利用勾股定理解决立体图形问题

合集下载

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计

“勾股定理的应用——立体图形中的最短距离”教学设计三、研学问题活动一:如图有一个圆柱,底面周长为18,高为12.有一只蚂蚁在它下面的A点,它想吃上底面上与A点相对的B点处的食物,教师提问A点和B点在一个曲面上最短路径还能直接连接AB两点吗?引导学生思考后回让学生通过动手操作找到最短路径,培养学生的动手能力和空间想象能力。

蚂蚁爬行的最短路径是多少?变式训练如图,若上述问题中点B在点A的正上方,蚂蚁沿圆柱侧面爬行的最短路程是多少?答。

教师启发学生利用长方形纸卷出圆柱体,引导学生观察,找出A点到B点的最短路径。

学生画出圆柱的侧面展开图与蚂蚁爬行路径,并写出完整的解题过程。

(请一位同学到黑板完成解答,其他学生点评)通过此问题进一步加深学生对两点沿“曲面”的最短路程的解决方法掌握。

1四、学以致用如图,有一个圆柱,底面周长是10厘米,高为14厘米.在距离下底面1厘米的A点有一只蚂蚁,它想吃到距离上底面1厘米且与A点相对的B点处的食物,则沿圆柱侧面爬行的最短路程是多少?教师利用多媒体展示问题。

学生动手操作,独立思考后画出侧面展开图并确定最短路径。

教师请学生代表发表想法,并与上题进行比较,得出结论:蚂蚁在侧面爬行半圈与一圈,点A与点B的位置关系。

教师利用多检查学生对前面知识的理解和掌握情况,让学生学以致用。

五、知识迁移活动二:如图,是一个长为10cm,宽为6cm,高为8cm的长方体牛奶盒,现在A处有一只蚂蚁,想沿着长方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少. 媒体展示问题,学生组内讨论,画图并计算。

教师利用手机拍照展示小组研究成果,请小组代表讲解解题思路。

教师利用多媒体验证学生成果的对错情况。

教师利用多媒体出示问题,在前面知识的基础上,把两点迁移到长方体上,进一步研究折面中的两点的最短距离,同时让学生利用长方体动手找出最短路径,解决问题,培养学生的动手能力,空间想象能力和小组合作探究能力,通过对问题的解决体会分类讨论、转发现规律:如图,若长方体的长,宽,高分别为a,b和c,且a>b>c,则沿长方体表面从A 到Cˊ所走的最短路程是六、强化训练如图,一个长方体盒子,其中AB=9,BC=6,BB′=5,在线通过长方体教具启发学生找出蚂蚁至少要经过几个面,学生分组利用自制长方体探究从A点到B点的不同走法,请小组代表说出不同走法。

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。

2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。

启发学生对空间的认知,为将来学习空间几何奠定根底。

二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。

2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。

三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。

【难点】:查找长方体中最短路线。

四、教学方法本课采纳学生自主探究归纳教学法。

教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。

五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。

思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。

【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。

勾股定理的应用——立体图形中最短路程问题教案

勾股定理的应用——立体图形中最短路程问题教案

《勾股定理的应用——立体图形中最短路程问题》教案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--教学过程分析第一环节:情境引入创设情景:如图一圆柱体底面周长为32cm,高AB为12cm,BC是上底面的直径。

一只蚂蚁从A点出发,沿着圆柱的表面爬行到C点,试求出蚂蚁爬行的最短路线长。

意图:创设引入新课,从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,激发学生探究热情.第二环节:合作探究内容:引导学生分析题意,明确已知信息,明确题目问题,引导学生合作探究蚂蚁爬行的最短路线,充分讨论汇总方案,在全班范围内讨论每种方案的路线计算方法,四种方案:A A A(1)(2)(3)(4)通过具体分析,得出最短路线,并计算出最短路线长。

让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,分析能力,发展空间观念.就此问题的解决进行思路小结:将立体图形问题转化为平面图形问题,构建直角三角形利用勾股定理解决此问题,渗透了建模思想。

练习:1.有一圆形油罐底面圆的周长为16m,高为7m,一只蚂蚁从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?2. 如图是一个三级台阶,它的每一级的长、宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是多少?第三环节:拓展一:正方体内容:如果圆柱换成如图的棱长为10cm的正方体盒子,蚂蚁沿着表面从A点爬行到B点的最短路线长又是多少呢?1.如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到BBA渗透解题思路:即 1、展 -----(立体图形转为平面图形)2、找-----起点A,终点B或B′3、连-----最短路线AB和AB ′4、算-----利用勾股定理总结:对于正方体展开任意两个面连接起点和终点线段即最短的路线大小相等。

