆柱、棱柱的特征可得,同一个柱体的两个底面一定一样大,因此①正确;圆柱、圆锥的底面都是圆形的,因此②正确;棱柱的底面可能是三角形的、四边形的、五边形的,因此③不正确;长方体是四棱柱,因此④正确;⑤三棱柱有九条棱,因此⑤不正确.正确的结论有:①②④,故选:C.8.解:根据两点之间的线段最短,可得D、B两点之间的最短距离是线段DB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→B→F→D.故选:B.9.解:(1)正方体有8个顶点和6个面,正确;(2)30°+20°=50°,所以两个锐角的和不一定大于90°,不正确;(3)OC在∠AOB的外部时,OC不平分∠AOB,所以若∠AOB=2∠BOC,则OC是∠AOB的平分线,不正确;(4)两点之间,线段最短,正确;(5)如果一个钝角是120°,则它的补角为60°,所以钝角的补角不一定大于这个角的本身,不正确;(6)射线OA不能表示为射线AO,不正确;不正确的有:(2),(3),(5),(6),故选:C.10.解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.二.填空题11.解:(5+4+2)×4=44(dm),故答案为:44.12.解:设这个角的度数为x°,根据题意得:180﹣x+10=4x,解得:x=38.故答案为:38°.13.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.14.解:根据钟面上的圆心角的度数规律得,每个大格,即两个相邻数字与圆心所成的圆心角为30°,每个小格所对应的圆心角为6°3点30分时,分针指向6的位置,时针指向3与4中间的位置,因此夹角为2.5个大格所对应的度数,因此2.5×30°=75°,故答案为75°.15.解:①如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴AD=DC+CB∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AD=AC﹣DC=7∴DC+CB=7∴BC=4;②如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴BD=DC+BD∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AD=AC+DC=13∴BD=13∴BC=BD+DC=16.综上所述,BC的长为4或16.故答案为4或16.三.解答题16.(1)解:∵O是三角板的直角顶点,∴∠DOC=90°,∠AOB=90°,∵OB是∠DOC的角平分线,∴∠BOC=45°,∵∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°,∴∠AOD=∠DOC+∠AOC=90°+45°=135°,∠AOD的补角为:180°﹣135°=45°;(2)∠COB与∠DOA的比是2:7,设每一份为x度,则∠COB=2x度,∠DOA=7x 度,∠AOC=∠BOD=(90﹣2x)度,根据题意,有2(90﹣2x)+2x=7x,解得x=20,∴∠BOC=70°.17.解:(1)画出的图形如图所示:(2)∵BD=AB,BD=6,∴AB=6,∵ED=18,∴AE=ED﹣AB﹣BD=18﹣6﹣6=6,∵CE=CA∴AC=AE=×6=3.18.解:(1)①如图所示,线段BC即为所求,②如图所示,线段AD即为所求;(2)∵AB=8cm,a=6m,b=10cm,∴CD=8+6+10=24cm,∵点E为CD的中点,∴DE=DC=12cm,∴AE=DE﹣AD=12﹣10=2cm.19.解:(1)原式=﹣10+3﹣5+7=3+7﹣10﹣5=﹣5;(2)原式=4÷4﹣3=1﹣3=﹣2;(3)原式=﹣8×﹣2=﹣1﹣2=﹣3;(4)原式=68°39′+21°33′=90°12′.20.解:(1)∠COE=∠DOE﹣∠AOC=90°﹣65°=25°,故答案为:=25.(2)∵OC恰好平分∠AOE,∴∠COE=∠AOC=65°,∴∠COD=∠DOE﹣∠COE=90°﹣65°=25°,故答案为:25.(3)设∠COD=x,由如图③﹣1所示,由题意得:∠COD=∠AOE,即:x=(65°﹣x+90°)解得:x=31°,即:∠COD=31°.由如图③﹣2所示,由题意得:∠COD=∠AOE,即:x=(360﹣65°﹣x﹣90°)解得:x=41°,即:∠COD=41°.答:∠COD的度数为31°或41°.第4章【几何图形初步】能力提升训练一.选择题1.圣诞帽类似于几何体()A.圆锥B.圆柱C.球D.棱柱2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.如果一个正方体棱长扩大到原来的2倍,则表面积扩大到原来的()A.2倍B.4倍C.8倍D.16倍4.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.5.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°6.下列4个生产、生活现象中,可用“两点之间线段最短”来解释的是()A.用两根钉子就可以把木条固定在墙上B.植树时,只要选出两棵树的位置,就能确定同一行树所在的直线C.把弯曲的公路改直,就能缩短路程D.砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线7.在以下三个图形中,根据尺规作图的痕迹,不能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3 8.已知矩形两边长为2cm与3cm,绕长边旋转一周所得几何体的体积为()A.3πcm3B.4πcm3C.12πcm3D.18πcm39.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=∠AOBA.1个B.2个C.3个D.4个10.如图所示,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC、AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线OA,交BC于点E,若CE=6,BE=10.则AB的长为()A.11B.12C.18D.20二.填空题11.若∠A=25°,则它的补角是°.12.张雷同学从A地出发沿北偏东60°的方向行驶到B地,再由B地沿南偏西35°的方向行驶到C地,则∠ABC=度.13.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是立方厘米.(结果保留π)14.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.15.已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交直线AB于点D,连接CD.若∠ABC=40°,∠ACD=30°,则∠BAC的度数为.三.解答题16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC 的长.18.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD 和∠AOC互余,并求∠COD的度数.19.如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)20.在一个圆柱形水桶里,垂直放入一段半径是3cm的圆柱形钢材.如果把钢材全部侵入水中,桶里的水面上升10cm;如果再把钢材垂直露出水面6cm,桶里的水面下降4cm.(π取3.14)(1)整段钢材的体积是多少?(2)若把整段钢材全部用来锻造底面直径为2cm,高为3cm的圆锥形零件,一共可以锻造多少个这样的圆锥形零件?(假定锻造过程中无任何损耗)参考答案一.选择题1.解:圣诞帽的形状上面尖尖的,下面是圆形的,类似于圆锥体,故选:A.2.解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.解:设原来的正方体的棱长为a,则变化后的正方体的棱长为2a,原来的表面积:a×a×6=6a2,变化后的表面积:2a×2a×6=24a2,而24a2÷6a2=4,故选:B.4.解:“面A“的字母与上面的“横线”方向不对,因此选项A不符合题意;有三个“空白”的面,其中的两个“空白”的面是对面,因此选项D不符合题意,由“面A”的对面和邻面是标有“横线”的面,因此选项C不符合题意;故选:B.5.解:射线OA表示的方向是南偏东65°,6.解:A、用两根钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;B、植树时,只要选出两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;C、把弯曲的公路改直,就能缩短路程,可用“两点之间线段最短”来解释,符合题意;D、砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线,利用的是两点确定一条直线,故此选项不合题意;故选:C.7.解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△ADM≌△ADN,所以∠AMD=∠AND,则可判断△MDE≌△NDF,所以D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:A.8.解:将长方形纸片绕长边所在直线旋转一周,得到的几何体是底面半径为2cm,高为3cm 的圆柱体,所以:体积为:π×22×3=12π(cm3),9.解:①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC=∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选:A.10.解:过点E作DE⊥AB于点D,由作图知AO平分∠BAC,∵∠C=∠ADE=90°,∴CE=DE=6,∵BE=10,∴BD=8,∵AD=AC,CE=DE,∴Rt△ACE≌Rt△ADE(HL),设AC=AD=x,由AC2+BC2=AB2得x2+162=(x+8)2,解得:x=12,即AC=12,∴AB=20,故选:D.二.填空题11.解:∵∠A=25°,∴∠A的补角是180°﹣∠A=180°﹣25°=155°.故答案为:155.12.解:如图所示,∵AD∥BE,∠1=60°,∴∠ABE=∠DAB=60°,又∵∠CBE=35°,∴∠ABC=60°﹣35°=25°.故答案为:25.13.解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:π×32×4=12π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:π×42×3=16π,故答案为:12π或16π.14.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.15.解:由题意得,直线MN是线段BC的垂直平分线,∴BD=CD,∴∠BCD=∠B=40°,∵∠ACD=30°,如图1,∴∠ACB=40°+30°=70°,∴∠BAC=180°﹣70°﹣40°=70°;如图2,∴∠ACB=40°﹣30°=10°,∴∠BAC=180°﹣10°﹣40°=130°,综上所述,∠BAC的度数为70°或130°,故答案为:70°或130°.三.解答题16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.18.解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.19.解:如图,∠ADE即为所求.20.解:(1)整段钢材的高为:10×(6÷4)=15(cm),整段钢材的体积为:3.14×32×15=423.9(cm3),答:整段钢材的体积是423.9立方厘米;(2)每个圆锥形零件的体积为,锻造锥形零件的个数为:423.9÷3.14=135(个).答:一共可以锻造135个这样的圆锥形零件.七年级上册第4章同步练测卷一.选择题1.11点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°2.用一个平面去截一个几何体,截面是圆,则原几何体可能是()A.正方体B.圆柱C.棱台D.五棱柱3.下列图形能折叠成正方体的是()A.B.C.D.4.一个正方体体积为125立方厘米,则这个正方体的表面积为()平方厘米.A.45B.125C.150D.175 5.如图所示,下列说法错误的是()A.嘉琪家在图书馆南偏西60°方向上B.学校在图书馆南偏东30°方向上C.学校在嘉琪家南偏东60°方向上D.图书馆到学校的距离为5km6.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)7.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.18.如图,∠BOD=118°,∠COD是直角,OC平分∠AOB,则∠AOB的度数是()A.48°B.56°C.60°D.32°9.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C 10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AB=AD B.BH⊥ADC.S=BC•AH D.AC平分∠BAD△ABC二.