人教版八年级数学上册练习题

合集下载

人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套《11.1.1 三角形的边》同步练习一、选择题(共15题)1、图中三角形的个数是()A、8个B、9个C、10个D、11个2、至少有两边相等的三角形是()A、等边三角形B、等腰三角形C、等腰直角三角形D、锐角三角形3、已知三角形的三边为4、5、x ,则不可能是()A、6B、5C、4D、14、以下三条线段为边,能组成三角形的是()A、1cm、2cm、3cmB、2cm、2cm、4cmC、3cm、4cm、5 cmD、4cm、8cm、2cm5、一个三角形的两边分别为5cm、11cm,那么第三边只能是()A、3cmB、4cmC、5cmD、7cm6、下列长度的各组线段中,不能组成三角形的是()A、1.5,2.5,3.5B、2,3,5C、6,8,10D、4,3,37、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A、13cmB、6cmC、5cmD、4cm8、若三角形的三边长分别为3,4,x-1,则x的取值范围是( )A、0<x<8B、2<x<8C、0<x<6D、2<x<69、已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()A、2个B、3个C、5个D、7个10、小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A、3kmB、7kmC、3km或7kmD、不小于3km也不大于7km11、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个12、若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A、7B、6C、5D、413、已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A、8cmB、10cmC、8cm或10cmD、8cm或9cm14、△ABC的三边分别为a , b , c且(a+b-c)(a-c)=0,那么△ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形15、如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A、6B、7C、8D、10二、填空题16、按照三个内角的大小,可以将三角形分为锐角三角形、________、________;按照有几条边相等,可以将三角形分为等边三角形、________、________.17、△ABC的三边分别为a , b , c.则同时有________,理由:________.18、等腰三角形的一边为6,另一边为12,则其周长为________.19、一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长________cm.20、某村庄和小学分别位于两条交叉的大路边(如图).可是,每年冬天麦田弄不好就会走出一条小路来.你说小学生为什么会这样走呢?________.21、小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是________.________ ________ 。

人教版八年级数学上册单元测试题及答案全套

人教版八年级数学上册单元测试题及答案全套

人教版八年级数学上册单元测试题及答案全套一、选择题(每小题2分,共20分)1. 下列运算中,结果是有理数的是()。

A. √7 + √5B. √8 + √16C. √11 + 5D. √3 + 2√72. 已知a、b为正有理数,且a > b,下列不等式中正确的是()。

A. a√2 > b√2B. a√3 < b√3C. a√5 > b√5D. a√6 < b√63. 下列数中,不能化成√10 形式的无理数是()。

A. √10 –√5B. (√15 + √5) –√10C. √10 + √5D. (√15 –√5) + √104. 已知√3 + √2 > x,下列结论错误的是()。

A. √2 < xB. √6 > xC. 2 < xD. 1 < x5. 若(a+b)√2 = a√3 + b√6,那么a:b等于()。

A. 1:2B. 2:1C. 1:1D. 1:36. 已知数集A = {x | x = 2k – 1,k∈Z},则集合A的元素个数是()。

A. 0B. 3C. 4D. 57. 过已知点P(a,b),不与直线y = 2x + 1平行的直线的个数是()。

A. 0B. 1C. ∞D. 28. 两直线k1∶-2x + y = 4,k2∶ 6x – 3y = 1,那么k1和k2的关系是()。

A. 相交B. 平行C. 重合D. 垂直9. 若线段AB的中点坐标是(2,1),A的坐标是(5,3),则B的坐标是()。

A. (-1,-1)B. (4,1)C. (3,5)D. (1,4)10. 在平面直角坐标系xOy中,点A(7,3)关于y轴的对称点是()。

A. (7,3)B. (3,7)C. (-7,3)D. (7,-3)二、填空题(每小题2分,共20分)11. 设√a = √2 + √3,则a等于填空。

12. 若x∈R 且√(x+1) = 2,则x的值为填空。

人教版八年级数学上册单元测试题附答案全套

人教版八年级数学上册单元测试题附答案全套

人教版八年级数学上册单元测试题附答案全套第一单元:有理数单项选择题1.下列数中,哪个是负有理数?a.0b. 5c. -3d. 22.哪组数中,有一个正有理数和一个负有理数?a.{-2, -3}b. {0, 1}c. {5, 7}d. {-4, 4}3.下列数中,哪些是无理数?a.√2b. -7c. 0.5d. 3/74.若 a、b 均为正有理数,且 a > b,那么 a < 0 的可能性是多少?a.0b. 1c. 无穷大d. 无法确定5.若 a 和 b 是互为倒数的数,且 a 是正有理数,则 b 是:a.正有理数b. 负有理数c. 正无理数d. 负无理数解答题1.请用画数轴的方法表示 -2.5 这个有理数。

数轴2.判断下列数中哪些是有理数,哪些是无理数:√3、0.75、-5.5、0、5/4–有理数:0.75、-5.5、0、5/4–无理数:√3答案单项选择题答案:1. c 2. b 3. a 4. a 5. d解答题答案: 1.2. 有理数:0.75、-5.5、0、5/4,无理数:√3第二单元:整式的加减单项选择题1.下列算式中,不是整式的是:a.3x + y + 5b. 2x² - 3x + 4c. 4√2 + 7d. 6x - 5y - 42.下列算式中,能简化为整式的是:a.3x - √2b. 6x - 2/xc. 5x + 1/2d. 4x - √33.若 a = 2x + 3y,b = 4x - 6y,则 a - b 的结果是:a.2x + 3yb. -2x - 9yc. 6x - 3yd. -6x + 9y解答题1.将算式 3xy + 7y² - 4yx - 5x²的项按 x 的次数从高到低写出来。

-5x² + (3xy - 4yx) + 7y²2.将算式 a = 2x + 3y 和 b = 4x - 6y 相加,并合并同类项。

初二数学练习题人教版上册

初二数学练习题人教版上册

初二数学练习题人教版上册1. 解方程(1) 解方程 3x + 4 = 14。

解:从方程 3x + 4 = 14,我们可以通过逆运算得到解。

首先,我们将等式两边同时减去 4,得到:3x = 10。

然后,将等式两边同时除以 3,得到:x = 10/3。

2. 分数运算(1) 将分数 3/5 和 1/4 相加并化简结果。

解:要将分数相加,我们需要找到两个分母的最小公倍数(LCM)。

在此例中,5 和 4 的最小公倍数为 20。

然后,我们将两个分数化为相同的分母,并进行加法运算:3/5 + 1/4 = 12/20 + 5/20 = 17/20。

3. 几何题(1) 在直角三角形 ABC 中,AB = 3, AC = 4。

求 BC 的长度。

解:根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。

在此例中,BC 就是直角边。

所以,BC 的长度可以通过计算得到:BC^2 = AB^2 + AC^2BC^2 = 3^2 + 4^2BC^2 = 9 + 16BC^2 = 25BC = √25BC = 5。

4. 比例题(1) 若两条直线的斜率相等,它们是平行线还是重合直线?解:如果两条直线的斜率相等,那么它们是平行线。

因为斜率是直线的倾斜程度的度量,相等的斜率表示两条直线的倾斜程度相同,因此它们将是平行的。

5. 数据统计(1) 某班级有 30 名学生,他们的身高数据如下:140 cm, 145 cm, 150 cm, 155 cm, 160 cm, 165 cm, 170 cm, 175 cm, 180 cm, 185 cm, 190 cm, 195 cm, 200 cm, 205 cm, 210 cm, 215 cm, 220 cm, 225 cm, 230 cm, 235 cm, 240 cm, 245 cm, 250 cm, 255 cm, 260 cm, 265 cm, 270 cm, 275 cm, 280 cm, 285 cm。

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。

八年级数学上册《第十四章整式的乘法》练习题附带答案-人教版

八年级数学上册《第十四章整式的乘法》练习题附带答案-人教版

八年级数学上册《第十四章整式的乘法》练习题附带答案-人教版一、选择题1.计算a·5ab=( ).A.5ab B.6a2b C.5a2b D.10ab2.计算:(﹣x)3•2x的结果是( )A.﹣2x4B.﹣2x3C.2x4D.2x33.若□×3xy=3x2y,则□内应填的单项式是( )A.xyB.3xyC.xD.3x4.计算-3x(2x2-5x-1)的结果是( )A.-6x3+15x2+3xB.-6x2-15x2-3xC.-6x3+15x2D.-6x3+15x2-15.如果一个长方体的长为(3m-4),宽为2m,高为m,则它的体积为( )A.3m3-4m2B.m2C.6m3-8m2D.6m2-8m6.满足2x(x-1)-x(2x-5)=12的x的值为( )A.0B.1C.2D.47.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣68.若(x+a)与(x+3)的乘积中不含x的一次项,则a的值为( )A.3B.﹣3C.1D.﹣19.计算(2x-1)(5x+2)等于( )A.10x2-2B.10x2-x-2C.10x2+4x-2D.10x2-5x-210.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),(1﹣x)(1+x+x2+x3),…,猜想(1﹣x)(1+x +x2+…+x n)的结果是( )A.1﹣x n+1B.1+x n+1C.1﹣x nD.1+x n二、填空题11.计算:.12.如果x n y4与2xy m相乘的结果是2x5y7,那么mn= .13.计算:2x(3x2-x+1)=14.如图是一个L形钢条的截面,它的面积为________15.计算(1+a)(1-2a)+a(a-2)=________.16.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.三、解答题17.化简:(-3ab2)3·(-13 ac)218.化简:ab(3a﹣2b)+2ab2.19.化简:(2x﹣5)(3x+2);20.化简:x(4x+3y)-(2x+y)(2x-y)21.市环保局将一个长为2×106分米,宽为4×104分米,高为8×102分米的长方体废水池中的满池废水注入正方体贮水池净化,那么请你想一想,能否恰好有一个正方体贮水池将这些废水刚好装满?若有,求出正方体贮水池的棱长;若没有,请说明理由.22.先化简,再求值:3ab[(-2ab)2-3b(ab-a2b)+ab2],其中a=-1,b=13 .23.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?24.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.25.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=_______,S2=_______;(2)求a,b满足的关系式,写出推导过程.参考答案1.C2.A.3.C4.A5.C6.D7.B.8.B.9.B10.A11.答案为:12.答案为:1213.答案为:6x3-2x2+2x.14.答案为:ac+bc-c2.15.答案为:-a2-3a+116.答案为:817.原式=-3a5b6c218.原式=3a2b﹣2ab2+2ab2=3a2b.19.原式=6x2+4x﹣15x﹣10=6x2﹣11x﹣10.20.原式=3xy+y2;21.解:有.因为长方体废水池的容积为(2×106)×(4×104)×(8×102)=64×1012=(4×104)3所以正方体水池的棱长为4×104分米22.解:原式=21a3b3-6a2b3.将中a=-1,b=13代入,原式=-1.23.解:(1)卧室的面积是2b(4a﹣2a)=4ab(平方米)厨房、卫生间、客厅的面积和是b·(4a ﹣2a﹣a)+a·(4b﹣2b)+2a·4b=ab+2ab+8ab=11ab(平方米)即木地板需要4ab平方米,地砖需要11ab平方米.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元),即王老师需要花23abx元.24.解:原式=mx3+(m-3)x2-(3+mn)x+3n由展开式中不含x2和常数项,得到m-3=0,3n=0解得m=3,n=0.25.解:(1)a(x+a),4b(x+2b);(2)由(1)知:S1=a(x+a),S2=4b(x+2b)∴S1-S2=a(x+a)-4b(x+2b)=ax+a2-4bx-8b2=(a-4b)x+a2-8b2∵S1与S2的差总保持不变∴a-4b=0.∴a=4b.。

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

人教版八年级上册数学 全册全套试卷练习(Word版 含答案)

人教版八年级上册数学 全册全套试卷练习(Word版 含答案)

