哈工大 光机系统设计 双胶合透镜 实验报告
光设报告
光学设计报告04111102一.双胶合望远物镜设计(一).参数计算 1. 求J h h z ,,根据光学特性的要求: '4*3.714.8D D =Γ==4.728.142===D h35tan5 3.062z h =⨯=087.0''==f h u''tan 85tan57.437y f ω=∙=⨯=647.0'''==y u n J2.计算平行玻璃板的像差和数C S S S I II I ,, 平行玻璃板入射光束的有关参数为087.0=utan(5)0.0875z u =-=-1zu u≈- 平行玻璃板本身的参数为d=31mm ; n=1.5163; 1.64=ν 带入平行玻璃板的初级像差公式可得:4324432106.61.51631-1.5163×0.087×-311-I ⨯-==--=du n n S 44= =-6.610(-1)=6.610z u S S u --II I ⎛⎫⨯⨯⨯⨯ ⎪⎝⎭224221 1.51631310.0878.21064.1 1.5163C n S du n υ-I --=-=-⨯⨯=-⨯⨯ 3.列出初级像差方程式求解双胶合物镜的C W P ,,∞∞理想状态下整个物镜系统的像差和数C S S S I II I ,,满足0=I S ; 0=II S ; 0=I C S 。
由于棱镜物镜系统S S S +=所以双胶合物镜的像差和数为4106.6--I I I ⨯==棱镜系统S S S4- 6.610S S S II II -II ==-⨯系统棱镜 4-8.210C C C S S S I I -I ==⨯系统棱镜(1)列出初级像差方程求P ,W ,C4106.64.7-I ⨯===P hP S 5109.8-⨯=P 4-6.610z S h PJ W -II =-=⨯31.4410W -=⨯4221022.84.7-I ⨯===C C h S C51.5010C -=⨯(2)由P ,W ,C 求C W P ,,∞∞由于h=7.4,f ’=85,因此有087.0=ϕh321057.7)(-⨯=ϕh431059.6)(-⨯=ϕh进而可得:135.0)(3==ϕh P P20.19()W W h φ=='0.00128C Cf ==由于望远镜本身对无限远物平面成像,因此无需再对物平面位置进行归化:135.0==∞P P 0.19W W ∞==0.00128C =将∞∞W P ,带入公式求0P200.85(0.15)0.134P P W ∞∞=--≈ 根据00128.0=C ,00.134P =查找玻璃组合。
哈工大 光机系统设计 双胶合透镜 实验报告
哈工大光机系统设计双胶合透镜实验报告哈工大光机系统设计双胶合透镜实验报告哈尔滨工业大学实验报告Harbin Institute of Technology 实验报告课程名称:光机系统设计实验名称:双胶合消色差物镜设计院系:电气及自动化与控制系班级:姓名:学号:哈尔滨工业大学1,实验目的设计一个双胶合消色差透镜,并绘制图形,熟悉应用光学、机械学等相关知识,掌握光机系统设计的流程。
2. 结构特性分析双胶合消色差物镜光学性能要求: 1) f / 6,焦距540mm;2) 视场角1.5°;3) 镜片材料选择BAK1 和BK7;4) 20 线对/mm 处MTF>0.4;5) 工作波长:可见光 3. 初始结构设计当物体处于无穷远时,P∞=W∞=0(孔径角消失),设计消色差系数C=0。
透镜的光焦度分配公式:通过应用光学相关知识,算的双胶合透镜的曲率半径依次为:R1 =345.231 R2 =-240.89 R3 =-1003.25 两个透镜的初始厚度设计各为7mm,透镜组到成像面的距离设计为近轴光线,由ZEMAX 计算出相应厚度调整值。
图1 双胶合透镜出结构设计图2 所示,视场90mm;如图3 所示,视场角设定为1.5°,图4 所示,入射光线为可见光;如所示为初始透镜结构图。
图2 设定视场图3 设置光场图4 设定入射光4. 系统优化设计焦距值为540mm,设定默认优化函数EFFL target 为540,权重为1,选择透镜的三个曲率半径以及相应的厚度作为优化参数,优化结果如图5所示。
图5 优化结果参数5. 像质分析由图6所示,优化后最大的波像差大约为4个波长,尚未达到衍射极限,应为焦平面上的彗差影响所致;同时可见这个透镜相对与可见光的低阶色差比较小,满足设计要求。
图8优化后光线追迹曲线如图6所示,优化后存在彗差,由图中度数可得艾里斑半径为8.595μm,而像差RMS半径为18.570μm,可见此优化结果基本达到设计要求,可以使用。
光机实验报告