填空题11.如果一个大正方体的体积是小正方体体积的27倍,那么这个大正方体的表面积是小正方体表面积的倍.12.已知∠AOB=80°,在∠AOB内部作射线OC,若射线OM平分∠AOC,射线ON平分∠BOC,则∠MON的度数为.13.已知两个角分别为35°和145°,且这两个有一条公共边,则这两个角的平分线所成的角为.14.已知线段AB,BC在同一条直线上,AB=6,BC=4,点M,N分别是AB,BC的中点,则线段MN的长是.15.亲爱的同学,现在是北京时间下午2:47,按正常做题速度,你应该做到此题了,此时钟表上的时针和分针的夹角度数是.三.解答题16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.如图所示,已知BC是从直线AB上出发的一条射线,BE平分∠ABC,∠EBF=90°.求证:BF平分∠CBD.18.已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.19.如图,OA的方向是北偏东15°,OB的方向是西偏北50°,若∠AOC=∠AOB,求OC的方向.20.如图,在△ABC中,尺规作图:作△ABC的角平分线AE.(不写作法,保留作图痕迹)参考答案一.选择题1.解:11点40分时针与分针相距3+=(份),30°×=110°,故选:D.2.解:∵用一个平面去截一个几何体,截面形状有圆,∴这个几何体可能是圆柱.故选:B.3.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.4.解:设正方体的棱长是xcm,则x3=125,即x=5,正方体的表面积是6×52=150(cm2).故选:C.5.解:A、嘉琪家在图书馆南偏西60°方向上,说法正确;B、学校在图书馆南偏东30°方向上,说法正确;C、学校在嘉琪家南偏东60°方向上,说法正确;D、图书馆到学校的距离为:=3(km),说法错误.故选:D.6.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.7.解:∵AB=10cm,BC=4cm.∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=AC=7cm;∵M是AB的中点,∴AM=AB=5cm,∴DM=AD﹣AM=2cm.故选:C.8.解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.故选:B.9.解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.10.解:由作图可知,直线BC垂直平分线段AD,故BH⊥AD,故选:B.二.填空题11.解:设小正方体的棱长为a,∵大正方体的体积是小正方体体积的27倍,∴大正方体的棱长是小正方体棱长的3倍,为3a,∴小正方体的表面积是6a2,大正方体的表面积是(3a)2×6=54a2,∵54a2÷6a2=9然后进行比较即可.∴这个大正方体的表面积是小正方体表面积的9倍,故答案为:9.12.解:如图,∵射线OM平分∠AOC,射线ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC+∠BOC=∠AOB=80°,∴∠MOC+∠NOC=(∠AOC+∠BOC)=∠AOB=40°,∵∠MON=∠MOC+∠NOC,∴∠MON=40°.故答案为40°.13.解:因为35°+145°=180°,且这两个有一条公共边,所以互补的两个角有一条公共边,当两个角有一个公共边,另一边在“公共边”的两侧时,则这两个角的平分线所成的角为=90°;当两个角有一个公共边,另一边在“公共边”的同侧时,则这两个角的平分线所成的角为=55°.故答案为:90°或55°.14.解:由AB=6,BC=4,M、N分别为AB、BC中点,得MB=AB=3,NB=BC=2.①C在线段AB的延长线上,MN=MB+NB=3+2=5;②C在线段AB上,MN=MB﹣NB=3﹣2=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长5或1.故答案为5或1.15.解:下午2:47钟表上的时针和分针的夹角度数是360°﹣[47×6°﹣(60°+47×0.5°)]=161.5°,故答案为161.5°.三.解答题16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.证明:∵BE平分∠ABC,∴∠CBE=∠ABE,∵∠EBF=90°,∴∠CBF=90°﹣∠CBE,∴∠DBF=180°﹣90°﹣∠ABE=90°∠CBE=∠CBF.即BF平分∠CBD.18.解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.19.解:∵OA的方向是北偏东15°,OB的方向是西偏北50°,∴∠AOB=90°﹣50°+15°=55°,∵∠AOC=∠AOB,∴∠AOC=55°,15°+55°=70°,∴OC的方向是北偏东70°.20.解:如图,AE为所作.。
人教版七年级数学几何图形初步单元试卷含答案
第四章幾何圖形初步單元測試卷第五章(時間:45分鐘,滿分:100分)一、選擇題(每小題4分,共32分)1.下列立體圖形中,側面展開圖是扇形的是()2.下列圖形中,∠1和∠2互為餘角的是()3.如圖,點A位於點O的方向上.()A.南偏東35°B.北偏西65°C.南偏東65°D.南偏西65°4.如圖,一個斜插吸管的盒裝飲料從正面看到的圖形是()5.下列現象中,可用基本事實“兩點之間,線段最短”來解釋的現象是()A.用兩個釘子就可以把木條固定在牆上B.把彎曲的公路改直,就能縮短路程C.利用圓規可以比較兩條線段的大小關係D.植樹時,只要定出兩棵樹的位置,就能確定同一行樹所在的直線6.一塊手錶如圖,早上8時的時針、分針的位置如圖所示,那麼分針與時針所成的角的度數是()A.60°B.80°C.120°D.150°7.將一長方形紙片,按下圖的方式折疊,BC,BD為折痕,則∠CBD的度數為()A.60°B.75°C.90°D.95°8.一個正方體的每個面都寫有一個漢字,其平面展開圖如圖所示,則在該正方體中,和“崇”相對的面上寫的漢字是()A.低B.碳C.生D.活二、填空題(每小題4分,共16分)9.已知∠A與∠B互補,若∠A=70°,則∠B的度數為.10.已知一個角的補角等於它的餘角的6倍,則這個角的大小為.11.(1)13°30'=°;(2)0.5°='=″.12.平面上有四個點,過每兩個點畫一條直線,一共可以畫條直線.三、解答題(共52分)13.(每小題5分,共10分)計算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.14.(10分)在一張城市地圖上,如圖,有學校、醫院、圖書館三地,圖書館被墨水污染,具體位置看不清,但知道圖書館在學校的東北方向,在醫院的南偏東60°方向,你能確定圖書館的位置嗎?15.(10分)已知C為線段AB的中點,D在線段BC上,且AD=7,BD=5.求線段CD的長度.16.(10分)如圖,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度數.17.(12分)如圖,把一副三角尺的直角頂點O重疊在一起.(1)如圖①,當OB平分∠COD時,則∠AOD和∠BOC的和是多少度?(2)如圖②,當OB不平分∠COD時,則∠AOD和∠BOC的和是多少度?參考答案一、選擇題1.B2.D3.B4.A5.B6.C7.C本題考查角平分線和平角的概念.由圖的折疊可知BC,BD分別是∠ABA',∠E'BE的角平分線,而∠ABE是一個平角,所以∠CBD=90°.8.A二、填空題9.110°10.72°設這個角的大小為x°,列方程得180°-x°=6(90°-x°),解得x°=72°.11.(1)13.5(2)30 1 80012.1或4或6本題沒指明這四個點的位置關係,所以應予以討論,不要遺漏.(1)當A,B,C,D四點在同一條直線上時,可畫1條直線,如圖①;(2)當三點(如A,B,C)在同一直線上,而另一個點D 在該直線外時,可畫出4條直線,如圖②;(3)當上述四點沒有任何三點在同一直線上時,可畫出6條直線,如圖③.三、解答題13.解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=39°159'-32°5'31″=41°38'60″-32°5'31″=9°33'29″.14.解:如圖,點P就是圖書館所在的位置.15.解:因為AD=7,BD=5,所以AB=AD+BD=12.又因為C為線段AB的中點,所以AC=AB=6.所以CD=AD-AC=7-6=1.16.解:因為∠AOD=∠AOC-∠DOC=60°-∠DOC,∠BOC=∠BOD-∠DOC=90°-∠DOC,所以∠AOB=∠AOD+∠COD+∠BOC=60°-∠DOC+∠COD+90°-∠DOC=150°-∠DOC.所以150°-∠DOC=3∠DOC.所以∠DOC=37.5°.所以∠AOB=3×37.5°=112.5°.17.解:(1)∵∠AOB=∠COD=90°,當OB平分∠COD時,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.。
人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)
人教版七年级数学上册《第四章几何图形初步》单元测试卷一、选择题(共8小题,4*8=32)1.下列能用∠C表示∠1的是()2.A,B两点间的距离是()A.连结两点间的直线B.连结两点的线段C.连结两点间的直线的长度D.连结两点的线段的长度3.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.44.已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cmC.10cm或5cm D.7.5cm5.α与∠β的度数分别是(2m-67)°和(68-m)°,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cmC.7cm或3cm D.7cm7.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,则∠BOC=()A.10°B.40°C.40°或70°D.10°或70°8.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=50°,∠COD =100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°二、填空题(共6小题,4*6=24)9.如图,AB+BC>AC,其理由是____.10.如图,在横线上填上适当的角:∠AOB=-∠COB=∠AOD-.11.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_____倍.12.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.13.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=________.14.归纳与猜想:(1)观察下图填空:图1中有个角;图2有个角;图3中有个角;(2)根据(1)猜想:在一个角内引n-2条射线可组成个角.三、解答题(共5小题,44分)15.(6分)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.16.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?AB,点E是17.(8分)如图,已知A,B,C三点在同一直线上,AB=24cm,BC=38 AC的中点,点D是AB的中点,求DE的长.18.(10分)如图,已知∠AOB=12∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.19.(12分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD 的中点E,F之间的距离是10cm,求AB,CD的长.参考答案1-4CDBC5-8CBDC9.两点之间线段最短10.∠AOC ,∠DOB11.312.155°13.2cm 或8cm14.3,6,10;n (n -1)215.解:如图所示。
新人教版初中数学七年级数学上册第四单元《几何图形初步》检测(含答案解析)