人教版八年级上册数学 全册全套试卷练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.【答案】1.5或5或9【解析】【分析】分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.2.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键. 3.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______. 【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.5.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.6.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.【答案】30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.二、八年级数学三角形选择题(难)7.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠,...,6A BC ∠与6A CD ∠的平分线相交于点7A ,得7A ∠,则7A ∠=( )A .32αB .64αC .128αD .256α 【答案】C【解析】【分析】 根据角平分线的性质及外角的性质可得11122A A α∠=∠=,同理可得2212A α∠=,3312A α∠=,由此可归纳出12n nA α∠=,易知7A ∠. 【详解】解:ABC ∠与ACD ∠的平分线交于点1A 1111,22A BC ABC ACD ACD ∴∠=∠∠=∠ 111ACD A BC A ∠=∠+∠ 11122ACD ABC A ∴∠=∠+∠ ACD ABC A ∠=∠+∠111222ACD ABC A ∴∠=∠+∠ 11122A A α∴∠=∠= 同理可得21211112222A A αα∠=∠=⨯=,3231122A A α∠=∠=,…,由此可知12n n A α∠=, 所以7712128A αα∠==. 故选:C.【点睛】本题考查了角平分线的性质及图形的规律探究,灵活的利用角平分线的性质及外角的性质确定角的变化规律是解题的关键.8.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④【答案】C【解析】【分析】 根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO ,CO 分别平分∠ABC ,∠ACB ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1, ∴∠OBC+∠OCB=12(∠ABC+∠ACB )=12(180°-∠1)=90°-12∠1, ∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1, ∵∠ACD=∠ABC+∠1,CE 平分∠ACD , ∴∠ECD=12∠ACD=12(∠ABC+∠1), ∵∠ECD=∠OBC+∠2, ∴∠2=12∠1,即∠1=2∠2, ∴∠BOC=90°+12∠1=90°+∠2, ∴①④正确,②③错误, 故选C.【点睛】 本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.9.如图:在△ABC 中,G 是它的重心,AG ⊥CD ,如果32BG AC ⋅=,则△AGC 的面积的最大值是( )A .3B .8C .43D .6 【答案】B【解析】分析:延长BG 交AC 于D .由重心的性质得到 BG =2GD ,D 为AC 的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC =2GD ,即有BG =AC ,从而得到AC 、GD 的长.当GD ⊥AC 时,△AGC 的面积的最大,最大值为:12AC •GD ,即可得出结论. 详解:延长BG 交AC 于D .∵G 是△ABC 的重心,∴BG =2GD ,D 为AC 的中点.∵AG ⊥CG ,∴△AGC 是直角三角形,∴AC =2GD ,∴BG =AC .∵BG •AC =32,∴AC 322,GD =22当GD ⊥AC 时,.△AGC 的面积的最大,最大值为:12AC•GD=142222⨯⨯=8.故选B.点睛:本题考查了重心的性质.解题的关键是熟知三角形的重心到顶点的距离等于它到对边中点距离的2倍.10.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】根据多边形的内角和公式()2180n-•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.11.下列长度的三根小木棒能构成三角形的是( )A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.12.以下列数据为长度的三条线段,能组成三角形的是()A .2 cm 、3cm 、5cmB .2 cm 、3 cm 、4 cmC .3 cm 、5 cm 、9 cmD .8 cm 、4 cm 、4 cm【答案】B【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】A 、2+3=5,故本选项错误.B 、2+3>4,故本选项正确.C 、3+5<9,故本选项错误.D 、4+4=8,故本选项错误.故选B .【点睛】本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.三、八年级数学全等三角形填空题(难)13.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.①ABD ACE ∆≅∆②45ACE DBC ∠+∠=︒③BD CE ⊥④180EAB DBC ∠+∠=︒【答案】①②③④【解析】【分析】根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.【详解】解:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即:∠BAD=∠CAE ,∵AB=AC ,AE=AD ,∴△BAD ≌△CAE (SAS ),故①正确;∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,故②正确;∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD ⊥CE ,故③正确;∵90BAC DAE ∠=∠=︒,∴∠BAE+∠DAC=180°,∵∠ADB=∠E=45°,∴DAC DBC ∠=∠,∴180EAB DBC ∠+∠=︒,故④正确;故答案为:①②③④.【点睛】此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.14.已知:如图,△ABC 和△DEC 都是等边三角形,D 是BC 延长线上一点,AD 与BE 相交于点P ,AC 、BE 相交于点M ,AD ,CE 相交于点N ,则下列五个结论:①AD =BE ;②AP =BM ;③∠APM =60°;④△CMN 是等边三角形;⑤连接CP ,则CP 平分∠BPD ,其中,正确的是_____.(填写序号)【答案】①③④⑤.【解析】【分析】①根据△ACD ≌△BCE (SAS )即可证明AD =BE ;②根据△ACN ≌△BCM (ASA )即可证明AN =BM ,从而判断AP ≠BM ;③根据∠CBE +∠CDA =60°即可求出∠APM =60°;④根据△ACN ≌△BCM 及∠MCN =60°可知△CMN 为等边三角形;⑤根据角平分线的性质可知.【详解】①∵△ABC 和△CDE 都是等边三角形∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°∴∠ACE =60°∴∠ACD=∠BCE=120°在△ACD和△BCE中CA CBACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS)∴AD=BE;②∵△ACD≌△BCE∴∠CAD=∠CBE在△ACN和△BCM中ACN BCMCA CBCAN CBM∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACN≌△BCM(ASA)∴AN=BM;③∵∠CAD+∠CDA=60°而∠CAD=∠CBE∴∠CBE+∠CDA=60°∴∠BPD=120°∴∠APM=60°;④∵△ACN≌△BCM∴CN=BM而∠MCN=60°∴△CMN为等边三角形;⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图∵△ACD≌△BCE∴CQ=CH∴CP平分∠BPD.故答案为:①③④⑤.【点睛】本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.15.如图,Rt△ABC中,∠ACB=90°,AC=BC,CF交AB于E,BD⊥CF,AF⊥CF,则下列结论:①∠ACF=∠CBD②BD=FC③FC=FD+AF④AE=DC中,正确的结论是____________(填正确结论的编号)【答案】①②③【解析】【分析】根据同角的余角相等,可得到结论①,再证明△ACF≌△CBD,然后根据全等三角形的性质判断结论②、③、④即可.【详解】解:∵BD⊥CF,AF⊥CF,∴∠BDC=∠AFC=90°,∵∠ACB=90°,∴∠ACF+∠BCD=∠CBD+∠BCD=90°,∴∠ACF=∠CBD,故①正确;在△ACF和△CBD中,BDC AFCACF CBDAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBD,∴BD=FC,CD=AF,故结论②正确∴FC=FD+CD=FD+AF,故结论③正确,∵在Rt△AEF中,AE>AF,∴AE>CD,故结论④错误.综上所述,正确的结论是:①②③.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握判定方法及全等的性质是解题的关键.16.如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD 之间的距离等于____.【答案】2【解析】过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.点睛:本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.17.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.【答案】①③【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;③∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC,即2S四边形AEPF=S△ABC;正确;④根据等腰直角三角形的性质,EF=2PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=2PE=AP,在其它位置时EF≠AP,故④错误;故答案为:①③.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.18.如图,△ABC与△DEF为等边三角形,其边长分别为a,b,则△AEF的周长为___________.【答案】a+b【解析】先根据全等三角形的判定AAS判定△AEF≌△BFD,得出AE=BF,从而得出△AEF的周长=AF+AE+EF=AF+BF+EF=a+b.故答案为:a+b四、八年级数学全等三角形选择题(难)19.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CD B.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CD D.AB﹣AD与CB﹣CD的大小关系不确定【答案】A【解析】如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB-AD=AB-AE=BE,BC-CD=BC-CE,∵在△BCE中,BE>BC-CE,∴AB-AD>CB-CD.故选A.20.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④【答案】A【解析】【分析】根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC,∴∠BAF=∠CAE;在△AFB与△AEC中,AF AEBAF CAEAB AC⎧⎪∠∠⎨⎪⎩===,∴△AFB≌△AEC(SAS),∴BF=CE;∠ABF=∠ACE,∴A、F、B、C四点共圆,∴∠BFC=∠BAC=∠EAF;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.21.如图,点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,BF=CE,添加一个适当的条件后,仍不能使得△ABC≌△DEF()A.AC=DF B.AC∥DF C.∠A=∠D D.AB=DE【答案】A【解析】【分析】根据AB∥DE证得∠B=∠E,又已知BF=CE证得BC=EF,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB∥DE,∴∠B=∠E,∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,若添加AC=DF,则不能判定△ABC≌△DEF,故选项A符合题意;若添加AC∥DF,则∠ACB=∠DFE,可以判断△ABC≌△DEF(ASA),故选项B不符合题意;若添加∠A=∠D,可以判断△ABC≌△DEF(AAS),故选项C不符合题意;若添加AB=DE,可以判断△ABC≌△DEF(SAS),故选项D不符合题意;故选:A.【点睛】此题考查三角形全等的判定定理,熟练掌握定理,并能通过定理去判断条件是否符合全等是解决此题的关键.22.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,∴∠AOE=120°,故⑤正确,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.23.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.24.已知OD 平分∠MON,点A 、B 、C 分别在OM 、OD 、ON 上(点A 、B 、C 都不与点O 重合),且AB=BC, 则∠OAB 与∠BCO 的数量关系为( )A .∠OAB+∠BCO=180°B .∠OAB=∠BCOC .∠OAB+∠BCO=180°或∠OAB=∠BCOD .无法确定【答案】C【解析】根据题意画图,可知当C 处在C 1的位置时,两三角形全等,可知∠OAB=∠BCO ;当点C 处在C 2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.五、八年级数学轴对称三角形填空题(难)25.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.26.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD,则∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③OD=AD,则∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.27.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE 是等边三角形,∵△B′DE ≌△BDE ,∴B′F=12B′E=BE=2,DF=23, ∴GD=B′F=2, ∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.28.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∠BDF=∠CDA,∠A=∠DFB,BD=CD,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故③正确.作GM⊥AB于M.如图所示:∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.29.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.【详解】延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.30.已知等边△ABC 中,点D 为射线BA 上一点,作DE=DC ,交直线BC 于点E,∠ABC 的平分线BF 交CD 于点F ,过点A 作AH ⊥CD 于H ,当EDC=30︒,CF=43,则DH=______.【答案】23【解析】连接AF.∵△ABC 是等边三角形,∴AB=BC ,∠ABC=∠ACB=∠BAC=60°.∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBF BF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=2 3 .故答案为2 3 .点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.六、八年级数学轴对称三角形选择题(难)31.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2 B.3 C.4 D.5【答案】C【解析】以O点为圆心,OA为半径作圆与x轴有两交点,这两点显然符合题意.以A点为圆心,OA为半径作圆与x轴交与两点(O点除外).以OA中点为圆心OA长一半为半径作圆与x 轴有一交点.共4个点符合,32.平面直角坐标系中,已知A(2,0),B(0,2)若在坐标轴上取C点,使△ABC为等腰三角形,则满足条件的点C的个数是()A.4 B.6 C.7 D.8【答案】C【解析】【分析】【详解】解:如图,①以A为圆心,AB为半径画圆,交坐标轴于点B,C1,C2,C5,得到以A为顶点的等腰△ABC1,△ABC2,△ABC5;②以B为圆心,AB为半径画圆,交坐标轴于点A,C3,C6,C7,得到以B为顶点的等腰△BAC3,△BAC6,△BAC7;③作AB的垂直平分线,交x轴于点C4,得到以C为顶点的等腰△C4AB∴符合条件的点C共7个故选C33.如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为()A.2 B.3 C.4 D.5【答案】A【解析】【分析】首先证明△DOB ≌△COA (SAS ),推出S △DOB ﹣S △AOE =S △EOC ,再证明△OEC 是等腰直角三角形即可解决问题.【详解】∵A (a ,0),B (0,a ),∴OA =OB .∵△ODC 是等腰直角三角形,∴OD =OC ,∠D =∠DCO =45°.∵∠DOC =∠BOA =90°,∴∠DOB =∠COA .在△DOB 和△COA 中,∵OD =OC ,∠DOB =∠COA ,OB =OA ,∴△DOB ≌△COA (SAS ),∴∠D =∠OCA =45°,S △DOB ﹣S △AOE =S △EOC .∵OE ⊥AC ,∴∠OEC =90°,∴△CEO 是等腰直角三角形,∴OE =EC =2,∴S △DOB ﹣S △AOE =S △EOC 12=⨯2×2=2. 故选A .【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明△OEC 是等腰直角三角形.34.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】A【解析】【分析】 ①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解; ②先求出∠APB =∠FPB ,再利用“角边角”证明△ABP 和△FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;③根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明△AHP 与△FDP 全等,根据全等三角形对应边相等可得DF =AH ;④求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后根据即可得到DG GH =+. 【详解】解:①∵∠ABC 的角平分线BE 和∠BAC 的外角平分线,∴∠ABP =12∠ABC , ∠CAP =12(90°+∠ABC )=45°+12∠ABC , 在△ABP 中,∠APB =180°−∠BAP−∠ABP ,=180°−(45°+12∠ABC +90°−∠ABC )−12∠ABC , =180°−45°−12∠ABC−90°+∠ABC−12∠ABC , =45°,故本小题正确;②∵PF ⊥AD ,∠APB =45°(已证),∴∠APB =∠FPB =45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中, APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴FG=GH,AF=2PA故2DG PA GH =+.综上所述①②③④正确.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.35.如图所示,在等边△ABC 中,E 是AC 边的中点,AD 是BC 边上的中线,P 是AD 上的动点,若AD =3,则EP +CP 的最小值为( )A .2B .3C .4D .5【答案】B【解析】 由等边三角形的性质得,点B ,C 关于AD 对称,连接BE 交AD 于点P ,则EP+CP=BE 最小,又BE=AD ,所以EP+CP 的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.36.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,。

数学人教版八年级上册习题及答案

数学人教版八年级上册习题及答案

因式分解专题过关1.将下列各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将下列各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.3.分解因式222222(1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232(1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y(4)4+12(x﹣y)+9(x ﹣y)5.因式分解:(1)2am﹣8a(2)4x+4xy+xy23226.将下列各式分解因式:322222(1)3x﹣12x(2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y 223(2)(x+2y)﹣y228.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把下列各式分解因式:42422(1)x﹣7x+1(2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把下列各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2.3243222242432因式分解专题过关1.将下列各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将下列各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y);222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322(1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2);322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将下列各式分解因式:322222(1)3x﹣12x(2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).223222328.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;222422222424322222222(4)首先把多项式变为x+x+x++x+x+x+x+x+1,然后三个一组提取公因式,接着提取公因式即可求解.4242222222解答:解:(1)x﹣7x+1=x+2x+1﹣9x=(x+1)﹣(3x)=(x+3x+1)(x﹣3x+1);424222222(2)x+x+2ax+1﹣a=x+2x+1﹣x+2ax﹣a=(x+1)﹣(x﹣a)=(x+1+x2﹣a)(x+1﹣x+a);22242224(3)(1+y)﹣2x(1﹣y)+x(1﹣y)=(1+y)﹣2x(1﹣y)(1+y)+x222222(1﹣y)=(1+y)﹣2x(1﹣y)(1+y)+[x(1﹣y)]=[(1+y)﹣x(12222﹣y)]=(1+y﹣x+xy)432432322222(4)x+2x+3x+2x+1=x+x+x++x+x+x+x+x+1=x(x+x+1)+x(x+x+1)432322+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(3)x5+x+1;((2)2a2 b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(4)x3 +5x2+3x﹣9;。

人教版八年级数学上册全部课时小练习(含答案)

人教版八年级数学上册全部课时小练习(含答案)