H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:光机系统设计实验名称:基于ZMAX的光机系统设计班级:0936203姓名:蔡海蛟学号:6090120331哈尔滨工业大学一.实验目的(1)熟悉并掌握ZMAX软件的使用(2)熟悉光学系统设计的步骤及方法(3)了解牛顿式望远镜和施密特—卡塞格林系统,并对其相差有一定了解(4)学会用ZMAX设计简单的光学系统,并对系统进行像质分析和系统优化二.基本原理(1)实验一、牛顿望远镜牛顿望远镜是最简单的用来矫正轴上像差的望远镜。
牛顿望远镜是由一个简单的抛物线形镜面组成的,而且除此之外别无它物。
抛物线很好地矫正了所有阶的球差,将望远镜使用在轴上系统,就没有其他的像差。
(2)实验二、带有非球面矫正器的施密特—卡塞格林系统施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
施-卡望远镜的设计是以伯恩哈德施密特的施密特摄星仪为基础:使用球面镜做主镜(沿袭施密特摄星仪的设计)以施密特修正板来改正球面像差承袭卡塞格林的设计,以凸面镜做次镜,施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
在施密特-卡塞格林系统,光通过薄的非球面校正透镜进入镜筒,然后接触球面主镜。
被球面主镜反射的光线折回镜筒开口中部的第二反射镜,然后再次被第二反射镜反射,光线通过镜筒内部中间的管子聚集在目镜形成图象。
三.系统结构(1)实验一、牛顿望远镜图一.牛顿望远镜原理图利用ZMAX设计牛顿望远镜:设计一个1000mm F/5的望远镜(及需要一个曲率半径为2000mm的镜面,和一个200mm 的孔径)。
移动光标到第一面,即光阑面的曲率半径列,输入-2000.0,负号表示为凹面。
现在在同一个面上输入厚度值-1000,这个负号表示通过镜面折射后,光线将往“后方”传递。
双胶合透镜课程设计报告书
双胶透镜设计1.双胶合透镜设计方案1.1双胶镜头简介当今光学系统已经应用到了广泛的领域当中,所以对于光学镜头的设计就成了现在人们十分关注的事情。
其中双胶合镜透镜使用最广泛。
在光学设计中,像差(abeDation)指公光学系统中由透镜材料的特性或折射(或反射)表面的几何形状引起实际像与理想像的偏差。
理想像就是理想光学系统所成的像。
实际的光学系统,只有在近轴区域以很小孔径角的光束所生成的像是完善的。
但在实际应用中,需有一定大小的成像空间和光束孔径,同时还由于成像光束多是由不同颜色的光组成的,同一介质的折射率随颜色而异。
因此实际光学系统的成像具有一系列缺陷,这就是像差。
像差的大小反映了光学系统成像质量的优劣。
几何像差主要有七种:其中单色光像差有五种,即球差、彗差、像散、场曲和畸变;复色光像差有轴向色差和垂轴色差两种。
单个透镜的色差是无法消除的,但把一对用不同材料做成的凸凹透镜胶合起来,可对选定的两种波长消除色差。
根据薄透镜系统的初级像差理论,在允许选择玻璃材料的条件下,一个双胶合薄透镜组除了校正色差外,还能校正两种单色像差。
另外对于单透镜来说,虽然可以选择不同曲率半径使球差达到最小,这称为配曲法,但配曲法不能完全消除球差,考虑到凸透镜和凹透镜有符号相反的球差,所以可以把两种透镜胶合起来进一步消除球差,同样对于彗差也是一样的,轴外傍轴物点发出的宽光束经透镜折射后,在理想平面上不再交于一点,而是形成状入彗星的亮斑,此称为彗差。
利用配曲法可部分消除单透镜的彗差,也可以另用胶合透镜消除彗差,但因为消球差和消彗差所要求的条件往往不一致,所以这两种像差不易同时消除。
双胶合物镜:(简称双胶物镜)双胶物镜由一正透镜和一负透镜胶合而成(正负透镜用不同种类的光学玻璃),正负透镜胶合面两个球面半径相等。
这种物镜的优点是:结构简单,光能损失小,合理选择玻璃和弯曲能校正球差、彗差、色差,但不能消除像散、场曲与畸变,但双胶物镜口径一般不超过Φ100mm,因为当口径过大时,由温度变化胶合加会产生应力,使成像质量变坏甚至脱胶。
双胶合透镜
首先仍然是输入光学特性参数。 既然是doublet,你只要在单透镜的LDE 上STO 后再加入一面镜片即可。在第一、第二面镜片上 的Glass 项目键入BK7 和SF1。现在把STO 和第 二面镜的thickness 都fixed为3,仅第3 面镜的 thickness 100 thickness为100 且设为variable, variable
双胶合透镜设计 (a doublet)
单透镜是不能校正球差的,单正透镜具有负球差, 单负透镜具有正球差。 初级位置色差取决于透镜的光焦度和制造透镜所 用玻璃的光学特性。在光焦度一定时,玻璃的阿 贝数越大,色差越小,通常情况下正透镜产生负 色差,负透镜产生正色差。因此消色差的光学系 统通常都是将正负透镜组合,以使他们的色差相 互补偿。
保持边缘厚度为一个特定值的方法 在第一面的厚度列中双击
第一面的厚度已被调整过,字母“E”显示在框中, 表示此参量为一个活动的边缘厚度解。
再次更新表面数据窗口,边缘厚度3会被列出。通 过调整厚度,我们已对镜片的焦距作了一点改变。
然后,再进行optimization,然后选择“System”, “Update All”,再一次刷新图形。