一、选择题1.如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 2.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D . 3.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒- 4.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 5.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个6.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个7.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 8.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 9.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n 10.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-111.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个 D .1个12.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.二、填空题13.硬币在桌面上快速地转动时,看上去象球,这说明了_________________.14.如图,记以点A为端点的射线条数为x,以点D为其中一个端点的线段的条数为y,-的值为________.则x y15.如图所示,填空:∠=∠+_________;(1)AOB AOC∠=∠-_________=_________-_________;(2)COB COD∠+∠-∠=_________.(3)AOB COD AOD16.如图所示,观察下列图形,在横线上写出几何体的名称及截面形状.(1)①的名称是________,截面形状________;(2)②的名称是________,截面形状是________;(3)③的名称是________,截面形状是________;(4)④的名称是________,截面形状是________;17.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____18.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .19.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.20.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.三、解答题21.已知:如图,在∠AOB 的内部从O 点引3条射线OC ,OD ,OE ,图中共有多少个角?若在∠AOB 的内部,从O 点引出4条,5条,6条,…,n 条不同的射线,可以分别得到多少个不同的角?22.如图,已知OE 是∠AOB 的平分线,C 是∠AOE 内的一点,若∠BOC =2∠AOC ,∠AOB =114°,则求∠BOC ,∠EOC 的度数.23.已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求:∠BHF 的度数.24.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.25.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 26.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周.求所形成的立体图形的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.故选:A.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.2.B解析:B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,故选B.【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.3.C解析:C【分析】先利用角的和差关系求出∠AOB的度数,根据角平分线的定义求出∠BOD的度数,再利用角的和差关系求出∠COD的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠BOD=12(90°+α)=45°+12α,∴∠COD=∠BOD-∠COB=45°-12α,故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键.4.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.5.D解析:D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D .【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数. 6.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD ,故甲正确;乙∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD ,故乙正确;丙∠AOB=∠COD ,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B .【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.7.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 8.B解析:B【分析】先进行度、分、秒的乘法除法计算,再算减法.【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=-386415055︒︒''''-''='''363355︒=. 故选:B .【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.9.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.10.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.11.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 12.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A 折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B 、图C 和图D 中对面图案不相同;故选A .【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解 解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.14.【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.【点睛】本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.15.∠BOC 【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC (3)====∠BOC 【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系解析:BOC ∠ BOD ∠ AOB ∠ AOC ∠ ∠BOC【分析】根据图中各角的和与差的关系进行运算,即可完成解答;【详解】(1)AOB AOC ∠=∠+BOC ∠;(2)COB COD ∠=∠-BOD ∠=∠AOB-∠AOC(3)AOB COD AOD ∠+∠-∠=()AOB COD AOB BOD ∠+∠-∠+∠=AOB COD AOB BOD ∠+∠-∠-∠=COD BOD ∠-∠=∠BOC【点睛】此题主要考查角的和差关系,解答的关键在于在图形中寻找角的和差关系.16.(1)①正方体长方形;(2)②圆锥等腰三角形;(3)③圆柱圆;(4)④正方体长方形【解析】【分析】首先观察图形先判断出各个几何体的名称然后根据平面截几何体的方向和角度判断出截面的形状【详解】(1)图解析:(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形.【解析】【分析】首先观察图形,先判断出各个几何体的名称,然后根据平面截几何体的方向和角度,判断出截面的形状.【详解】(1)图中几何体是正方体,截面垂直正方体底面,故截面是长方形;(2)图中几何体是圆锥,截面垂直圆锥底面,故截面是等腰三角形;(3)图中几何体是圆柱,截面平行圆柱底面,故截面是圆;(4)图中几何体是正方体,截面垂直正方体底面,故截面是长方形.故答案为:(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形.【点睛】此题考查判断几何体的名称以及截面形状,需要利用常见几何体的特征和截面的知识进行解答.17.2或8【分析】本题没有给出图形在画图时应考虑到ABC三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC在点A 的不同侧时∴AP=AB=3cmAQ=AC=5cm∴PQ=AQ+解析:2或8【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【详解】解:如图:当点B、C在点A的不同侧时,∴AP=12AB=3cm,AQ=12AC=5cm,∴PQ=AQ+AP=5+3=8cm.当点B、C在点A的同一侧时,∴AP=12AB=3cm , ∴AQ=12AC=5cm , PQ=AQ-AP=5-3=2cm .故答案为8cm 或2cm .【点睛】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.18.14【分析】线段AB 被点CD 分成2:4:7三部分于是设AC=2xCD=4xBD=7x 由于MN 分别是ACDB 的中点于是得到CM=AC=xDN=BD=x 根据MN=17cm 列方程即可得到结论【详解】解:线解析:14【分析】线段AB 被点C ,D 分成2:4:7三部分,于是设AC=2x ,CD=4x ,BD=7x ,由于M ,N 分别是AC ,DB 的中点,于是得到CM=12AC=x ,DN=12BD=72x ,根据MN=17cm 列方程,即可得到结论.【详解】 解:线段AB 被点C ,D 分成2:4:7三部分, ∴设2AC x =,4CD x =,7BD x =, M ,N 分别是AC ,DB 的中点,12CM AC x ∴==,1722DN BD x ==, 17MN cm =,74172x x x ∴++=, 2x ∴=,14BD ∴=.故答案为:14.【点睛】本题考查了两点间的距离,利用了线段的和差,利用中点性质转化线段之间的倍分关系是解题的关键.19.【分析】先求出∠CAB 及∠ABC 的度数再根据三角形内角和是180°即可进行解答【详解】∵C 岛在A 岛的北偏东60°方向在B 岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB 及∠ABC 的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB和∠ABC的度数是解题关键.20.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD 与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.三、解答题21.角的个数分别为10,15,21,28,…,(2)(1)2n n++.【分析】1、在锐角∠AOB的内部以O为顶点作3条射线,由此你能得到以O为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB的内部从O点引3条射线共有1452⨯⨯个角;4、结合作3条射线得到的角的个数,可以推出以O为顶点共有n条射线时,得到的角的个数为(1)(2)2n n++,继而将n=5、6、7代入即可.【详解】解:顺时针数,与射线OA构成的角有4个,与射线OC构成的角有3个,与射线OD构成的角有2个,与射线OE构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n条射线有角(n+1)+n+(n-1)+…+2+1=(1)(2)2n n++(个) .【点睛】本题中,根据以点O为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n条射线这时无法逐一列举,可用规律归纳法.22.∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.23.∠BHF=115° .【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∠EFD=65°;∴∠HFD=12∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.24.第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.25.如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A爬到G的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.26.6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).。