第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80°B.90°C.20°D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30°B.40°C.50°D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61°B.39°C.29°D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60°B.36°C.54°D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80°B.90°C.100°D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30°B.40°C.60°D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180°B.360°C.540°D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?第十二章全等三角形12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30°B.60°C.20°D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________. 3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50°B.100°C.150°D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF 的面积相等.求证:AB平分∠CAF.第十三章轴对称13.1轴对称13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25°B.45°C.30°D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A =8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ;(2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是() A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为() A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A 的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为________.2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.第2题图第3题图3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为() A.35°B.45°C.55°D.60°4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.第2课时等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.第3题图第4题图4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.求证:△EFG是等腰三角形.13.3.2等边三角形第1课时等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.第1题图第3题图2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD 的度数.5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:(1)△ABE≌△ACD;(2)△ADE为等边三角形.第2课时含30°角的直角三角形的性质1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( ) A.3 B.4 C.5 D.6第1题图第2题图第3题图2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( )A.3.5 B.4.2 C.5.8 D.73.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF ⊥AC于点F,求BE+CF的值.5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.13.4 课题学习最短路径问题1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB 的值最小,则下列作法正确的是( )2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的一个内角第2题图第3题图3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( )A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.1 同底数幂的乘法1.化简a 2·a 的结果是( )A .a 2B .a 3C .a 4D .a 5 2.下列计算正确的是( )A .x 2·x 2=x 4B .x 3·x ·x 4=x 7C .a 4·a 4=a 16D .a ·a 2=a 2 3.填空:(1)(-a )5·(-a )2=________;(2)(a -b )·(a -b )2=________(结果用幂的形式表示); (3)a 3·a 2·(________)=a 11. 4.计算:(1)a 2·a 5+a ·a 3·a 3; (2)⎝⎛⎭⎫1104×⎝⎛⎭⎫1103.5.(1)若2x =3,2y =5,求2x +y 的值;(2)若32×27=3n ,求n 的值.1.计算(x3)4的结果是()A.x7B.x12C.x81D.x642.下列运算正确的是()A.(x3)2=x5B.(-x)5=-x5C.x3·x2=x6D.3x2+2x3=5x53.已知5y=2,则53y的值为()A.4 B.6 C.8 D.94.计算:(1)a6·(a2)3=________;(2)(-a3)2=________.5.计算:(1)(x3)2·(x2)3; (2)(-x2)3·x5;(3)-(-x2)3·(-x2)2-x·(-x3)3.6.若(27x)2=36,求x的值.1.计算(x 2y )2的结果是( )A .x 6yB .x 4y 2C .x 5yD .x 5y 2 2.计算(-2a 2b )3的结果是( )A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 3 3.若m 2·n 2=25,且m ,n 都为正实数,则mn 的值为( )A .4B .5C .6D .7 4.计算:(1)(mn 3)2=________; (2)(2a 3)3=________; (3)(-2x 2y )3=________;(4)⎝⎛⎭⎫-12x 3y 3=________. 5.计算:(1)(ab 2c 4)3; (2)(3a 2)3+(a 2)2·a 2;(3)(x n y 3n )2+(x 2y 6)n; (4)(-2×103)2;(5)4100×0.25100.14.1.4整式的乘法第1课时单项式与单项式、多项式相乘1.计算x3·4x2的结果是()A.4x5B.5x6C.4x6D.5x52.化简x(2-3x)的结果为()A.2x-6x2B.2x+6x2C.2x-3x2D.2x+3x23.下列各式中,计算正确的是()A.3a2·4a3=12a6B.2xy(3x2-4y)=6x3-8y2C.2x3·3x2=6x5D.(3x2+x-1)(-2x)=6x3+2x2-2x4.计算:(1)(6ab)·(3a2b)=__________;(2)(-2a2)2·a=__________;(3)(-2a2)(a-3)=__________.5.若一个长方形的长、宽分别是3x-4、2x,则它的面积为________.6.计算:(1)ab·(-3ab)2; (2)(-2a2)·(3ab2-5ab3).7.已知a=1,求代数式a(a2-a)+a2(5-a)-9的值.第2课时多项式与多项式相乘1.计算(x-1)(x-2)的结果为()A.x2+3x-2 B.x2-3x-2C.x2+3x+2 D.x2-3x+22.若(x+3)(x-5)=x2+mx-15,则实数m的值为()A.-5 B.-2 C.5 D.23.下列各式中,计算结果是x2+7x-18的是()A.(x-2)(x+9) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-1)(x+18)4.计算:(1)(2x+1)(x+3)=________________;(2)(y+3x)(3x-2y)=________________.5.一个长方形相邻的两条边长分别为2a+1和3a-1,则该长方形的面积为____________.6.计算:(1)(a+1)(2-b)-2a;(2)x(x-6)-(x-2)(x+1).7.先化简,再求值:(2a-3b)(a+2b)-a(2a+b),其中a=3,b=1.第3课时 整式的除法1.计算a 6÷a 2的结果为( )A .4a 4B .3a 3C .a 3D .a 4 2.下列计算正确的是( )A .x 8÷x 2=x 4B .(-x )6÷(-x )4=-x 2C .36a 3b 4÷9a 2b =4ab 3D .(2x 3-3x 2-x )÷(-x )=-2x 2+3x 3.计算:(1)20180=________; (2)a 8÷a 5=________; (3)a 6b 2÷(ab )2=________; (4)(14a 3b 2-21ab 2)÷7ab 2=________. 4.当m ________时,(m -2019)0的值等于1. 5.计算:(1)(-6m 4n 5)÷⎝⎛⎭⎫12m 2n 2; (2)(x 4y +6x 3y 2-x 2y 3)÷3x 2y .6.一个等边三角形框架的面积是4a 2-2a 2b +ab 2,一边上的高为2a ,求该三角形框架的边长.14.2 乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1)3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.14.3因式分解14.3.1提公因式法1.下列变形,是因式分解的是()A.x(x-1)=x2-x B.x2-x+1=x(x-1)+1C.x2-x=x(x-1) D.2a(b+c)=2ab+2ac2.多项式12ab3c+8a3b中各项的公因式是()A.4ab2B.4abc C.2ab2D.4ab3.把多项式m2-9m分解因式,结果正确的是()A.m(m-9) B.(m+3)(m-3)C.m(m+3)(m-3) D.(m-3)24.分解因式:(1)5a-10ab=____________;(2)x4+x3+x2=________________;(3)m(a-3)+2(3-a)=________________.5.计算:20182-2018×2017.6.分解因式:(1)2mx-6my; (2)3x(x+y)-(x+y)2. 7.先分解因式,再求值:a2b+ab2,其中a+b=3,ab=2.14.3.2公式法第1课时运用平方差公式分解因式1.多项式x2-4分解因式的结果是()A.(x+2)(x-2) B.(x-2)2C.(x+4)(x-4) D.x(x-4)2.下列多项式中能用平方差公式分解因式的是()A.a2+b2B.5m2-20mnC.x2+y2D.x2-93.分解因式3x3-12x,结果正确的是()A.3x(x-2)2B.3x(x+2)2C.3x(x2-4) D.3x(x-2)(x+2)4.因式分解:(1)9-b2=____________;(2)m2-4n2=____________.5.利用因式分解计算:752-252=________.6.若a+b=1,a-b=2007,则a2-b2=________.7.因式分解:(1)4x2-9y2; (2)-16+9a2;(3)9x2-(x+2y)2; (4)5m2a4-5m2b4.第2课时 运用完全平方公式分解因式1.把多项式x 2-8x +16分解因式,结果正确的是( )A .(x -4)2B .(x -8)2C .(x +4)(x -4)D .(x +8)(x -8)2.下列各式中,能用完全平方公式进行因式分解的是( )A .x 2-2x -2B .x 2+1C .x 2-4x +4D .x 2+4x +13.若代数式x 2+kx +49能分解成(x -7)2的形式,则实数k 的值为________.4.若x 2+kx +9是完全平方式,则实数k =________.5.因式分解:(1)x 2-6x +9=________;(2)-2a 2+4a -2=________.6.因式分解:(1)4m 2-2m +14; (2)2a 3-4a 2b +2ab 2;(3)(x +y )2-4(x +y )+4.7.先分解因式,再求值:x 3y +2x 2y 2+xy 3,其中x =1,y =2.第十五章 分 式15.1 分 式15.1.1 从分数到分式1.下列各式不是分式的是( )A.x yB.y π+yC.x 2D.1+x a 2.若分式x +1x -1有意义,则x 的取值范围是( ) A .x ≠1 B .x ≠-1 C .x =1 D .x =-13.如果分式|x |-1x -1的值为零,那么x 的值为( ) A .1 B .-1 C .0 D .±14.某人种了x 公顷的棉花,总产量为y 千克,则棉花的单位面积产量为________千克/公顷.5.当x =________时,分式x 2-9x -3的值为零. 6.x 取何值时,下列分式有意义?(1)x +22x -3; (2)6(x +3)|x |-12;(3)x +6x 2+1; (4)x (x -1)(x +5).15.1.2 分式的基本性质1.下列分式是最简分式的是( )A.x -13x -3B.3(x 2-y 2)x -yC.x -12x +1D.2x 4-2x2.分式x 5y 与3x 2y 2的最简公分母是( ) A .10xy B .10y 2 C .5y 2 D .y 23.根据分式的基本性质填空:(1)a +b ab =( )a 2b; (2)x 2+xy x 2=x +y ( ); (3)a -2a 2-4=1( ). 4.下列式子变形:①b a =b +1a +1;②b a =b -1a -1;③b -2a =2b -42a ;④a 2+a a 2-1=a a -1.其中正确的有________(填序号).5.约分:(1)-4x 2y 6xy 2=________; (2)a 2+2a a 2+4a +4=________. 6.通分:(1)x ac ,y bc ; (2)24-x 2,x x +2; (3)1x 2-6x +9,13x -9.15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除1.计算a bc ·c 2a 2的结果是( )A.c 2a 2b B.c ab C.c 2ab D.a 2bc2.计算2x 3÷1x 的结果是( )A .2x 2B .2x 4C .2xD .43.化简:(1)a 2+aba -b ÷aba -b =________;(2)2x +2y 5a 2b ·10ab 2x 2-y 2=________.4.计算:(1)xx 2-1÷1x +1; (2)x 2-9x 2+6x +9·3x 3+9x 2x 2-3x .5.先化简,再求值:x -2x +3·x 2-9x 2-4x +4,其中x =-1.第2课时 分式的乘方1.计算⎝⎛⎭⎫x2y 3的结果是( )A.x 38y 3 B.x 36y 3 C.x 8y 3 D.x 38y2.计算a 2·⎝⎛⎭⎫1a 3的结果是( )A .aB .a 5 C.1a D.1a 53.已知⎝⎛⎭⎫x3y 22·⎝⎛⎭⎫-y3x 2=6,则x 4y 2的值为( )A .6B .36C .12D .34.计算:(1)⎝⎛⎭⎫3b2a 2=________;(2)a 2b ·b2a =________;(3)⎝⎛⎭⎫-y 2ax 2÷y 24x =________.5.计算:(1)⎝⎛⎭⎫-3ac 2b 2; (2)a -b b ·b a 2-b 2; (3)-a 32b ÷⎝⎛⎭⎫-a 2b 3·b 2.6.先化简,再求值:a -a 2a 2-1÷a a -1·⎝ ⎛⎭⎪⎫a +1a -12,其中a =2.15.2.2 分式的加减第1课时 分式的加减1.计算x -1x +1x的结果是( )A.x +2xB.2xC.12 D .12.化简4x x -2-x2-x的结果是( )A.3x x -2B.5x 2-xC.5x x -2D.3x 2-x 3.计算: (1)1a 2-1+aa 2-1=________; (2)1a -1-1a (a -1)=________. 4.计算:(1)5a +3b a 2-b 2-2a a 2-b 2; (2)m m +n +m m -n -m 2m 2-n 2.5.先化简:x 2+x x 2+2x +1+1-xx 2-1,然后从-1≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.第2课时 分式的混合运算1.化简⎝⎛⎭⎫1+1x -2·x 2-2xx -1的结果为( )A .4xB .3xC .2xD .x2.化简:(1)⎝⎛⎭⎪⎫a +1a -1+11-a ÷a 1-a=________;(2)x 2-4x 2-2x +1·x -1x -2-x x -1=________. 3.计算:(1)a 2-16a +64a -8÷⎝⎛⎭⎫1-8a ; (2)⎝ ⎛⎭⎪⎫x 2-1x 2-2x +1+x +1x -1·1-x 1+x ;(3)⎝⎛⎭⎫x -1x ÷⎝⎛⎭⎫2x -1+x 2x ; (4)⎝⎛⎭⎫b 2a 2÷⎝⎛⎭⎫b a -14a ·23b .4.先化简,后求值:⎝⎛⎭⎫1x -1-1x +1÷xx 2-1,其中x =2.15.2.3 整数指数幂第1课时 负整数指数幂1.计算5-2的值是( )A .-125 B.125 C .25 D .-252.计算⎝⎛⎭⎫-12-1的结果是( ) A .-12 B.12 C .2 D .-23.计算a 3·a -5的结果是( )A .a 2B .a -2C .-a 2D .-a -2 4.若b =-3-2,c =⎝⎛⎭⎫13-2,d =⎝⎛⎭⎫-130,则( ) A .b <c <d B .b <d <c C .d <c <b D .c <d <b 5.计算:(1)(-2)0×3-2=________;(2)(x -1)2·x 3=________. 6.计算:(1)⎝⎛⎭⎫23-2×3-1+(π-2018)0÷⎝⎛⎭⎫13-1;(2)(ab -2)-2·(a -2)3;(3)(2xy -1)2·xy ÷(-2x -2y ).第2课时用科学记数法表示绝对值小于1的数1.0.000012用科学记数法表示为()A.120×10-4B.1.2×10-5C.-1.2×10-5D.-1.2×1052.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10-5B.4.32×10-6C.4.32×10-7D.43.2×10-73.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.若将0.0000025用科学记数法表示为2.5×10n(n为整数),则n 的值为()A.-7 B.-6 C.-5 D.64.用科学记数法把0.000009405表示成a×10-6,则a=________.5.用科学记数法表示下列各数:(1)0.0000314; (2)-0.0000064.6.用小数表示下列各数:(1)2×10-7; (2)2.71×10-5.7.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米.已知某种植物孢子的直径约为45000纳米,用科学记数法表示该孢子的直径约为多少米?15.3 分式方程第1课时 分式方程及其解法1.下列方程是分式方程的是( )A.12-x 3=0B.4x =-2 C .x 2-1=3 D .2x +1=3x2.以下是解分式方程1-x 2-x -3=1x -2时,去分母后的结果,其中正确的是( )A .1-x -3=1B .x -1-3x +6=1C .1-x -3x +6=1D .1-x -3x +6=-1 3.分式方程12x =2x +3的解是________.4.当实数m =________时,方程2m -1x =3的解为x =1.5.若关于x 的方程3x -1=1-k1-x 无解,则k 的值为________.6.解方程:(1)3x =2x +1; (2)3x +5-1x -1=0;(3)1x -2=4x 2-4; (4)1-13x -1=56x -2.第2课时 分式方程的应用1.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务.设这个工程队原计划每天要铺建x 米管道,则依题意所列方程正确的是( )A.2000x +2=20001.25xB.2000x =20001.25x -2C.2000x +20001.25x =2D.2000x -20001.25x=22.某特快列车在最近一次的铁路大提速后,平均时速提高了30千米/时,则该列车行驶350千米所用的时间比原来少用1小时.若该列车提速前的速度是x 千米/时,下列所列方程正确的是( )A.350x -350x -30=1B.350x -350x +30=1C.350x +30-350x =1D.350x -30-350x=13.学校最近新配备了一批图书需要甲、乙两人进行整理,若甲单独整理完成需要4小时;若甲、乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要多少小时?4.某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.第十一章 三角形 11.1 与三角形有关的线段11.1.1 三角形的边1.C 2.B 3.C 4.6 ∠B AE ∠AED ∠C5.解:(1)∵|a -3|+(b -2)2=0,∴a -3=0,b -2=0,∴a =3,b =2.由三角形三边关系得3-2<c <3+2,即1<c <5.(2)∵c 为整数,1<c <5,∴c =2或3或4.11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.2 7.解:(1)S △ABC =12AB ·CE =12×6×4.5=13.5.(2)∵S △ABC =12BC ·AD ,∴BC =2S △ABC AD =2×13.55=5.4.11.2 与三角形有关的角11.2.1 三角形的内角 第1课时 三角形的内角和1.D 2.B 3.30° 4.(1)27 (2)29 (3)595.解:∵∠BAC =65°,∠C =30°,∴∠B =85°.∵DE ∥BC ,∴∠BDE =180°-∠B =180°-85°=95°.第2课时 直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40° 6.解:∵∠A =70°,CE ,BF 是△ABC 的两条高,∴∠EBF =20°,∠ECA =20°.又∵∠BCE =30°,∴∠ACB =50°,∴在Rt △BCF 中,∠FBC =40°. 7.证明:∵∠ACB =90°,∴∠A +∠B =90°.∵∠ACD =∠B ,∴∠A +∠ACD =90°,∴∠ADC=90°,∴CD ⊥AB .11.2.2 三角形的外角1.70° 2.> 3.C 4.A 5.解:∵∠ACE =140°,∴∠ACB =40°.∵∠A =80°,∴∠1=40°+80°=120°.11.3 多边形及其内角和11.3.1 多边形1.A 2.B 3.B 4.B 5.18 6.4 57.解:(1)六边形ABCDEF ,它的内角是∠A ,∠B ,∠C ,∠D ,∠E ,∠F .(2)如图所示.(3)如图,∠DCG 即为点C 处的一个外角(答案不唯一).11.3.2 多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n 边形.由题意可得(n -2)·180°=3×360°,解得n =8.故该多边形为八边形.8.解:根据题意,设四边形ABCD 的四个外角的度数分别为3x ,4x ,5x ,6x ,则3x +4x +5x +6x =360°,解得x =20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C=90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF . (2)∵PE ⊥AB ,PF ⊥AC ,PE =PF ,∴点P 在∠BAC 的平分线上,故AP 平分∠BAC . 5.证明:∵DC =EF ,△DCB 和△EFB 的面积相等,∴点B 到AC ,AF 的距离相等,∴AB平分∠CAF .第十三章 轴对称 13.1 轴对称13.1.1 轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB 与A ′B ′是对应线段,∴AB =A ′B ′=6cm.又∵AC 与A ′C ′是对应线段,∴A ′C ′=AC =8cm.(2)∵∠A ′与∠A 是对应角,∴∠A ′=∠A =90°,∴S △A ′B ′C ′=A ′B ′·A ′C ′÷2=24(cm 2).13.1.2 线段的垂直平分线的性质 第1课时 线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD =BD .∵△ADC 的周长为11cm ,∴AC +CD +AD =AC +CD +BD =AC +BC =11cm.∵AC =4cm ,∴BC =7cm.第2课时 线段垂直平分线的有关作图1.D2.解:如图所示.。

