数学文化与数学教育(张奠宙)1

合集下载

数学教育心得及体会

数学教育心得及体会

数学教育心得及体会数学教育概论》这本书是由张奠宙、宁乃庆主编的,是普通高等教育十五国家级规划教材数学系列教材之一,它带附带有一个光盘,由高等教育出版社出版。

这是一个关于数学教育基本理论与实践的概述,目的是帮助具有数学专业知识的学生获得有关数教育的基本知识和技能。

它不再只是教材教法的说明书式的记叙,而是阐述数学教育的规律,具有自己怕学科体系。

全书分为实践篇和理论篇。

首先从观赏、分析大量的数学教学案例入手,帮助学生编制教案,走上讲台。

然后概略地介绍当代数学教育的基本理论,探讨数学教学的目的、学生应具备的数学能力、数学教学模式、数学教育的德育功能等基本课题,同时研究数学思想方法的价值,以及数学史、数学教育技术、数学教育心理等有关问题。

书中设专章介绍和研究《全日制义务教育数学课程标准》和《普通高中数学课程标准》的制定和实验,并就数解题和数学考试、数学教育研究等问题进行阐述。

数学是人类文明的火车头。

古希腊文明时期的数学著作──欧几里得的《几何原本》成为人类理性精神的典范。

它在西方国家的印刷数量,仅次于圣经。

当历史经过中世纪的漫漫长夜之后,是笛卡尔、费马、牛顿、一莱布尼茨创立的微积分,宣告了资本主义文明的科学黄金时代的来临。

19世纪发现的非欧几何、高斯---黎曼建立的微分几何进入爱因斯坦的相对论,缔造了物理学革命,成为20世纪文明的标志之一。

现在,当人们在普遍享受信息文明的时候,自然会想起为它奠基的数学家的贡献:冯诺依曼设计的电子计算机,连同维纳的控制论、仙农的信息论,人类终于迎来了航天飞行和手机普及的时代。

数学无处不在,数学无往不利。

人类的进步一时一刻也不能离开数学。

就单个个人而言,由于数的严谨与抽象,经过烽学的学习和训练,人的思维能力就获得一次升华。

学习数学,不仅为学习其他学科打下了扎实基础,而且能够培养人们不迷信权威,不感情用事,不停留于表面现象的思维品质,甚至从数学这无声的音乐、无色的图画中,领略到美的崇高境界。

关注数学本质 引领深度学习——《小学数学教材中的大道理》读书心得

关注数学本质 引领深度学习——《小学数学教材中的大道理》读书心得

小学教育46张奠宙先生的《小学数学教材中的大道理》一书,是张教授站在整个数学发展历程上,去揣摩核心概念背后的大道理、思想方法的神髓。

阅读这本书,给了我不一样的思考——教材的编写是否够科学?作为一线教师也要敢于质疑甚至批判教材,要站在数学本质、适合小学生学习和数学文化教学的高度,去分析教材中的问题、缺失,悟出“小”数学中的“大”道理。

一、加法交换律应从本源上讲清道理现在教材里提到加法交换律,就拿出一组加法等式来找规律:5+6=6+5,3+8=8+3,22+34=34+22……发现两个数相加,交换加数的位置,和不变。

然后要求学生分组举很多例子,由此归纳出加法交换律成立,即a+b=b+a。

这部分内容我曾经教学过,当时觉得不太对劲,通过这次阅读,我觉得张奠宙老师讲得非常有理,加法交换律为什么成立?也就是说加数的位置为什么可以交换?没有从本源上讲清道理。

现在提出“过程与方法的教学目标”,凡是小学生能够懂的道理,还是要说理。

怎么去说理?对此我很赞同书中所提到的做法,数数是最基本的数学活动之一,教材上可以画A、B两堆苹果,引导学生发现先数A堆接着数B堆,和先数B堆接着数A堆的结果是一样的,从本源上看,这就是加法交换律成立的证明。

二、乘法交换律和乘法的意义应相统一人教版《数学》二年级上册“认识乘法”展示了三幅不同的情景图片,引出三个加法算式:3+3+3+3+3=15 ,6+6+6+6=24,2+2+2+2+2+2+2=14,然后指出“这种加数相同的加法算式,还可以用乘法表示”。

以最后一个加法算式为例,指出这个加法算式表示7个2相加,可以写成乘法算式“2×7=14”或“7×2=14”,这就是说,不管是“2×7”还是“7×2”,都可以表示7个2相加,两个不同的乘法算式可以表示同一个加法算式。

照这么说来,当a和b都是大于1的整数时,a×b和b×a都表示b个a的和,也可以表示a个b的和。

01《小学数学研究》张奠宙等

01《小学数学研究》张奠宙等

《小学数学研究》张奠宙孔凡哲黄建弘黄荣良唐彩斌著2014年4月1日到温州教师教育学院雁荡分院参加市骨干培训,问王炜老师关于提高“本体性”知识的书籍,王老师介绍了这本书。

很巧的是,回到家打开书柜一看,原来我有这本书——工作室上个学期发的。

原来与书也是需要讲缘分的!第十一章小学数学中的文字型应用题中国《算数书》记载许多应用题20世纪中叶,代数方法逐渐取代算术应用题;问题解决:将纯粹数学和应用数学的问题同一起来。