人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)
人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)一、单选题1.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.2.如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.4.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.5.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C. D.6.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短D.两点确定一条直线7.下列图形是正方体展开图的个数为()A .1个B .2个C .3个D .4个8.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A .1个B .2个C .3个D .4个9.如果一个角的度数比它的补角的度数2倍多30°,那么这个角的度数是( ) A .50°B .70°C .130°D .160°10.圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( ) A .2:3B .4:5C .2:1D .2:911.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是( ) A .笔尖在纸上移动划过的痕迹 B .长方形绕一边旋转一周形成的几何体 C .流星划过夜空留下的尾巴 D .汽车雨刷的转动扫过的区域12.己知点M 是线段AB 上一点,若14AM AB =,点N 是直线AB 上的一动点,且AN BN MN -=,则MNAB 的( ) A .34B .12C .1或12D .34或2二、填空题13.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色14.将两个三角尺的直角顶点重合为如图所示的位置,若108∠=︒,则AOD∠=_________.COB15.如图是用一副七巧板拼成的正方形,边长是10cm.图中小正方形(涂色部分)的面积是( )2cm.16.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.17.圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.18.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.三、解答题19.如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长。
人教版七年级数学上册《第4章 几何图形初步》单元测试题(有答案)
人教版七年级数学上册《第4章几何图形初步》单元测试题一.选择题(共10小题,每小题3分,共30分)1.按柱、锥、球分类,下列几何体中与其余三个不属于同一类几何体的是()A.B.C.D.2.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.103.经过A、B两点可以确定几条直线()A.1条B.2条C.3条D.无数条4.下列4个生产、生活现象中,可用“两点之间线段最短”来解释的是()A.用两根钉子就可以把木条固定在墙上B.植树时,只要选出两棵树的位置,就能确定同一行树所在的直线C.把弯曲的公路改直,就能缩短路程D.砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线5.将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.6.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.7.将左面的平面图形绕轴旋转一周,得到的立体图形是()A.B.C.D.8.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°9.下列说法错误的是()A.把一条线段分成相等两段的点是这条线段的中点B.如果点M到线段AB的两个端点的距离相等,即MA=MB,那么点M一定是线段AB 的中点C.如果线段AB=5cm,线段AC=BC=2.5cm,那么点C一定是线段AB的中点D.如果点C在线段AB上,且AB=2AC,那么点C一定是线段AB的中点10.如果乙船在甲船的南偏东30°方向,那么甲船在乙船的()方向.A.北偏东30°B.北偏西30°C.北偏东60°D.北偏西60°二.填空题(共8小题,每小题3分,共24分)11.一个角的余角是54°38′,则这个角是.12.如图,是一个长方体形状包装盒的表面展开图,折叠制作完成后得到长方体的容积是(包装材料厚度不计,写出正确的代数式即可).13.如果∠AOB=55°,过O点有一条射线OC,使∠AOC=15°,那么∠BOC的度数是.14.如图,∠AOB=90°,若射线OA的方向为北偏东55°,则射线OB的方向为.15.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.16.已知:点A、B、C、D在同一直线上,AB=4cm,C为线段AB的中点,CD=3cm,则A、D两点的距离为.17.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是.18.已知线段AB=16,AM=BM,点P、Q分别是AM、AB的中点,当点M在直线AB 上时,则PQ的长为.三.解答题(共8小题,共66分)19.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.20.如图,已知∠AOC和∠BOD都是直角,∠COD=40°.(1)求∠BOC和∠AOB的度数;(2)画射线OM,若∠DOM=4∠BOM,求∠AOM的度数.21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,AB=10cm,线段BD=4cm,线段AC=7cm,E是线段BC的中点,FD=2AF,求EF的长.23.如图,在A、B两地间修一条笔直的公路,从A地测得公路的走向为北偏东60°,如果A、B两地同时开工,那么∠α为多少度时,才能使公路准确接通?24.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.25.如图,已知线段AB=4,延长AB到点C,使得AB=2BC,反向延长AB到点D,使AC =2AD.(1)求线段CD的长;(2)若Q为AB的中点,P为线段CD上一点,且BP=BC,求线段PQ的长.26.生活中的易拉罐、电池、圆形的笔筒等都是一种叫做圆柱体的立体图形(如图1所示),当把它的上底面、下底面和侧面展开后发现上底面和下底面是两个大小相同的圆,侧面是一个长方形(如图2所示(1)一个圆柱体的铝制易拉罐上、下两个底面的半径都是4cm,侧面高为15cm,制作这样一个易拉罐需要面积多大的铝材?(不计接缝).(2)如果一个圆柱体的铝制装饰品的高是5cm,而且侧面的面积等于上、下两个底面面积之和,那么底面的半径是cm.(3)一张正方形的铝材边长是40cm,可单独用于制作(2)题中铝制装饰品的侧面或单独用于制作底面,若要使制成的侧面和底面正好能成为一套完整的装饰品,那么制作侧面的铝材张数与制作底面的铝材张数之比为.参考答案与试题解析一.选择题(共10小题)1.解:正方体,圆柱和四棱柱都是柱体,只有C选项是锥体.故选:C.2.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.3.解:经过A、B两点可以确定1条直线.故选:A.4.解:A、用两根钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;B、植树时,只要选出两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;C、把弯曲的公路改直,就能缩短路程,可用“两点之间线段最短”来解释,符合题意;D、砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线,利用的是两点确定一条直线,故此选项不合题意;故选:C.5.解:选项D中,∠α、∠β都与中间的锐角互余,根据同角的余角相等可得∠α=∠β,故选:D.6.解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.7.解:梯形绕上底边旋转是圆柱减圆锥,故C正确;故选:C.8.解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=∠AOC=×75°=30°,故选:B.9.解:A、把一条线段分成相等两段的点是这条线段的中点,原说法正确,故此选项不符合题意;B、如果点M到线段AB的两个端点的距离相等,即MA=MB,那么点M不一定是线段AB的中点,因为点M不一定在线段AB上,所以原说法错误,故此选项符合题意;C、如果线段AB=5cm,线段AC=BC=2.5cm,那么点C一定是线段AB的中点,原说法正确,故此选项不符合题意;D、如果点C在线段AB上,且AB=2AC,那么点C一定是线段AB的中点,原说法正确,故此选项不符合题意.故选:B.10.解:如图:∵从甲船看乙船,乙船在甲船的南偏东30°方向,∴从乙船看甲船,甲船在乙船的北偏西30°方向.故选:B.二.填空题(共8小题)11.解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′.故答案为:35°22′12.解:根据图形可知:长方体的容积是:40×70×80;故答案为40×70×80.13.解:当OC在∠AOB的内部时,如图1,∠BOC=∠AOB﹣∠AOC=55°﹣15°=40°;当OC在∠AOB的外部时,如图2,∠BOC=∠AOB+∠AOC=55°+15°=70°;故答案为:40°或70°.14.解:如图,所示:∵OA是北偏东55°方向的一条射线,∠AOB=90°,∴∠1=90°﹣55°=35°,∴OB的方向角是南偏东35°.故答案是:南偏东35°.15.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.16.解:如图所示:①点D在线段AB的延长线上时,如图1,∵C为线段AB的中点,AB=4cm∴AC=BC=AB,又∵AB=4cm,∴BC==2cm,又∵BD=CD﹣BC,∴BD=3﹣2=1cm,又∵AD=AB+BD,∴AD=4+1=5cm;②点D在线段AB的r反向延长线上时,如图2,同理可得:∴AC==2cm,又∵CD=AC+AD,∴AD=3﹣2=1cm,综合所述:A、D两点的距离为1cm或5cm,故答案为1cm或5cm.17.解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故答案为:圆柱.18.解:①点M在线段AB上时,如图1所示:∵AB=AM+MB,AM=BM,AB=16,∴AM=4,BM=12,又∵Q是AB的中点,∴AQ=BQ===8,又∵MQ=BM﹣BQ,∴MQ=12﹣8=4,又∵点P是AM的中点,∴AP=PM===2,又∵PQ=PM+MQ,∴PQ=2+4=6;②点M在线段AB的反向延长线上时,如图2所示:同理可得:AQ===8,又∵AM=BM,∴AM===8,又∵点P是AM的中点,∴AP==8=4,又∵PQ=PA+AQ,∴PQ=4+8=12,综合所述PQ的长为6或12.三.解答题(共8小题)19.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.20.(1)∵∠COD=40°,∴∠BOC=90°﹣∠COD=90°﹣40°=50°,∴∠AOB=∠AOC+∠BOC=50°+90°=140°.(2)当射线OM在∠BOD内部时,如图1,∵∠DOM=4∠BOM,∠DOB=90°,∴4∠BOM+∠BOM=90°,∴∠BOM=18°,∴∠AOM=∠AOB﹣∠BOM=140°﹣18°=122°,当射线OM在∠BOD外部时,如图2,∵∠DOM=4∠BOM,∴∠DOB=3∠BOM.∵∠DOB=90°,∴∠BOM=30°,∴∠AOM=∠AOB+∠BOM=140°+30°=170°.21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:∵AB=10cm,线段BD=4cm,线段AC=7cm,∴CD=AC+BD﹣AB=4+7﹣10=1(cm),∴AD=AC﹣CD=6(cm),∵FD=2AF,∴DF=AD=×6=4(cm),∵E是线段BC的中点,BC=BD﹣CD=4﹣1=3(cm),∴CE=BC=(cm),∴EF=DF+CD+CE=(cm).23.解:过A、B分别作AC∥BD,则∠CAB+α=180°,则α=180°﹣60°=120°,即∠α为120度时,才能使公路准确接通.24.解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∴∠EBD=∠CBD,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.25.解:(1)∵AB=4,AB=2BC,∴BC=2,∴AC=AB+BC=6,∵AC=2AD,∴AD=3,∴CD=AC+AD=6+3=9;(2)∵Q为AB中点,∴BQ=AB=2,∵BP=BC,∴BP=1,当点P在B、C之间时,PQ=BP+BQ=2+1=3;当点P在A、B之间时,PQ=BQ﹣BP=2﹣1=1.即PQ的长为1或3.26.解:侧面积+底面积×2得,2π×4×15+π×42×2=152π(cm2),答:制作这样一个易拉罐需要面积为152π平方厘米的铝材;(2)设半径为rcm,由题意得,2πr×5=2πr2,解得,r=5,故答案为:5.(3)用边长是40cm正方形上,单独作半径为5cm的底面圆时,一张可以做16个圆形,8套,用边长是40cm正方形上,单独作底面半径为5cm,高为5cm圆柱的侧面时,一张可以做9个侧面(8个横的,1个竖的),因此做侧面与底面张数的比为8:9.故答案为:8:9.。