人教版数学八年级上册 全册全套试卷练习(Word版 含答案)

人教版数学八年级上册 全册全套试卷练习(Word版 含答案)

人教版数学八年级上册全册全套试卷练习(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒, 45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x = 故 5.DE =()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,14.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65. 22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.2.如图,AB=12cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=9cm ,点P 在线段AB 上以3 cm/s 的速度,由A 向B 运动,同时点Q 在线段BD 上由B 向D 运动.(1)若点Q 的运动速度与点P 的运动速度相等,当运动时间t=1(s ),△ACP 与△BPQ 是否全等?说明理由,并直接判断此时线段PC 和线段PQ 的位置关系;(2)将 “AC ⊥AB ,BD ⊥AB ”改为“∠CAB=∠DBA ”,其他条件不变.若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使△ACP 与△BPQ 全等. (3)在图2的基础上延长AC ,BD 交于点E ,使C ,D 分别是AE ,BE 中点,若点Q 以(2)中的运动速度从点B 出发,点P 以原来速度从点A 同时出发,都逆时针沿△ABE 三边运动,求出经过多长时间点P 与点Q 第一次相遇.【答案】(1)△ACP ≌△BPQ ,理由见解析;线段PC 与线段PQ 垂直(2)1或32(3)9s 【解析】 【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,据此列出方程,解这个方程即可求得. 【详解】(1)当t=1时,AP=BQ=3,BP=AC=9, 又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ), ∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°, ∠CPQ=90°,则线段PC 与线段PQ 垂直. (2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912tt xt=-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xtt t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩,综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点; ∴EB=EA=18cm. 当V Q =1时, 依题意得3x=x+2×9, 解得x=9; 当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇. 【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.3.如图,在△ABC 中,∠ABC 为锐角,点D 为直线BC 上一动点,以AD 为直角边且在AD 的右侧作等腰直角三角形ADE ,∠DAE =90°,AD =AE .(1)如果AB =AC ,∠BAC =90°.①当点D 在线段BC 上时,如图1,线段CE 、BD 的位置关系为___________,数量关系为___________②当点D 在线段BC 的延长线上时,如图2,①中的结论是否仍然成立,请说明理由. (2)如图3,如果AB ≠AC ,∠BAC ≠90°,点D 在线段BC 上运动.探究:当∠ACB 多少度时,CE ⊥BC ?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】 【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系; ②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论. 【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD . 理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC , ∴∠BAD=∠CAE . 又 BA=CA ,AD=AE , ∴△ABD ≌△ACE (SAS ) ∴∠ACE=∠B=45°且 CE=BD . ∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD . 故答案为垂直,相等; ②都成立,理由如下: ∵∠BAC =∠DAE =90°, ∴∠BAC +∠DAC =∠DAE +∠DAC , ∴∠BAD =∠CAE , 在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC , ∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ; (2)当∠ACB =45°时,CE ⊥BD (如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°﹣∠ACB , ∴∠AGC =90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.4.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC =∠BAC+∠B+∠C ,理由是: 过点A 、D 作射线AF ,∵∠FDC =∠DAC+∠C ,∠BDF =∠B+∠BAD , ∴∠FDC+∠BDF =∠DAC+∠BAD+∠C+∠B , 即∠BDC =∠BAC+∠B+∠C ; (2)①如图(2),∵∠X =90°, 由(1)知:∠A+∠ABX+∠ACX =∠X =90°, ∵∠A =40°, ∴∠ABX+∠ACX =50°, 故答案为:50;②如图(3),∵∠A =40°,∠DBE =130°, ∴∠ADE+∠AEB =130°﹣40°=90°, ∵DC 平分∠ADB ,EC 平分∠AEB ,∴∠ADC =12∠ADB ,∠AEC =12∠AEB , ∴∠ADC+∠AEC =1(ADB AEB)2∠+∠=45°,∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°. 【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等. (1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等. 【答案】(1)见解析;(2)钝角三角形或直角三角形. 【解析】 【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证. 【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒. 在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌, ∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌, ∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒. ∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =, 再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠, 再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等; 故答案为:钝角三角形或直角三角形. 【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.二、八年级数学 轴对称解答题压轴题(难)6.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值; (3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】 【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形. 【详解】 解:(1)60°. (2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°. ∴QA=2PA . 即2022 2.t t -=⨯ 解得 10.3t =当∠AQP=90°时,∠APQ=90°-60°=30°. ∴PA=2QA . 即2(202)2.t t -= 解得 20.3t =∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t ∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形 ∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20 综上,当△APQ 为等边三角形时,t=5或20. 【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.7.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC 边上的中线AD 的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD 到E ,使DE=AD ,连接BE.根据SAS 可证得到△ADC ≌△EDB ,从而根据“三角形的三边关系”可求得AD 的取值范围是 .解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案. 【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.9.如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.10.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)【答案】(1)∠DBC60αBD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边︒+,BC=DC,然后利用三角形的三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差∠BEC60关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,︒+,BC=DC,∴∠BCD=602α∴∠DBC =∠BDC ()1806021806022BCD αα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+=201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.12.阅读下列解题过程,再解答后面的题目.例题:已知224250x y y x ++-+=,求x y +的值. 解:由已知得22(21)(44)0x x y y -++++=即22(1)(2)0x y -++=∵2(1)0x -≥,2(2)0y +≥ ∴有1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩∴1x y +=-.题目:已知22464100x y x y +-++=,求xy 的值. 【答案】-32【解析】【分析】 先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x 、y 的值,再代入求出xy 的值.【详解】解:将22464100x y x y +-++=,化简得22694410x x y y -++++=,即()()223210x y -++=.∵()230x -≥,()2210y +≥,且它们的和为0,∴3x = ,12y, ∴12233xy ⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.13.阅读理解:把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.(1)请写出一个六位连接数 ,它 (填“能”或“不能”)被13整除.(2)是否任意六位连接数,都能被13整除,请说明理由.(3)若一个四位连接数记为M ,它的各位数字之和的3倍记为N ,M ﹣N 的结果能被13整除,这样的四位连接数有几个?【答案】(1)证明见解析(2)abcabc 能被13整除(3)这样的四位连接数有1919,2525,3131,一共3个【解析】分析:(1)根据六位连接数的定义可知123123为六位连接数,再将123123进行因数分解,判断得出它能被13整除;(2)设abcabc 为六位连接数,将abcabc 进行因数分解,判断得出它能被13整除; (3)设xyxy 为四位连接数,用含x 、y 的代数式表示M 与N ,再计算M ﹣N ,然后将13M N -表示为77x +7y +3413x y +,根据M ﹣N 的结果能被13整除以及M 与N 都是1~9之间的整数,求得x 与y 的值,即可求解.详解:(1)123123为六位连接数;∵123123=123×1001=123×13×77,∴123123能被13整除;(2)任意六位连接数都能被13整除,理由如下:设abcabc 为六位连接数.∵abcabc =abc ×1001=abc ×13×77,∴abcabc 能被13整除;(3)设xyxy 为四位连接数,则M =1000x +100y +10x +y =1010x +101y ,N =3(x +y +x +y )=6x +6y ,∴M ﹣N =(1010x +101y )﹣(6x +6y )=1004x +95y ,∴13M N -=10049513x y +=77x +7y +3413x y +.∵M ﹣N 的结果能被13整除,∴3413x y +是整数.∵3x +4y 取值范围大于3小于63,所以能被13整除的数有13,26,39,52,∴x =1,y =9;x =2,y =5;x =3,y =1;x =8,y =7;x =9,y =3;x =5,y =6;x =6,y =2;满足条件的四位连接数的3131,2525,6262,9393,8787,5656,1919共7个. 点睛:本题考查了因式分解的应用,整式的运算,理解“连接数”的定义是解题的关键.14.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2ac =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负.∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.15.(观察)1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.(发现)根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是 .(类比)观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n ,…,56×4,57×3,58×2,59×1.猜想mn 的最大值为 ,并用你学过的知识加以证明.【答案】(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;类比:由于m+n=60,将n=60−m代入mn,得mn=−m2+60m=−(m−30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;类比:由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点睛】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.四、八年级数学分式解答题压轴题(难)16.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.(注: 垃圾处理量垃圾处理率垃圾排放量)(1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x万吨,根据题意列方程求出x的值即可;(2)设设2020年垃圾的排放量还需要増加m万吨,根据题意列出不等式,解得m的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.17.阅读下面的解题过程:已知2113x x =+,求241x x +的值。

人教版八年级数学上册单元测试题全套(含答案)

人教版八年级数学上册单元测试题全套(含答案)