勾股定理应用长方体最短路径

勾股定理应用长方体最短路径

勾股定理的应用之最短距离问题1.如图,是一个棱长为8cm的正方体盒子,在顶点A处有一只蚂蚁,它想沿正方体表面爬行到达顶点C处,则蚂蚁爬行的最短路程是cm.2.如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.3.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).4.如图,有一棱长为2dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为dm.5.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.6.有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是m.7.如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.8.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C 爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为.9.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?10.如图是一个长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放入一根细木条(木条的粗细忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是多少?答案解析1.如图,是一个棱长为8cm的正方体盒子,在顶点A处有一只蚂蚁,它想沿正方体表面爬行到达顶点C处,则蚂蚁爬行的最短路程是8cm.【分析】根据图形是立方体得出最短路径只有一种情况,利用勾股定理求出即可.【解答】解:如图所示:需要爬行的最短距离是AC的长,即AC=.故答案为:8.【点评】此题主要考查了平面展开图最短路径问题以及勾股定理的应用,得出正确的展开图是解决问题的关键.2.如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10cm.【分析】先把圆柱的侧面展开,连接AB,利用勾股定理求出AB的长即可.【解答】解:如图所示:连接AB,∵圆柱高8cm,底面圆周长为12cm,∴AC=×12=6cm,在Rt△ABC中,AB==10cm.故答案为:10【点评】本题考查的是平面展开﹣最短路径问题,解答此类问题的关键是画出圆柱的侧面展开图,利用勾股定理进行解答.3.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.4.如图,有一棱长为2dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为2dm.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和D点间的线段长,即可得到捆绑线绳的最短距离.在直角三角形中,一条直角边长等于两个棱长,另一条直角边长等于3个棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AD2=42+62=2,故AD=2dm.故答案为2.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.5.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.6.有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是2m.【分析】根据题意作出图形,然后根据勾股定理即可得到结论.【解答】解:如图,∵AC=1+2+1=4m,BC=10m,∴AB==2,∴最短的路径长是2.故答案为:2.【点评】本题考查了平面展开﹣最短路程问题,勾股定理,正确的作出图形是解题的关键.7.如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=8cm,AB=5+10=15cm,在Rt△ADB中,AD= =cm;(2)如图2,AN=5cm,ND=8+10=18cm,Rt△ADN中,AD===cm.(3)如图3,AD==,综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.8.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C 爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为6.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故答案为:6,【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.【点评】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.10.如图是一个长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放入一根细木条(木条的粗细忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是多少?【分析】直接利用勾股定理得出AC的长,进而得出AD的长.【解答】解:连接AC,AD,在Rt△ABC中,AC2=AB2+BC2,则AC===4,在Rt△ACD中,AD2=AC2+DC2,则AD==13,答:能放入的细木条的最大长度是13cm.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.。

勾股定理(求立体图形中的最短路径问题1)

勾股定理(求立体图形中的最短路径问题1)
老张讲数学
勾股定理(求立体图形中的最短距离 1)
学习探究一 圆柱体表面的最短路径
为筹备2019 年国庆晚会,同学们设计了一个圆筒 形灯罩,底色漆成白色,然后缠绕红色油线,如图 所示1,已知圆筒高 30cm ,其横截面周长为 40cm , 如果在圆筒表面恰好能缠绕油线 1圈,应至少裁剪 ____2____cm 的油线.
3
我可以这样想……
ቤተ መጻሕፍቲ ባይዱ
把圆柱形直筒沿 AD 所在直线展开,先求出第一圈 油线的最短长度。
E
在Rt△ABD 中,由勾
股定理得
D
D
D
AD 2=BD 2+AB 2
30c
A
A
A
mB
40cm
AD? 302 ? 402 ? 502 ? 50
50 ×2=100
如果油线缠绕四圈呢?缠绕 n圈呢?
我可以这样想……
通过平移把第一圈油线和第二圈油纸首尾衔接,构建 直角三角形,求最短距离。
E
E
E
D60c m
D 40c
m
D
60c m
A 40c
A 40c
A
80c
O
m
m
m
在Rt△AEO 中,由勾股定理得
AE 2=EO 2+AO 2
AE ? 602 ? 802 ? 1002 ? 100
学习探究二 长(正)方体表面的最短路径
? 如图,边长为2的正方体中,一只蚂蚁 从顶点A 出发沿着正方体的外表面爬到 顶点F的最短距离是 ________ .
3
A
①展开
D
②定点
③连线
④计算
AD ? 30 2 ? 40 2 ? 50 2 ? 50

2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版

2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版



【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.


