第八章 新型钢结构 膜结构简介

合集下载

膜结构的类型

膜结构的类型

膜结构的类型膜结构是一种特殊的建筑结构形式,通过利用膜材料的高强度、轻质和柔韧性,实现了大跨度、自由曲面和独特形态的建筑设计。

膜结构广泛应用于体育场馆、展览馆、会议中心、机场候机楼等建筑类型中,成为现代建筑中的一种重要形式之一。

膜结构可以分为气囊膜结构、拉伸膜结构和膜面结构三种类型。

气囊膜结构是利用气体对膜材料进行支撑,形成空间结构,具有轻便、柔软、易于安装和拆卸的特点,常用于临时建筑和临时遮阳棚。

拉伸膜结构是通过预应力技术将薄膜材料固定在支撑结构上,形成一种具有自重的空间结构,常用于大跨度建筑和建筑遮阳系统。

膜面结构是将薄膜材料作为表面覆盖在建筑结构上,起到保护和装饰作用,常用于建筑外墙、屋顶和天棚。

膜结构具有许多优点。

首先,膜结构具有良好的透光性和透气性,可以实现自然采光和通风,减少能耗和环境污染。

在实际应用中,膜结构被广泛应用于各种建筑类型中。

体育场馆是膜结构的典型应用领域,如北京国家体育场“鸟巢”和上海世博会中国馆等建筑,采用了大跨度、自由曲面的膜结构设计,成为城市地标和文化符号。

展览馆和会议中心也是膜结构的重要应用领域,如广州琶洲展览馆和深圳保利剧院等建筑,采用了拉伸膜结构设计,展示了现代建筑的时尚和创新。

机场候机楼是膜结构的新兴应用领域,如北京大兴国际机场T3航站楼和成都天府国际机场航站楼等建筑,采用了膜面结构设计,提升了建筑的功能性和美观性。

总的来说,膜结构作为一种新型的建筑结构形式,具有许多优点和特点,被广泛应用于各种建筑类型中。

随着科技的不断进步和材料的不断创新,膜结构在建筑设计领域将发挥越来越重要的作用,为人类创造出更加美好、舒适和可持续发展的建筑环境。

相信在未来的建筑设计中,膜结构将继续发挥重要作用,成为建筑设计的新潮流。

膜结构定义——精选推荐

膜结构定义——精选推荐

膜结构定义膜结构(Membrane)是20世纪中期发展起来的一种新型建筑结构形式,是由多种高强薄膜材料(PVC或Teflon)及加强构件(钢架、钢柱或钢索)通过一定方式使其内部产生一定的预张应力以形成某种空间形状,作为覆盖结构,并能承受一定的外荷载作用的一种空间结构形式.膜结构可分为充气膜结构和张拉膜结构两大类.充气膜结构是靠室内不断充气,使室内外产生一定压力差(一般在10㎜~30㎜水柱之间),室内外的压力差使屋盖膜布受到一定的向上的浮力,从而实现较大的跨度.张拉膜结构则通过柱及钢架支承或钢索张拉成型,其造型非常优美灵活.膜结构停车棚的市场前景随着都市现代化步伐的加快,汽车成为任何一个都市不可缺少的交通工具。

我国由于汽车工业高速发展,城市的汽车拥有量成倍上升,但城市建设规划没能尽快适应这一发展的要求,常常是车无停放之地。

所以在建设群规划时就应充分考虑停车场的问题,把停车场的建设和规划当成现代城市建设规划的重要组成部分,变得越来越重要。

同样,膜结构在停车场建设中也担当重要角色膜结构使用寿命及特点膜结构车棚的篷布材质是膜材,而膜材的最大特点是强度高、耐久性好、防火难燃、自洁性好,不受紫外线影响,使用寿命长,一般15-30年。

具有高透光率,透光率为13%,对热能反射率73%,热吸收量很少。

正是因为这种划时代的膜材料的发明,使膜结构车棚成为现代化的永久建筑。

重量轻、强度高、防火难燃、自洁性好,不受紫外线影响、抗疲劳、耐扭曲、耐老化、使用寿命长。

具有高透光率,热吸收量很少。

正是因为这种跨时代的膜材料的发明,使膜结构建筑成为现代化的永久性建筑优越性能:自洁性、透光节能性、经济性、艺术性、防火性与抗震性、造型多样性;另外其还具有应用领域广泛、能覆盖大跨度空间及施工周期短的优点。

膜结构车棚可选材钢材、钢索、膜材料等。

膜结构车棚作用具有遮阳、挡雨、实用、美观的作用。

膜结构停车棚介绍膜结构停车棚是依靠膜自身的张拉应力与支撑杆和拉索共同构成机构体系。

膜结构介绍

膜结构介绍

膜结构介绍 一种适合建筑的新材料的出现,必然引建筑结构的革命,如历史上的混凝土和钢材,70年代以来,以欧美为中心发展起来的新型织物膜材,也是如此,用这种优良的织物,辅以柔性或钢性支撑,可绷成一个曲率互反,有一定刚度和张力的结构体系。

这种全新的建筑结构形式,集建筑学、结构力学、材料学与精细化工、计算机技术等为一体,具有以下优秀的特点: 1、造型的艺术性。

它既能充分发挥建筑师的想象力,又能体现结构构件清晰受力之类。

2、良好的自洁性。

膜建筑中采用具有防护涂层的膜材,可使建筑具有良好的自洁效果,同时保证建筑的使用寿命。

3、施工的快捷性。

膜建筑工程中所有加工和制作均在工厂内完成,现场只进行半成品组装,因此施工简便快捷,施工周期短。

4、较好的经济性。

由于膜材具有一定的透光率,白天可减少照明强度和时间,因而比较节约能源,降低了长期使用费用,同时夜间彩灯透射形成的绚烂景观也能达到很好的广告宣传效益。

5、 结构自重轻,非常适合于建造大跨度空间结构。

膜结构的分类 膜结构按结构受力特性大致可分为充气式膜结构、张拉式膜结构(Tension/Suspension membrane structure)、骨架式膜结构(Frame membrane strcture,Cable dome membrane structure)、组合式膜结构(Compound membrane structure)等几大类。