人教版八年级数学上册单元测试题全套(含答案)(含期中期末试题,共8套)第十一章三角形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列图形为正多边形的是(D)2.下列各组数中,能构成一个三角形的边长的是(D)A.1,3,5 B.2,2,6C.6,8,14 D.a+2,a+3,a+5(a>0)3.如图,图中∠1的大小等于(D)A.40°B.50°C.60°D.70°第3题图第5题图第6题图第8题图第10题图4.若一个正多边形的内角和为720°,则这个正多边形的每一个内角是(D)A.60°B.90°C.108°D.120°5.如图,BD平分∠ABC,CD⊥BD,垂足为D,∠C=55°,则∠ABC的度数是(D) A.35°B.55°C.60°D.70°6.如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为(C)A.25°B.40°C.50°D.80°7.等腰三角形的一边长等于4,另一边长等于10,则它的周长是(B)A.18 B.24 C.18或24 D.148.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于点D,BE⊥AC 于点E,AD与BE交于点F,则∠AFB的度数是(A)A.126°B.120°C.116°D.110°9.上午9时,一艘船从A处出发以每小时20海里的速度向正北方向航行,11时到达B处.若在A处测得灯塔C在北偏西34°方向上,且∠ACB=32∠BAC,则在B处测得灯塔C应在(C)A.北偏西68°方向上B.南偏西85°方向上C.北偏西85°方向上D.南偏西68°方向上10.已知△ABC的面积为1,延长AB至点D,使BD=AB,延长BC至点E,使CE =2BC,延长CA至点F使AF=3AC,则三角形DEF的面积为(D)A.9 B.15 C.17 D.18点拨:连接AE和CD,∵BD=AB,∴S△ABC=S△BCD=1,S△ACD=1+1=2,∵AF=3AC,∴FC=4AC,∴S△FCD=4S△ACD=4×2=8,同理可以求得:S△ACE=2S△ABC=2,则S △FCE=4S△ACE=4×2=8;S△DCE=2S△BCD=2×1=2;∴S△DEF=S△FCD+S△FCE+S△DCE=8+8+2=18.二、填空题(每小题3分,共24分)11.空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用的数学知识是三角形的稳定性.第11题图第12题图第14题图12.如图,∠D=30°,∠O=50°,∠C=35°,则∠AEC等于__65°__.13.如果将长度为3a,4a,14的三条线段首尾顺次相接可以得到一个三角形,则a的取值范围是__2<a<14__.14.(枣庄中考)用一条宽度相等的足够长的纸条打一个结(如图①所示),然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE,那么图中的∠BAC=36度.15.如图,在四边形ABCD中,AD⊥AB于点A,∠C=110°,它的一个外角∠ADE =60°,则∠B的大小是__40°__.第15题图第16题图第17题图第18题图16.(江西中考)如图,在△ABC 中,点D 是BC 上的点,∠BAD =∠ABC =40°,将△ABD 沿着AD 翻折得到△AED ,则∠CDE =20°.17.如图,在△ABC 中,∠A =70°,∠B =50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为__110°或50°__.18.如图,在△ABC 中,∠ABC 的平分线与△ABC 的外角∠ACN 的平分线交于点E ,EC 的延长线交△ABC 的另一外角∠MBC 的平分线于点D ,若∠D 比∠E 大10°,则∠A 的度数是__80°__.三、解答题(共66分)19.(6分)如图,在△ABC 中,AD ,AE 分别是边BC 上的中线和高,AE =3 cm ,S △ABC =12 cm 2.求BC 和DC 的长.解:∵AE ⊥BC ,S △ABC =12 cm 2,AE =3 cm ,∴S △ABC =12 BC·AE ,即12=12 ×3BC ,∴BC =8 cm.又∵AD 为BC 边上的中线,∴DC =12 BC =4 cm20.(7分)如图,在△ABC 中,BE ⊥AC ,BC =5 cm ,AC =8 cm ,BE =3 cm.(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.解:(1)∵ BE ⊥AC ,∴ S △ABC =12 ×AC ×BE =12 ×8×3=12(cm 2) (2)如图所示,线段AD 就是所求作的高,∵S △ABC =12 ×BC ×AD =12(cm 2),∴12 ×5×AD =12,∴AD =245 (cm)21.(8分)根据条件求多边形的边数:(1)一个多边形每个内角都相等,且都等于135°,则这个多边形的边数为__8__;(2)一个多边形的内角和与某一个外角的度数总和为1 350°,求这个多边形的边数. 解:(2)设这个多边形的边数为n ,这个外角的度数为x °,则0<x <180.依题意,有(n -2)·180+x =1 350.∴n =1 350-x 180 +2=9+90-x 180. ∵n 为正整数,∴90-x 必为180的倍数.又∵0<x <180,∴90-x =0,即x =90.∴n =9.故这个多边形的边数为922.(9分)如图,在△ABC 中(AB >BC ),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60和40两部分,求AC 和AB 的长.解:∵AD 是BC 边上的中线,AC =2BC ,∴BD =CD ,设BD =CD =x ,AB =y ,则AC =4x.分为两种情况:①AC +CD =60,AB +BD =40,则4x +x =60,x +y =40,解得x =12,y =28,即AC =4x =48,AB =28;②AC +CD =40,AB +BD =60,则4x +x =40,x +y =60,解得x =8,y =52,即AC =4x =32,AB =52,BC =2x =16,此时不符合三角形三边关系定理.综上所述,AC =48,AB =2823.(10分)如图,在△ABC 中,∠A =∠ABC ,直线EF 分别交△ABC 的边AB ,AC 和CB 的延长线于点D ,E ,F .(1)求证:∠F +∠FEC =2∠A ;(2)过点B 作BM ∥AC 交FD 于点M ,试探究∠MBC 与∠F +∠FEC 的数量关系,并证明你的结论.解:(1)证明:∵∠A +∠ABC +∠C =180°,∠A =∠ABC ,∴∠C =180°-2∠A.∵∠F +∠FEC +∠C =180°,∴∠F +∠FEC =2∠A(2)∠MBC =∠F +∠FEC.证明:∵BM ∥AC ,∴∠FMB =∠FEC.又∵∠MBC =∠F +∠FMB ,∴∠MBC =∠F +∠FEC24.(12分)取一副三角尺按如图①拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转得到△ABC′,如图②所示,设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC′+∠CAC′+∠BDC的度数是否变化?若变化,求出变化范围;若不变,求出其度数.解:(1)证明:∵∠CAC′=15°,∠BAC′=45°,∴∠BAC=∠BAC′-∠CAC′=45°-15°=30°.又∵∠ACD=30°,∴∠BAC=∠ACD.∴AB∥CD(2)∠DBC′+∠CAC′+∠BDC的度数不变.连接CC′,则∠DBC′+∠BDC=∠DCC′+∠BC′C,∵∠CAC′+∠AC′C+∠ACC′=180°,∴∠CAC′+∠AC′B+∠BC′C+∠ACD+∠DCC′=180°.∵∠AC′B=45°,∠ACD=30°,∴∠DBC′+∠CAC′+∠BDC=∠DCC′+∠CAC′+∠BC′C=180°-45°-30°=105°25.(14分)已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是__20°__;②当∠BAD=∠ABD时,x=__120__;当∠BAD=∠BDA时,x=__60__;(2)如图②,若AB⊥OM,是否存在这样的x值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.解:(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,∵∠ABE=110°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=35°,∴x=125.综上可知,当x=20,35,50或125时,△ADB中有两个相等的角第十二章全等三角形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列四个图形是全等图形的是(C)A.①和③B.②和③C.②和④D.③和④2.如图,已知△ABE≌△ACD,下列等式不正确的是(D)A.AB=AC B.∠BAE=∠CAD C.BE=CD D.AD=BE第2题图第3题图第4题图第5题图3.如图,AC是△ABC和△ADC的公共边,下列条件不能判定△ABC≌△ADC的是(A) A.AB=AD,∠2=∠1 B.AB=AD,∠3=∠4C.∠2=∠1,∠3=∠4 D.∠2=∠1,∠B=∠D4.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC的长是(B)A.3 B.4 C.6 D.55.如图,∠A=∠D=90°,AC=DB,AC,DB相交于点O,∠ACB=30°,则∠BCD 的度数为(C)A.40°B.50°C.60°D.75°6.如图,已知△ABC,用尺规作图如下:①以点B为圆心,AB的长为半径画弧,交BC于点P;②以点P为圆心,AP的长为半径画弧,交已画弧于点D;③连接BD,CD,则△ABC≌△DBC的依据是(D)A.SSS B.ASA C.AAS D.SAS第6题图第7题图第8题图第9题图7.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为(C)A.2 B.3 C.4 D.58.如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为(C)A.44°B.66°C.96°D.92°9.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S =S△PCD,则满足此条件的点P(D)△PABA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中:①BD=CE;②∠ACE+∠DBC =45°;③BD⊥CE;④∠BAE+∠DAC=180°.正确的个数是(D)A.1个B.2个C.3个D.4个第10题图第11题图第12题图第13题图二、填空题(每小题3分,共24分)11.如图,△ABC≌△BAD,若AB=6,AC=4,BC=5,则△BAD的周长为__15__.12.(襄阳中考)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是②(只填序号).13.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中共有__3__对全等三角形.14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=__135°__.第14题图第15题图第16题图第18题图15.如图,∠AOB =90°,OA =OB ,直线l 经过点O ,分别过A ,B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D .若AC =10,BD =6,则CD =4.16.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D .已知BD ∶CD =3∶2,点D 到AB 的距离是6,则BC 的长是__15__.17.在△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 的长为m ,则m 的取值范围是__1<m <4__.18.如图,点B 的坐标为(4,4),作BA ⊥x 轴,BC ⊥y 轴,垂足分别为A ,C ,点D 为线段OA 的中点,点P 从点A 出发,在线段AB ,BC 上沿A →B →C 运动,当OP =CD 时,点P 的坐标为__(2,4)或(4,2)__.三、解答题(共66分)19.(6分)如图,△ABC ≌△ADE ,其中点B 与点D ,点C 与点E 对应.(1)写出对应边和对应角;(2)∠BAD 与∠CAE 相等吗?说明理由.解:(1)对应边:AB 与AD ,BC 与DE ,AC 与AE ;对应角:∠BAC 与∠DAE ,∠B 与∠D ,∠C 与∠E(2)∠BAD =∠CAE .理由如下:∵∠BAC =∠DAE ,∴∠BAC -∠CAD =∠DAE -∠CAD ,即∠BAD =∠CAE20.(7分)(陕西中考)如图,点A ,E ,F ,B 在直线l 上,AE =BF ,AC ∥BD ,且AC =BD ,求证:CF =DE .证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE ,∵AC ∥BD ,∴∠CAF =∠DBE ,在△ACF 和△BDE 中,⎩⎪⎨⎪⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE (SAS),∴CF =DE21.(8分)王强同学用10块高度都是2 cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和点B 分别与木墙的顶端重合,求两堵木墙之间的距离.解:由题意得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC .在△ADC 和△CEB中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠DAC =∠BCE ,AC =BC ,∴△ADC ≌△CEB (AAS),∴EC =AD =6 cm ,DC =BE =14 cm ,∴DE =DC +CE =20(cm),答:两堵木墙之间的距离为20 cm22.(9分)在数学实践课上,老师在黑板上画出如图的图形(其中点B ,F ,C ,E 在同一条直线上).并写出四个条件:①AB =DE ,②∠1=∠2,③BF =EC ,④∠B =∠E .交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)请你写出所有的真命题;(2)选一个给予证明.你选择的题设:__①③④__;结论:__②(答案不唯一)__.(均填写序号)解:(1)情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:① (2)选择的题设:①③④,结论:②(答案不唯一).理由:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF .在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS),∴∠1=∠223.(10分)如图,在△ABC 中,BE ,CF 分别是AC ,AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连接AD ,AG .(1)图中有一组三角形全等,试将其找出来并证明;(2)连接DG ,猜想△ADG 的形状,并说明理由.解:(1)△ABD ≌△GCA ,证明:∵BE ,CF 分别是AC ,AB 两边上的高,∴∠AFC =∠BFC =∠BEC =∠BEA =90°,∴∠BAC +∠ACF =90°,∠BAC +∠ABE =90°,∠CGA +∠GAF =90°,∴∠ABE =∠ACF .在△ABD 和△GCA 中,⎩⎪⎨⎪⎧BD =AC ,∠ABE =∠ACF ,AB =CG ,∴△ABD ≌△GCA (SAS)(2)△ADG 是等腰直角三角形,理由如下:∵△ABD ≌△GCA ,∴AD =AG ,∠BAD =∠CGA .又∵∠CGA +∠GAF =90°,∴∠BAD +∠GAF =90°,即∠GAD =90°,∴△ADG 是等腰直角三角形24.(12分)如图,在△ABC 中,AD 平分∠BAC ,∠C =90°,DE ⊥AB 于点E ,点F 在AC 上,BD =DF .(1)求证:CF =EB ;(2)若AB =12,AF =8,求CF 的长.解:(1)证明:∵AD 平分∠BAC ,∠C =90°,DE ⊥AB 于点E ,∴DE =DC .在Rt △CDF 与Rt △EDB 中,∵⎩⎪⎨⎪⎧DF =DB ,DC =DE , ∴Rt △CDF ≌Rt △EDB (HL),∴CF =EB (2)设CF =x ,则AE =12-x ,AC =AF +CF =8+x .在Rt △ACD 与Rt △AED 中,∵⎩⎪⎨⎪⎧AD =AD ,CD =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AC =AE ,即8+x =12-x ,解得x =2,即CF =225.(14分)如图①,AM ∥BN ,AE 平分∠BAM ,BE 平分∠ABN .(1)求∠AEB 的度数;(2)如图②,过点E 的直线交射线AM 于点C ,交射线BN 于点D .求证:AC +BD =AB ;(3)如图③,过点E 的直线交射线AM 的反向延长线于点C ,交射线BN 于点D ,AB =5,AC =3,S △ABE -S △ACE =2,求△BDE 的面积.解:(1)∵AM ∥BN ,∴∠BAM +∠ABN =180°.∵AE 平分∠BAM ,BE 平分∠ABN ,∴∠BAE =12 ∠BAM ,∠ABE =12 ∠ABN.∴∠BAE +∠ABE =12 (∠BAM +∠ABN)=90°.∴∠AEB =90°(2)证明:如图甲,在线段AB 上截取AF =AC ,连接EF .在△ACE 与△AFE 中,⎩⎨⎧AC =AF ,∠CAE =∠FAE ,AE =AE , ∴△ACE ≌△AFE(SAS).∴∠AEC =∠AEF .∵∠AEB =90°,∴∠AEF +∠BEF =∠AEC +∠BED =90°,∴∠FEB =∠DEB.在△BFE 与△BDE 中,⎩⎨⎧∠FBE =∠DBE ,BE =BE ,∠FEB =∠DEB ,∴△BFE ≌△BDE(ASA),∴BF =BD.∵AF +BF =AB ,∴AC +BD =AB(3)如图乙,延长AE 交射线BN 于点F .∵∠AEB =90°,∴BE ⊥AF .∵BE 平分∠ABN ,∴∠ABE =∠FBE.又∵∠AEB =∠FEB =90°,BE =BE ,∴△ABE ≌△FBE(ASA),∴BF=AB =5,AE =EF .∵AM ∥BN.∴∠C =∠EDF .在△ACE 与△FDE 中,⎩⎨⎧∠C =∠EDF ,∠AEC =∠FED ,AE =EF ,∴△ACE ≌△FDE(AAS),∴DF =AC =3.设S △BEF =S △ABE =5x ,S △DEF =S △ACE =3x.∵S △ABE -S △ACE =2,∴5x -3x =2,∴x =1.∴△BDE 的面积为8第十三章 轴对称得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(北京中考)下列倡导节约的图案中,是轴对称图形的是(C )2.下列图形对称轴条数最多的是(A )A .正方形B .等边三角形C .等腰三角形D .线段3.若点P (a ,1)关于y 轴的对称点为Q (2,b ),则a +b 的值是(A )A .-1B .0C .1D .24.如图,AC =BC ,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,则图中共有等腰三角形的个数为(D )A .2B .3C .4D .5第4题图 第5题图 第6题图5.如图,在△ABC 中,D 点在BC 上,将D 点分别以AB ,AC 为对称轴,画出对称点E ,F ,并连接AE ,AF .根据图中标示的角度,则∠EAF 的度数为(D )A .113°B .124°C .129°D .134°6.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为(D )A .90°B .95°C .100°D .105°7.如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,已知AB =3,AD =1,则△AED 的周长为(C )A .2B .3C .4D .5第7题图 第8题图 第9题图8.如图,直线l 1,l 2相交于点A ,点B 是直线外一点,在直线l 1,l 2上找一点C ,使△ABC 为一个等腰三角形,则满足条件的点C 有(D )A .2个B .4个C .6个D .8个9.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,P 是AD 边上的动点,E 是AC 边上一点.若AE =2,当EP +CP 的值最小时,∠ECP 的度数为(C )A .15°B .22.5°C .30°D .45°10.已知点P (-2,3),作点P 关于x 轴的对称点P 1,再作点P 1关于y 轴的对称点P 2,接着作P 2关于x 轴的对称点P 3,继续作点P 3关于y 轴的对称点P 4,按此方法一直作下去,则P 2 021的坐标为(B )A .(2,-3)B .(-2,-3)C .(-2,3)D .(2,3)二、填空题(每小题3分,共24分)11.如图,AB ∥CE ,BF 交CE 于点D ,DE =DF ,∠F =20°,则∠B 的度数为__40°__.第11题图 第12题图 第13题图第14题图12.如图,将一个有45°角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板的直角边的长为6cm.13.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(-2,1).14.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.若∠A=90°,∠AED =130°,∠C=45°,则∠BFC的度数为__140°__.15.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD 的周长为13 cm,则AE的长为__3__cm.第15题图第16题图第18题图16.如图,已知在等边三角形ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G.若∠ADF=80°,则∠EGC的度数为80°.17.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD 为直角三角形,则∠ADC的度数为__130°或90°__.18.如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有__①②③⑤__.三、解答题(共66分)19.(6分)如图所示.(1)写出A,B,C三点的坐标;(2)若△ABC各顶点的横坐标不变,纵坐标都乘-1,请你在同一坐标系中描出对应的点A′,B′,C′,并依次连接这三个点,所得的△A′B′C′与原来的△ABC有怎样的位置关系?解:(1)A,B,C三点的坐标分别是(3,4),(1,2),(5,1)(2)画图略,△A′B′C′与原来的△ABC的位置关系是关于x轴对称20.(6分)如图,在△ABC中,∠B=∠C,AD是底边BC上的高,DE∥AB交AC于点E.试说明△ADE是等腰三角形.解:∵在△ABC中,∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.∵AD⊥BC,∴∠BAD=∠DAC.∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠DAC,∴AE=ED,∴△ADE是等腰三角形21.(8分)如图,一艘轮船以每小时40海里的速度沿正北方向航行,在A处测得灯塔C 在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上.