算术方法有它独特的实用价值和思维训练价值,算术模型和代数模型,各有所长,相互融合,而不是排斥。

小学数学中文字型应用题的求解有特殊的规律,适当集中,不可缺少。

【若水】所谓算术模型是一种四则运算的顺向思维么,代数模型即方程?果然不出我自己所料,我的本体性知识非常缺乏!继续学习。

数学应用的本质是数学建模数学发展两个原动力:解决大自然和社会现实提出的数学问题;解决数学内部生成的数学问题。

应用数学和纯粹数学相辅相成,渗透,发展。

社会生产力和文化发展的现实需要是数学成长的本源。

【若水】小学阶段的数学基本上都是有问题背景下的问题解决,几乎都是应用数学。

但是现在的环境越来越注重数学本质的内在联系,其实是更好地让应用数学和纯粹数学相互渗透和共同发展么。

数学模型,广义:各种基本概念和基本算法;狭义:只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。

【若水】那小学数学的数学模型大多是从广义的角度来定义的咯。

乘法的模型,分数的模型等?俺不知道这么说科学不科学。

小学数学中被贴好标签的到底有几种模型。

这个数学建模是不是类同与清晰数量关系?抽象模型(七桥问题)【若水】一笔画的问题,以前我也思考过,但是时间过去了,内容我都不记得。

想象一下,孩子在研究这类问题时该如何建模,留下什么数学思想?小学数学应用题的求解,可以用算术方法和代数方法,分别建立问题的算术模型和代数模型。

算术模型是一串数字的运算流程。

代数中的基本对象除了数,还出现了更具广泛意义的基本对象:符号。

张奠宙对数学本质的阐述

张奠宙对数学本质的阐述

张奠宙对数学本质的阐述
数学是一门追求真理的学科,而数学本质是其追求真理的核心。

在数学史上,
许多数学家都尝试过阐述数学的本质,其中张奠宙的观点也具有重要意义。

张奠宙是中国著名数学家,他对数学本质的阐述可以追溯到20世纪50年代。

他认为,数学本质在于表达抽象概念和规律,并通过逻辑推理进行证明和解决问题。

他注重数学的内在结构和逻辑推理的规范性。

根据张奠宙的观点,数学的本质包含两个关键要素:抽象和逻辑推理。

抽象是
数学的基础,通过将具体事物抽象为符号和概念来描述数学对象。

这种抽象使得数学能够研究和处理各种不同的问题,忽略细枝末节,从而更好地理解和解决问题。

逻辑推理是数学的思维方式,通过逻辑关系和推理规则来建立数学推导和证明。

逻辑推理使得数学推理过程更加准确和可靠,确保数学结论的正确性。

这种逻辑思维也是数学家解决问题的重要方法,帮助他们发现问题的本质,并找到解决途径。

张奠宙还强调数学本质与实际应用之间的紧密关系。

尽管数学具有抽象性和理
论性,但它也能应用于实际问题解决。

数学是科学和技术的基础,它在物理学、工程学、经济学等领域的应用被广泛认可。

总而言之,张奠宙对数学本质的阐述强调了抽象和逻辑推理的重要性。

数学的
本质在于表达抽象概念和规律,通过逻辑推理来解决问题。

数学的应用也是其本质的重要体现,它在现实世界中的广泛应用赋予了数学以更大的意义和价值。

数学教育改革“先锋”——数学大师张奠宙

数学教育改革“先锋”——数学大师张奠宙

视野•名师名校◄数学教育改革"先锋”----数学大师张奠宙◎上海市城市科技学校邵红能2018年12月20日,我国著名数学史家、数学教育家,华东师范大学数学科学学院教授张奠宙在上海逝世,享年85岁。

未来,乃是过去历史的继续。

不能正确地认识历史,吸取经验教训,也就找不到前进的方向。

辛亥革命以来,中国数学教育走过了100年。

早年,我国学习日本;后来,接受欧美国家的影响。

建国后的1950年代,全盘学习苏联。

经过“大跃进”年代和“文革”十年的波折,而今,中国数学教育取得了举世瞩目的成绩。

1986年,张奠宙所著的《20世纪数学史话》引起杨振宁、陈省身的重视。

在两位大师指点下,张奠宙陆续推出《中国现代数学的发展》、《20世纪数学经纬》、《陈省身传》等著作,成为中国现代数学史的奠基之作。

张奠宙(1933-2018.12.20),浙江省奉化人,华东师范大学教授、博导,张奠宙长期担任数学分析和函数论课程的教学,曾担任《数学教学》杂志主编和名誉主编。

在教学之余,从事数学教育和现代数学史研究,出版《20世纪数学史话》、《现代数学与中学数学》、《数学教育研究导引》、《数学方法论稿》、《中国数学双基教学沢《陈省身传》等著作20余种,发表文章近千篇。

张奠宙48青年教师在泛函分析研究领域对中国的数学发展做出了卓越的贡献。

在我国教育界,张奠宙被广大中小学教师所熟悉,被尊称为“中国数学教育界的泰斗”。

2013年6月,华东师范大学数学系举办了“未来十年中国数学教育展望”高层次的学术研讨会,时值张奠宙八十华诞,为他举办了庆祝典礼。

张奠宙的主要研究方向为泛函分析、数学教育、现代数学史,被人尊称为“三栖学者”。

他曾担任教育部全国教师教育课程资源专家委员会委员、教育部师范司高师教学改革指导委员会委员、《高中数学课程国家标准》研制组组长等。

其中,1995年至1998年,张奠宙任国际数学教育委员会执行委员,这是中国人第一次进入世界数学教育的领导机构。

数学双基·新概念数学·数学文化(张奠宙)

数学双基·新概念数学·数学文化(张奠宙)
记者:“傅聪先生,您曾经说过,现在的年轻 人弹奏技巧越来越好,能不能告诉我们,您的 潜台词是什么?”
傅聪:“现在很多孩子都是从3岁就开始练琴, 练到10多岁,基础打得很扎实,基本技巧好得 不得了,连我也很羡慕。但是呢,音乐其实他 们懂的并不多,所以我说技巧有时是音乐的敌 人,技巧和音乐根本是两码事。”
合作者。(全国标准 第二页) 误解:建构主义认为,教师不应该直接
告诉任何知识,要学生自己去建构。 启发式就是符合建构主义观点的!
“数学教育幽默之一
一。 合作学习 在一堂数学公开课上, 女生:你的头发有点乱。 男生:你的眉毛画得太浓 评课者:这堂课合作学习搞得很好,学
生很活跃。
数学教育幽默之二
双基教学的内涵(二)
做题要讲究速度。 例如20以内的加减法, 每分钟至少8个
精讲多练。 课堂练习丰富。 变式练习, 丰富多彩。 (如那道错题) 熟能生巧的教育古训 考试文化的正反效应。
双基教学的模式
常规模式:问题引入 – 师生讨论 – 巩固 练习三段论
教学方式:教师主导的由教师提问、师 生讨论的方式。
每一次“以西非中“的时候, 一直认为我们不如西方。 当然这种提法不代表我们要固步自封, 而是要在谈发展 之前, 我们有没有停下脚步, 看看自己有多少东西。 免得在发展时, 不仅没有把自己的东西好好整理, 甚
至把自己的东西丢掉。
教训:要平衡, 不要搞片面性
双基与发展。 中国双基教学是否过时? 记忆与理解。 三角公式要不要背? 独立思考与合作交流。 数学是个人思考为主? 知识积累与探究创新。 公开课课都必须探究? 科学模型与日常经验。数学的日常经验是哪些? 形式演绎与问题驱动。 冰冷美丽和火热思考 艰苦学习与愉快学习。 如何才是愉快? 事先探究与事后反思。 反思教学的缺失