∴CE= AC=

DE=



km.∴AE=


km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=

利用勾股定理解决立体图形问题

利用勾股定理解决立体图形问题

利用勾股定理解决立体图形问题勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。

一、长方体问题例1、如图1,图中有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A 、41cmB 、34cmC 、50cmD 、75cm分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC ,根据已知条件,可以判断BD 是Rt △BCD 的斜边,BD 是Rt △BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。

解:在Rt △ABC 中,AB=5,AC=4,根据勾股定理,得BC=22AC AB +=41,在Rt △BCD 中,CD=3,BC=41,BD=22CD BC +=50。

所以选C 。

说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。

二、圆柱问题例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。

由题意可知,S 、F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,于是我们就可以画出如图3的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。

解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm ),FB=18-1-1=16(cm ),在Rt △SBF 中,∠SBF=90°,由勾股定理得,SF=22FB SB +=221630+=34(cm ),所以蜘蛛所走的最短路线的长度是34cm 。

人教版数学八年级下册第十七章勾股定理勾股定理的应用立体图形中的最短路程问题优秀教学案例

人教版数学八年级下册第十七章勾股定理勾股定理的应用立体图形中的最短路程问题优秀教学案例
3.问题拓展:在学生解决问题后,提出更深入的问题,引导学生进行拓展思考。例如,问学生“最短路程问题在实际生活中有哪些应用?”引导学生思考数学与生活的联系。
(三)小组合作
1.分组合作:将学生分成小组,鼓励学生进行合作学习和讨论交流。每个小组共同解决问题,共同思考和探讨。
2.小组讨论:鼓励学生发表自己的观点和思考,培养学生的团队合作精神和沟通能力。学生可以通过讨论、辩论等方式,共同解决问题。
(3)通过实际问题,感受数学与生活的联系。
2.方法目标:通过本节课的学习,使学生掌握以下方法:
(1)观察分析法:观察立体图形,发现最短路程问题;
(2)勾股定理运用法:运用勾股定理,解决最短路程问题;
(3)实际问题解决法:将数学知识运用到实际生活中,解决实际问题。
(三)情感态度与价值观
1.情感目标:通过本节课的学习,使学生能够对数学产生浓厚的兴趣,激发学生学习数学的积极性。具体包括:
本节课的教学目标是通过解决立体图形中的最短路程问题,巩固学生对勾股定理的理解,提高学生运用勾股定理解决实际问题的能力。同时,通过小组合作、讨论交流的方式,培养学生的团队协作精神和沟通能力。
在教学过程中,我以生活中的实际问题为切入点,引导学生运用勾股定理解决立体图形中的最短路程问题。在解决问题的过程中,学生需要充分运用空间想象能力和逻辑思维能力,从而达到提高学生数学素养的目的。
为了更好地实施本节课的教学,我采用了多媒体教学手段,通过动画、图片等形式,直观地展示立体图形和最短路程问题,激发学生的学习兴趣,提高学生的参与度。同时,在教学过程中,我注重启发学生思考,引导学生发现规律,培养学生自主探究的能力。
在课堂拓展环节,我设计了一些具有挑战性的练习题,让学生在课后进行思考和探索,进一步提高学生的数学素养和解决问题的能力。通过对本节课的学习,学生不仅掌握了勾股定理在立体图形中的应用,还提高了空间想象能力和解决问题的能力,为今后的数学学习奠定了坚实的基础。

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例一、利用勾股定理解决立体图形问题勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。

一、长方体问题例1、如图1,图中有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A 、41cmB 、34cmC 、50cmD 、75cm分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC ,根据已知条件,可以判断BD 是Rt △BCD 的斜边,BD 是Rt △BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。

解:在Rt △ABC 中,AB=5,AC=4,根据勾股定理,得BC=22AC AB +=41,在Rt △BCD 中,CD=3,BC=41,BD=22CD BC +=50。

所以选C 。

说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。

二、圆柱问题例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。

由题意可知,S 、F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。

解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm ),FB=18―1―1=16(cm ),在Rt △SBF 中,∠SBF=90°,由勾股定理得,SF=22FB SB +=221630+=34(cm ),所以蜘蛛所走的最短路线的长度是34cm 。