在我们修整偏 小的边缘厚度 之前,我们先 将镜片放大。
移动光标到第一面的半口径 “Semi-Diameter”列, 键入“14”替代所显示的12.5,ZEMAX会消去 12.5并显示“14.000000U”。第二、三面也输入 14。
更新layout,现在孔径已经被放大,report显示第一 个边缘厚度变成一个负数。
实际光学系统——2D layout 除了光学系统的摆放外,你还会看到3条分别通过 entrance pupil (在此为surface 1)的top,center, bottom 在空间被trace出来。 他们的波长是一样的 (蓝色的),就是 primary wavelength。 这是Zemax default的 结果。
毕业设计_光学软件课程设计报告-双胶合透镜优化设计论文
各专业全套优秀毕业设计图纸《光电系统》课程设计报告姓名:唐晋川班级:0211102学号:2011210818一、设计题目——双胶合透镜优化设计双胶合透镜优化设计双胶合透镜是一种常用的望远物镜,它结构简单、光能损失小,合理选择玻璃和弯曲能校正球差,慧差、色差和像差,但不能消除象散、场曲与畸变。
根据上述原理使用OSLO软件进行双胶合透镜的设计并对其中一种特性进行优化设计,使得双胶合透镜的参数比较理想。
二、设计原理双胶合透镜优化设计:双胶合透镜是一种常用的望远物镜,它结构简单、光能损失小,合理选择玻璃和弯曲能校正球差,慧差、色差和像差,但不能消除象散、场曲与畸变。
优化是光学系统设计过程中最重要的一步,一般来说初始结构的像质并不是很理想的,只有经过优化才能使光学系统的性能达到我们需要的状态。
通过初始设计的双胶合透镜像差不符合要求,所以要对其进行优化。
优化之前要进行两个必要的步骤:要确定优化变量和选用评价函数。
理论上讲,透镜组的全部结构参数都可以作为优化变量参与优化,光学系统中影响像质的因素是曲率半径r,折射率n和厚度d。
三、实验日志:1、使用oslo软件对双胶合透镜进行设计。
2、使用oslo软件对双胶合透镜进行优化设计。
四、实验步骤双胶合透镜设计并优化(1)双胶合透镜设计○1新建镜头文件○2输入透镜光学特性参数○3输入镜面数据○4保存透镜数据(2)双胶合透镜优化○1打开透镜文件并另存○2设置优化变量○3设置误差函数○4进行优化五、实验结果与分析双胶合透镜优化设计我对双胶合透镜所进行的优化是从透镜的像差着手进行的,从后面的数据中我们可以看出通过改变透镜的曲率半径、光圈大小和透镜的厚度都可以明显改善透镜的像差,从而提高透镜的成像质量。
综合考虑,我进行了三次优化,分别通过优化曲率半径、优化光圈大小和优化透镜的厚度来达到设计的目的。
双胶合透镜的原始最小RMS值为4.252773,像差值为-0.031841。
经过优化曲率半径后的最小RMS值为2.506337,像差值为-0.018681,经过优化透镜的厚度的最小RMS 值为1.8,像差值为-0.17142,最后经过优化光圈大小得出了经过三次优化的透镜的最小RMS值为1.639445,像差值为-0.014059,显然我们得出了很好的效果使得仿真比较成功。
设计双胶合望远物镜
设计双胶合望远物镜设计性实验一、实验目的掌握zemax光学设计软件的使用,能进行光学器件的设计和仿真,理解各种光学设计的基本分析原理,了解像差的基本概念、意义。
二、实验内容1.设计要求:焦距:f’=250 mm通光孔径:D=35 mm视场角:2ω=6°,工作中心波长为在可见光波段,入瞳与物镜重合,物镜后棱镜系统的总厚度为150 mm,要求:δL’m=0.1 5mm,SC’m、=-0.003,ΔL’FC=0.05 mm2.给出设计结果,并对设计结果进行分析和评价。
三.实验1.总体思路和基本方法与其他光学自动设计软件相似,Zemax软件进行光学系统设计时的基本流程如图1-1其中,光学系统模型的建立是光学系统设计的第一步。
其中各个参数的取值可以采用标准的PW算法,同时也可以通过查阅光学设计的镜头手册来选择一组合理的初始化数据。
在Zemax中,光学系统建模分为两个方面:系统特性参数的输入和初始结构的输入。
Zemax软件同时还具有非常强大的像质分析功能。
可以在主窗口中的Analysis下拉菜单中选择相应的像质评价工具。
一些常用的分析功能也能通过工具栏中的图标按钮来快速选择。
使用者可以通过对这些图形和文本窗口提供的菜单命令进行操作,设置需显示或计算的内容。
Zemax中的分析窗口都具有“Update(刷新)”菜单命令,当系统特性参数或结构参数改变时,可以通过刷新命令使Zemax重新计算并重新显示当前窗口中的数据。
Zemax的优化功能可以根据设定的一系列目标值去自动改变光学系统的曲率﹑厚度﹑玻璃﹑二次曲面系数及其他附加参数和多重结构数据等,以满足光学系统的光学特性和像差的要求。
在优化过程中,使用者可以根据需要,对系统设定约束条件和目标。