小学数学教学案例研究--张奠宙 宋乃庆

小学数学教学案例研究--张奠宙  宋乃庆

一、小学数学教学理论1.教学设计理论(1)以“教”为中心的教学设计理论(2)以“学”为中心的教学设计理论(3)“主导-主体结合”教学设计理论2.教学评价理论(1)教材分析是否正确(2)目标制定是否合理(3)教学方法选择是否适当(4)合作学习设计是否必须或有效(5)现代教育技术的应用是否恰当(6)练习设计是否有针对性、有层次、形式多样(7)学习时空是否充足(8)数学联系实际是否自然3.教学目标概述(1)目标设置进程“双基”:数学基础知识和数学基本技能“三基础一个性”:授受基础知识、形成基本技能、发展基本能力、促进个性健康发展“三维目标”:知识与技能、过程与方法、情感态度与价值观(2)目标用词知识与技能:了解、体会、知道、识别、感知、认识、初步体会、初步学会、初步理解、举例说明、描述、表达、表述、表示、刻画、解释、归纳、总结、比较、能、判断、会求、推断、证明、分析、应用。

过程与方法:经历、观察、感知、体验、操作、借助、模仿、收集、回顾、复习、参与、尝试、设计、整理、梳理、发现、分析、探索、探究、解决、寻求。

情感态度与价值观:经历、感受、参加、参与、尝试、讨论、交流、合作、体验、获得、提高、增强、形成、养成、树立、保持、确立、追求、发展、发挥。

4.教材分析思路(1)学习课程标准(2)分析教材内容教材结构分析:教学内容的前后联系。

分析方法有:一种以某一知识为起点,顺向往后,有如“综合法”,明确启后,即理清由此往后有关知识的头绪。

另一种以某一知识为终点,逆向往前,有如“分析法”,找出与前面有关基础知识的联系。

教学内容分析:从科学性的角度去分析教学内容,从思想性、智力性和趣味性的角度去分析教学内容,从教学重点、难点和关键的角度去分析教学内容。

例题习题分析:分析例题习题配备的目的性、层次性,分析例题习题蕴涵的数学思想方法及其拓展空间,分析例题习题的特点与学生的解题特点。

(3)借鉴参考资料《教师教学用书》等教学资源5.教学策略(1)启发讲授策略(2)师生对话策略(3)自主探究策略6.编制教案的注意点(1)深入分析教材,把握教学内容的深度、广度和数学实质,提出恰当的数学目标。

高三数学 凸显数学本质 引领学生思维素材

高三数学 凸显数学本质 引领学生思维素材

凸显数学本质引领学生思维摘要:数学教学必须是体现数学本质的教学,在教学设计过程中教师一定要准确把握数学的本质,只有这样,数学教学设计的创新才具有强大的生命力。

关键词:数学本质课堂教学新课程标准教学改革《普通高中数学课程标准(实验)》指出:教师是数学学习的组织者、引导者、与合作者,其“实施建议”指出:“数学教学要体现课程改革的基本理念,在教学设计中充分考虑数学的学科特点,高中学生的心理特点,不同水平、不同兴趣学生的学习需要,运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及他们所体现的数学思想方法,发展应用意识和创新意识,对数学有较为全面的认识,提高数学素养,形成积极的情感态度,为未来发展和进一步学习打好基础。

”易见,新课程理念倡导的课程教学设计应该坚持“以人的全面和谐发展为本的科学发展观”,必须以“学生的学为本”、“以学生的发展为本”,即数学课堂教学设计应当是人的发展的“学程”设计,而不单纯以学科为中心的“教程”设计。

新课程标准要求教师在课堂教学设计上重新组合,潜心研究教材,研究学情。

这是高中新课程数学教师面临的新的挑战,那么,怎样更好地进行教学设计呢?本人认为,最根本的一点,就是牢牢地把握高数学的本质,即以不变应万变,这样才能与时俱进地开展教学创新,体现数学的教学理念。

什么是数学?这是任何一个数学教育工作者都应认真思考的问题。

只有对数学的本质特征有比较清晰的认识,才能在数学教育教学研究中把握正确的方向。

一、“数学本质”的内涵C·迪尔曼:“数学是现实中优于任何普通语言的最完美的语言……自然界彷佛用它说话,世界的创造者用它说话,世界的保护者仍在用它说话。

”什么是数学?数学就是用数来解释自然规律的学问。

数学本质是一个数学哲学问题,张奠宙教授认为数学本质的内涵:数学知识的内在联系、数学规律的形成过程、数学思想方法的提炼与数学理性精神的体验。

数学本质的内涵认识启示我们的数学教育应该注重应用与崇尚理性并重、过程教学与结果教学并重、教书与育人并重。

数学教学论--第一章-绪论-为什么要学习数学教育学

数学教学论--第一章-绪论-为什么要学习数学教育学

第一章绪论为什么要学习数学教育学课题:绪论——第一节为什么要学习数学教育学学习提要:1.数学教育的沿革与发展;2.数学教育研究热点的演变;3.数学教育学的内容及学习意义与方法。

教学目标:1.使学生了解数学教育学的研究对象、掌握数学教育学的研究内容及学习该学科的意义;2.了解一定的数学教育发展历史,了解数学教育研究热点的演变趋势;3.了解数学教育学的研究对象、特点和研究方法,理解学习数学教育学的意义。