充气式膜结构张拉式膜结构骨架式膜结构组合式膜结构膜 应 用 领 域:★ 体育设施: 体育场、健身中心、游泳馆、网球馆、篮球馆等。

★ 商业设施: 商场、购物中心、大型会展场所、餐厅、酒店(挑檐)等。

★ 文化设施: 展览中心、剧院、会议厅、博物馆、植物园、水族馆、音乐广场等。

★ 交通设施: 机场、火车站、公交车站、收费站、码头、加油站、天桥连廊等。

★ 工业设施: 工厂、仓库、科研中心、处理中心、温室、物流中心等。

★ 景观设施: 建筑入口、标志性建筑或景观性小品、广场休闲区、海滨娱乐休闲建筑、居住小区、游乐场、步行街、停车场、楼宇屋顶改造更新等。

膜结构介绍

膜结构介绍

膜结构介绍
嘿,朋友们!今天我来给大家讲讲膜结构这玩意儿。

我记得有一次去参加一个大型的户外活动,那场面可真是热闹非凡。

在活动现场,有一个特别引人注目的膜结构建筑,它就像是一个巨大的白色蘑菇,又或者说像一朵飘在地上的云。

当时我和朋友小明一起走过去,我好奇地问他:“你说这膜结构到底是啥做的呀?”小明挠挠头说:“我也不太清楚,感觉挺神奇的。


这时候,旁边一位戴着安全帽的工作人员听到了我们的对话,笑着说:“这膜结构啊,主要是由高强度的膜材料和钢结构支撑组成的。

”我接着问:“那这东西有啥好处呢?”工作人员耐心地解释道:“它的好处可多啦,首先它造型美观,能做出各种独特的形状;而且重量轻,建造起来相对简单;还具有很好的透光性,在里面也能享受到充足的阳光。


我和小明一边听一边不住地点头,围着这个膜结构转了好几圈,仔细地观察着。

我伸手摸了摸那膜材料,感觉有点软软的,但又很有韧性。

小明还调皮地敲了敲支撑的钢结构,发出“咚咚”的声音。

总之,那次的经历让我对膜结构有了深刻的印象。

这膜结构啊,真的是一种又实用又好看的建筑形式!
怎么样,朋友们,通过我的这次经历,你们是不是对膜结构也有了一些初步的了解呢?。

膜结构的类型

膜结构的类型

膜结构的类型膜结构是一种新型的建筑结构形式,它以薄膜材料为主要构件,通过张拉或充气等方式使其形成空间结构。

膜结构具有轻质、高强、透光、隔热、防水、耐腐蚀等优点,被广泛应用于体育场馆、展览馆、商业中心、机场、车站等建筑领域。

下面将介绍几种常见的膜结构类型。

1. 球面膜结构球面膜结构是一种以球面为基础形态的膜结构,它具有优美的外观和良好的空间感。

球面膜结构通常采用双曲面或抛物面的形式,通过张拉膜材料使其形成球面结构。

球面膜结构被广泛应用于体育场馆、展览馆、商业中心等建筑领域。

2. 圆锥膜结构圆锥膜结构是一种以圆锥为基础形态的膜结构,它具有独特的外观和空间感。

圆锥膜结构通常采用双曲面或抛物面的形式,通过张拉膜材料使其形成圆锥结构。

圆锥膜结构被广泛应用于体育场馆、展览馆、商业中心等建筑领域。

3. 双曲面膜结构双曲面膜结构是一种以双曲面为基础形态的膜结构,它具有优美的外观和良好的空间感。

双曲面膜结构通常采用双曲面的形式,通过张拉膜材料使其形成双曲面结构。

双曲面膜结构被广泛应用于体育场馆、展览馆、商业中心等建筑领域。

4. 网壳膜结构网壳膜结构是一种以网壳为基础形态的膜结构,它具有优美的外观和良好的空间感。

网壳膜结构通常采用网壳的形式,通过张拉膜材料使其形成网壳结构。

网壳膜结构被广泛应用于体育场馆、展览馆、商业中心等建筑领域。

膜结构是一种新型的建筑结构形式,它具有轻质、高强、透光、隔热、防水、耐腐蚀等优点,被广泛应用于体育场馆、展览馆、商业中心、机场、车站等建筑领域。

不同类型的膜结构具有不同的外观和空间感,可以根据具体的建筑需求进行选择。

膜结构知识介绍

膜结构知识介绍

膜结构知识介绍嘿,朋友们!今天咱们来聊聊建筑界超酷的膜结构,这可就像是建筑穿上了超级酷炫的魔法斗篷呢!你看那些传统建筑,方方正正、规规矩矩的,就像一群严肃的老学究。