Zemax通过构造评价函数(Merit function),并采用一定的算法计算评价函数的取值,由取值的大小判断实际系统是否满足约束条件及目标的要求。
2.初始结构的选择Surf:Type Radius Thickness Glass Semi-Diameter OBJ Standard Infinity Infinity InfinitySTO Standard 153.10000 6.0000000 K9 20.0692362 Standard -112.93000 4.0000000 ZF1 20.0391343 Standard -361.6800 50.000000 20.0633294 Standard Infinity 150.00000 K9 18.6284755 Standard Infinity Infinity M 15.818629IMA Standard Infinity 13.2204113.优化函数的确立及Zemax实现(一)建立光学系统的模型(1)初始结构的输入;其中因为没有告诉后工作距,将厚度设为Marginal Ray Height(边缘光线高度)(2)系统特性参数的输入;(主要是对孔径﹑视场﹑波长进行设定)(二)像质评价(1) 焦距:(2)球差:Analysis—Miscellaneous—Longitudinal aberration—text所以可得δL’m=-0.06974mm;(3)正弦差:根据初级彗差和初级正弦差的关系SC’m= K’s/y’=-6.276404μm/13.154mm=-0.000477K’s:y’(4)轴向色差ΔL’FC一般指0.707h的轴向色差,可以由Chormatic Focal Shift 获得,即ΔL’FC= L’F-L’C设置Setting中的孔径:观察text:所以可得ΔL’FC= L’F-L’C=0.17395333-0.08541441=0.08853892mm(三)优化(1)像差控制:显然我们所得的像差与要求的像差数据有差距,所以必须要进行进一步的像差优化。
光学设计实验二双胶合透镜系统设计
实验二:双胶合透镜系统
一.实验目的
掌握胶合透镜的设计方法、原理、过程及透镜系统的优化处理方法;
二.透镜系统的结构性能要求
1)相对孔径为1/4(F/#为4),焦距为100mm;
2)视场角为0︒;
3)玻璃材料分别为BK7,SF1;
4)相对波长为可见光波长;
5)厚度为3mm;
三.实验步骤
一个双透镜采用两片玻璃胶合,曲率半径大小相同。
通过使用两片具有不同色散特性的玻璃,一阶色差可以被矫正。
这样会产生较好的像质。
1.系统参数的设置:F/#为4;
视场角为0︒;
工作波长可见光波长;
2.结构参数的设置:第一个面焦距为100mm,厚度为3mm,玻璃材料为BK7;
STO面焦距为-100mm,厚度为3mm,玻璃材料为SF1;
如下图所示:
四.透镜优化过程
1.将曲率半径设为变量,厚度也设为变量,权重为1,创建评价函数包括EFFL 操作数,如下图所示:
2.将厚度也设为变量,glass min为2,max,6,edge为1;air min为0.2,max 为100,edge为0.2;如下图所示:
3.单击菜单栏Tools一最佳化Optimization,如下图所示:
五.双胶合透镜系统分析
1.对于点列图,优化后的系统点列图的弥散斑明显减小了很多,如下图所示:
2.对于wavefront Map图,像差从65.46减小到0.3034。
所以双胶合透镜能够校正了像差,如下图所示:
3.对于多色光焦点漂移图,如下图所示现在已经减小了色差的线性项,,二阶色差占了优势,因此如抛物线形状所示请注意多色光焦点漂移量减少为74um单透镜为1540um),如下图所示:。
zemax双胶合物镜设计发布版
设计题目设计题目:设计双胶合会聚透镜相对孔径 F=4;4400DF D mm f ==⇒=;焦距f ‘=100mm波长范围:可见光视场角 0°校正:球差,慧差、色差。
设计过程:1、 用PWC 法或镜头库确定原型,输入透镜数据2、 分析原型相差3、 优化4、 分析优化结果题目结束相关知识喷血,大牛可直接掠过或斧正塞得和系数引发的血案:塞得和系数的自变量有内部参数和外部参数,外部参数取决外部光线。
内部参数除PWC 外还与入射孔径角有关(孔径角应该随比例不变);PWC 可由辅助光线参数求出,若由多个面构成则由多个面求和。
(PWC)0参数,单透镜取决于折射率,系统取决于系统结构。
P W C ∞∞∞是物面处于无穷远时,目的在于搞掉入射孔径角。
以上参数在实际系统有转换公式,待定参数反应系统结构、特性。