教学重点、难点:数学教育学的内容及学习该学科的意义为本章重点;学习该学科的方法为本章难点。

教学方法:讲解法、讨论法学习提要一、关于数学教育学的认识二、数学教育的沿革与发展三、学习数学教育学的意义四、学习数学教育学的方法教学过程:引:问题与思考1、为什么要学习数学教育学?2、你最喜欢什么样的数学老师?——关于数学教育学的认识●数学教育的含义广义:传播数学知识、数学技能的活动狭义:在中小学进行数学教学的活动●数学教育学的含义研究数学教育现象,揭示数学教育规律“教什么、学什么”;“怎样教、怎样学”;“教得怎样,学得怎样”以及相关的理论● 数学教育学的特征综合学科、交叉学科( 历史性、发展性、实践性)数学教育是一门综合学科、交叉学科▲ 研究领域的综合性。

▲ 理论来源的综合性。

▲ 研究方法的综合性。

▲ 数学教育是一门关于数学、教育学、心理学的交叉学科。

● 数学教育学是一门年轻学科,但其历史源远流长(1)年轻学科:1969年,法国里昂,第一届国际数学教育大会1970年,《数学教育学》(苏联:斯托利亚尔)1978年,《中学数学教与学》(美国)1980年,《中学数学教材教法》(十三院校)1984年,《数学教育学》(丁尔陞译)(2)历史源远流长:公元前4000年,古埃及,算术知识的记载公元前3000年,古埃及,十进制公元前1100年,中国西周,六艺—礼、乐、射、御、 书、数一、数学教育的沿革与发展(一)数学教育成为一个专业的历史古代:中国古代数学教育的主要目的是为了经世致用,古代算学以测量田亩、计算税收等为目的,主要用于国家管理,数学属“六艺”教育(礼、乐、射、御、书、数)之一;西方数学教育的目的主要是为了训练学生的心智,在“七艺”教育(文法、修辞、逻辑学、算术、几何、天文、音乐)中,几何和天文学的地位排在文法、修辞与逻辑学之后。

张奠宙:数学文化

张奠宙:数学文化

张奠宙:数学⽂化数学作为⼀种⽂化现象,早已是⼈们的常识。

历史地看,古希腊和⽂艺复兴时期的⽂化名⼈,往往本⾝就是数学家。

最著名的如柏拉图和达·芬奇。

晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等⽂化名⼈也都是20世纪数学⽂明的缔造者。

数学⽂化的存在价值在即将公布的⾼中数学课程标准中,数学⽂化是⼀个单独的板块,给予了特别的重视。

许多⽼师会问为什么要这样做?⼀个重要的原因是,20世纪初年的数学曾经存在着脱离社会⽂化的孤⽴主义倾向,并⼀直影响到今天的中国。

数学的过度形式化,使⼈错误地感到数学只是少数天才脑⼦⾥想象出来的“⾃由创造物”,数学的发展⽆须社会的推动,其真理性⽆须实践的检验,当然,数学的进步也⽆须⼈类⽂化的哺育。

于是,西⽅的数学界有“经验主义的复兴”。

怀特(L.A.White)的数学⽂化论⼒图把数学回归到⽂化层⾯。

克莱因(M.Kline)的《古今数学思想》、《西⽅⽂化中的数学》、《数学:确定性的丧失》相继问世,⼒图营造数学⽂化的⼈⽂⾊彩。

国内最早注意数学⽂化的学者是北京⼤学的教授孙⼩礼,她和邓东皋等合编的《数学与⽂化》,汇集了⼀些数学名家的有关论述,也记录了从⾃然辩证法研究的⾓度对数学⽂化的思考。

稍后出版的有齐民友的《数学与⽂化》,主要从⾮欧⼏何产⽣的历史阐述数学的⽂化价值,特别指出了数学思维的⽂化意义。

郑毓信等出版的专著《数学⽂化学》,特点是⽤社会建构主义的哲学观,强调“数学共同体”产⽣的⽂化效应。

以上的著作以及许多的论⽂,都⼒图把数学从单纯的逻辑演绎推理的圈⼦中解放出来,重点是分析数学⽂明史,充分揭⽰数学的⽂化内涵,肯定数学作为⽂化存在的价值。

认识和实施数学⽂化教育进⼊21世纪之后,数学⽂化的研究更加深⼊。

⼀个重要的标志是数学⽂化⾛进中⼩学课堂,渗⼊实际数学教学,努⼒使学⽣在学习数学过程中真正受到⽂化感染,产⽣⽂化共鸣,体会数学的⽂化品位,体察社会⽂化和数学⽂化之间的互动。

《数学教育概论》张奠宙 宋乃庆

《数学教育概论》张奠宙  宋乃庆

数学教育的沿革与发展
上通数学 下达课堂
名家评语
《数学教育概论》简介
绪论:为什么要学习数学教育学
第一节 数学教育的沿革与发展
学习提要
一、关于数学教育学的认识
● 数学教育的含义 广义:传播数学知识、数学技能的活动 狭义:在中小学进行数学教学的活动 ● 数学教育学的含义 研究数学教育现象,揭示数学教育规律 “教什么、学什么”; “怎样教、怎样学”;“教得怎样, 学得怎样”以及相关的理论 ● 数学教育学的特征 综合学科、交叉学科( 历史性、发展性、实践性)
计算工具数字化和模型化的思想方法


4、宋辽金元时期,我国古代数学教育发展的高峰期。 当时的数学研究达到了当时的世界最高水平,产生了 一大批杰出的数学家和数学教育家: 贾宪的开方法,秦九韶的《数书九章》、杨辉的《详 解九章算法》、朱世杰的《四元玉鉴》等;杨辉写的 《乘除通变本末》中卷首列有一个《习算纲目》,是 世界上至今已被发现的最早的教学计划大纲和教学法 指导书,堪称古代的数学教育学;这些著作把实用性 算法体系提升到抽象性算法体系,达到了当时世界的 最高水平;杨辉、沈括等改进筹算的运算形式和方法, 创造算法口诀,筹算向珠算过渡,为普及数学教育创 造了条件。
上页
下页
二、数学教育的沿革与发展
(二)中国的数学教育 ●古代 (1)《九章算术》 (2)《算经十书》 (3)杨辉的《习算纲目》 (4)西学东渐,西方数学进入中国 开算学馆(1713年),设师授徒,以《数理精蕴》(1713年,专为 算学馆编写)为教材 。 阮元的《畴人传》(中国古代唯一的数学史和数学教育史专著)。