请问当轮船到达灯塔C的正东方向D处时,又航行了多少海里?解:∵CD⊥DB,∠CBD=60°,∴∠DCB=30°,∴DB=12BC,∴BC=2DB.又∵∠BCA=60°-30°=30°,∴BC=BA,∴BC=2×40=80(海里),∴DB=40海里.答:当轮船到达灯塔C的正东方向D处时,又航行了40海里22.(9分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线AF交CD于点E,交BC于点F,CM⊥AF于点M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠ADC=90°,∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°.又∵∠BAC的平分线AF交CD于点E,∴∠DAE=∠CAE,∴∠AED=∠CFE.又∵∠AED=∠CEF,∴∠CEF=∠CFE.∴△CEF为等腰三角形.又∵CM⊥AF,∴EM=FM(2)∵CN⊥AF,∴∠AMC=∠AMN=90°,在△AMC和△AMN中,⎩⎨⎧∠AMC =∠AMN ,AM =AM ,∠CAM =∠NAM ,∴△AMC ≌△AMN(ASA),∴AC =AN23.(10分)如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15 cm ,求AB 的长;(2)若∠MFN =70°,求∠MCN 的度数.解:(1)∵DM ,EN 分别垂直平分AC 和BC ,∴AM =CM ,BN =CN.∴△CMN 的周长=CM +MN +CN =AM +MN +BN =AB.∵△CMN 的周长为15 cm ,∴AB =15 cm (2)∵∠MFN =70°,∴∠MNF +∠NMF =180°-70°=110°.∵∠AMD =∠NMF ,∠BNE =∠MNF ,∴∠BNE +∠AMD =∠MNF +∠NMF =110°,∴∠A +∠B =90°-∠AMD +90°-∠BNE =180°-110°=70°.∵AM =CM ,BN =CN ,∴∠A =∠ACM ,∠B =∠BCN ,∴∠MCN =180°-2(∠A +∠B)=180°-2×70°=40°24.(12分)(安顺中考)(1)如图①,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC 得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断. 因此,AB ,AD ,DC 之间的等量关系是AD =AB +DC ;(2)问题探究:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.解:(1)AD =AB +DC .理由如下:∵AB ∥CD ,∴∠F =∠BAE .∵∠DAE =∠BAE ,∴∠DAF =∠F ,∴AD =DF ,∵CE =BE ,且∠F =∠BAE ,∠AEB =∠CEF ,∴△CEF ≌△BEA (AAS),∴AB =CF ,∴AD =DC +CF =AB +DC(2)AB =AF +CF .理由如下:如图,延长AE 交DF 的延长线于点G ,∵AB ∥DC ,∴∠BAE =∠G ,又∵BE =CE ,∠AEB =∠GEC ,∴△AEB ≌△GEC (AAS),∴AB =GC .∵AE 是∠BAF 的平分线,∴∠BAG =∠FAG ,∵∠BAG =∠G ,∴∠FAG =∠G ,∴FA =FG .∵CG =CF +FG ,∴AB =AF +CF25.(15分)如图所示,已知△ABC 中,AB =AC =BC =10厘米,M ,N 分别从点A ,B 同时出发,沿三角形的边顺时针运动,已知点M 的速度是1厘米/秒,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M ,N 同时停止运动.(1)M ,N 同时运动几秒后,M ,N 两点重合?(2)M ,N 同时运动几秒后,可得等边三角形AMN?(3)M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ,如果存在,请求出此时M ,N 运动的时间?解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x +10=2x ,解得x =10,∴M ,N 同时运动10秒后,M ,N 两点重合(2)设点M ,N 运动t 秒后,可得到等边三角形AMN ,如图①,AM =t ×1=t ,AN =AB -BN =10-2t.∵△AMN 是等边三角形,∴t =10-2t ,解得t =103 .∴点M ,N 运动103 秒后,可得到等边三角形AMN(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知,10秒时M ,N 两点重合,恰好在C 处.如图②,假设△AMN 是等腰三角形,∴AN =AM ,∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形,∴∠C =∠B.在△ACM 和△ABN 中,∵⎩⎨⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB ,∴△ACM ≌△ABN(AAS).∴CM =BN ,设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形,∴CM =y -10,NB =30-2y ,CM =NB ,y -10=30-2y ,解得y =403 .故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰△AMN ,此时M ,N 运动的时间为403秒期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(毕节中考)在下列长度的三条线段中,不能组成三角形的是(C )A .2 cm ,3 cm ,4 cmB .3 cm ,6 cm ,6 cmC .2 cm ,2 cm ,6 cmD .5 cm ,6 cm ,7 cm2.如图,在△ABC 中,AB =AC ,∠B =50°,P 是边AB 上的一个动点(不与顶点A 重合),则∠BPC 的值可能是(B )A .135°B .85°C .50°D .40° 第2题图 第3题图 第5题图第6题图3.如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的是(D )A .PC ⊥OA ,PD ⊥OB B .OC =OD C .∠OPC =∠OPD D .PC =PD4.(贵港中考)若点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,则m +n 的值是(D )A .-5B .-3C .3D .15.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E ,D 分别落在E ′,D ′点.已知∠AFC =76°,则∠CFD ′等于(C )A .15°B .25°C .28°D .31°6.如图,在△ABC 中,AB =AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD 和CE 交于点O ,AO 的延长线交BC 于点F ,则图中全等的直角三角形有(D )A .4对B .5对C .6对D .7对7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,已知EH =EB =3,AE =4,则CH 的长是(A )A .1B .2C .3D .4第7题图 第8题图 第10题图8.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ACF =48°,则∠ABC 的度数为(A )A .48°B .36°C .30°D .24°9.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于(C )A .45°B .120°C .45°或135°D .45°或120°10.如图,在等腰直角△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC ,AD 于E ,F 两点, M 为EF 的中点,延长AM 交BC 于点N ,连接DM ,NE .下列结论:①AE =AF ;②AM ⊥EF ;③△AEF 是等边三角形,④DF =DN ,⑤AD ∥NE .其中正确的结论有(D )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =__36°__.第11题图 第12题图 第14题图12.如图,BC ⊥ED ,垂足为M ,∠A =35°,∠D =25°,则∠ABC =__30°__.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作K .若K =12,则该等腰三角形的顶角度数为__36°__. 14.(镇江中考)如图,直线a ∥b ,△ABC 的顶点C 在直线b 上,边AB 与直线b 相交于点D .若△BCD 是等边三角形,∠A =20°,则∠1=40°.15.(永州中考)已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过点D 作直线DE ⊥OA ,垂足为E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =4.第15题图 第16题图 第17题图 第18题图16.如图,在△ABC 中,点D 为BC 边的中点,点E 为AC 上一点,将∠C 沿DE 翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为__65°__.17.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,若AB =18,AC =12,△ABC的面积等于36,则DE =__125 __. 18.如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,下面四个结论:①∠AFE =∠AEF ;②AD 垂直平分EF ;③S △BFD S △CED=BF CE;④EF 一定平行于BC .其中正确的有①②③(填序号). 三、解答题(共66分)19.(6分)(宜昌中考)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°,∴∠CBD =130°.∵BE 是∠CBD 的平分线,∴∠CBE =12∠CBD =65° (2)∵∠ACB =90°,∠CBE =65°,∴∠CEB =90°-65°=25°.∵DF ∥BE ,∴∠F =∠CEB =25°20.(6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.解:(1)点B 1的坐标为(-2,-1),图略(2)点C 2的坐标为(1,1),图略21.(8分)(温州中考)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.解:(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F , ∵AD 是BC 边上的中线,∴BD =CD ,∴△BDE ≌△CDF (AAS) (2)∵△BDE ≌△CDF ,∴BE =CF =2,∴AB =AE +BE =1+2=3, ∵AD ⊥BC ,BD =CD ,∴AC =AB =322.(10分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD =AC ,AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G .求证:(1)DF ∥BC ;(2)FG =FE .证明:(1)∵AF 平分∠CAB , ∴∠CAF =∠DAF .在△ACF 和△ADF 中,∵⎩⎨⎧AC =AD ,∠CAF =∠DAF ,AF =AF ,∴△ACF ≌△ADF(SAS).∴∠ACF =∠ADF .∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠CAE =90°,∠CAE +∠B =90°. ∴∠ACF =∠B ,∴∠ADF =∠B.∴DF ∥BC (2)∵DF ∥BC ,BC ⊥AC ,∴FG ⊥AC.∵FE ⊥AB ,又AF 平分∠CAB ,∴FG =FE23.(10分)如图,在四边形ABCD 中,AD ∥BC ,点E 是AB 的中点,连接DE 并延长,交CB 的延长线于点F ,点G 在边BC 上,且∠GDF =∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG ,判断EG 与DF 的位置关系并说明理由.解:(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE.∵点E 为AB 的中点,∴AE =BE.在△ADE和△BFE 中,⎩⎨⎧∠ADE =∠BFE ,∠AED =∠BEF ,AE =BE ,∴△ADE ≌△BFE(AAS)(2)EG 与DF 的位置关系是EG 垂直平分DF .理由:∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE.∴FG =DG .∴△FGD 为等腰三角形.由(1)中△ADE ≌△BFE 得DE =FE ,即GE 为DF 上的中线,∴GE 垂直平分DF24.(12分)如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α.以OC 为一边作等边三角形OCD ,连接AD .(1)当α=150°时,试判断△AOD 的形状,并说明理由; (2)探究:当α为多少度时,△AOD 是等腰三角形?解:(1)∵△OCD 是等边三角形,∴OC =CD .∵△ABC 是等边三角形,∴BC =AC .∵∠ACB =∠OCD =60°,∴∠BCO =∠ACD ,在△BOC 与△ADC 中,∵⎩⎪⎨⎪⎧OC =CD ,∠BCO =∠ACD ,BC =AC ,∴△BOC ≌△ADC ,∴∠BOC =∠ADC ,而∠BOC =α=150°,∠ODC =60°,∴∠ADO =150°-60°=90°,∴△ADO 是直角三角形(2)∠AOD =360°-∠AOB -∠α-∠COD =360°-100°-∠α-60°=200°-∠α,∠ADO =∠ADC -∠CDO =∠α-60°,∠OAD =180°-∠ADO -∠AOD =180°-(∠α-60°)-(200°-∠α)=40°. 若∠ADO =∠AOD ,即∠α-60°=200°-∠α,解得∠α=130°; 若∠ADO =∠OAD ,则∠α-60°=40°,解得∠α=100°; 若∠OAD =∠AOD ,即40°=200°-∠α,解得∠α=160°. 即当α为130°或100°或160°时,△AOD 是等腰三角形25.(14分)已知在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC .(1)【特殊情况,探索结论】 如图①,当点E 为AB 的中点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”);(2)【特例启发,解答题目】如图②,当点E 为AB 边上任意一点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”),并给出证明;(3)【拓展结论,设计新题】 在等边三角形ABC 中,点E 在直线AB 上,点D 在线段CB 的延长线上,且ED =EC ,若△ABC 的边长为1,AE =2,求CD 的长.解:(2)AE =DB .证明:过点E 作EF ∥BC ,交AC 于点F ,∵△ABC 为等边三角形,∴△AEF 为等边三角形,∴AE =EF ,BE =CF . ∵ED =EC ,∴∠D =∠ECD .∵∠DEB =60°-∠D ,∠ECF =60°-∠ECD ,∴∠DEB =∠ECF ,在△DBE 和△EFC 中,⎩⎪⎨⎪⎧DE =CE ,∠DEB =∠ECF ,BE =FC , ∴△DBE ≌△EFC (SAS),∴DB =EF ,∴AE =DB(3)如图所示,点E 在AB 延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F ,同(2)仍可证得△DBE ≌△EFC ,∴DB =EF =2,BC =1,则CD =BC +DB =3第十四章 整式的乘法与因式分解得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.(盐城中考)计算(-x 2y )2的结果是(A )A .x 4y 2B .-x 4y 2C .x 2y 2D .-x 2y 2 2.(葫芦岛中考)下列运算正确的是(D ) A .x 2·x 2=x 6 B .x 4+x 4=2x 8C .-2(x 3)2=4x 6D .xy 4÷(-xy )=-y 3 3.(泰安中考)计算(-2)0+9÷(-3)的结果是(B ) A .-1 B .-2 C .-3 D .-44.多项式mx 2-m 与多项式x 2-2x +1的公因式是(A ) A .x -1 B .x +1 C .x 2-1 D .(x -1)25.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼形成新的图形,嘉嘉(图①)和琪琪(图②)分别给出了各自的割拼方法,其中能够验证平方差公式的是(C )A.嘉嘉 B .琪琪 C .都能 D .都不能6.若a >0且a x =2,a y =3,则a x -2y 的值为(D ) A .13 B .-13 C .23 D .297.已知(x -2 019)2+(x -2 021)2=34,则(x -2 020)2的值是(D ) A .4 B .8 C .12 D .168.已知2a -b =3,那么12a 2-8ab +b 2-12a +3的值为(B ) A .9 B .12 C .15 D .189.分解因式x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果是(x -2)(x +1),那么x 2+ax +b 分解因式的正确结果为(B )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.图①是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示方式拼成一个正方形,则中间空的部分的面积是(C )A.abB .(a +b )2C .(a -b )2D .a 2-b 2二、填空题(每小题3分,共24分) 11.计算(-2x 3y 2)3·4xy 2=-32x 10y 8.12.一个长方形的面积是xy 2-x 2y ,且长为xy ,则这个长方形的宽为y -x . 13.(东营中考)因式分解:x (x -3)-x +3=(x -1)(x -3).14.多项式x 2+mx +5分解因式是(x +5)(x +n ),则m =6,n =1.15.如图, 在正方形ABCD 和EFGC 中,左、右两个正方形的边长分别为a ,b ,用代数式表示阴影部分三角形AEG 的面积为12b 2.第15题图第17题图 第18题图16.观察下列等式:12-02=1,22-12=3,32-22=5,42-32=7,……用含n(n≥1且n为正整数)的等式表示这种规律为__n2-(n-1)2=2n-1__.17.如图,长方形ABCD的周长为8,分别以长方形的一条长和一条宽向外作两个正方形,且这两个正方形的面积和为10,则长方形ABCD的面积是3.18.如图所示是一块正方形铁皮,边长为a,如果一边截去6,另一边截去5,则下面式子中正确地表示所剩长方形(阴影部分)铁皮的面积的有①③④.(填序号)①(a-5)(a-6);②a2-5a+6(a-5);③a2-6a-5(a-6);④a2-11a+30.三、解答题(共66分)19.(8分)计算:(1)(-3a2bc)2·(-2ab2)3;解:原式=9a4b2c2·(-8a3b6)=-72a7b8c2(2)(无锡中考)(a-b)2-a(a-2b).解:原式=a2-2ab+b2-a2+2ab=b220.(12分)分解因式:(1)2x2y-8xy+8y;(2)(2x+y)2-(x+2y)2;解:原式=2y(x-2)2解:原式=3(x+y)(x-y)(3)(y2-1)2+6(1-y2)+9.解:原式=(y+2)2(y-2)221.(8分)化简求值:(1)(宜昌中考)x(x+1)+(2+x)(2-x),其中x=6-4;解:原式=x2+x+4-x2=x+4,当x= 6 -4时,原式= 6 -4+4= 6(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m(m+1)=2.解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m 2+m -1), ∵m(m +1)=2, ∴m 2+m =2,则原式=2×(2-1)=222.(8分)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=12a +8b -52,且△ABC 是等腰三角形,求c 的值.解:∵a 2+b 2=12a +8b -52,∴a 2+b 2-12a -8b +52=0, ∴(a 2-12a +36)+(b 2-8b +16)=0,∴(a -6)2+(b -4)2=0,∴a =6,b =4.∵△ABC 是等腰三角形,∴c =4或c =6,且符合三角形的三边关系23.(8分)如图是某环保工程所需要的一种圆柱形空心混凝土管道,它的内径长为d ,外径长为D ,长为l .设它的实体部分体积为V 立方米.(1)用含D ,d 的式子表示V ;(2)当它的内径d =45 cm ,外径D =75 cm ,长l =3 m 时,利用分解因式的知识求浇制一节这样的管道大约需要多少立方米的混凝土?(其中π取3)解:(1)V =l ·[π·⎝⎛⎭⎫D 2 2-π·⎝⎛⎭⎫d 2 2]=πl 4 ()D 2-d 2 (2)当d =45 cm ,D =75 cm ,l =3 m 时, V =πl 4 ()D 2-d 2 =πl4(D +d )·(D -d ) =3×34×(75+45)×(75-45)×10-4 =0.81(立方米)答:浇制一节这样的管道大约需要0.81立方米的混凝土24.(10分)如图①,是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于__m -n __;(2)请用两种不同的方法求图②中阴影部分的面积: ①__(m -n)2__,②__(m +n)2-4mn __;(3)观察图②,请你写出代数式(m +n )2,(m -n )2,mn 之间的等量关系.根据(3)题中的等量关系,解决下列问题:若a +b =7,ab =5,求(a -b )2的值.解:(3)(m -n)2=(m +n)2-4mn ,∵a +b =7,ab =5,∴(a -b)2=(a +b)2-4ab =72-4×5=2925.(12分)(枣庄中考)我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=pq.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F (t )的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=nn=1(2)设交换t 的个位上的数与十位上的数所得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36,∴y =x +4.∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的有15,26,37,48,59 (3)F (15)=35 ,F (26)=213 ,F (37)=137 ,F (48)=68 =34 ,F (59)=159 ,∵34 >35 >213 >137 >159, ∴所有“吉祥数”中,F (t )的最大值为34第十五章 分式得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.若分式x 2-4x 的值为0,则x 的值是(A )A .2或-2B .2C .-2D .0。