21()(1)n i i i i i u u P n n =∆=∆∆∑;1()(1)n i i i i i u u W n n =∆=∆∆∑; 其中'''1111;;;'i i i i i i i i i i u u u u u n n n n n n ∆=-∆=-∆=-闲话少说,言归正传,求解开始双胶合物镜求解过程:(1) P 0;20200.85(0.1)0.85(0.2)P P W P P W ∞∞∞∞⎧=++⎪⎨⎪=++⎩……[1] 冕牌玻璃在前……[2] 火石玻璃在前求出P 0;当物处于无穷远时,P ∞、W ∞均为0(孔径角消失)。
由[1]求得00.0085P =-;此时默认冕牌玻璃在前。
可选择K7+ZF3,此时色差0I C =;00.012P =;0 4.11Q =-若由[2]求得00.034P =-,且火石玻璃在前,ZF2+BaK2,此时0I C =;00.032P =-;0 5.05Q =-(2)0 4.11 4.110.06014Q Q =±=-±=-±;00.154.110.089821.67W Q Q ∞-=-=-+;则取:0 4.11 4.110.06014 4.05Q Q =±=-+=-+=-(3) 求解光焦度分配121221111()()1C v v v ϕϕϕ⎧=--⎪⎨⎪=-⎩;11212122160.63111()() 1.948264860.6329.5110.9482648v C v v v v v ϕϕϕ⎧=--===⎪--⎨⎪=-=-⎩ (4) 由上式中Q 求解结构参数:212111121111213322221 2.10171 1.6829201111111-0.6765111Q r n Q r n n n Q r r n n n ρϕϕϕρρϕϕρ⎧==+=-⎪⎪⎪==+=+=⎨--⎪⎪-==-=+-=⎪---⎩1230.594210.475811.4782r r r =⎧⎪⇒=-⎨⎪=-⎩;(5) 带入zemax 中进行优化:代入软件后在,lens data 里面把参数输入好。
ZEMAX光学设计软件应用训练实验报告
东莞理工学院
ZEMAX光学设计软件应用训练实验报告
选择“analysis”,“miscellaneous”,“field curv/dist”场曲线如图所示。
牛顿式反射望远镜结构示意图
.输入数据:第一面,光阑面的曲率半径列输入-2000.0,负号表示为凹面,
列输入“MIRROR”。
选择“System”,“General”,然后在“通用数据对话框(
Box)”中输入一个200的孔径值,并单击“OK”。
ZEMAX使用的缺省值是波长
现在打开一个图层窗口,光线显示了从第一面到像平面的轨迹,此时像平面在镜面的左边。
如下图:
2.构造转折面:第一面的厚度改为-800mm。
像平面,按Insert在主面与像平面之间插入一个虚构
思考题与实践题:
1、牛顿反射式望远镜属于我们《应用光学》书本上所介绍的那种望远镜系统?
注意我们已将主反射面的距离减小到-18,第四面的半径已经被加入了一个变量标记。
新图层,检查一切是否正常。
如下图:
注意大约有4个波长的像差仍然有待改正。
现在单击第一面(光阑面)的“
设置第一面的半径为变量,再次优化(Tools,Optimization,Automatic
从主菜单,选SYSTEM,FIELDS,并将视场角的个数设置为3,输入y-
在评价函数编辑时,选Tools,Default Merit Function,并将RINGS
在遮挡器和辅助镜面之间的小缝隙纯粹是很小的一点。
这里是为了更容易让大家看到。
MTF现在已被主要是辅助镜面产生的遮挡所改变。
更新MTF窗口,看一下新的MTF,如下图:。
双胶合物镜课程设计报告
双胶合物镜课程设计报告一、课程目标知识目标:1. 学生能理解并掌握双胶合物镜的基本概念,包括其组成、原理和应用。
2. 学生能够准确描述双胶合物镜的成像特点及其在光学仪器中的作用。
3. 学生能够了解双胶合物镜在现实生活中的应用案例,并能够分析其工作原理。
技能目标:1. 学生能够通过实验操作,掌握双胶合物镜的组装和调整方法。
2. 学生能够运用光学知识,对双胶合物镜的成像效果进行预测和计算。
3. 学生能够运用所学知识,分析和解决与双胶合物镜相关的实际问题。
情感态度价值观目标:1. 学生通过学习双胶合物镜,培养对光学科学的兴趣和好奇心,增强对科学探究的热情。
2. 学生能够认识到双胶合物镜在科技发展和社会进步中的重要作用,增强对科技创新的价值认同。
3. 学生在小组合作中,培养团队协作精神,提高沟通与交流能力。
本课程针对初中年级学生,结合学生好奇心强、动手能力逐渐提高的特点,注重理论与实践相结合,旨在培养学生的光学知识、实验技能和科学素养。
课程目标既关注学生对双胶合物镜知识的掌握,又注重培养学生的实践操作能力,同时强化情感态度价值观的引导,为学生奠定扎实的科学基础。
二、教学内容1. 双胶合物镜的基本原理:介绍双胶合物镜的定义、类型及其成像原理,包括凸透镜和凹透镜的组成、光线传播规律等。
2. 双胶合物镜的成像特点:分析双胶合物镜的成像规律,如实像与虚像、放大与缩小、倒立与正立等,结合实际应用案例进行讲解。
3. 双胶合物镜的实验操作:指导学生进行双胶合物镜的组装、调整和成像实验,让学生在实践中掌握光学成像的原理和方法。