而膜结构呢,就像是建筑界的叛逆小青年,完全不走寻常路。

膜结构就像一块巨大无比的保鲜膜,只不过这保鲜膜超级坚韧,还能被做成各种造型。

它可以像一个巨大的肥皂泡,轻盈地飘在那里,仿佛下一秒就会随风飘走,但实际上却稳稳当当。

膜结构的材料也是很神奇的。

它就像是建筑材料里的“蜘蛛侠”,看似单薄却有着超强的力量。

那些用来做膜结构的膜材,薄得就像一片薯片,但是你可别小瞧它,它能承受相当大的压力呢。

这就好比一个瘦瘦弱弱的人,却能举起比自己重好多倍的东西,简直是建筑材料中的大力士。

在造型方面,膜结构简直是个天马行空的艺术家。

它可以被做成波浪形状,就像大海里汹涌的波涛被定格在了建筑上。

有时候又像是一只巨大的水母,透明而又灵动地趴在那里。

还有的时候像一朵超级大的蘑菇云,给人一种梦幻又科幻的感觉。

要是传统建筑是千篇一律的黑白色简笔画,那膜结构就是色彩斑斓的抽象画。

安装膜结构的时候也特别有趣。

就像给一个巨大的怪物穿衣服,工人们小心翼翼地把那一大块“薄膜”披上去,再慢慢地拉扯调整,就像是在给一个调皮的孩子整理衣服一样。

而且这衣服还不能穿歪了,得保证每一个褶皱都恰到好处,就像高级礼服的裙摆一样精致。

膜结构在实用性方面也不逊色。

它就像一把巨大的保护伞,能遮风挡雨。

在体育场里,那些膜结构的屋顶就像是一只温柔的大手,为观众们挡住炽热的阳光或者倾盆的大雨。

在商业广场上,膜结构的亭子就像是一个个小蘑菇城堡,人们可以在下面惬意地休息聊天。

而且膜结构还很环保呢。

它就像是大自然的好朋友,在建造过程中不会产生太多的污染,就像一个乖巧的小宠物,不会给环境制造太多麻烦。

膜结构在现代建筑中的地位越来越重要啦。

它就像一颗闪亮的星星,在建筑的星空中熠熠生辉。

不管是在城市的繁华地段,还是在宁静的郊外,膜结构都像是一个独特的精灵,给周围的环境增添了一抹别样的色彩。

膜结构

膜结构

摘要膜结构系统是由膜、索、桅杆、梁柱、基础等组件组成的,可以创造出优美的曲面造型;可以覆盖大跨度空间,并且重量轻,具有优异的结构特性。

同时,膜结构在照明、声学、防火、保温、节能与自洁等方面也具有许多优点。

现代意义上的膜结构在国外经过30多年的发展已经趋于成熟。

自1997年上海八万人体育场建成以来,膜结构在我国内地已得到较多应用,被广泛应用于体育场、展览馆、加油站等建筑中。

膜结构的组件与传统结构中的构件截然不同,其连接方式与传统结构中构件连接方式差别也非常大。

膜结构施工与传统结构施工最大的不同在于膜结构的节点连接。

本讲义对膜结构的节点连接进行了比较系统的概括,主要体现在以下几方面:一、.综合阐述了膜结构中各类材料的性能及其特性;二、将膜结构中的各类节点进行了新的分类,使之条理更加清晰;三、分析了膜结构的节点受力特点,并提出膜结构中节点的设计原则和要求;四、对膜结构的节点按类别进行了系统的介绍;五、对典型节点进行了受力分析;本讲义的编写得到了土木工程学院领导的大力支持,在此表示感谢。

由于本人水平有限,加之时间仓促,讲义中谬误之处在所难免,望读者及时提出批评指正。

目录第一章绪论 (3)第二章膜结构体系及其组成材料 (10)2.1 膜结构体系 (10)2.2 膜结构组成材料 (17)第三章膜结构节点构造 (26)3.1膜结构节点分类、特性及其设计要求 (26)3.2 膜材连接节点 (30)3.3 索材连接节点 (53)3.4支承骨架连接节点 (59)第四章工程实例―徐州“月影风帆”膜结构改造设计 (65)第一章绪论人类的建筑活动从远古时期的帐篷到现代空间结构的膜结构,经历了漫长的发展历程。

认识膜结构的发展历程有助于我们认识建筑膜结构技术的演变规律,更好地进行建筑设计。

一、膜材的发展概况远古时期,人类最早的居所是帐篷。

它采用树皮、兽皮作帏幕,用石材、树干等作支承,以后逐渐发展为天然合成材料,如棉纱、毛纺、帆布等。

膜结构

膜结构

一、膜结构概述膜结构是用多种高强薄膜材料( PVC 或Teflon) 及加强构件(钢架、钢柱或钢索)通过一定的方式使其内部产生一定的预应力以形成某种空间结构形状,作为覆盖结构,并能承受一定的外荷载作用的一种空间结构形式。

膜结构有如下特点:造型活泼优美, 富有时代气息; 自重轻,适合大跨度的建筑; 可充分利用自然光,减少能源消耗;造价相对低廉,施工速度快;结构抗震性能好, 使用范围广。

膜结构可分为张拉膜结构和充气膜结构两大类。

张拉膜结构又可分为边界直接张拉成型和通过支撑、悬挂等成型两种;充气膜结构可分室内充气式和充气构件式两种。

张拉膜结构具有造型优美柔和、使用维护方便等特点,它适用于中小跨度的结构中,支撑、悬挂式也能用于大跨度结构中, 充气式膜结构适用于大中型跨度的建筑,但使用期间维护较为麻烦。

二、充气式膜结构早在1917 年,英国威廉·兰切斯特(Willian Lanchester)首次提出气承式( air - supported)帐篷,用于野战医院,并申请了专利,但由于当时的技术条件原因没有成为现实。

直到1946 年,美国沃尔特·勃德(Walter Bird)才首次造成了一座直径15m 的充气穹顶。

之后,德国的F. 奥托( F. Ot to) 把皂膜原理应用到膜结构设计中, 取得了不少经验。

1967年第一届国际充气结构会议在德国斯图加特( Stuttgart )召开。

这无疑给充气结构的发展注射了兴奋剂。

随后,各式各样的膜结构建筑出现在1970 年大阪世界博览会上,其中最具代表性的是D.盖格( David Geiger)设计的美国馆( T he U. S. Pavilion) , 其平面是140m×80m 椭圆形的室内充气结构,其次是川口卫( Mamoru Kaw aguchi) 设计的充气香肠构件式的富士馆( 图1)。

后来人们认为: 70 年大阪博览会是把膜屋顶系统地、商业性地向外界介绍的开始, 尤其是川口卫在这一领域内的研究成果,引起了国际的关注,是劲性结构向柔性结构转变的开始, 是建筑业的一个转折, 一次革命,尤如1851 年伦敦博览会上水晶宫( The Crystal Palace) 的建成,向人们展示了工业化建筑技术和幕墙施工技术; 1889 年巴黎博览会上埃菲尔铁塔( T he Eiffel Tow er )展示了摩天技术的能力和可能性一样, 1970 年大阪博览会展示了人们可以用膜结构建造永久性建筑。