2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)
2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列四个几何体中,是棱柱的是()A.B.C.D.2.已知∠α=35°40′,则∠α的补角的度数为()A.55°60′B.55°20′C.144°60′D.144°20′3.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.①②④D.①③④4.将一副常规的三角尺如图放置,则图中∠ACB的度数是()A.75°B.95°C.15°D.120°5.如图,若∠1=32°,则∠2的度数是()A.32°B.58°C.48°D.68°6.如图,若∠AOB=∠COD=∠EOF=90°,且∠DOF=45°,∠AOE=30°,求∠BOC 的度数为()A.15°B.20°C.25°D.30°7.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3﹣∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3﹣∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A.①B.①②C.①②③D.①②③④8.如图,∠AOB与∠COB的度数分别记为m,n(m>n),OM,ON分别是∠COB,∠AOC 的平分线,则∠MON的度数为()A.B.C.D.二.填空题(共8小题,满分32分)9.如图,已知线段AB长度为x,CD长度为y,则图中所有线段的长度和为.10.点A,B,C是同一直线上的三个点,若AB=7cm,BC=5cm,则AC=cm.11.(1)钟表上的时间是3时30分,此时时针与分针所成的夹角是度.(2)计算:24°24′=°.(3)一个角是40°,则它的补角是度.12.如图是一个底面各边都相等的六棱柱,它的底面边长为2cm,高为5cm.这个棱柱共有条棱,个面,侧面积是cm2.13.在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成一个几何体,如图所示:这个几何体露出的表面积是cm2.14.如图,将一个三角板60°角的顶点与另一个三角的直角顶点重合,∠1=28°,∠2=°.15.如图,已知点O是直线AB上的一点,∠COE=120°,∠AOF=∠AOE.(1)当∠BOE=15°时,∠COA的度数为;(2)当∠FOE比∠BOE的余角大40°,∠COF的度数为.16.某天卢老师在数学课上,利用多媒体展示如下内容:如图,C为直线AB上一点,∠DCE 为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各学习小组经过讨论后得到以下结论:①∠ACF与∠BCH互余;②∠HCG=45°;③∠ECF与∠GCH互补;④∠ACF﹣∠BCG=45°.聪明的你认为哪些结论是正确的,请写出正确结论的序号.三.解答题(共7小题,满分56分)17.如图所示的是一个正方体的平面展开图,若将该展开图折叠成正方体后,相对面上的两个数字互为相反数,求2x+y﹣z的值.18.如图是一个食品包装盒的表面展开图.(1)该包装盒的几何体名称是;(2)根据图中所标尺寸,用a,b表示这个几何体的表面积S,并计算当a=1,b=4时,S的值.19.如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.20.如图,点C在线段AB上,点M,N分别为AC,BC的中点.(1)若AC=6cm,MB=10cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC=2acm,MB=bcm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC=xcm,BC=ycm,M,N分别是线段AC,BC的中点,请画出图形,并用含x,y的式子表示MN的长度.21.如图1,∠AOC和∠BOD都是直角.(1)如果∠DOC=35°,则∠AOB=;(2)找出图1中一组相等的锐角为:;(3)若∠DOC变小,∠AOB将;(填变大、变小、或不变)(4)在图2中,利用能够画直角的工具在图2上再画一个与∠BOC相等的角.22.直观想象,逻辑推理已知点O为直线AB上一点.(1)如图1,过点O作射线OC,使∠AOC:∠BOC=3:2,求∠AOC与∠BOC的度数;(2)如图2,射线OC为∠AOB内部任意一条射线,射线OD、OE分别是∠AOC、∠BOC 的角平分线,求∠DOE的度数,并写出简要的推理过程;(3)写出图2中所有互余的角和互补的角.23.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.参考答案一.选择题(共8小题,满分32分)1.解:选项A中的几何体是圆柱,因此选项A不符合题意;选项B中的几何体是三棱柱,因此选项B符合题意;选项C中的几何体是三棱锥,因此选项C不符合题意;选项D中的几何体是四棱台,因此选项D不符合题意;故选:B.2.解:∵∠α=35°40′,∴∠α的补角的度数为180°﹣35°40′=144°20′.故选:D.3.解:①④可以用“两点确定一条直线”来解释;②可以用“两点之间线段最短”来解释;③根据“作一条线段等于已知线段”的方法进行解释;故选:A.4.解:由题意得:∠ACD=45°,∠BCD=30°,则∠ACB=∠ACD﹣∠BCD=15°.故选:C.5.解:由图可得∠1+∠2+90°=180°,∵∠1=32°,∴∠2=58°.故选:B.6.解:∵∠COD=90°,∠DOF=45°,∴∠COF=45°,∵∠EOF=90°,∴∠EOC=45°,∵∠AOB=90°,∴∠AOE+∠BOC=45°,∵∠AOE=30°,∴∠BOC=15°,故选:A.7.解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)﹣(1)得,∠3﹣∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°﹣2∠1,∴②正确;(2)﹣(1)×2得,∠3﹣∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°﹣∠1=2(∠1+∠2)﹣∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C.8.解:∵∠AOC=∠AOB+∠BOC=m+n,∵射线ON平分∠AOC,∴∠CON=∠AOC=(m+n),∵OM平分∠BOC,∴∠COM=∠BOC=n,∴∠MON=∠CON﹣∠COM=(m+n)﹣n=m;故选:A.二.填空题(共8小题,满分32分)9.解:∵线段AB长度为x,∴AB=AC+CD+DB=x,又∵CD长度为y,∴AD+CB=x+y,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=x+x+x+y=3x+y,故答案为:3x+y.10.解:①当点C在线段AB的延长线上时,AC=AB+BC=7+5=12cm.②当点C在线段AB上时.AC=AB﹣BC=7﹣5=2cm.故答案为:12或2.11.解:(1)3点30分时,时针与分针的较小夹角是2.5个大格,一个大格的度数是30°,所以30°×2.5=75°;故答案为:75;(2)24°24′=24.4°.故答案为:24.4;(3)由补角的性质,得40°角的补角是180°﹣40°=140°,故答案为:140.12.解:六棱柱有18条棱,8个面,侧面积是2×6×5=60cm2.故答案为:18,8,60.13.解:∵几何体露出的小正方体的面一共有32个,∴这个几何体露出的表面积为32×4=128(cm2),故答案为:128.14.解:∵∠BAC=60°,∠1=28°,∴∠EAC=∠BAC﹣∠1=32°,∵∠DAE=90°,∴∠2=∠DAE﹣∠EAC=58°.故答案为:58.15.解:(1)∵∠BOE=15°,∠COE=120°,∴∠COA=180°﹣120°﹣15°=45°.故答案为:45°.(2)由题意得,∠FOE=90°﹣∠BOE+40°=130°﹣∠BOE.∵∠AOF=∠AOE,∴180°﹣∠BOF=.∴180°﹣(∠EOF+∠BOE)=60°﹣.∴180°﹣130°=60°﹣.∴∠BOE=30°.∴∠EOF=90°﹣30°+40°=100°.∴∠COF=∠COE﹣∠EOF=120°﹣100°=20°.故答案为:20°.16.解:∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD=∠ACD,∠DCH=∠HCB=∠DCB,∠BCG=∠ECG=∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,∴∠ACF﹣∠BCG=45°.故④正确.故答案为:①②④.三.解答题(共7小题,满分56分)17.解:由题意得:2与y,3与z,x与﹣2分别是相对面上的两个数,所以y=﹣2,z=﹣3,x=2,则2x+y﹣z=4﹣2+3=5.18.解:(1)由展开图知,该包装盒的几何体为长方体,故答案为:长方体;(2)由题知,S=2×2a×a+2×2a×b+2×a×b=4a2+6ab,当a=1,b=4时,S=4+6×4=28.19.解:(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)∵点B为CD的中点,BD=2cm.∴CD=2BD=2×2=4(cm),∴AC=AD﹣CD=9﹣4=5(cm),答:AC的长是5cm.(3)AB=AC+BC=7cm,EA=3cm,当点E在线段AD上时,BE=AB﹣AE=7﹣3=4(cm),当点E在线段DA的延长线上时,BE=AB+AE=7+3=10(cm),答:BE的长是4或10cm.20.解:(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)∵点M、N分别是AC、BC的中点,AC=2acm,MB=bcm,∴AM=AC=a cm,AC+CB=(a+b)cm,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=(a+b)cm,即线段MN的长是(a+b)cm;(3)如图:MN=(x﹣y)cm,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=(x﹣y)cm,∴CM=AC,CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=(x﹣y)cm,即线段MN的长是(x﹣y)cm.21.解:(1)∵∠AOC=∠DOB=90°,∠DOC=35°,∴∠COB=∠BOD﹣∠DOC=90°﹣35°=55°,∴∠AOB=∠AOC+∠COB=90°+55°=145°;故答案为:145°;(2)∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC;故答案为:∠AOD=∠BOC;(3)∵∠AOD+∠DOC+∠DOC+∠BOC=∠AOB+∠COD=∠AOC+∠BOD=180°,∴∠AOB=180°﹣∠DOC,∴∠DOC逐渐变小,∠AOB逐渐变大;故答案为:变大;(4)利用三角板画∠AOC=∠BOD=90°,则∠AOD=∠BOC,理由如下:∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC.22.解:(1)设∠AOC=3x,∠BOC=2x,∵∠AOC+∠BOC=180°,∴3x+2x=180°,∴x=36°,∴∠AOC=3×36°=108°,∠BOC=2×36°=72°;(2)∵OD、OE分别是∠AOC、∠BOC的角平分线,∴∠DOC=∠AOD=,∠COE=∠BOE=∠BOC,∵∠AOC+∠BOC=180°,∠DOE=∠DOC+∠COE,∴∠DOE====90°;(3)互余的角有,∠DOC与∠COE,∠AOD与∠COE,∠BOE与∠COD,∠BOE与∠AOD;互补的角有,∠AOD与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE.23.解:(1)∵OD、OE分别平分∠BOC、∠AOC,∴∠DOE==60°;(2)由(1)知,∠DOE===;(3)补充图形如下:∵∠AOB=m°,∴∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,∵OM、ON分别平分∠BOP、∠AOP,∴∠MON=∠MOP+∠NOP==.。
【七年级数学】最新人教版七年级数学上册_第四章_几何图形初步_单元检测试卷(有答案).doc