4. 双胶合物镜的应用案例分析:介绍双胶合物镜在照相机、投影仪、显微镜等光学仪器中的应用,分析其工作原理和功能。
教学内容安排:第一课时:双胶合物镜的基本原理及成像规律第二课时:双胶合物镜的实验操作(一)第三课时:双胶合物镜的实验操作(二)第四课时:双胶合物镜的应用案例分析及讨论本教学内容基于课程目标,按照系统性和科学性原则进行组织,结合教材相关章节,确保学生在掌握基础知识的同时,能够通过实验和应用案例分析,提高实践操作能力和解决问题的能力。
双胶合望远镜头设计要点
双胶合望远镜头设计要点XX大学课程设计说明书201X/201X 学年第 1 学期学院:信息与通信工程学院专业:XXXXXXXX学生姓名:XXXXX 学号:XXXXX课程设计题目:双胶合望远镜头设计起迄日期:20XX年12月22日~20XX年01月02日课程设计地点:XX大学5院楼513、606指导教师:XXXX 职称: 教授摘要 (1)关键词 (1)第一章课题要求1.1课题背景 (2)1.2设计目的 (2)1.3设计内容和要求 (2)第二章方案分析2.1课题名称 (3)2.2主要数据 (3)2.3设计思路 (3)2.4实现原理 (3)2.5主要过程 (4)第三章光学系统设计3.1光圈参数设定 (5)3.2视场参数设定 (5)3.3波长设定 (6)3.4玻璃厚度的设定 (6)3.5像空间的设定 (7)第四章光学系统分析4.1 2D光路分布草图 (7)4.2 标准点列图Spot Diagram (8)4.3 光路图OPD FAN (9)4.4 光线相差图RAY FAN (10)4.5波前分布图 (11)第五章光学系统优化5.1光学系统调焦 (12)5.2设置可变参数 (13)5.3优化函数设定 (13)5.4最终优化 (14)第六章系统优化前后比较6.1优化后的2D草图 (15)6.2优化后的标准点列 (15)6.3优化后光路图 (16)第七章心得体会心得体会 (17)ZEMAX是一款多功能的光学设计软件,可建立反射、折射、绕射等光学模型,可以用来模拟、分析和辅助设计光学系统,并对光学系统进行优化。
双胶合透镜不仅有较好的横向分辨率,而且有较高的轴向分辨率,能够作为共焦3-D成像的一种理想光学元件,在光学领域得到了广泛的应用。
本次课程设计,我们将利用ZEMAX软件设计一个双胶合望远镜头,展示利用ZEMAX设计、分析和优化一个简单光学系统的过程,进一步掌握该软件。
关键词:ZEMAX双胶合望远镜头光学系统设计分析第一章课题要求1.1课题背景随着计算机技术的不断进步和发展,在光学系统的设计过程中越来越多得利用到计算机技术,其中ZEMAX就是一款应用十分广泛的的光学设计软件,具有功能完善、操作简单、准确性高、人机交互性好等特点,极大地简化了光学系统的设计过程。
ZEMAX实验报告
ZEMAX实验——双胶合镜头(a doublet)摘要一个双胶合镜头是由两片玻璃组成,通常粘在一起,所以他们有相同的曲率。
利用不同玻璃的色散性质,一阶色差可以被矫正。
也就是说,需要得到抛物线形的多色光焦点漂移图,而不是直线的,这反过来会产生较好的像质。
在保持100mm焦距和在轴上的设计要下,将会加入视场角。
同时定义边缘厚度解,使产生图层和视场曲率图,并分析双胶合镜头的出光效果。
关键词:ZEMAX光学设计;双胶合镜头;成像分析目录1 引言 (II)2 实验目的.................................. 错误!未定义书签。
3 实验原理分析 (2)4 实验步骤 (3)5 实验结果.................................. 错误!未定义书签。
1 引言ZEMAX是美国Focus Software Inc.所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是一套可以运算sequential及Non-Sequential的软件。
ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。
ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其它软件不同的是ZEMAX的CAD转文件程序都是双向的,如IGES、STEP、SAT 等格式都可转入及转出。
而且 ZEMAX可仿真 Sequential 和 Non-Sequential 的成像系统和非成像系统。
ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。
包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。
光学设计实例双胶合透镜非球面单透镜激光扩束镜-
2
优化实例(2) --优化结果
3
优化实例(3)
非球面单透镜:f’=60,D/f’=1:1, 2 =±1°