膜结构定义

膜结构定义

膜结构定义膜结构是一种特殊的结构形式,它以薄膜为主要构件,通过张力和形变来支撑和传递荷载。

膜结构具有轻巧、灵活、美观等特点,在建筑、航空航天、体育场馆等领域得到广泛应用。

膜结构的主要构件是膜材料,常见的膜材料有聚氨酯、聚氯乙烯和聚酯等。

这些薄膜材料具有良好的延展性和耐久性,能够承受较大的荷载并保持形状稳定。

膜材料通过张拉在支撑结构上,形成曲面或双曲面的形状,从而实现整个膜结构的稳定性。

膜结构的搭建过程需要考虑材料的选择、结构的设计和施工的实施等因素。

首先,根据实际情况选择适合的膜材料,考虑到使用环境、荷载要求和耐久性等因素。

其次,根据膜结构的形状和尺寸,设计合理的支撑结构,使膜材料能够承受荷载并保持形状稳定。

最后,根据设计方案进行施工,将膜材料张拉在支撑结构上,形成整个膜结构。

膜结构具有许多优点。

首先,膜结构的重量轻,相比于传统的混凝土或钢结构,可以减少大量的材料消耗,降低建筑物的自重。

其次,膜结构的形状灵活多样,可以根据需要设计出各种曲线、曲面或双曲面的形状,增加建筑物的美观性。

此外,膜结构还可以透光透气,提供良好的采光和通风效果,使室内空间更加舒适。

膜结构在建筑领域得到广泛应用。

在大型体育场馆、展览馆和会议中心等场所中,膜结构被用于搭建屋顶和覆盖物,可以提供大跨度的无柱空间,使人们可以在室内进行各种活动。

此外,膜结构还可以用于建筑物的外墙和遮阳设施,起到保护和装饰的作用。

在航空航天领域,膜结构被用于搭建飞艇和宇航器的外壳,具有轻巧和耐久的特点。

除了建筑和航空航天领域,膜结构还可以应用于防水和防腐保护等方面。

膜材料具有良好的防水性能,可以用于建筑物的屋面和外墙,防止雨水渗透。

此外,膜结构还可以用于液体或气体的贮存和输送,在化工和环保领域发挥重要作用。

膜结构作为一种特殊的结构形式,具有许多优点和应用价值。

随着科学技术的不断发展和创新,膜结构将会有更广泛的应用前景。

通过不断改进材料和设计,提高膜结构的强度和稳定性,可以使其在更多的领域发挥作用,为人们的生活和工作带来便利和美好。

膜结构分类

膜结构分类

张拉式膜结构通过钢索与膜材共同受力形式稳定曲面来覆盖建筑空间,它是索膜建筑的代表和精华,具有高度的形体可塑性和结构灵活性。

骨架式膜结构通过自身稳定的骨架体系支撑膜体来覆盖建筑空间,骨架体系决定建筑形体,膜体为覆盖物。

空气式膜结构通过空气压力支撑膜体来覆盖建筑空间,它形体单一,运用较少。

优点:1.更自由的建筑形体塑造多变的支撑结构和柔性膜材使建筑物造型更加多样化,新颖美观,同时体现结构之美,且色彩丰富,可创造更自由的建筑形体和更丰富的建筑语言。

2.更好的经济效益膜建筑屋面重量仅为常规钢屋面的1/30,这就降低了墙体和基础的造价。

同时膜建筑奇特的造型和夜景效果有明显的“建筑可识性”和商业效应,其价格效益比更高。

3.更短的施工周期膜工程中所有加工和制作依设计均可在工厂内完成,在现场只进行安装作业。

相比传统建筑的施工周期,它几乎要快一倍。

4.更低的能源损耗膜材有较高的反射性及较低的光吸收低,并且热传导性较低,这极大程度上阻止太阳能进入室内。

另外,膜材的半透明性保证了适当的自然漫散射光照明室内。

5.更大跨度的建筑空间由于自重轻,膜建筑可以不需要内部支撑面大跨度覆盖空间,这使人们可以列灵活、更有创意地设计和使用建筑空间。

基材:膜材基本上为一种织布,织材由纤维构成。

一织品结构的材料选择、适当的设计、施工、制造及安装,综合这几点能够确保结构的品质。

结构的好坏主要取决于材料的选择。

运用在拉力结构及充气式结构中更为贴切,因为膜材本身亦有载重。

大部分的织品结构运用织品更甚于网状物或胶卷。

织品主要镀上其它材料或压层以产生更大的拉力或更强的抗外力。

最常见的材料为聚酯压层或镀PVC材质,镀PTFE或镀硅之玻璃纤维材质。

网状物、胶卷及其它材料各有其适用范围。

而通常纤维之运用可分为下列数种:1.尼龙/ Nylon:抗拉力较Polyester稍佳,但其弹力系数较低,使得在载重之情形下可能造成皱褶之机率大为升高,且易受湿度变化影响,使得在裁切前后之误差产生,并且易受紫外线影响而逐渐失去抗拉力。

膜结构介绍

膜结构介绍

膜结构知识膜结构是一种建筑与结构完美结合的结构体系。

它是用高强度柔性薄膜材料与支撑体系相结合形成具有一定刚度的稳定曲面,能承受一定外荷载的空间结构形式。

其造型自由轻巧、阻燃、制作简易、安装快捷、节能、易于、使用安全等优点,因而使它在世界各地受到广泛应用。

这种结构形式特别适用于大型体育场馆、人口廊道、小品、公众休闲娱乐广场、展览会场、购物中心等领域。

张拉膜结构的概念设计只有正确表达结构逻辑的建筑才有强大的说服力与表现力”这句话揭示了张拉膜结构的精髓。

对于张拉膜结构,任何附加的支撑和修饰都是多余的,其结构本身就是造型;换句话说,不符合结构的造型是不可能的,因为那样的薄膜不是飘动的就是缺乏稳定性的。

张拉膜结构的美就在于其“力”与“形”的完美结合。

张拉膜结构的基本组成单元通常有:膜材、索与支承结构(桅杆、拱或其他刚性构件)。

膜材一种新兴的建筑材料,已被公认为是继砖、石、混凝土、钢和木材之后的“第六种建筑材料”。

膜材本身不能受压也不能抗弯,所以要使膜结构正常工作就必须引入适当的预张力。

此外,要保证膜结构正常工作的另一个重要条件就是要形成互反曲面。

传统结构为了减小结构的变形就必须增加结构的抗力;而膜结构是通过改变形状来分散荷载,从而获得最小内力增长的。

当膜结构在平衡位置附近出现变形时,可产生两种回复力:一个是由几何变形引起的;另一个是由材料应变引起的。

通常几何刚度要比弹性刚度大得多,所以要使每一个膜片具有良好的刚度,就应尽量形成负高斯曲面,即沿对角方向分别形成“高点”和“低点”。

“高点”通常是由桅杆来提供的,也许是由于这个原因,有些文献上也把张拉膜结构叫做悬挂膜结构(suspens ion membrane)。

索作为膜材的弹性边界,将膜材划分为一系列膜片,从而减小了膜材的自由支承长度,使薄膜表面更易形成较大的曲率。

有文献指出,膜材的自由支承长度不宜超过15米,且单片膜的覆盖面积不宜大于50 0平米。

此外,索的另一个重要作用就是对桅杆等支承结构提供附加支撑,从而保证不会因膜材的破损而造成支承结构的倒塌。

膜结构及索膜结构综述

膜结构及索膜结构综述

膜结构及索膜结构综述——结构选型期中作业城市建设与管理学院10级景观建筑设计专业汪珂珂(20101150175)1.膜结构建筑概述膜结构也称为织物结构,是世纪中叶20 发展起来的一种新型空间结构形式,它以性能优良柔软织物为材料,由膜内空气压力支撑膜面,或利用柔性钢索或刚性支撑结构使膜面产生一定的预张力,从而形成具有一定刚度、能够覆盖大空间的结构体系。