14.2 勾股定理的应用 华东师大版数学八年级上册知识考点梳理课件

14.2 勾股定理的应用 华东师大版数学八年级上册知识考点梳理课件
又 ∵BF=6 cm,∴BG=5+6=11(cm).
在 Rt△ABG 中,AG= +
= + = (cm);
14.2 勾股定理的应用
返回目录
方案二:如图 2,当蚂蚁从点 A 出发经过 BF 到点 G


题 时(将前面和右面展开),

∵AB=3 cm,BC=5 cm,
设 B′E=BE=x,则 CE=4-x.
∵S△AEC=

Βιβλιοθήκη CE×AB=
(4-x)×3=




AC×B′E,
×5x,解得 x=


,∴B′E=


.
14.2 勾股定理的应用
返回目录
变式衍生 1
如图,在长方形 ABCD 中,AB=8,BC=4


题 ,将长方形沿 AC折叠,点 D 落在点 D′处,则重叠部分

破 ,BF=6 cm,蚂蚁要沿着怎样的路线爬行,才能最快吃到饼
干渣? 这时蚂蚁走过的路程是多少?
14.2 勾股定理的应用
返回目录
[答案]解:分以下三种方案讨论:


方案一:如图 1,当蚂蚁从点 A 出发经过 EF 到点 G


突 时(将前面和上面展开),

∵BC=5 cm,∴FG=BC=5 cm.
对点典例剖析


典例
如图,一架 2.5 m 长的梯子AB 斜靠在墙 AC 上


解 ,梯子的顶端 A离地面的高度为 2.4 m,如果梯子的底部 B
读 向外滑出 1.3 m 后停在 DE位置上,则梯子的顶部下滑多少

立体图形上的最短路径问题

立体图形上的最短路径问题

【答案】13cm 【解析】 试题分析:
只需将其展开便可直观得出解题思路,将台阶展开得到的是一个矩形,蚂蚁要从 B 点到 A 点
的最短距离,便是矩形的对角线,利用勾股定理即可解出答案. 试题解析:
解:展开图如图所示, AB 52 122 13cm
所以,蚂蚁爬行的最短路线是 13cm
类型二 通过旋转来转化 【例题 2】如下图,正四棱柱的底面边长为 5cm,侧棱长为 8cm,一只蚂蚁欲从正四棱柱底 面上的 A 点沿棱柱侧面到点 C’处吃食物,那么它需要爬行的最短路径的长是多少?
A. 13
【答案】B 【解析】 试题分析:
B. 17
C.1 D. 2 5
根据已知得出蚂蚁从盒外的 B 点沿正方形的表面爬到盒内的 M 点,蚂蚁爬行的最短距离是
如图 BM 的长度,进而利用勾股定理求出 试题解析:
解:∵蚂蚁从盒外的 B 点沿正方体的表面爬到盒内的 M 点 ∴ 蚂蚁爬行的最短距离是如图 BM 的长度 ∵无盖的正方体盒子的棱长为 2, BC 的中点为 M ∴ A1B 2 2 4 A1M 1 ∴ BM 42 12 17
【难度】较易 类型二 通过旋转来转化 2.(2015·陕西)有一个圆柱形油罐,已知油罐周长是 12m,高 AB 是 5m,要从点 A 处开 始绕油罐一周造梯子,正好到达 A 点的正上方 B 处,问梯子最短有多长?
【答案】13m
【解析】
试题分析:把圆柱沿 AB 侧面展开,连接 AB ,再根据勾股定理得出结论
【答案】 34cm
【解析】 试题分析:
展开后连接 SF ,求出 SF 的长就是捕获苍蝇的最短路径,过点 S 作 SE CD 于 E ,求出 SE 、 EF ,根据勾股定理求出 SF 即可.