利用非球面可以准确校正球差,透镜弯曲可校正彗差,
8次系数,所得结果存在高级彗差,再改初值(半径和Conic)产生反向初级彗差与
之平衡,再重复上述过程。
4
优化实例(3) :优化结果
5
优化实例(3)
6
优化实例(3)
7
优化实例(3)
8
主要内容
• 光学设计软件ZEMAX简介 • 优化实例
1-单透镜 2-双胶合透镜 3-非物镜
光学设计
——光学设计实例
1
双胶合物镜
优化实例(2)
•总 不等于零,不能校正场曲;
•在玻璃组合合适时,可校正色差。
取f’=100, D/f’=1:5, 2 =±3°,平行光入射;
取各种玻璃组合(可以查“光学设计手册”)如: 3 BK7/SF2, SF5, SF1, SF10, SF4
都可以用程序得到对 0°视场校正良好的结果(取波长为F,d,C),但3° 视场一般有较大彗差,不能校正。将光阑位置作为变量时,一般仍然如此。 (初始半径可取(60,-60,∞)。
实际上,非球面高次项并非必须,如文件Asph3,只取6次项和8次项,残余像差
也小些,这个结果是采用下列逐步接近的过程作出,①校正S1,S2决定半径和
Conic系数,仍用Default merit function (Ring=3)但将孔径取很小值;② 半径和
工作报告之哈工大物理实验报告
哈工大物理实验报告【篇一:哈工大近代光学实验报告】《近代光学创新实验》双曝光全息照相技术介绍院(系)专业光学工程学生许祯瑜学号班号2013年6月双曝光全息照相技术介绍摘要:双曝光全息照相技术是指在拍摄静态全息图曝光过程中,如果拍摄物产生了微小位移(或微小形变),则这张全息图再现时在像的表面上就会产生若干条黑条纹,从而可以根据全息图片再现的物象条纹完成对拍摄物体表面,诸如形变、位移、振动等多种物理量的研究和测量工作。
通过最近几年的发展,全息干涉测量法已经在无损检测、微小位移或振动的监测等领域得到了广泛的应用,成为全息照相技术的一个重要分支。
关键词:激光全息干涉技术;双爆光;测量0 引言双曝光法即在全息光路布局中,用一张全息底片分别对变形前后的物体进行两次全息照相。
这时,物体在变形前后的两个光波波阵面相互重叠,固定在一张全息图中。
如全息图用拍摄时的参考光照明,再现的干涉条纹图即表征物体在两次曝光之间的变形或位移。
双曝光全息干涉法是简单易行的常用方法,可获得高反差的干涉条纹图。
自激光全息术发明以来,激光全息技术的应用领域和范围不断拓展,对相关技术和行业的影响越来越大,尤其是近年来随着激光全息技术与其它学科技术的综合运用,激光全息技术更展现了它的巨大应用前景。
全息干涉测量技术是全息技术应用于实际的最早也是最主要的技术之一,它把普通的干涉测量同全息技术结合起来,有如下特点:(1) 一般干涉测量只可用来测量形状比较简单的高度抛光表面的工件,而全息干涉测量能够对具有任意形状和粗糙表面的三维表面进行测量,精度可达光波波长数量级。
(2) 由于全息图再现的像具有三维性质,故用全息技术就可以通过干涉测量方法从许多不同视角去观察一个形状复杂的物体,一个干涉测量全息图就相当于用一般干涉测量进行的多次观察。
(3) 全息干涉测量可以对一个物体在两个不同时刻的状态进行对比,因而可以探测物体在一段时间内发生的任何改变。
这样,将此一时刻物体与较早时刻的物体本身加以比较,在许多领域的应用中将有很大优点,特别是适用于任意形状和粗糙表面的测量。
双胶合望远物镜设计
目录一、前言 (7)二、ZEMAX仿真 (9)三、设计优化 (17)四、数据比较和优化后参数 (21)五、设计心得体会 (24)六、参考文献 (25)评分表附表 (26)一前言光学是研究光的行为和性质,以及光和物质相互作用的物理学科。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光的本性也是光学研究的重要课题。
微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。
我们通常把光学分成几何光学、物理光学和量子光学。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。
它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。
它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。
波动光学的基础就是经典电动力学的麦克斯韦方程组。
波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。
波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学 1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。