膜结构的起源可追溯至远古时代人们利用牛皮或布等制作的帐篷结构。

但是长期以来由于技术原因,这种结构发展并不快。

1970年日本大阪世界博览会,由美国工程师盖格尔(David Geiger)设计的美国馆,其屋顶采用空气支撑膜结构,平面尺寸达到83.5 m×142 m,采用以聚氯乙烯(PVC)涂层的玻璃纤维织物建造。

通常被认为是第一个现代意义上的大跨度膜结构。

虽然现代膜结构出现仅有几十年时间,但发展迅速。

在20 世纪后期成为国际上大跨度空间建筑及景观建筑的主要形式之一,具有强烈的时代感和代表性。

它是集建筑学、结构力学、精细化工、材料科学、计算机技术等为一体的多学科交叉应用工程,具有很高的技术含量和艺术感染力,实用性强、应用领域广泛,既可应用于大型大跨度的公共建筑,如体育场馆、机场大厅、展览中心、购物中心,也适用于规模较小而造型各异的休闲景观设施、建筑小品等。

其发展潜力巨大,将成为21 世纪空间结构的发展主流。

2.膜结构的分类根据不同的支撑方式,通常将膜结构分为空气支撑式、张拉式及骨架支撑膜结构3大类。

2.1 充气式膜结构向由膜结构构成的室内充入空气,使室内的空气压力始终大于室外的空气压力,使膜材料处于张力状态来抵抗负载及外力的构造形式有单层结构和双层结构两种。

单层结构如同肥皂泡,单层膜的内压大于外压。

此结构具有大空间,重量轻,建造简单的优点,但需要不断输入超压气体及日常维护管理。

双层结构是在双层膜之间充入空气,和单层相比可以充入高压空气,形成具有一定刚性的结构。

膜结构

膜结构

·膜材料的性质 :
膜作为继木材、砖石、金属、 膜作为继木材、砖石、金属、混凝土 之后的第五代建筑结构材料,具有显著的 之后的第五代建筑结构材料, 自身特性。 自身特性。第一代木材和第三代钢材拉压 性能均良好, 性能均良好,第二代砖石和第四代混凝土 则只具备良好的抗压能力, 则只具备良好的抗压能力,作为第五代的 膜材料则只能受拉, 膜材料则只能受拉,没有承压和抗弯曲能 这是膜的最本质的特征。 力,这是膜的最本质的特征。
充气式膜结构
张拉式膜结构
骨架式膜结构
组合式膜结构
膜结构具有以下优点: 3 膜结构具有以下优点: 1、造型的艺术性。 2、良好的自洁性。 3、施工的快捷性。 4、较好的经济性。 5、 结构自重轻,非常适合于建造大 跨度空间结构。
4 膜材介绍
·膜材料的组成和分类 膜材料的组成和分类
膜材就是氟塑料表面涂层与织物布基 按照特定的工艺粘合在一起的薄膜材料。 常用的氟素材料涂层有PTFE(聚四氟乙 烯)、PVDF(聚偏氟乙烯)、PVC(聚 氯乙烯)等。织物布基主要用聚酯长丝 (涤膜结构按结构受力特性大致 可分为充气式膜结构、张拉式膜结构 (Tension/Suspension membrane structure)、骨架式 膜结构(Frame membrane structure,Cable dome membrane structure)、组合式 膜结构(Compound membrane structure)等几大类。
5.喷刷面漆 5.喷刷面漆
6.钢构件吊装 6.钢构件吊装
7.膜材吊装 7.膜材吊装
8.压膜边 8.压膜边
9.帽口固定 9.帽口固定
10.工程竣工 10.工程竣工
与膜结合的结构大致有下述几类: 6 与膜结合的结构大致有下述几类:

膜结构

膜结构
工期短:膜材裁剪。拼合成型及骨架的钢结构、钢索均在工厂加工制作,现场只需组装,施工简便,故施工周期比传统建筑短。
设计编辑
膜结构的设计主要包括体形设计、初始平衡形状分析、荷载分析、裁剪分析等四大问题。通过体形设计确定建筑平面形状尺寸、三维造型、净空体量,确定各控制点的坐标、结构形式,选用膜材和施工方案。初始平衡形状分析就是所谓的找形分析。由于膜材料本身没有抗压和抗弯刚度,抗剪强主芤很差,因此其刚度和稳定性需要靠膜曲面的曲率变化和其中预应力来提高,对膜结构而言,任何时候不存在无应力状态,因此膜曲面形状最终必须满足在一定边界条件、一定预应力条件下的力学平衡,并以此为基准进行荷载分析和裁剪分析。膜结构找形分析的方法主要有动力松弛法、力密度法以及有限单元法等。膜结构考虑的荷载一般是风载和雪载。在荷载作用下膜材料的变形较大,且随着形状的改变,荷载分布也在改变,因此要精确计算结构的变形和应力要用几何非线性的方法进行。荷载分析的另一个目的是一确定索、膜中初始预张力。在外荷载作用下膜中一个方向应力增加而另一个方向应力减少,这就要求施加初始张应力的程度要满足在最不利荷载作用下应力不致减少到零,即不出现皱褶。因为膜材料比较轻柔,自振频率很低,在风荷载作用下极易产生风振,导致膜材料破坏,如果初始预应力施加过高,膜材涂变加大,易老化且强度储备少,对受力构件强度要求也高,增加施工安装难度。因此初始预应力的确定要通过荷载计算来确定。经过找形分析而形成的摸结构通常为三维不可展空间曲面,如何通过二维材料的裁剪,张拉形成所需要的三维空间曲面,是整个膜结构工程中最关键的一个问题,这正是裁剪分析的主要内容。
以钢构或是集成材构成的屋顶骨架,在其上方张拉膜材的构造形式,下部支撑结构安定性高,因屋顶造型比较单纯,开口部不易受限制,且经济效益高等特点,广泛适用于任何大,小规模的空间。