勾股定理_

勾股定理_

课程主题:勾股定理学习目标1.能够利用勾股定理解决实际问题经典题勾股定理【知识点】利用勾股定理求立体图形表面爬行最短距离:(1)将立体图形侧面展开到一个平面中;(2)利用两点之间线段最短在展开平面内找出最短路径;(3)利用勾股定理求出最短路径.1.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A. 20 cmB. 10 cmC. 14 cmD. 无法确定2.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A. 5√21B. 25C. 10√5+5D. 353.如图在棱长为1的正方体ABCD﹣A1B1C1D1中,一只蚂蚁从点A出发,沿正方体表面爬行到面对角线A1B 上的一点P,再沿截面A1BCD1爬行到点D1,则整个过程中蚂蚁爬行的最短路程为()A. 2B. √2+√62C. 2+√2D. √2+√24.如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A. 9米B. 15米C. 21米D. 24米5.如图,一架梯子AB长5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为3米,梯子滑动后停在DE的位置上,测得BD长为1米,则梯子顶端A下落了()A. 1米B. 2米C. 3米D. 5米6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米7.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A. x2−3= (10−x)2B. x2−32=(10−x)2C. x2+3=(10−x)2D. x2+32=(10−x)28.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A. 13B. 26C. 34D. 479.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A. 4;B. 6;C. 16;D. 55.10.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A. 2;B. √3;C. √2;11.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1,S2,S3,若S1+S2+ S3=18,则正方形EFGH的面积为()A. 9;B. 6;C. 5;D. 9.212.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A. 3cm;B. 6cm;C. 3√2cm;D. 6√2cm.13.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. 90°;B. 60°;C. 45°;D. 30°.14.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A. √5;B. 2√2;C. √3;D. 2.5.15.如图,正方形ABCD中,E为边CD上的一点,且CE=3DE,连接BE,将ΔCBE沿BE翻折,使点C落在C′处,延长BC′交AD于点F,连接EF,若AF=7,则线段EF的长为_________.16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将ΔABP沿BP翻折至ΔEBP,PE,BE与CD分别交于点G,F,且PG=GF,则PD的长为_________.17.如图,有一圆柱体,它的高为8cm,底面半径为2cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________cm(π取3).18.印度数学家什迦罗(1141年﹣1225年)曾提出过“荷花问题”:平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?如图所示:荷花茎与湖面的交点为O,点O距荷花的底端A的距离为0.5尺;被强风吹一边后,荷花底端与湖面交于点B,点B到点O的距离为2尺,则湖水深度OC的长是______尺.19.如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离5cm,一只蚂蚁如果沿着长方体的表面从A点爬到B点,需要爬行的最短距离是________.20.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2m,坡角∠A=30∘,∠B= 90∘,BC=6m.当正方形DEFH运动到什么位置,即当AE=_____m时,有DC2=AE2+BC2.21.如图,OA1=A1A2=A2A3=A3A4=⋯=﹣1A n=1,∠OA1A2=∠OA2A3=∠OA3a4=⋯=∠O﹣1A n=90∘(n>1,且n为整数).那么OA2=,OA4=,…,OA n=.22.勾股定理有着悠久的历史,它神秘而美妙,曾引起很多人的兴趣. 如图所示,AB为Rt△ABC的斜边,四边形ABGM,APQC,BCDE均为正方形,四边形RFHN是长方形,若BC=3,AC=4,则图中空白部分的面积是.23.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长1倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为;再把正方形A1B1C1D1的各边分别延长1倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形A n B n C n D n的面积为(用含n的式子表示,n为正整数)24.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要米.25.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要______cm;26.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,则三角形为三角形.27.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.28.如图,圆柱形玻璃容器高19cm,底面周长为60cm,在外侧距下底1.5cm的点A处有一只蜘蛛,距蜘蛛正对面的圆柱形容器的上底1.5cm处的点B处有一只苍蠅,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短长度.29.阅读下面材料,回答问题:(1)在化简√5−2√6的过程中,小张和小李的化简结果不同;小张的化简如下:√5−2√6=√2−2√2×3+3=√(√2−√3)2=√2−√3;小李的化简如下:√5−2√6=√2−2√2×3+3=√(√2−√3)2=√3−√2.请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简:①√3+2√2;②√6−2√5.30.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?31.细心观察下图,认真分析各式,然后解答问题.(√1)2+1=2,S1=√1 2(√2)2+1=3,S2=√2 2(√3)2+1=4,S3=√3 2(1)请用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+S22+S32+⋯+S102的值.32.(1)操作发现·如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探究保持(1)中的条件不变,若DC=n·DF,求的值.。