光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。
所以光学是一个相当有用的学科。
本次设计采用ZEMAX光学设计软件。
ZEMAX是一个用来模拟、分析和辅助设计光学系统的程序。
ZEMAX的界面设计得比较容易被使用,稍加练习就能很快地进行交互设计。
zemax设计 - 双胶合设计
双胶合设计设计一:透镜参数:1.焦距为100mm。
2.相对孔径为1/5。
3.全视场2ω为10度。
4.物距为无穷远。
5.双胶合透镜一个采用BK7玻璃,另一个采用F2玻璃。
1.Prescription Date具体参数:1.Lens Data Editor2.系统二维图3.系统三维图4.点列图从图中我们可以看到,系统的弥散斑并不太大,弥散斑随着视场的增加而增加。
当ω=5度时,系统的弥散斑半径为60.847,保持在可接受的范围内。
将Show Airy Disk选中,并选择ω=2.5度时作为观察对象,可以得到上面的图形。
虽然大部分光线并不集中在中心区域,但是这种效果对于双胶合设计来说也足够了。
5.MTF曲线TS 5.0000 degree这条曲线在10(lp/mm)时大致为0.35,满足设计需求。
其他的曲线也较接近最上面的黑线(衍射极限),且较为平滑。
S曲线(弧矢曲线)与T曲线(子午曲线)也比较重合。
6.Ray Fan(光线扇面)7.OPD Fan(光程差扇形图)8.Field Curv/Dist(场曲)设计二:设计二的MTF曲线更高,但弥散斑也比设计一高,当ω=5度时,弥散斑半径为69.830。
透镜参数:6.焦距为100mm。
7.相对孔径为1/5。
8.全视场2ω为10度。
9.物距为无穷远。
10.双胶合透镜一个采用BK7玻璃,另一个采用F2玻璃。
2.Prescription Date具体参数:3.Lens Data Editor4.系统二维图5.系统三维图6.点列图在上图中,当ω=5度时,弥散斑半径为69.830,比设计一中的要高。
7.MTF曲线TS 5.0000 degree这条曲线在10(lp/mm)时大致为0.4,比设计一的效果要好。
8.Ray Fan(光线扇面)9.OPD Fan(光程差扇形图)10.Field Curv/Dist(场曲)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H a r b i n I n s t i t u t e o f T e c h n o l o g y
实验报告
课程名称:光机系统设计
实验名称:双胶合消色差物镜设计院系:电气及自动化与控制系班级:
姓名:
学号:
哈尔滨工业大学
1, 实验目的
设计一个双胶合消色差透镜,并绘制图形,熟悉应用光学、机械学等相关知识,掌握光机系统设计的流程。
2. 结构特性分析
双胶合消色差物镜光学性能要求: 1) f / 6,焦距540mm ; 2) 视场角1.5°;
3) 镜片材料选择BAK1 和BK7; 4) 20 线对/mm 处MTF>0.4; 5) 工作波长:可见光
3. 初始结构设计
当物体处于无穷远时,P ∞=W ∞=0(孔径角消失),设计消色差系数C=0。
透镜的光焦度分配公式: )v 1
-v 1/(1-2
121)(v c =ψ 12-1ψ=ψ
通过应用光学相关知识,算的双胶合透镜的曲率半径依次为: R 1 =345.231 R 2 =-240.89
R 3 =-1003.25
两个透镜的初始厚度设计各为7mm ,透镜组到成像面的距离设计为近轴光线,由ZEMAX 计算出相应厚度调整值。
图1 双胶合透镜出结构设计
图 2 所示,视场90mm;如图 3 所示,视场角设定为1.5°,图 4 所示,入射光线为可见光;如所示为初始透镜结构图。
图2 设定视场
图3 设置光场
图4 设定入射光
4. 系统优化
设计焦距值为540mm,设定默认优化函数EFFL target 为540,权重为1,选择透镜的三个曲率半径以及相应的厚度作为优化参数,优化结果如图 5所示。
图5 优化结果参数
5. 像质分析
由图6所示,优化后最大的波像差大约为4个波长,尚未达到衍射极限,应为焦平面上的彗差影响所致;同时可见这个透镜相对与可见光的低阶色差比较小,满足设计要求。
图8优化后光线追迹曲线
如图 6所示,优化后存在彗差,由图中度数可得艾里斑半径为8.595μm,
而像差RMS半径为18.570μm,可见此优化结果基本达到设计要求,可以使用。
图7 优化后散点图
最后查看调制传递函数,由图10可见,在20线对处的MTF值为0.4835,符合设计要求。
综上所示,本次双胶合消色差透镜的设计符合达到题目的要求。
在20线对/mm处满足MTF>0.4
6.小结:
通过完成本次光机系统设计的大作业基本熟悉了应用光学、机械学等相关知识和光机系统设计的流程,但由于一些知识点掌握的不好也遇到了很多麻烦,大作业的设计也使本课程做到了加强基础、重视应用、开拓思维、培养能力、提高素质。