膜结构主要成分

膜结构主要成分

膜结构主要成分膜结构是一种采用膜片作为主要构件的建筑结构形式。

膜结构主要由膜片、膜杆和膜节点三部分组成。

膜片是膜结构的主要承载构件,一般采用聚合物材料或玻璃纤维材料制成。

膜片具有轻质、柔性、透光性好等特点,能够承受一定的荷载并保持稳定形状。

膜片的形状可以是平面的,也可以是曲面的,根据需要可以采用不同的膜片形式。

膜杆是连接膜片的支撑构件,一般采用钢材或铝合金材料制成。

膜杆可以根据膜片的形状和布置方式进行调整,以保证膜片的张力均匀分布。

膜杆的连接方式一般采用螺栓连接或焊接连接,以确保结构的稳定性和安全性。

膜节点是连接膜杆和膜片的关键部分,一般采用金属材料制成。

膜节点的设计要考虑膜片的受力情况,保证膜片与膜杆之间的连接牢固可靠。

膜节点的形式多样,常见的有球面节点、锥面节点和平面节点等。

膜结构具有多种优点。

首先,膜结构的重量轻,能够减小建筑物的自重,节省材料和能源。

其次,膜结构形式多样,可以根据需要设计出各种形状和尺寸的建筑物,具有较大的设计自由度。

此外,膜结构的施工周期短,可以快速搭建,节约时间和成本。

最重要的是,膜结构具有良好的抗风、抗震和抗雪能力,能够适应各种恶劣气候条件下的使用需求。

膜结构广泛应用于建筑、体育场馆、展览馆、车站、机场等场所。

在建筑方面,膜结构可以用于建造大跨度的体育馆、会议中心、购物中心等。

在体育场馆方面,膜结构可以用于建造篮球馆、足球场、游泳馆等。

在展览馆方面,膜结构可以用于建造临时展馆、博物馆等。

在车站和机场方面,膜结构可以用于建造候车亭、航站楼等。

膜结构在设计和施工过程中需要考虑多个因素。

首先,需要考虑膜片的材料选择和厚度确定,以满足结构的承载能力和透光要求。

其次,需要进行结构的静力分析和动力分析,确保结构的稳定性和安全性。

此外,还需要考虑膜结构的防水、防火和防腐等性能,以延长结构的使用寿命。

膜结构作为一种新型的建筑结构形式,具有轻质、柔性、透光等特点,被广泛应用于各个领域。

膜结构简介.doc

膜结构简介.doc

膜结构简介膜结构简介具体内容是什么,下面下面为大家解答。

膜结构建筑作为新的建筑形式于本世纪五十年代在国际上开始出现,至今已有四十多年的历史,特别是到了七十年代以后,膜结构的应用得到了迅速发展。

膜结构的出现为建筑师们提供了超出传统建筑模式以外的新选择。

膜结构一改传统建筑材料而使用膜材,其重量只是传统建筑的三十分之一。

而且膜结构可以从根本上克服传统结构在大跨度建筑上实现时所遇到的困难,可创造巨大的无遮挡的可视空间。

其造型自由轻巧、阻燃、制作简易、安装快捷、节能、易于、使用安全等优点,因而使它在世界各地受到广泛应用。

另外值得一提的是,在阳光的照射下,由膜覆盖的建筑物内部充满自然漫射光,无强反差的着光面与阴影的区分,室内的空间视觉环境开阔和谐。

夜晚,建筑物内的灯光透过屋盖的膜照亮夜空,建筑物的体型显现出梦幻般的效果。

这种结构形式特别适用于大型体育场馆、入口廊道、小品、公众休闲娱乐广场、展览会场、购物中心等领域。

张拉膜结构(Tesioned Membrane Structure) ,是依靠膜自身的张拉应力与支撑杆和拉索共同构成机构体系。

在阳光的照射下,由膜覆盖的建筑物内部充满自然漫射光,无强反差的着光面与阴影的区分,室内的空间视觉环境开阔和谐。

夜晚,建筑物内的灯光透过屋盖的膜照亮夜空,建筑物的体型显现出梦幻般的效果。

张拉膜结构特别适合用来建造城市标志性建筑的屋顶,如体育与娱乐性场馆,需有广告效应的商场、餐厅等。

城市的交通枢纽是城市命脉的关键性建筑,使用功能要求建筑物各组成单元的标志明确。

因而近来年,这类建筑越来越多采用膜结构。

建筑膜材料的使用寿命为25 年以上。

在使用期间,在雪或风荷载作用下均能保持材料的力学形态稳定不变。

建成于1973 年的美国加州La Verne 大学的学生活动中心是已有23 年历史的张拉膜结构建筑.跟踪测试与材料的加载与加速气候变化的试验,证明它的膜材料的力学性能与化学稳定性指标下降了20 %至30 %,但仍可正常使用。

钢结构膜结构工艺流程图课件

钢结构膜结构工艺流程图课件
结构。
膜材安装
将组装好的膜结构安 装到钢构件上,并进
行固定。
整体结构安装与调整
吊装
使用吊装设备将钢构件和 膜结构整体吊装到预定位 置。
调整与固定
对整体结构进行调整,确 保符合设计要求,并进行 固定。
质量检测
对安装好的整体结构进行 质量检测,确保符合质量 标准。
验收与交付
验收合格后,交付给业主 使用。
应急预案与演练
制定应急预案,并定期进行演练,提 高应对突发事件的能力。
安全检查与隐患排查
定期进行安全检查,及时发现和排除 安全隐患。
安全考核与奖惩
对员工的安全表现进行考核,对表现 优秀的员工进行奖励,对违反安全规 定的员工进行惩罚。
环境保护
环保设施建设
建设和完善环保设施,如 废水处理设施、废气处理 设施等。
使用切割和成形设备对钢
构件进行加工。
02 组装与焊接
将加工好的钢构件进行组
装,并进行焊接。
04 检验与矫正 对加工好的钢构件进行质 量检验,对不合格的进行 矫正。
膜材裁剪与安装
膜材检验
对采购的膜材进行质 量检验,确保符合要求。
膜材裁剪
根据设计要求和行 组装,形成完整的膜
钢结构膜结构工艺流程
施工准 备
技术准备
熟悉施工图纸,进行技术交底,制定施工 方案。
材料准备
采购合格的钢构件和膜材,确保质量。
现场准备
清理施工现场,确保施工环境安全。
设备准备
准备施工所需的各种设备和工具。
钢构件加工制作
01 放样与号料
根据施工图纸进行放样, 并标识出各部件的编号。
03 切割与成形
环保监测与评估

膜结构介绍

膜结构介绍

膜结构建筑中最常用的膜材料有PTFE 膜材料和PVDF 膜材料两种。

PTFE 膜材料是指在极细的玻璃纤维编织成的基布上涂覆PTFE (聚四氟乙烯)而形成的复合材料。

PVDF 膜材料是指在聚脂纤维编织的基布上涂覆PVC (聚氯乙烯)后再加版100%PVDF (聚偏氟乙烯)表面涂层而形成的复合材料。

PTFE 膜材的最大特点是强度高、耐久性好、防火难燃、自洁性好,不受紫外线影响,使用寿命在25 年以上。

具有高透光率,透光率为13%, 对热能反射率73% ,热吸收量很少。

正是因为这种划时代的膜材料的发明,使膜结构建筑成为现代化的永久性建筑。

PVDF 膜材由于自洁性良好、价位适中、运输安装方便,更广泛应用于各类建筑领域。

◇声学性能一般膜结构对于低于60Hz 的低频几乎是透明的,对于有特殊吸音要求的结构可以采用具有FABRASORB 装置的膜结构,这种组合比玻璃具有更强的吸音效果。