1912年,中华民国成立,改革学制,教授法发 生改变;模仿欧美国家(德国、日本、英国和 美国),中小学设置数学课程; 1914年,美国的自学辅导主义教授法传入中国, 接着传入分团教学法(同年级根据能力分团, 教师分别指导);1917年,美国设计教学法传 入中国(将实际问题应用于教学上)。

数学核心素养

数学核心素养

什么就是数学核心素养?一、张奠宙:数学核心素养包括“真、善、美”三个维度。

通俗地说,数学得核心素养有“真、善、美”三个维度:(1)理解理性数学文明得文化价值,体会数学真理得严谨性、精确性;(2)具备用数学思想方法分析与解决实际问题得基本能力;(3)能够欣赏数学智慧之美,喜欢数学,热爱数学。

不妨就一个人文学科得学者(例如从事新闻、出版、法律、外语、中文、历史等专业)来说,她们得数学素养也许就就是在高中学段形成得(到大学不学数学了)。

对她们来说,在数学能力上要求不可过高,但就是却必须具备现代得数学文化修养,能够欣赏数学美,理解数学文明,以便在记者采访、外语翻译、小说创作、历史考察等得职业生涯中,能够应对许多与数学文化有关得常识性问题,并与她人进行基本得数学交流与探究。

二、义务教育数学核心素养反映数学本质与数学思想数学核心素养可以理解为学生学习数学应当达成得有特定意义得综合性能力,核心素养不就是指具体得知识与技能,也不就是一般意义上得数学能力。

核心素养基于数学知识技能,又高于具体得数学知识技能。

核心素养反映数学本质与数学思想,就是在数学学习过程中形成得,具有综合性、整体性与持久性。

数学核心素养与数学课程得目标与内容直接相关,对于理解数学学科本质,设计数学教学,以及开展数学评价等有着重要得意义与价值。

一般认为,“素养与知识(或认知)、能力(或技能)、态度(或情意)等概念得不同在于,它强调知识、能力、态度得统整,超越了长期以来知识与能力二元对立得思维方式,凸显了情感、态度、价值观得重要,强调了人得反省思考及行动与学习。

”“数学素养就是指当前或未来得生活中为满足个人成为一个会关心、会思考得公民得需要而具备得认识,并理解数学在自然、社会生活中得地位与能力,做出数学判断得能力,以及参与数学活动得能力。

”可见,数学素养就是人们通过数学学习建立起来得认识、理解与处理周围事物时所具备得品质,通常就是在人们与周围环境产生相互作用时所表现出来得思考方式与解决问题得策略。