人教版数学八年级上册 全册全套试卷专题练习(解析版)

人教版数学八年级上册 全册全套试卷专题练习(解析版)

人教版数学八年级上册 全册全套试卷专题练习(解析版)一、八年级数学三角形填空题(难)1.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB 为Rt△,AD ,BE ,分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于一点F . ∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE ,分别是∠CAB 和∠ABC 的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°. 故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.2.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.3.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD =__________.【答案】119°【解析】【分析】连接BD ,构△BCD 根据对顶角相等和三角形内角和定理即可求出∠BCD 的度数.【详解】如图所示,连接BD ,∵∠4=∠1=38°,∠3=∠2=23°,∴∠BCD =180°-∠4-∠3=180°-38°-23°=119°.故答案为:119°.【点睛】本题考查了对顶角的性质与三角形内角和定理. 连接BD ,构△BCD 是解题的关键.4.如果一个n 边形的内角和是1440°,那么n=__.【答案】10【解析】∵n 边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.5.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A,故答案为:∠2>∠1>∠A.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.6.如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了__米.【答案】600【解析】【分析】【详解】解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.二、八年级数学三角形选择题(难)7.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.8.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A .85°B .75°C .60°D .30°【答案】B【解析】 分析:先由AB ∥CD ,得∠C=∠ABC=30°,CD=CE ,得∠D=∠CED ,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D .详解:∵AB ∥CD ,∴∠C=∠ABC=30°,又∵CD=CE ,∴∠D=∠CED ,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B .点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C ,再由CD=CE 得出∠D=∠CED ,由三角形内角和定理求出∠D .10.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C【解析】【分析】 先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF是△AEF的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB∥CD,∴∠2=∠BEF=50︒,故选:C.【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.11.以下列数据为长度的三条线段,能组成三角形的是()A.2 cm、3cm、5cm B.2 cm、3 cm、4 cmC.3 cm、5 cm、9 cm D.8 cm、4 cm、4 cm【答案】B【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】A、2+3=5,故本选项错误.B、2+3>4,故本选项正确.C、3+5<9,故本选项错误.D、4+4=8,故本选项错误.故选B.【点睛】本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.∆的高的是()12.如下图,线段BE是ABCA.B.C.D.【答案】D【解析】【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【详解】解:由图可得,线段BE是△ABC的高的图是D选项;故选:D.【点睛】本题主要考查了三角形的高线的画法,掌握三角形的高的画法是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,在△ABC中,AB=8,AC=5,AD是∠BAC的角平分线,点D在△ABC内部,连接AD、BD、CD,∠ADB=150°,∠DBC=30°,∠ABC+∠ADC=180°,则线段CD的长度为________.【答案】3【解析】【分析】在AB上截取AE=AC,证明△ADE和△ADC全等,再证BDE是等腰三角形即可得出答案.【详解】在AB上截取AE=AC∵AD是∠BAC的角平分线∴∠EAD=∠CAD又AD=AD∴△ADE≌△ADC(SAS)∴ED=DC,∠ADE=∠ADC∵∠ADB=150°∴∠EDB+∠ADE=150°又∵∠DBC=30°,∠ABC+∠ADC=180°∴∠ABD+∠DBC+∠ADC=180°即∠ABD +∠ADC=150°∴∠ABD=∠EDB∴BE=ED即BE=CD又AB=8,AC=5CD=BE=AB-AE=AB-AC=3故答案为3【点睛】本题考查的是全等三角形的综合,解题关键是利用截长补短法作出两个全等的三角形.14.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和36,求△EDF的面积________.【答案】6【解析】【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【详解】作DM=DE交AC于M,作DN⊥AC,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∵DE=DG,∴DG=DM,∴Rt△DEF≌Rt△DMN(HL),∵DG=DM, DN⊥AC,∴MN=NG,∴△DMN≌△DNG,∵△ADG和△AED的面积分别为48和36,∴S△MDG=S△ADG-S△ADM=48-36=12,∴S△DEF=12S△MDG=1212=6,故答案为:6【点睛】本题考查了角平分线的性质及全等三角形的判定及性质,正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求是解题关键.15.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)【答案】0;4;8;12【解析】【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6−2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,在△ABC中,AB=AC,点D是BC的中点,点E是△ABC内一点,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于__________.【答案】4【解析】【分析】作DG⊥BE于G,CF⊥AE于F,可证△DEG≌△CEF,可得DG=CF,则是S△BDE=S△AEC,由D是BC中点可得S△BED=2,即可求得阴影部分面积.【详解】作DG⊥BE于G,CF⊥AE于F,∴∠DGE=∠CFE=90°,∵∠AEB=∠DEC=90°,∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,∴∠GED=∠CEF,又∵DE=EC,∴△GDE≌△FCE,∴DG=CF,∵S△BED=12BE•DG,S△BED=12AE•CF,AE=BE,∴S△BED=S△BED,∵D是BC的中点,∴S△BDE=S△EDC=1222⨯⨯=2,∴S阴影=2+2=4,故答案为4.【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.17.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.【答案】4【解析】试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.18.如图,AD=AB,∠C=∠E,AB=2,AE=8,则DE=_________.【答案】6【解析】根据三角形全等的判定“AAS”可得△ADC≌△ABE,可得AD=AB=2,由AE=8可得DE=AE-AD=6.故答案为:6.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.四、八年级数学全等三角形选择题(难)19.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④【答案】C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.20.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个【答案】A【解析】 试题解析:∵BF ∥AC ,∴∠C=∠CBF , ∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC , ∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②③正确,在△CDE与△DBF中,{C CBFCD BDEDC BDF∠=∠=∠=∠,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.相似三角形的判定与性质.21.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点【答案】B【解析】【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【详解】∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=12∠EOD,∠BOC=12∠MOE,∴∠AOB=12(∠EOD+∠MOE)=12×180°=90°,故C选项结论正确;在Rt△AOD和Rt△AOE中,AO AOAD AE=⎧⎨=⎩,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.22.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④【答案】B【解析】【分析】连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.【详解】解:如图连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AP是∠BAC的平分线,∠1=∠2,△APR≌△APS.AS=AR,又QP/AR,∠2 = ∠3又∠1 = ∠2,∠1=∠3,AQ=PQ,没有办法证明△PQR≌△CPS,③不成立,没有办法证明AC-AQ=2SC,④不成立.所以B选项是正确的.【点睛】本题主要考查三角形全等及三角形全等的性质.23.如图所示,在Rt ABC∆中,E为斜边AB的中点,ED AB⊥,且:1:7CAD BAD ∠∠=,则BAC ∠=( )A .70B .45C .60D .48【答案】D【解析】 根据线段的垂直平分线,可知∠B=∠BAD ,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x ,则∠BAD=7x ,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°. 故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.24.如图,Rt ACB 中,90ACB ︒∠=,ABC 的角平分线AD 、BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:①135APB ︒∠=;②PF PA =;③AH BD AB +=;④S 四边形23ABDE S ABP =,其中正确的个数是( )A .4B .3C .2D .1【答案】B【解析】【分析】 根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可.【详解】解:∵在△ABC 中,∠ACB=90°,∴∠CAB+∠ABC=90°∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD=12CAB ∠,∠ABE=12ABC ∠∴∠BAD+∠ABE=111+=()45222CAB ABC CAB ABC ∠∠∠+∠=︒ ∴∠APB=180°-(∠BAD+∠ABE )=135°,故①正确;∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP ≌△FBP (ASA )∴∠BAP=∠BFP ,AB=AB ,PA=PF ,故②正确;在△APH 与△FPD 中∵∠APH=∠FPD=90°∠PAH=∠BAP=∠BFPPA=PF∴△APH ≌△FPD (ASA ),∴AH=FD ,又∵AB=FB∴AB=FD+BD=AH+BD ,故③正确;连接HD ,ED ,∵△APH ≌△FPD ,△ABP ≌△FBP ∴APH FPD S S =,ABP FBP S S =,PH=PD ,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD∴HD ∥EP ,∴EPH EPD S S =∵ABP BDP AEP EPD ABDE S S SS S =+++四边形 ()ABP AEP EPHPBD S S S S =+++ ABP APH PBDS S S =++ ABP FPD PBD SS S =++ ABP FBP S S =+2ABP S =故④错误,∴正确的有①②③,故答案为:B .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS 、SAS 、AAS 、ASA 、HL ,注意AAA 和SAS 不能判定两个三角形全等.五、八年级数学轴对称三角形填空题(难)25.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒,∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.26.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC 的长________cm .【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC ,∠BAC=120°∴∠B=∠C=30°∵DA ⊥AC ,AD=24 cm∴DC=2AD=48cm ,∵∠BAC=120°,DA ⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.27.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,∴点P在∠BAC的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,∵AP=AP,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.28.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.【详解】延长BM至G,使MG=BM=4,连接FG、DG,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.29.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】2018180 2⎛⎫⨯ ⎪⎝⎭【解析】【分析】根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.【详解】解:∵在△CBA1中,∠B=20°,A1B=CB,∴∠BA1C=°180-2B∠=80°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×80°;同理可得∠EA3A2=(12)2×80°,∠FA4A3=(12)3×80°,∴第n个三角形中以A n为顶点的底角度数是(12)n-1×80°.∴第2017个三角形中以A2019为顶点的底角度数是(12)2018×80°,故答案为:(12)2018×80°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.30.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C 1C 2=∠E CD ,∠C C 2C 1=∠F CB∴∠E CD +∠F CB=∠C C 1C 2+∠C C 2C 1=60°∴∠ECF =∠DCB -(∠E CD +∠F CB )=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A .1个B .2个C .3个D .无数个【答案】D【解析】【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN 是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.∵OP 平分∠AOB ,120AOB ∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP ,∴△OPE ,△OPF 是等边三角形,∴EP=OP ,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN ,在△PEM 和△PON 中,PEM PONPE POEPM OPN∠⎪∠⎧⎩∠⎪∠⎨===∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.32.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为()2,0,30ABO∠=︒,第二块三角板的斜边1BB与第一块三角板的斜边AB垂直且交x轴于点1B,第三块三角板的斜边12B B 与第二块三角板的斜边1BB垂直且交y轴于点2B,第四块三角板斜边23B B与第三块三角板的斜边12B B垂直且交x轴于点3B,按此规律继续下去,则点2018B的坐标为()A.()20182(3),0-⨯B.()20180,2(3)-⨯C.()20192(3),0⨯D.()20190,2(3)-⨯【答案】D【解析】【分析】计算出OB 、OB1、 OB2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B2018的坐标.【详解】解:由题意可得,2242-3OB1323322(3)⨯,OB231= 323)⨯,…∵2018÷4=504…2,∴点B 2018在y 轴的负半轴上,∴点B 2018的坐标为()20190,2(3)-⨯.故答案为:D .【点睛】本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.33.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l 表示小河,,P Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( ).A .B .C .D .【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P 或点Q 作对称点,再连接另一点,与直线l 的交点即为水泵站M ,故选项A 、B 、D 均错误,选项C 正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.34.如图所示,在等边△ABC 中,E 是AC 边的中点,AD 是BC 边上的中线,P 是AD 上的动点,若AD =3,则EP +CP 的最小值为( )A.2 B.3 C.4 D.5【答案】B【解析】由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.35.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.36.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()A.40°B.41°C.32°D.36°【答案】D【解析】分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.详解:如图,连接AO、BO.由题意得:EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .38.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.39.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,。

人教版八年级上册数学全等三角形练习题

人教版八年级上册数学全等三角形练习题

人教版八年级上册数学全等三角形练习题【1】一、填空题1.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.图1 图2 图32.如图2,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC= °.3.如图3,∠A=∠D,AB=CD,则△≌△,根据是.图4 图5 图64.如图4,△ACB和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.5.如图5,在ΔAOC与ΔBOC中,若AO=OB,∠1=∠2,加上条件,则有ΔAOC≌ΔB OC。

6.如图6,AE=BF,AD∥BC,AD=BC,则有ΔADF≌,且DF= 。

二、选择题.7.如图7,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC∥DF (D)AC=DF图7 图88.已知,如图8,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO(B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO9.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点.()(A)高(B)角平分线(C)中线(D)垂直平分线已知10.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.11.下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F, AC=DF (B)AB=DE, BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F(D)AB=DE,△ABC的周长等于△DEF的周长12.已知,如图9,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.(A)1个(B)2个(C)3个(D)4个图9三、解答题:13.如图10,AB=DF,AC=DE,BE=FC,问:ΔABC与ΔDEF全等吗?AB与DF平行吗?请说明你的理由。