◇保温性能单层膜材料的保温性能与砖墙相同,优于玻璃。

同其他材料的建筑一样,膜建筑内部也可以采用其他方式调节其内部温度。

例如:内部加挂保温层,运用空调采暖设备等。

◇防火性能如今广泛使用的膜材料能很好地满足对于防火的需求,具有卓越的阻燃和耐高温性能,达到法国、德国、美国、日本等多国标准。

◇力学性能中等强度的PVC 膜:其厚度仅0.61mm ,但它的拉伸强度相当于钢材的一半。

中等强度的PTFE 膜:其厚度仅0.8mm ,但它的拉伸强度已达到钢材的水平。

膜材的弹性模量较低,这有利于膜材形成复杂的曲面造型。

◇光学性能膜材料可滤除大部分紫外线,防止内部物品褪色。

其对自然光的透射率可达25% ,透射光在结构内部产生均匀的漫射光,无阴影,无眩光,具有良好的显色性,夜晚在周围环境光和内部照明的共同作用下,膜结构表面发出自然柔和的光辉,令人陶醉。

◇自洁性能PTFE 膜材和经过特殊表面处理的PVC 膜材具有很好的自洁性能,雨水会在其表面聚成水珠流下,使膜材表面得到自然清洗。

膜结构施工方案

膜结构施工方案

膜结构施工方案一、引言膜结构是一种轻质、高强度的建造结构形式,具有良好的透光性、抗风性能和美观性,广泛应用于体育场馆、展览中心、商业建造等领域。

本文将详细介绍膜结构施工方案,包括施工流程、材料选用、施工工艺等内容。

二、施工流程1. 前期准备在施工前,需进行详细的设计和方案评审。

确定施工图纸和技术要求,制定施工计划,并进行必要的材料采购和设备准备。

2. 地基处理在施工现场进行地基处理工作,包括地面平整、基坑开挖、地基加固等。

确保地基的稳定性和承重能力,为后续的膜结构安装提供良好的基础。

3. 钢结构安装根据设计要求,进行钢结构的安装工作。

包括钢柱、钢梁、钢桁架等的组装和焊接,确保结构的稳固性和坚固性。

同时,进行必要的质量检查,确保钢结构的质量符合要求。

4. 膜材料制作根据设计要求,进行膜材料的制作工作。

包括膜材料的裁剪、焊接、缝制等工艺,确保膜材料的质量和强度。

同时,进行必要的质量检查,确保膜材料的质量符合要求。

5. 膜材料安装将制作好的膜材料进行安装工作。

根据设计要求,使用合适的安装工艺,将膜材料固定在钢结构上。

确保膜材料的张力和平整度,使其达到设计要求的效果。

6. 系统调试在膜结构安装完成后,进行系统调试工作。

包括膜材料的张力调整、光线透过度的调节等。

确保膜结构的稳定性和美观性,使其达到设计要求的效果。

7. 完工验收在施工完成后,进行完工验收工作。

包括膜结构的质量检查、施工记录的整理等。

确保施工质量符合要求,达到设计要求的效果。

三、材料选用1. 钢结构材料钢结构是膜结构的支撑体系,需要选用高强度、耐腐蚀的钢材。

常用的钢材有Q235、Q345等,其具有良好的强度和耐久性。

2. 膜材料膜材料是膜结构的关键组成部份,需要选用耐候性好、透光性好的材料。

常用的膜材料有聚氯乙烯(PVC)、聚四氟乙烯(PTFE)等,其具有良好的透光性和抗风性能。

3. 其他材料在施工过程中,还需要选用其他辅助材料,如螺栓、焊条等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西 北 侧 全 景
膜屋顶下
体 育 场 内 景
亚特兰大市佐治亚体育馆,美国
佐治亚体育馆是一个空间桁架,其底部弦杆由环形索替 代。屋顶为240m x 192m的椭圆形,是同类索膜结构 中世界上最大的。它由涂有聚四氟乙烯的玻璃纤维膜 覆盖。
膜顶施工中俯瞰

巴里市圣.尼古拉体育场,意大利
为1990在意大利举行的世界杯建造的八个体育场之一。 带PTFE涂层的玻纤膜顶,由26块各自从上层观众席
充气膜内部
香港沙田马场膜结构
迪拜酒店
坐落在海边的迪拜
酒店宛如一叶帆船飘 扬在大海上,320米 高的迪拜酒店采用双 层PTFE膜,并成为在 世界上最高的膜结构
建筑。
二、节点及连接
中山标志塔 膜结构工程
边索
脊索
支座节点
连接板 边索
三、膜结构破坏的图片
三亚美丽之冠
四、膜结构的找形
德国斯图加特体育场
上海八万人体育场
上海体育场屋盖是一个马鞍型,由径向悬挑桁架加环 向桁架组成的环状大悬挑钢管空间结构。屋面层为57个 伞状拉索结构。
上海体育场
熊本市公园穹顶,日本
双层充气膜形成了一个直径107m的、以锥台状框架 为中央支撑的“浮云”。
西 侧 鸟 瞰
双层充气膜上部
熊本市 公园穹 顶圆屋 顶内景
膜结构图纸 1、建筑图 2、结构图
4、夹板图 3、加工图
谢谢!
动力松弛法
动力松弛法是一种求解非线性问题的数值方法, 最早用于索网结构。动力松弛法从空间和时间两方 面将结构体系离散化。空间上的离散化是将结构体 系离散为单元和结点,并假定其质量集中于结点上。 如果在结点上施加激振力,结点将产生振动,由于 阻尼的存在,振动将逐步减弱,最终达到静力平衡。 时间上的离散化,正是针对结点的振动过程而言的。 具体点说,先将初始状态的结点速度和位移设置为 零,在激振力作用下,结点开始振动,跟踪体系的 动能,当体系的动能达到极值时,将结点速度设置 为零;跟踪过程从这个几何重新开始,直到不平衡 力为极小,达到新的平衡。
动力松弛法不需要形成结构的总体刚度矩阵, 在找形过程中,可修改结构的拓扑和边界条件,计 算可以继续并得到新的平衡状态,该方法用于求解 给定边界条件下的平衡曲面。
有限元找形法
有限元法找形现已成为较普遍的索膜结构找形 方法,其基本算法有从初始几何开始迭代和从平面 状态开始迭代。显然,从初始几何开始迭代找形要 比从平面状态开始来得有效,且所选用的初始几何 越是接近平衡状态,计算收敛越快,但初始几何的 选择并非容易之事。两种算法中均需要给定初始预 应力的分布及数值。在用有限元法找形时,通常采 用小杨氏模量或者干脆略去刚度矩阵中的线性部分, 外荷载在此阶段也忽略。
认识膜结构
一、膜结构的应用实例
格林威治千年穹顶, 英国
千年穹顶位于伦敦泰晤 士河畔的格林威治半岛北 端,面积大约20万m2。穹顶 周长为1km,直径365 m, 中心高度为50m。屋顶由带 PTEE涂层的玻纤材料制成。
千 年 穹 顶 夜 景
建 设 中 的 全 景
香港大球场, 中国
两个屋顶各外包 5块涂敷聚四氟 乙烯的玻璃纤维 膜材。每块1600 m2的膜材,跨3 组桁架。
南侧鸟瞰
240m跨度
的拱构架