中国数学双基教学

中国数学双基教学

中国数学双基教学中国特色的数学“双基”教学理论——张奠宙先生数学教育名言解读陈飞(贵州省习水县第一中学,新青年数学教师工作室)名言:“双基”是中国数学教学的重要特征;数学“双基”教学有四个特点:记忆通向理解、速度赢得效率、严谨形成理性、重复依靠变式,数学“双基”教学的理论模型包括“双基基桩、双基模块、双基平台”,数学教学要在坚实基础的基础上谋求应用和创新的发展.出处:张奠宙.中国数学双基教学[M].上海:上海教育出版社,2006:绪论1-6.张奠宙(1933-2018)先生是中国特色数学教育引领者,数十年来大声疾呼建立中国特色的数学教育理论,期待建设中国特色的数学教育学派.总结中国数学教育实践经验和特色,张奠宙先生认为“双基”教学是中国数学教育的重要特征,它根植于中华传统的耕作文化、儒家文化、考试文化和考据文化,并且可以与西方数学教育理论嫁接.张奠宙先生为中国数学“双基”教学理论的建设可谓投入最多,成果最为丰硕.是什么原因促使张奠宙先生投身于“双基”教学理论的建设呢?“双基”教学理论的建设是不是一帆风顺呢?数学“双基”教学理论在国内外的境遇如何?带着这些问题,笔者又重读张奠宙先生的论著和其他文献,试图梳理出一条中国数学“双基”教学理论的发展史,为今后继续从事数学“双基”教学理论研究的学者提供借鉴.1 数学“双基”教学:优良传统中国数学教育有许多特点,公认以“双基”教学为主要特征. [1] 什么是数学“双基”?公认的是“数学基础知识”和“数学基本技能”.我国老一辈数学家、数学教育家华罗庚、魏庚人、曹才翰、张孝达都注重数学“双基”教学.华罗庚先生是我国著名数学家,他虽然没有明确提出数学“双基”教学的概念,但是他的教学思想有一条鲜明的主线——创造源自基础,基础孕育创造.数学教学的基本要义是围绕创造打好“基础”,让学生在打好“双基”中走向创造.[2]在这种数学“双基”教学思想指导下,华罗庚先生培养了一大批数学人才,遗憾的是华罗庚先生的数学“双基”教学思想没有系统化、形成一整套理论.魏庚人先生是我国第一位中学数学教材教法专业的教授,也是1950年至1980年间我国数学教育专业唯一的教授.倡导“双基”教学是魏庚人先生重要的数学教育思想,他的这个思想初步形成于20世纪二三十年代,来源于他的教学实践.早年在北师大附中教学实践中,他就十分重视“双基”教学,使学生数学学习得到了学得容易、学得深刻的效果.1962年,魏庚人先生为陕西省数学会编写了《加强中学数学基本知识与基本训练的几点意见》一文,当时通过陕西人民广播电台向全省中学多次广播,此文于1963年发表在《人民教育》上,标志着他系统的“双基”教学理论的形成.魏庚人先生在文中指出,“为了提高中学数学的教学质量,首先应该加强基本知识和基本训练方面的教学”.魏庚人先生认为的“双基”教学包括基本知识和基本训练两个方面.[3]魏庚人先生的数学“双基”教学理论是我国学者第一次对“双基”教学理论化提升的尝试.遗憾的是在魏庚人先生生活的年代,数学教育还没有真正成为一门学科.即使在国外,直到1968年弗赖登塔尔创办荷兰《数学教育研究》,提倡数学教育以学术论文的形式出现,一改以往国际数学教育大会仅仅是各国教学大纲的交流,数学教育研究才逐渐科学化.所以,魏庚人先生虽然躬身力行几十年研究“双基”教学,但只能算是一个理论雏形.关于数学“双基”的理论,直到2006年邵光华、顾泠沅还在《中国双基教学的理论研究》一文中感叹,与西方教学理论流派不同,中国“双基”教学理论没有公认的倡导者或权威性著作.曹才翰先生是我国数学教育心理学的创始人和开拓者,在《初中数学中的双基与能力》一文中,他理清了双基与能力的区别与联系,知识是人对经验的概括,技能是对一系列行为方式的概括,能力是直接影响人们顺利有效地完成活动的个性心理特征,能力是对思想材料进行加工的活动过程的概括.[4]“双基”与能力是并列的,“双基”并不包含能力,这为对“双基”的界定奠定了理论基础,防止有人把“双基”概念泛化.张孝达先生是著名的数学教育家,曾任人民教育出版社中学数学室主任,践行“双基”教学思想,他在2000年的《坚持双基,加快改革创新步伐》一文中,认为我国数学教育的一大优势就因为强调基础知识的教学和基本技能的训练,从而学生有扎实的数学基础,所以必须坚持“双基”.[5]在张孝达先生主编的教材中也能体现他的“双基”教学思想.由于历史的局限性,还有我国数学教育研究还没有与世界接轨,先辈数学家、数学教育家都没有成为“双基”教学理论公认的倡导者,也没有写出“双基”教学理论的权威论著,但是他们为后来学者打下了基础.2 数学“双基”教学:使命在身中国在数学教育实践上取得的成绩举世瞩目,却没有广受认可相应的数学教育理论支持.张奠宙先生早就注意到了这个问题,他在1997年就撰文指出:“我国的数学教育,经过建国后近半个世纪的风风雨雨,已经积累了很多经验,但似乎还没有很好地上升为理论.”他认为“中国学生具有良好的数学基础知识和基本技能”,呼吁“如能把‘双基’教学提到理论高度,将是国际数学教育界的一项重大贡献”,并列出了如何进行“双基”教学理论研究的建议,今天看来,仍有较大的指导价值.[6] 国内学者对数学教育的误解也促使张奠宙先生致力于“双基”教学理论研究. 他在《中国双基教学》中写道:“就在北京大兴的一次不经意的讨论过程中,使我下定决心研究数学双基教学.那是一次讨论高中课程的会议,我认为要总结中国自己的成功经验,发扬自己的优良传统.一位教育家随口说道:‘中国当代的学科教育有什么可以发扬的?我不知道. ’这很刺激我.