(完整版)人教版八年级数学上册习题

(完整版)人教版八年级数学上册习题

1. ____________________ 如图〔,△ ABC 中,/ C = 90°, AD 平分/ BAC , AB = 5, 则厶ABD 的面积是 .2 •地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天, 甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住 的那幢楼的底部到我住的这幢楼的顶部的直线距离. ”你认为甲的话正确吗?答: 3. 如图2,AD 是厶ABC 的中线,E,F 分别是AD 和AD 延长线上的点,且DE DF , 连结BF ,CE .下列说法:① CE = BF :②厶ABD 和厶ACD 面积相等;③BF // CE ;④ △ BDF CDE .其中正确的有( ) A . 1个B . 2个C . 3个D . 4个5. (本题10分)已知:如图 求证:(1) AF CE ; (2)6. (本题15分)如图4,把厶ABC 纸片沿DE 折叠,当点A 落在四边形 (1) 写出图中一对全等的三角形,并写出它们的所有对应角; (2) 设Z AED 的度数为x ,/ ADE 的度数为y ,那么/ 1,Z 2 的度数分别是多少?(用含有x 或y 的代数式表示)(3) / A 与Z 1 + / 2之间有一种数量关系始终保持不变,请找出这个规律.AB // CD . 图1( )4.将一张长方形纸片按如图 A . 60°B . 75°3图3C图41.下列图形中,不是轴对称图形的是(A. H B。

E C。

L D。

O2 •一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是()3、. 一束光线从点A(3,3 )出发,经过y轴上点C反射后经过点B(l, 0)则光线从A点到E点经过的路线长是()A.4 B.5 C.6 D.74、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是()1 ---------------- =-9■右折右下方靳沿軽凰开口(><□1 ___A I C5、如图,点P为/ AOB内一点,分别作出P点关于OA OB的对称点P, 于M 交OB于N,P I P2=15,则厶PMN勺周长为_______________________________ 。

八年级上册人教版数学题

八年级上册人教版数学题

八年级上册人教版数学题一、三角形相关(6题)1. 已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()- A. 4cm.- B. 5cm.- C. 6cm.- D. 13cm.- 解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。

设第三边为x,则8 - 3,即5,所以只有6cm符合条件,答案为C。

2. 一个等腰三角形的两边长分别是4和9,则它的周长是()- A. 17.- B. 22.- C. 17或22。

- D. 无法确定。

- 解析:等腰三角形两腰相等。

当腰长为4时,4+4 = 8<9,不满足三角形三边关系。

当腰长为9时,周长为9+9 + 4=22,答案为B。

3. 在△ABC中,∠A=50°,∠B = 60°,则∠C的外角等于()- A. 110°.- B. 70°.- C. 120°.- D. 130°.- 解析:三角形的一个外角等于与它不相邻的两个内角之和。

∠C的外角=∠A+∠B=50° + 60°=110°,答案为A。

4. 若一个多边形的内角和是1080°,则这个多边形是()- A. 六边形。

- B. 七边形。

- C. 八边形。

- D. 九边形。

- 解析:多边形内角和公式为(n - 2)×180°,设这个多边形为n边形,则(n - 2)×180°=1080°,n-2 = 6,n = 8,所以是八边形,答案为C。

5. 如图,在△ABC中,AD是角平分线,AE是高,若∠B = 50°,∠C = 70°,求∠DAE的度数。

- 解析:根据三角形内角和为180°,可得∠BAC=180°-(∠B + ∠C)=180°-(50°+70°)=60°。

人教版八年级数学上册练习题

人教版八年级数学上册练习题

人教版八年级数学上册练习题初中数学试卷八年级数学练题(1)一.选择题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A。

7,24,25B。

3.4.5C。

3.4.5D。

4.7.82.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的(。

)倍A。

1B。

2C。

3D。

43.在下列说法中是错误的()A。

在△ABC中,∠C=∠A一∠B,则△ABC为直角三角形B。

在△ABC中,若∠A∶∠B∶∠C=5∶2∶3则△ABC为直角三角形C。

在△ABC中,若a=34c,b=c,则△ABC为直角三角形55D。

在△ABC中,若a∶b∶c=2∶2∶4,则△ABC为直角三角形4.四组数: ①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0)中,可以构成直角三角形的边长的有(。

)A。

4组B。

3组C。

2组D。

1组5.三个正方形的面积如图1,正方形A的面积为(。

)A。

6B。

36C。

64D。

86.一块木板如图2所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为(。

)A。

60B。

30C。

24D。

127.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为(。

)A。

6cmB。

8.5cmC。

30/60cmD。

13/13cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距(。

)A。

50cmB。

100cmC。

140cmD。

80cm9.XXX想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为(。

)A。

8cmB。

10cmC。

12cmD。

14cm10.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N 在AB上且AM=AC,BN=BC,则MN的长为(。

)A。

6B。

7C。

8D。

911.三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是(。

八年级上册数学必刷题人教版

八年级上册数学必刷题人教版

八年级上册数学必刷题人教版一、三角形部分1. (1)已知三角形的两边长分别为3和5,第三边的长为偶数,则第三边的长可以是多少?解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。

设第三边为x,则5 3<x<5+3,即2<x<8。

因为x为偶数,所以x = 4或6。

2. (2)在△ABC中,∠A=30°,∠B = 60°,求∠C的度数。

解析:因为三角形内角和为180°,在△ABC中,∠C=180°∠A ∠B = 180°-30° 60° = 90°。

二、全等三角形部分1. (1)如图,在△ABC和△DEF中,AB = DE,∠B=∠E,BC = EF,求证:△ABC ≌△DEF。

解析:在△ABC和△DEF中,已知AB = DE,∠B = ∠E,BC = EF。

根据全等三角形判定定理中的“边角边”(SAS),可以得出△ABC≌△DEF。

2. (2)已知△ABC≌△A'B'C',△ABC的周长为20cm,AB = 8cm,BC = 6cm,求A'C'的长。

解析:因为△ABC≌△A'B'C',全等三角形的对应边相等。

△ABC的周长为AB+BC + AC=20cm,已知AB = 8cm,BC = 6cm,则AC=20 8 6 = 6cm,所以A'C'=AC = 6cm。

三、轴对称部分1. (1)点A(2, 3)关于x轴对称的点A'的坐标是多少?解析:关于x轴对称的点,横坐标相同,纵坐标互为相反数。

所以点A(2, 3)关于x轴对称的点A'的坐标是(2,3)。

2. (2)已知等腰三角形的一个角为70°,求这个等腰三角形的顶角度数。

解析:当70°角为底角时,顶角为180° 70°×2 = 40°;当70°角为顶角时,顶角度数就是70°。

人教版数学 八年级上册 八年级上册 课后练习题

人教版数学 八年级上册 八年级上册 课后练习题

一、单选题
1. 下列运算正确的是()
A.4a3b÷2a2=2a B.(a3)4=a12
C.(x﹣y)2=x2﹣2xy﹣y2D.(x+y)(﹣x﹣y)=y2﹣x2
2. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形,一共有()种涂法.
A.1 B.2 C.3 D.4
3. 下列多项式是完全平方式的是().
A.﹣4x﹣4
B.
C.
D.
4. 如果一个长方形的面积为,它的一边长为,那么它的另一边长为()
A.B.C.D.
5. 如图,已知,直线l与直线a,b分别交于点A,B,在直线l,b上分别截取
,,使,分别以M,N为圆心、以大于的长为半径作弧,两弧在内交于点P,作射线,交直线a于点C,若,则
的度数是()
A.B.C.D.
二、填空题
6. 计算=___________.=_____________.
7. 已知:如图,AD是△ABC中BC边上的高,∠ABC=42°,AE平分∠BAC,∠ACB=70°,则∠DAE=_________度.
8. 分式有意义,则的取值范围是______
三、解答题
9. 已知m-n=2,求代数式的值.
10. 已知,如图,点,,,在同一直线上,,,

求证:,.11. 分解因式
(1)﹣4a2+4ab﹣b2;(2)a3+a2b﹣ab2﹣b3.。

人教版数学八年级上册 期末复习专项练习题(选择+填空)(含简单答案)

人教版数学八年级上册 期末复习专项练习题(选择+填空)(含简单答案)

人教版数学八年级上册期末复习专项练习题(选择+填空)一、选择题1.若一个三角形的三边长分别为2、6、a,则a的值可以是()A.8 B.7 C.4 D.32.下列交通标志的图案是轴对称图形的是()A. B. C. D.3.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°有意义,则x的取值范围是()4.若分式1x−3A.x>3B.x<3C.x=3D.x≠35.下列运算正确的是()A.4a−a=3a B.a4⋅a2=a8C.a6÷a3=a2D.(−2a2)3=8a66.如图,∠A=∠D,∠1=∠2,要使△ABC≌△DEF,还应给出的条件是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD 7.如图,△ABC≌△ADE,∠B=20°,∠E=110°,∠EAB=30°,则∠BAD的度数为()A.80°B.110°C.70°D.130°8.如图,在△ABC中,AD是△ABC的角平分线, DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°9.下列多项式能使用平方差公式进行因式分解的是()A.4x2+1B.−m2+1C.−a2−b2D.2x2−y210.如图,在等边△ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则下列结论不正确的是()A.BD=12AB B.BC=2DE C.∠ABE=15°D.DE=2AE11.计算a2−1a2÷(1a+1)的结果是()A.a+1a B.−a+1aC.a−1aD.−a−1a12.已知多项式ax2+bx+c,其因式分解的结果是(x+1)(x−4),则abc的值为()A.12 B.-12 C.6 D.-6二、填空题13.因式分解:(x−y)2+4xy=.14.如图,在△ABC中,边AC的垂直平分线交AC 于点M,交 BC 于点 N,若AB =3,BC=13,那么△ABN 的周长是.15.如图,BO、CO分别平分∠ABC和∠ACB,∠A=70°,则∠BOC=°.16.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,点E为AB的中点,若AB=12,CD=3,则△DBE的面积为值为0,x=.17.分式|x|−4x+4参考答案1.B2.B3.C4.D5.A6.D7.A8.C9.B 10.D 11.C 12.A 13.(x+y)2 14.16 15.125 16.9 17.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷 灿若寒星整理制作
八年级数学练习题(1)
一.选择题
1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A .7,24,25
B .321,421,521
C .3,4,5
D .4,721,82
1 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )
A .1倍
B .2倍
C .3倍
D .4倍
3.在下列说法中是错误的( )
A .在△ABC 中,∠C =∠A 一∠
B ,则△AB
C 为直角三角形
B .在△AB
C 中,若∠A ∶∠B ∶∠C =5∶2∶3则△ABC 为直角三角形
C .在△ABC 中,若a =53c ,b =5
4c ,则△ABC 为直角三角形 D .在△ABC 中,若a ∶b ∶c =2∶2∶4,则△ABC 为直角三角形 4.四组数:①9,12,15;②7,24,25;③32,42,52;④3a ,4a ,5a (a >0)中,可以构成直角三角形的边长的有( )
A .4组
B .3组
C .2组
D .1组
5.三个正方形的面积如图1,正方形A 的面积为( )
A . 6
B . 36
C . 64
D . 8
6.一块木板如图2所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )
A .60
B .30
C .24
D .12
7.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )
A .6cm
B .8.5cm
C .1330cm
D .13
60cm 8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )
A .50cm
B .100cm
C .140cm
D .80cm
9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )
A D
B
C 图2
A .8cm
B .10cm
C .12cm
D .14cm
10.在△ABC 中,∠ACB =90°,AC =40,CB =9,M 、N 在AB 上且AM =AC ,BN =BC ,则MN 的长为( )
A .6
B .7
C .8
D .9
11.三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
12.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是
( )
A.338
B.24
C.26
D.30
13.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )
A.42
B.32
C.42 或32
D.37 或 33
1 4.直角三角形三条边的比是3∶4∶5.则这个三角形三条边上的高的比是( )
A.15∶12∶8
B. 15∶20∶12
C. 12∶15∶20
D.20∶15∶12
15.在△ABC 中,∠C =90°,BC =3,AC =4.以斜边AB 为直径作半圆,则这个半圆的面积等于( )
A.258π
B. 254π
C. 2516
π D.25π 16.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,
使它落在斜边AB 上,且与AE 重合,则CD 等于( )
A.2cm
B.3 cm
C.4 cm
17.如图2,一个圆桶儿,底面直径为16cm ,高为18cm ,则一只小虫底部点A 爬到上底B 处,则小虫所
爬的最短路径长是(π取3)( )
A.20cm
B.30cm
C.40cm
D.50cm
二.填空题(每小题3分,共30分)
1.在△ABC 中,∠C =90°,若 a =5,b =12,则 c =___.
2.在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = .
3.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为___.
4.直角三角形三边是连续整数,则这三角形的各边分别为___.
5.在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=___.
6.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.
7.一座桥横跨一江,桥长12m ,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m ,则小船实际行驶___m .
8.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是___.
9.在Rt △ABC 中,∠C =90°,中线BE =13,另一条中线AD 2=331,则AB =___.
10.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为___.
11.在△ABC 中,∠C =90°,BC =60cm ,CA =80cm ,一只蜗牛从C 点出发,以每分20cm 的速度沿CA
→AB →BC 的路径再回到C 点,需要___分的时间.
图1 D 18cm
图2
B
12.已知两条线段长分别为5cm 、12cm ,当第三条线段长为___时,这三条线段可以组成一个直角三角
形,其面积是___.
13.观察下列一组数:
列举:3、4、5,猜想:32=4+5;
列举:5、12、13,猜想:52=12+13;
列举:7、24、25,猜想:72=24+25;…… ……
列举:13、b 、c ,猜想:132=b +c ;
请你分析上述数据的规律,结合相关知识求得b =___,c =___.
三、解答题
1.某车间的人字形屋架为等腰△ABC ,跨度AB =24m ,上弦AC =13m .求中柱CD (D 为底AB 的中点).
2.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.
3.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m 处,已知旗杆原长16m ,你能求出旗杆在离底部什么位置断裂的吗?请你试一试.
4.如图4所示,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m .现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离为3m ,同时梯子的顶端B 下降到B ′,那么BB ′也等于1m 吗?
图3 O B ′ 图4 B
A
A ′
7,如图,有两只猴子在一棵树CD 高5m 的点B 处,它们都要到A 处的池塘去喝水,其中一
只猴子沿树爬下走到离树10m 处的池塘A 处,另一只猴子爬到树顶D 后直线越向池塘的A 处.如果两只猴子所经过的路程相等,这棵树高有多少米?
A B
C D
•。

相关文档
最新文档