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》PPT

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》PPT

8cm的长方体牛奶盒,现在A处有一只蚂蚁,想
沿着长方体的外表面到达B处吃食物,求蚂蚁爬
行的最短距离是多少? B (1)点A处在几个面 上? 点B呢?
牛奶盒
A 10cm
8cm (2)蚂蚁从点A到点B至 少要经过几个面?分别
6cm 有哪些情况? (3)如何展开长方体?
B3 解:由题意知有三种展开方法, 如图.由勾股定理得
B1 B
AB12 102 6 82
296 2 74
AB2 82 10 62
8
B2
320 8 5
AB3 62 10 82
A
10
360 6 10
6
∴AB1<AB2<AB3.
∴小蚂蚁完成任务的最短
路程为AB1,长为2 74 cm.
拓展提升
若长方体的长,宽,高分别为a,b 和c,且a>b>c,则沿长方体表面从A到 Cˊ所走的最短路程是
归纳总结
二、数学思想: 立体图形
转化 展开
转化思想
平面图形
课后作业
1.如图,是一个边长为1的正方体硬纸盒,现在A处有 一只蚂蚁,想沿着正方体的外表面到达B处吃食物,
求蚂蚁爬行的最短距离是多少. B
A 2.为筹备迎接新生晚会,同学们设计了一个圆筒 形灯罩,底色漆成白色,然后缠绕红色油纸,如 图.已知圆筒的高为108cm,其横截面周长为36cm, 如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?
(2)这条“径路”长 5 米,他们少走了 4
为1米)A?
Байду номын сангаас
别踩我,我怕疼 A

!
步(设两步
C
B
C
B
研学问题

勾股定理与立体形的关系

勾股定理与立体形的关系

勾股定理与立体形的关系勾股定理是几何学中著名的数学定理,描述了直角三角形中的边之间的关系。

而立体形指的是在三维空间中具有形状和体积的物体。

本文将探讨勾股定理与立体形之间的关系以及在实际应用中的应用情况。

一、勾股定理的基本原理勾股定理是指在直角三角形中,斜边的平方等于两个直角边平方的和。

设直角三角形的两个直角边长分别为a和b,斜边的长度为c,则根据勾股定理可以得出等式:a² + b² = c²。

二、勾股定理与平面图形的关系在平面几何中,根据勾股定理可以计算和推导不同形状的平面图形的边长。

以直角三角形为例,当已知两个直角边的长度时,可以利用勾股定理计算斜边的长度。

同时,可以通过勾股定理来判断给定的三条边是否构成直角三角形。

除了直角三角形,勾股定理也可以用于计算其他形状的平面图形,如矩形、正方形、菱形等。

通过应用勾股定理,可以计算这些平面图形的对角线长度、边长等尺寸信息,为实际应用提供了重要的数学基础。

三、勾股定理与立体形的计算在三维空间中,立体形由各种平面图形组成,这些图形之间可能存在直角关系。

利用勾股定理,可以计算立体形的尺寸、角度,并进行形状的判断。

以立方体为例,立方体是一种具有6个正方形面的特殊立体形。

当已知立方体的一个面的边长时,可以通过勾股定理计算立方体的对角线长度。

此外,勾股定理还可用于判断给定的立体形是否具有直角关系。

四、勾股定理在实际应用中的例子勾股定理在工程、建筑和日常生活中有着广泛的应用。

以下是一些实际应用的例子:1. 建筑设计:勾股定理可用于计算建筑物中不同部分的尺寸关系,如墙壁、地板、屋顶等。

2. 工程测量:通过勾股定理可以确定测量点之间的距离和角度,为工程设计和施工提供准确的数据。

3. 地图测绘:勾股定理可以应用于地图测绘中,计算地图上两点之间的直线距离。

4. 三维投影:在计算机图形学中,勾股定理可以用于三维物体的投影和旋转计算。

总结:勾股定理是一项重要的数学定理,它不仅仅适用于平面几何中的图形计算,还可以应用于三维空间中的立体形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用勾股定理解决立体图形问题
勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。

一、长方体问题
例1、如图1,图中有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )
A 、41cm
B 、34cm
C 、50cm
D 、75cm
分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC ,根据已知条件,可以判断BD 是Rt △BCD 的斜边,BD 是Rt △BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。

解:在Rt △ABC 中,AB=5,AC=4,根据勾股定理,
得BC=22AC AB +=41,
在Rt △BCD 中,CD=3,BC=41, BD=22CD BC +=50。

所以选C 。

说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。

二、圆柱问题
例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?
分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。

由题意可知,S 、F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。

解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm ),FB=18―1―1=16(cm ),在Rt △SBF 中,∠SBF=90°,由勾股定理得,SF=22FB SB +=221630+=34(cm ),所以蜘蛛所走的最短路线的长度是34cm 。

说明:将立体图形展开,转化为平面图形,或将曲面转化为平面,然后再运用“两点之间,线段最短”和勾股定理,则是求立体图形上任意两点间的最短距离的常用的方法,这也是一种重要的数学思想----转化思想。

相关文档
最新文档