学科教育在中国至今没有获得应有的重视,原因很多.其中重要的一条是自己缺乏研究,没有拿出一流的成果来.就连‘数学双基’这样‘耳熟能详’、‘行之有效’的经验,居然也没有科学的研究,对一般教育理论和实践没有多少贡献.我觉得数学双基教学的研究已经时不我待. ”[7]之后,张奠宙先生身体力行的投身于“数学双基教学”这一专题,他的同事唐瑞芬教授说:“十多年来真可谓呕心沥血、锲而不舍,大会讲,小会说,从国际数学教育大会到国内的诸多场合,从理论研究工作者到第一线中小学数学教师,从数学教育高级研讨班的专题讨论,到基层组织的数学教师研修班的成果总结,从追根溯源的理论探索到教学实践中的典型案例、调查实录. ”[7]唐瑞芬教授提到的“大会讲”,其中一个就是指在2004年在哥本哈根召开的第10届国际数学教育大会上,张奠宙先生与戴再平教授以“中国双基数学教学和开放题教学”为题做了45分钟报告,报告英文版发表在韩国数学教学学会志《数学教育研究,2004(9)》(国际刊ISSN1226-6663),中文版发表在《数学教育学报》,在国内外产生较好的反响.3 数学“双基”教学:理论探索早在1996年,常熟高等专科学校的田中和江苏大学的徐龙炳到华东师范大学数学系访问,张奠宙先生指导他们研究“数学双基”.他们非常努力地工作,在没有国家任何经费支持的情况下,凭着个人的热情,争取中学老师的帮助,完成了难度很大的“初中学生整式运算能力调查”的项目.这包括一个衡量“数学双基”的量表,以及严格的测试和精致的数据分析.肇始于1992年的数学教育高级研讨班,前后持续了15年,在我国数学教育界有很大的影响力,其中有两届研讨班以“双基”为主题:“数学教育技术和‘双基’研究(2002年,苏州)”和“数学‘双基’教学研究(2004年,南宁)”.两次的讨论形成了《中国数学双基教学》(2006年)一书,初步形成了中国特色的数学“双基”教学理论框架:“双基”是中国数学教学的重要特征;中国“双基”教学有四个特点:记忆通向理解、速度赢得效率、严谨形成理性、重复依靠变式,给出了“双基基桩、双基模块、双基平台”模型,并指出数学教学要“在坚实基础的基础上谋求应用和创新的发展”(如下图所示). [7]2013年,张奠宙先生继续进行总结,将数学“双基”教学融入中国数学教育特色的核心:[8]中国数学教育特色的核心是:“在良好的数学基础上谋求学生的全面发展”.这里的“数学基础”主要是“数学双基”(基础知识和基本技能)和“三大数学能力”(数学运算能力、空间想象能力、逻辑思维能力);“数学发展”是指:提高学生用数学思想方法分析问题和解决问题的能力,促进学生在德、智、体等各方面的全面发展.与此相应的教学方式突出“数学内容本质的理解”,其主要特征是:数学“双基”教学(正在发展为数学“四基”教学),数学新知的教学导入,教师主导下的师班互动教学,数学尝试教学,数学变式教学,数学思想方法教学等.数学“双基”教学成为我国优秀数学教育传统之一,数学“双基”教学的研究迄今已有60多年,我们要再接再厉,与时俱进地研究“双基”教学.现在,为了适应数学教育的发展需要,人们又提出了将数学“双基”发展成“四基”(如下图所示),即基本知识、基本技能、基本思想、基本活动经验.当然,数学“四基”理论将接受实践的检验,我们拭目以待.2008年出版的《数学“双基”教学的理论与实践》和2013年出版的《数学教育的“中国道路”》是张奠宙先生继续深入研究“双基”的成果,标志着中国特色的数学“双基”教学理论形成,这也许是揭示华人学习者悖论奥秘的一把钥匙.今天,我们可以说张奠宙先生就是数学“双基”教学理论的主要倡导者,《中国数学双基教学》《数学“双基”教学的理论与实践》《数学教育的“中国道路”》就是数学“双基”教学理论权威著作.4 数学“双基”教学:任重道远著名华人学者蔡金法教授于2007年用中文出版了《中美学生数学学习系列实证研究》一书,该书的第十二章是启示与建议.书中指出:“是否需要重新考虑对‘双基’的投入?”我们应该在基础和楼层之间需要找到一种平衡.为有限的投入设计一个良性结构,使它能产生更大的效益.[9]张奠宙先生也表达过类似的观点:“在花岗岩的基础上盖茅草房,是极大的浪费”,“我国在‘双基’教学上有成功的经验,但是也存在着‘基础过剩’‘缺乏创造’的不足”.2004年,张奠宙在南宁举行的数学教育高级研讨班上,提出“双基教学”的概念:在掌握数学基本知识和基本技能的基础上,谋求学生的创新发展.这样的提法,就是为了取得基础与发展的平衡,避免“双基”的异化.既要基础,又要发展,是我们今后的任务.我国的“双基”教学理论在国际上还没有得到广泛的认可,弗赖登塔尔数学教育奖获得者、中国香港大学的梁贯成教授在一次超星学术视频中讲道:“中国数学教育特色与西方国家到底有什么不一样?‘双基’是我们很重要的一个看法,但是还没有提升到一个理论框架的层次. ”张奠宙先生寄语第三届华人数学教育大会:“所以我觉得从中国文化和传统中找到中国数学教育的特征,去除她的不足.然后,发扬她的在世界上正确的东西,这样中国数学教育一定会成功.现在我们还没有这个力量,话语权都在西方人手里.”“因为我们是后来者,后来者也要赶上去,要加倍努力,但我相信像我这样一代人过去,很快还会有第二代、第三代,我们接力赛跑,总有一天能够以华人数学教育学派的姿态,出现在世界舞台上.”建设中国数学“双基”教学理论,包括建设中国特色的数学教育理论,建设中国特色的数学教育学派,张奠宙先生已经迈出了重要的一步,我等后辈定当勇往直前,奋起直追,努力赶超世界数学教育先进水平.。