上的膜屋 顶


16000m2

屋顶下的
看台
屋顶仰视
巴尔的摩6号码头音乐厅,美国
索膜篷顶由纤细的桅杆支撑,桅杆被对地面产生最 小影响的钢索约束。篷顶的拉索从混凝土码头边的地面 上升起,将屋顶升至可以通过的高度,屋顶显得很轻。
鸟瞰中的 音乐厅
内 景
吉隆坡国家体育综合体育场,马来西亚
环形索膜屋顶结构,创造出 380000m2的无柱有顶空 间,成为世界上此种类型的最大的膜结构。
室 外 体 育 场 全 景
室外 体育 场和 游泳 池北

体育场 膜屋顶 下观众

建造中的膜结构 建造中的游泳馆室内
所泽市西武体育场,日本
屋顶结构由固定于周边的原有V型钢管柱支撑,柱间不 设围墙。观众席上方是不锈钢折板屋顶;中央膜顶最大 限度地使用了半透明的膜材,简单的网架无斜撑或辅助 杆件。
的钢筋混凝土框架延伸出来的大膜构成。
巴里市圣.尼古拉体育场
观众席局部
体育场 全景
体育场箱 形悬臂拱 形梁仰视
可缩进的膜结构棚盖展开面积约10000平方米,采用PVC 膜材,并且选用能够满足要求的最薄的型号。
德 国 汉 堡 网 球 场
德国斯图加特体育场
德国斯图加特体育场一度成为欧洲最大的膜结构建 筑——面积约34000m2,相当于4个足球场的面积。 采用PVC 膜材, 整个膜 布按结 构划分 40片, 每片约 850平 方米。
力密度法(Force Density Method)
力密度法是一种用于索网结构的找形方法,若将 膜离散为等代的索网,该方法也可用于膜结构的找 形。所谓力密度是指索段的内力与索段长度的比值。
把索网或等代的膜结构看成是由索段通过结点 相连而成。在找形时,边界点为约束点,中间点为 自由点,通过指定索段的力密度,建立并求解结点 的平衡方程,可得各自由结点的坐标,即索网的外 形。不同的力密度值,对应不同的外形,当外形符 合要求时,由相应的力密度即可求得相应的预应力 分布值。力密度法的特点是只需求解线性方程组, 计算精度能满足工程要求。
张力结构以索﹑膜等柔性材料为主要受力构 件,而索膜本身并不能维持既定的空间形状。要 保持稳定,必须施加预应力。不同的预应力分布 及其数值,决定不同的形状, 建筑师给出的任一 外形,未必有合理的预应力分布与之对应,甚至 未必能够张成。
五、找形技术的产生及其发展
最初的找形正是通过皂膜比拟(肥皂泡)来进 行的,后来发展到用其他弹性材料做模型,通过测量 模型的空间坐标来确定形状。
由于所采用的张拉预应力及设计工作应力远小 于膜材的抗拉强度(通常预应力不超过5%的抗拉强 度,工作应力不超过20%的抗拉强度),在设计应 力范围内,认为膜材是处于弹性阶段,亦即不考虑 材料的非线性。
膜材是由基材加表面涂层复合而成,而基材是
由经﹑纬向纱线编织而成,因而呈现很强的正交异 性性能,经纬向变形能力相差达5倍左右(法拉利预 应力膜材已有改进)。而正交异性材料在承受非弹 性主轴方向的应力时,呈现各向异性材料的性能, 即拉应力除产生受拉方向及与受拉方向垂直的另一 方向的变形外,还产生剪切变形。同时,剪应力除 产生剪切变形外,也会导致拉伸变形。因此,材料 的各向异性问题,或者说膜材的经纬方向与主应力 方向的夹角是精确分析膜结构的形状和受荷分析时 必须考虑的。同样,在决定裁剪应变补偿率时,也 需计及这一因素。
对于一些十分简单的外形也可以用几何分析法, 但找形技术的真正发展是得益于计算机技术和有限元 方法的发展。目前比较流行的找形方法有:力密度法 ﹑动力松弛法和非线性有限元法。
从结构形式方面来说,找形技术起源于索网结构, 后来发展到膜结构,而近期则集中于张拉整体以及可 调整和控制结构外形的智能结构——可折叠张拉整体 的找形上。
在有限元迭代过程中,单元的应力将发生改变。 求得的形状除了要满足平衡外,还希望应力分布均 匀,大小合适,以保证结构具有足够的刚度。因此, 找形过程中还有个曲面病态判别和修改的问题,或 者叫形态优化。遗传算法在这方面具有一定的优势。
六、关于材料的非线性与各向异性
膜材是非线性复合材料。原因有:纤维(纱线) 间的约束随经纬向应力比不同而变化;纤维本身在 荷载下的性能就是非线性的;涂层的性能是非线性 的,并受时间的影响;由于编织,经纬向纤维在初 始状态是松弛的,而涂层对纤维受拉变直又有约束 作用。
七、常见找形软件简介
常见软件:
1. EASY,德国,力密度法找形 ,几何非线性分 析, 测地线裁剪。
2. WinFabric, 新加坡,几何法,力密度法及动力松 弛法找形,几何非线性分析,有限元(等参单元) 法裁剪;
3. inTENS,英国,动力松弛法找形,几何非线性 分析,测地线裁剪;
这些软件都包括找形,荷载态分析,及裁剪等全 部内容,可生成直接供电脑控制的裁剪机器下料的数 据。
相关文档
最新文档