人教版七年级数学上册《第4章几何图形初步》单元测试一.选择题1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.下列图形不是正方体展开图的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是()A.75°30'B.74°30'C.65°30'D.64°30' 6.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD 内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°8.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 9.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a10.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.22二.填空题11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG 上,折痕分别是DE,DF,则∠EDF的度数为.12.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是.13.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是.14.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.15.如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线.若OC是∠AOD的平分线,则∠BOC=°,射线OC的方向是.16.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=°.18.如图,以图中的A、B、C、D为端点的线段共有条.三.解答题19.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.20.如图,直线AB、CD相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.(1)求∠1,∠2,∠3的度数;(2)判断OF是否平分∠AOD,并说明理由.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD度数.22.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)23.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.24.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.25.(14分)数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE=,若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.新人教版七年级数学上册《第4章几何图形初步》单元测试参考答案与试题解析一.选择题1.B.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.A.10.A.二.填空题11.90°.12.80°.13.我.14.36.15.120,北偏东80°.16.圆锥.17.40.18.6.三.解答题19.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.20.解:(1)∵∠BOC+∠2=180°,∠BOC=70°,∴∠2=180°﹣70°=110°;∵OE是∠BOC的角平分线,∴∠1=35°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣35°﹣110°=35°.(2)∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣110°﹣35°=35°.∴∠AOF=∠3=35°,∴OF平分∠AOD.21.解:∵OD平分∠AOB,∴∠AOD=∠AOB=×114°=57°,∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=×114°=38°,∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.22.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:23.解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.24.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.25.解:(1)∠ACB+∠DCE=180°;若∠DCE为任意锐角时,∠ACB+∠DCE=180°,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;(2)∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有()个.A. 9B. 8C. 5D. 42.如图所示几何图形中,是棱柱的是()A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是()A. 正方体B. 长方体C. 三棱柱D. 四棱锥4.如图,∠AOC>∠BOD,则()A. ∠AOB>∠CODB. ∠AOB=∠CODC. ∠AOB<∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为()A. 30°B. 40°C. 50°D. 60°6.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是()度.A.45B.60C.90D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC的度数为()A. 50°B. 50°或120°C. 50°或130°D. 130°9.直棱柱的侧面都是()A. 正方形B. 长方形C. 五边形D. 菱形10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有( )A. 1次B. 2次C. 3次D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC 的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是________cm2.18.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。
人教版七年级数学第四章《几何图形初步》单元测试带答案解析
【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.
4.C
【分析】根据正方体表面展开图的特征进行判断即可.
【详解】解:由正方体表面展开图.
【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.
分两种情况:
当点P在点B的右侧,
∵M,N分别为AP,BP的中点,
∴ , ,
∴ ,
当点P在点B的左侧,
∵M,N分别为AP,BP的中点,
, ,
∴ ,
∴在点P的运动过程中,线段MN的长度不变,故④正确.
所以,上列结论中正确的是②④.
故选:D.
【点睛】本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.
A.长方体B.圆柱C.圆锥D.正方体
3.下列图形是正方体展开图的个数为()
A.1个B.2个C.3个D.4个
4.如图是正方体的表面展开图,则与“话”字相对的字是( )
A.跟B.党C.走D.听
5.如图,把一个高6分米的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米.原来这个圆柱的体积是( )立方分米.
20.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.
(1)请你帮小华分析一下拼图是否存在问题,若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,求出修正后所折叠而成的长方体的体积.
故选:D.
【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
七年级数学上册《第四章 几何图形初步》单元检测题带答案(人教版)
七年级数学上册《第四章几何图形初步》单元检测题带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.两边成一直线的角是平角B.一条射线是一个周角C.两条射线组成的图形叫做角D.平角是一条直线2.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个3.用量角器测量∠AOB的度数,操作正确的是()A.B.C.D.4.如果在点O北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是()A.100°B.70°C.180°D.140°5.已知点M在线段AB上,点N是线段MB的中点,若AN=6,则AM+AB的值为()A.10 B.8C.12 D.以上答案都不对6.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10 B.5 C.﹣10 D.﹣57.如图,已知∠MOQ是直角,∠QON是锐角,OR平分∠QON,OP平分∠MON,则∠POR的度数为()A.45°+ 1∠QON B.60°2∠QONC.45°D.128.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33分米2B.24分米2C.21分米2D.42分米2二、填空题:(本题共5小题,每小题3分,共15分.)9.已知∠α=53°27′,则它的余角等于10.现有一个长为4cm,宽为3cm的长方形,绕它的一边旋转一周,得到的几何体的体积是.11.如图,点O在直线AB上,射线OC平分∠DOB,若∠COB=35°,则∠AOD= °.12.如下图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为.13.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是(填编号).三、解答题:(本题共5题,共45分)14.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段AK的长.15.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A和点B分别表示两个水质监测站,监测人员上午6时在A处完成采样后,测得实验室P在A点北偏东60°方向.随后监测人员乘坐监测船继续向东行驶,上午9时到达B处,同时测得实验室P在B点北偏西30°方向,其中监测船的行驶速度为20km/ℎ.(1)在图中画出实验室P的位置;(2)已知A、B两个水质监测站的图上距离为3cm.①请你利用刻度尺,度量监测船在B处时到实验室P的图上距离;②估计监测船在B处时到实验室P的实际距离,并说明理由.16.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)与∠AOE互补的角是.(2)若∠AOC=72°,求∠DOE的度数;(3)当∠AOC=x时,请直接写出∠DOE的度数.17.如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?18.已知点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.(1)若DE=10cm,则AB=cm.(2)当点C是线段AB的中点时,且AD=6cm,求DE的长. (3)若AB=acm,求DE的长(用含a的式子表求) .1.A 2.C 3.C 4.A 5.C 6.C 7.C 8.A9.36°33′10.36πcm3或48πcm311.11012.1013.314.解:设AC=3x,则CD=4x,DB=5x∵AB=AC+CD+DB=60∴AB=3x+4x+5x=60.∴x=5.∵点K是线段CD的中点.CD=10.∴KC=12∴AK=KC+AC=25.15.(1)解:如图,点P即为所求;(2)解:①度量监测船在B处时到实验室P的图上距离为1.5cm;②由题意∠PAB=90°−60°=30°,∠PBA=90°−30°=60°∴∠APB=180°−30°−60°=90°∵AB=3×20=60(km)×60=30(km).∴B处时到实验室P的实际距离为:1216.(1)∠BOE、∠COE(2)解:∵OD、OE分别平分∠AOC、∠BOC,∠AOC=72°∠BOC∴∠COD=∠AOD=36°,∠COE=∠BOE= 12∴∠BOC=180°﹣72°=108°∠BOC=54°∴∠COE= 12∴∠DOE=∠COD+∠COE=90°(3)解:当∠AOD=x°时,∠DOE=90°17.(1)解:与N重合的点有点H和点J.(2)解:∵长方体的底面为正方形由长方体展开图可知:AB=BC=3cm,而AH=5cm∴长方体的长、宽、高分别为:5cm,3cm,3cm∴长方体的表面积为:(5×3+5×3+3×3)×2=78cm2体积为:5×3×3=45cm3 .(2)解:∵点D是AC中点∴AC=2AD=12又∵D、E分别是AC和BC的中点∴AB=2AC=24∴DE=DC+CE=12AC+12BC=12AB=12故DE的长为12cm.(3)解:∵DE=DC+CE=12AC+12BC=12AB而AB=a∴DE=1 2 a故当AB=acm时,DE的长为12a。
新人教版初中数学七年级数学上册第四单元《几何图形初步》测试(包含答案解析)(1)
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45° 4.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( ) A .30° B .60° C .30°或60° D .30°或150° 5.如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )A .8cmB .6cmC .4cmD .2cm6.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 7.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 8.一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 9.下图是一个三面带有标记的正方体,它的表面展开图是( )A .B .C .D . 10.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 11.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个12.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题13.(1)375324'''°=________°;(2)1.45︒=________′.14.同一条直线上有三点A ,B ,C ,且线段BC=3AB ,点D 是BC 的中点,CD=3,则线段AC 的长为______.15.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 16.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.17.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.18.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.19.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.20.将下列几何体分类,柱体有:______(填序号).三、解答题21.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.22.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm).23.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.24.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.25.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 26.如图,已知点C是线段AB的中点,点D在线段CB上,且,.求CD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.3.A解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD=40°,∠BOC=50°,所以∠COD=90°,又因为OM,ON分别平分∠BOC和∠AOD,所以∠N OD+∠M OC=45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.D解析:D【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC=90°,∠AOB:∠AOC=2:3,可得当B在∠AOC内侧时,可以知道∠AOB23=⨯90°=60°,∠BOC=30°;当B在∠AOC外侧时,∠BOC=150°.故选:D.【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.5.A解析:A【分析】先根据点M是AB中点求出AM=BM=6cm,再根据MC:CB=1:2求出MC即可得到答案.【详解】∵点M是AB中点,∴AM=BM=6cm,∵MC:CB=1:2,∴MC=2cm,∴AC=AM+MC=6cm+2cm=8cm,故选:A.【点睛】此题考查线段的中点性质,线段的和差计算,正确理解图形中线段之间的数量关系是解题的关键.6.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′, ∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.7.C解析:C【分析】分三种情况: C 在线段AB 上,C 在线段BA 的延长线上以及C 不在直线AB 上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C 在线段AB 上时,BC=AB-AC= 8-6=2;当C 在线段BA 的延长线上时,BC=AB+AC =8+6=14;当C 不在直线AB 上时,AB 、AC 、BC 三边构成三角形,则2<BC <14,综上所述①②④正确故选:C .【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键. 8.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.9.D解析:D【解析】【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可.【详解】A三角形和正方形是对面,不符合题意;B不符合题意;C. 三角形和正方形是对面,不符合题意;D符合题意;故选D【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.10.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.11.B解析:B【解析】【分析】利用公式:()21n n - 来计算即可. 【详解】根据公式:()21n n - 来计算,其中,n 指从点O 发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.14.4或8【分析】分点C 在AB 的延长线上与点C 在BA 的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.16.2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时②当C 在线段AB上时根据线段的和差可得答案【详解】①当C在线段BA的延长线上时∵点D是线段AB的中点点A与点B的距离是8cm∴DA=4c解析:2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时,②当C在线段AB上时,根据线段的和差,可得答案.【详解】①当C在线段BA的延长线上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4+2=6cm;②当C在线段BA上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4-2=2cm;综上所述:AC=6 cm或2cm.【点睛】本题考查了两点间的距离,利用线段的中点是解题关键,要分类讨论,以防遗漏.17.BC【分析】把展开图折叠成一个长方体找到与AB重合的线段即可【详解】解:根据题意得:折叠后与棱AB重合的棱是BC故答案为BC【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可解析:BC【分析】把展开图折叠成一个长方体,找到与AB重合的线段即可.【详解】解:根据题意得:折叠后与棱AB重合的棱是BC.故答案为BC.【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.18.两点之间线段最短【解析】【分析】根据两点之间线段最短可知在CD小区之间沿直线铺设可使用料最少即可解答【详解】解:根据两点之间线段最短可知:当P在线段CD上时PC+PD最小即此时所用的铺设水管的材料最解析:两点之间,线段最短【解析】【分析】根据两点之间线段最短可知,在C、D小区之间沿直线铺设可使用料最少,即可解答.【详解】解:根据两点之间线段最短可知:当P在线段CD上时,PC+PD最小,即此时所用的铺设水管的材料最少.故答案为两点之间,线段最短.【点睛】此题考查两点之间线段最短,解题关键在于掌握其定义.19.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.20.(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:(1)(2)(3)故答案为(1)(2)(3)【点睛】此题主要考查了认识立体图形几解析:(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3).故答案为(1)(2)(3).【点睛】此题主要考查了认识立体图形,几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.三、解答题21.(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.22.12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM ,线段的比得出MC 是解题关键.23.(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE ∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE =90°-(80°-∠B OD )=10°+∠B OD即∠COE -∠BOD =10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键.24.40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒,∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用.25.如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论, 作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.26.1【解析】【分析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=AB=4.由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.。
人教版七年级上册数学《几何图形初步》单元综合测试题(带答案)
【点睛】本题考查的是两点间的距离的计算,灵活运用数形结合思想是解题的关键.重点关注,延长BA到C与,延长AB到C画法的区别.
9.如图所示,把一根绳子折成3折,用剪刀从中剪断,得到绳子的条数为()
A. 3B. 4C. 5D. 6
【答案】B
【解析】
把一条绳子从中间剪断,得到两条绳子,折一次,从中间剪断,得到三条绳子,以此类推,折两次,从中间剪断得到四条绳子,故选B.
A. 105°B. 90°C. 100°D. 120°
6.如图所示立体图形,从上面看到的图形是( )
A. B. C. D.
7.如图所示,从A地到达B地,最短的路线是().
A. A→C→E→BB. A→F→E→B
C. A→D→E→BD. A→C→G→E→B
8.已知线段AB=3厘米,延长BA到C使BC=5厘米,则AC的长是( )
一、选择题(每小题3分,共30分)
1.下列结论中正确的是( )
①圆柱由3个面围成,这3个面都是平面;
②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;
③球仅由1个面围成,这个面是平面;
④正方体由6个面围成,这6个面都是平面.
A.①②B.②③C.②④D.①④
【答案】C
【解析】
【分析】
根据题意,对各题进行依次分析、进而得出结论
【详解】解:依题意,设这两个互补的角的度数为x、2x;则有:
x+2x=180°,解得:x=60°;
∴90°-x=30°;故这两个角中较小角的余角的度数是30°.
故答案是:30°
【点睛】此题综合考查余角与补角,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.
人教版七年级数学上册《第4章几何图形初步》单元测试题人教版(有答案)
人教版七年级数学上册《第4章几何图形初步》单元测试题一.选择题(共10小题)1.如图,一个正方体有盖盒子(可密封)里装入六分之一高度的水,改变正方体盒子的放置方式,下列选项中不是盒子里的水能形成的几何体是()A.正方体B.长方体C.三棱柱D.三棱锥2.下列说法中错误的是()A.线段AB和射线AB都是直线的一部分B.直线AB和直线BA是同一条直线C.射线AB和射线BA是同一条射线D.线段AB和线段BA是同一条线段3.已知A、B、C三点,过其中任意两点画直线,一共可以画多少条直线()A.1B.3C.3或1D.无数条4.图中下列从A到B的各条路线中最短的路线是()A.A→C→G→E→B B.A→C→E→B C.A→D→G→E→B D.A→F→E→B 5.将一副直角三角尺按如下不同方式摆放,则图中锐角∠1与∠2互余的是()A.B.C.D.6.下列图形中,不是正方体平面展开图的是()A.B.C.D.7.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面8.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC 为()A.70°B.65°C.55°D.45°9.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm 10.如图,已知轮船甲在A处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为()A.北偏西40°B.北偏东40°C.北偏西35°D.北偏东35°二.填空题(共8小题)11.若∠A=52°16'32'',则∠A的补角为.12.班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米),则此长方体包装盒的体积为立方毫米(用含x、y的式子表示).13.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠COD=,∠BOC=,∠AOB=.14.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为.15.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为.17.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.18.如图,点B是线段AC上一点,点O是线段AC的中点,且AB=20,BC=8.则线段OB的长为.三.解答题(共8小题)19.(1)如图,已知点C在线段AB上,AC=8cm,BC=6cm,M,N分别是AC,BC的中点,求线段MN的长度;(2)在(1)题中,如果AC=acm,BC=bcm,其他条件不变,求此时线段MN的长度.20.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=25°,OD平分∠COE,(1)写出图中所有互补的角.(2)求∠COB的度数.21.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)22.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC 的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,()(填推理的依据).∵AP=,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC()(填推理的依据).即PQ∥l.25.如图,已知点A为线段CB上的一点.(1)根据要求画出图形(不要求写法):延长AB至点D,使BD=AB;反向延长CA 至点E,使CE=CA;(2)如果ED=18,BD=6,求CA的长参考答案与试题解析一.选择题(共10小题)1.解:根据题意可知,盒子里的水能形成的几何体是长方体,三棱柱,三棱锥;不可能是正方体.故选:A.2.解:A、线段AB和射线AB都是直线的一部分,正确,不合题意;B、直线AB和直线BA是同一条直线,正确,不符合题意;C、射线AB和射线BA不是同一条射线,错误,符合题意;D、线段AB和线段BA是同一条线段,正确,不合题意;故选:C.3.解:如图最多可以画3条直线,最少可以画1条直线;.故选:C.4.解:最短的路线是A→F→E→B.故选:D.5.解:∵∠1+∠2+90°=180°,∴1+∠2=90°,即∠1和∠2互余,因此A选项符合题意;选项B中的∠1=∠2,因此选项B不符合题意;选项C中的∠1=∠2=135°,因此选项C不符合题意;可求出选项D中的∠1=45°,∠2=60°,因此选项D不符合题意;故选:A.6.解:根据正方体的展开图的特征可知,共有11种情况,可以分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,没有“1﹣2﹣3型”的,因此选项B不是正方体平面展开图,故选:B.7.解:根据节日的焰火的火的运动路线,可以认为节日的焰火的火就是一个点,可知点动即可成线.故选:B.8.解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故选:C.9.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.10.解:设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB=∠B,根据题意得,∠B=∠CAB=180°﹣65°﹣40°=75°,75°﹣40°=35°,所以轮船乙的航行方向为北偏东35°.故选:D.二.填空题(共8小题)11.解:∵∠A=52°16'32'',∴∠A的补角=180°﹣52°16'32''=127°43′28″,故答案为:127°43′28″.12.解:将展开图折叠,可得长、宽、高为y毫米、x毫米、65毫米的长方体,于是,体积为y•x×65=65xy立方毫米,故答案为:65xy.13.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=3×15°=45°,∠BOC=∠COD﹣∠BOD=45°﹣15°=30°,∵OC是∠AOB的平分线,∴∠AOC=∠BOC=30°=∠AOB,∴∠AOB=60°,故答案为:45°,30°,60°.14.解:∵B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,∴∠ABC的度数为80°﹣44°=36°,故答案为:36°.15.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.16.解:AC的长度有两种情况:①点C在线段AB的延长线时,如图1所示:∵AC=AB+BC,AB=1cm,BC=3cm,∴AC=1+3=4cm;②点C在线段AB的反向延长线时,如图2所示:∵AC=BC﹣AB,AB=1cm,BC=3cm,∴AC=3﹣1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.17.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.18.解:如图所示:∴AC=AB+BC,AB=20,BC=8,∴AC=20+8=28,又∵点O是线段AC的中点,∴AO=CO===14,又∵OB=OC﹣BC,∴OB=14﹣8=6,故答案为6.三.解答题(共7题)19.解:(1)∵AC=8cm,点M是AC的中点,∴CM=AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm;(2)∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∵AC=acm,BC=bcm,∴MN=(AC+BC)=cm.20.解:(1)∵点A,O,E在同一直线上,∴∠AOB+∠BOE=180°,∠AOC+∠COE=180°,∠AOD+∠DOE=180°,∵OD平分∠COE,∴∠COD=∠DOE,∴∠COD+∠AOD=180°.∴图中所有互补的角有:∠AOB与∠BOE,∠AOC与∠COE,∠AOD与∠DOE,∠COD 与∠AOD.(2)因为∠EOD=25°,OD平分∠COE,所以∠COE=2∠EOD=50°,所以∠COB=180°﹣∠AOB﹣∠COE,=180°﹣40°﹣50°=90°.21.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.22.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:(1)如图所示,直线PQ即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵AP=AQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行),即PQ∥l.故答案为:等边对等角;AQ;同位角相等,两直线平行.25.解:(1)画出的图形如图所示:(2)∵BD=AB,BD=6,∴AB=6,∵ED=18,∴AE=ED﹣AB﹣BD=18﹣6﹣6=6,∵CE=CA∴AC=AE=×6=3.。
人教版七年级数学上册《第4章几何图形初步》单元测试含答案解析
《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= °.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′B D=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。
人教版七年级上第四章《几何图形初步》单元测试(含答案解析)
人教版七年级上册《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD 的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∵∠AOD=90°,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形初步单元测试题
一、选择题
1. 下列图形中为圆柱体的是().
(A) B)(C)(D)
2.如图所示,一个三边相等的三角形,三边的中点用虚线连接,如果将三角形沿虚线向上折叠,得到的立体图形是().
(A)三棱柱(B)三棱锥(C)正方体(D)圆锥
3. 下列说法正确的是().
(A)射线可以延长(B)射线的长度可以是5米
(C)射线可以反向延长(D)射线不可以反向延长
4. 把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为().
(A)线段有两个端点(B)过两点可以确定一条直线
(C)两点之间,线段最短(D)线段可以比较大小
5. 正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F、E、V分别表示正多面体的面数、棱数、顶点数,则有F+V-E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于().
(A)6 (B)8 (C)12 (D)20
6. 如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确
的是().
(A)∠COD=1
2∠AOB (B)∠AOD=2
3
∠AOB (C)∠BOD=1
3
∠AOD (D)∠BOC=2
3
∠AOD
7. 如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是().
(A)10个(B)9个(C)8个(D)4个
第2题
8. 下列说法正确的是( ).
(A )一个锐角的余角比这个角大 (B )一个锐角的余角比这个角小
(C )一个锐角的补角比这个角大 (D )一个钝角的补角比这个角大
9. 操场上,小明对小亮说:“你在我的北偏东30°方向上”,那么小亮可以对小明说:“你在我的( )方向上”.
(A )南偏西30° (B )北偏东30° (C )北偏东60° (D )南偏西60°
10. 已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( ).
(A )12(∠1+∠2) (B )12∠1 (C )12(∠1-∠2) (D )12
∠2
二、填空(每题3分,共24分)
11. 长方形绕其一边旋转一周形成的几何体是______,直角三角板绕其一直角边旋转一周形成的几何体是__________.
12. 如图,已知B 是AC 的中点,C 是BD 的中点,若BC=1.5cm ,则AD=________.
13. 钟面上9点30分时,分针与时针所成的角的度数是___________.
14. 如果79°-2x 与21°+6x 互补,那么x ____________.
15. 北偏西35°与南偏东65°的两条射线组成的角为_________度.
16. 若线段AB=a ,C 是线段AB 上的任意一点,M 、N 分别是AC
和CB 的中点,则MN=_______.
17. 如图,∠AOB 是直角,已知∠AOC ︰∠COD ︰∠DOB=2︰1︰2,那么∠COB=__________.
18. 水平放置的正方体的六个面分别用“前面、后面、上面、 下面、左面、右面”表示.如右图,是一个正方体的平面 展开图,若图中的“似”表示正方体的前面, “锦” 表示右面, “程”表示下面.则“祝”、 “你”、 “前”分别表示正方体的______________________.
程 前 你 祝 似 锦
三、解答题(46分)
19.计算:
(1)40°26′+30°30′30″÷6;(2)13°53′×3-32°5′31″.
20.如图8,东西方向的海岸线上有A、B两个观测站,在A地发现它的北偏东30°方向上有一条渔船,同一时刻,在B地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.
21.已知B、C、D是线段AE上的点,如果AB = BC = CE,D是CE的中点,BD = 6,
求AE的长.
22.已知一个角的余角是这个角的补角的1
3
,求这个角.
23.如图9,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分
线,若∠AOD=14°,求∠DOE、∠BOE的度数.
24.已知∠1和∠2互为补角,∠2度数的一半比∠1大45°,试求出∠1与∠2
的度数.
25.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC. (1)指出图中∠AOD的补角,∠BOE的补角;
(2)若∠BOC=68°,求∠COD和∠EOC的度数;
(3)∠COD与∠EOC具有怎样的数量关系?。