关于数学史和数学文化

关于数学史和数学文化

名师论教关于数学史和数学文化3张奠宙 (华东师范大学数学系 上海 200062)摘要 在数学教学中运用数学史知识时,不能简单地、就事论事地介绍史实,而应该着重揭示含于历史进程中的数学文化价值,营造数学的文化意境,提高数学的文化品位.通过对12个案例的详细剖析,具体给出了关于如何实施的建议.关键词 数学史;数学教育;数学文化 中图分类号 O1-0;G 42;N91进入21世纪以来,运用数学史进行数学教育的理论和实践都获得了长足的进步.数学史界,从“为数学而历史”、“为历史而历史”,进一步“为教育而历史”(李文林先生语).数学史研究既在学术上不断取得进展,更在为社会服务、承担社会责任方面迈出了重要的步伐.数学史知识,在《国家数学课程标准》和各种教材中系统地出现,数学课堂上常常见到运用数学史料进行爱国主义教育的情景.这些进步,是有目共睹,令人鼓舞的.但是,不可否认的是,运用数学史进行数学教学还有许多不足之处.我们看到的状况,往往是在教材的边框上出现一个数学家的头像,介绍一下数学贡献,就过去了.有的只有直接介绍数学史料,例如列举“函数”定义的发展历程,却没有展开.在进行爱国主义教育时也有某种简单化的倾向.有些界说,往往不大确切,造成误解.一般地说,数学教育中运用数学史知识,还停留在史料本身,只讲是什么,少讲为什么.因此,笔者认为,在数学教育中运用数学史知识,需要有更高的社会文化意识,努力挖掘数学史料的文化内涵,以提高数学教育的文化品位.1 揭示数学史知识的社会文化内涵数学的进步是人类社会文明的火车头.在人类文明的几个高峰中,数学的进步是突出的标志.古希腊文明,《几何原本》是其标志性贡献.文艺复兴以后的科学黄金时代,以牛顿建立微积分方法和力学体系为最重要的代表.19-20世纪之交的现代文明,是以数学方法推动相对论的建立而显现的.至于今天正在经历的信息时代的文明,冯・诺依曼创立的计算机方案,是信息技术的基础和发展的源泉.这些史实,都表明数学文化是和人类文明密切相关的.在中等教育结束的时候,学生应该有这样的历史认识.要做到这一点,在数学教材和数学课堂上,就需要揭示数学史上人和事的社会背景,从社会文化的高度加以阐述和展开.例1 关于《几何原本》.在平面几何课上,我们不能简单地介绍欧几里得生平和《几何原本》写作年代,就算完事.我们应该联系当时的社会文化现象,解释为什么古希腊会产生公理化思想方法.另一方面,中国古代数学又是为什么会注重算法体系的建立,较少关注演绎推理的运用.答案要丛社会文化、政治制度上找原因.首先,由于古希腊实行的是少数“奴隶主”的“民主制度”,执政官通过选举产生,预算决算、战争和平等大事需要投票解决.这就为奴隶主之间进行平等讨论提供了制度保证.进一步,平等讨论必然要以证据说理,崇尚逻辑演绎,体现客观的理性精神.反映到数学上,就是公理体系的建立,演绎证明的运用.另一方面,中国古代实行的是“君主皇权制度”,数学创造以是否能为皇权服务为依归,因此《九81高等数学研究STUDIES IN COLL EGE MA T H EMA TICS Vol 111,No 11Jan.,20083本文是作者在“第二届全国数学史与数学教育研讨会暨第七届全国数学史会议”(河北师范大学,2007年4月26-30日)上的发言.章算术》几乎等同于古代中国的“国家管理数学”(李迪先生语),丈量田亩、合理征税、安排劳役等为君王统治效力的数学方法成为主题,实用性的算法思想受到关注.如果我们这样讲解古希腊和古代中国的数学,就会有强烈的人文主义的色彩,使大家受到人文精神的感染.我们的结论是,既要尊重理性精神,也要遵循实用目的,但是中国长期在封建统治之下历来缺乏的是民主理性精神.类似地,我们在进行“数学期望”教学时,多半会提到费马和巴斯卡研究“赌金分配”的问题.但是为什么中国“打麻将”不会产生概率论?这也要从社会文化的角度进行阐述.例2 关于考据文化.数学讲究逻辑推理的严谨性,这时我们不妨提到中国的考据文化.以清代中期戴震为代表的考据学派,曾对中国科学的发展有过重要的作用.梁启超在《清代学术概论》中这样说[1]:自清代考据学派200年之训练,成为一种遗传.我国学子之头脑渐趋于冷静慎密.此种性质实为科学成立之基本要素.我国对于形的科学(数理),渊源本远.用其遗传上极优粹之科学头脑,将来必可成为全世界第一等之科学国民.考据文化的本质是不能把想象当作事实,不可把观感当作结论,必须凭证据说话,进行符合逻辑的分析.训诂、考证中讲究“治学严谨”,其实是逻辑严谨.中国数学教育能够很顺利地接受西方的公理化的逻辑演绎思想,今日中国数学教育能以逻辑推断见长.是和考据文化的支撑分不开的.当然,数学的逻辑要求,较之考据的要求还要高.例如作出考据的结论不能依靠一个证据,即孤证不足为凭,至少要有两个例证.但是,数学则有更进一步的要求,个别的例子再多也无用,必须进行完全覆盖,给出无遗漏的证明.我们在课堂上进行这样的对比,联系中国的考据文化进行逻辑证明教学,应该会更加有效.例3 关于爱国主义的问题.中华文明是世界上唯一得以完全延续的文明.运用数学史进行爱国主义教育,是理所当然的事.不过,我们不能回避以下的历史事实:中国古代数学,整体上落后于古埃及、古巴比仑和古希腊数学.我曾经对一个骨干教师进修班作过调查,60%以上的老师误以为中国是世界上出现数学成果最早的国家.这样的误解来源于某些数学史研究成果,老是说“中国古代某某数学成果比西方早多少年”,却很少说我们整体上比西方数学晚,因而要向其他文明学习数学.但是,晚一点又如何?这是一个心态问题.日本古代文化主要是向中国学习的,他们承认中国是日本的老师,但是学生后来超过了老师.他们把赶超作为爱国主义的核心.美国建国才200年,在初等数学范围内,美国没有领先于世界的数学,难道美国中小学数学课就没有爱国主义教育了吗?他们进行爱国主义教育的宗旨是,学习一切优秀的文化,后来居上,成为世界最强大的国家.中国现在是世界大国,也应该有这样的气魄.我们今天的爱国主义,应该实行“拿来主义”,学习一切优秀的数学文化,最后落脚在“赶超”世界先进水平之上.总之,不能停留在比西方“早多少年”上.向一切优秀的文化学习,日本的同行做得很好.日本小学6年级教材在“测量”一节的引言中,赫然写着中国曹冲称象的故事.由此也就知道我们应该努力之所在了.例4 关于介绍更多的中国近现代数学家.中国数学家不能仅限于祖冲之、刘徽等少数古代数学家,也要介绍在落后情况下努力赶超的近现代数学家.举例来说,高中排列组合单元的教学,应该提到李善兰组合恒等式,那是在清末中国科学极端落后的年代里,非常罕见的创新成果,值得我们珍视.同样,陆家羲解决“寇克满女生问题”、“斯坦纳系列”等组合学世界难题,并获得国家科学一等奖也应该进入教材.尤其是作为普通的包头五中的物理教师作出这样的成果,更为难能可贵.在教学中,不能只是简单地介绍他们的成果,更重要介绍他们所处的社会背景,弘扬他们的坚忍不拔创新精神.总之,介绍数学史不能就事论事.应当努力揭示含于历史进程中的社会文化价值,提高数学文化的品位.91第11卷第1期 张奠宙:关于数学史和数学文化02高等数学研究 2008年1月2 阐发数学历史的文化价值陈省身先生在为李文林先生的《数学史概论》题词时写道:“了解历史的变化是了解这门科学的一个步骤”.数学史正是为数学学习者提供了领会数学思想的台阶.例5 关于“对顶角相等”的例题.“对顶角相等”要不要证明?这种一眼就能判断的问题为什么要证明?《几何原本》怎样证明?中国古代数学为什么没有这样的定理?这是学习对顶角相等定理时的文化价值所在.实际上,揭示“对顶角相等”的文化底蕴,学习古希腊文明的理性精神,比单纯掌握这个十分显然的结论要重要得多.可惜,我们都往往轻易地放过了.我想,在课堂上,组织学生讨论,体会这一证明的重要性,是数学教学必不可少的一部分.例6 关于“勾股定理”的教学设计.近来发表的一些勾股定理的教案,都喜欢用发现法,即用一连串的实验单,从边长为3,4,5的直角三角形开始,逐步地发现勾股定理.这当然也未尝不可.但是,笔者认为,勾股定理最好的教学设计,是运用数学史实加以展开.首先是建造金字塔的古埃及,没有勾股定理的记载,然后是古巴比仑泥版上发现了勾股数,中国的陈子、商高的勾三股四弦五,古希腊的毕达哥拉斯的结论及证明的记载,中国赵爽的代数方法巧证.这些史实,展现人类文明的特征.然后联系到今天的寻找外星人是使用勾股定理的图案,2002年北京数学家大会采用赵爽证明作为会标,以及作为勾股定理不能推广到高次的费马大定理的解决,一幅幅绚丽的历史画卷,将会使得学习者赏心悦目,受到深刻的文化感染.由此对数学文明产生一种敬畏和感恩之心,并从而了解数学,热爱数学.例7 关于笛卡儿.这里,我们愿意用较多的篇幅研究怎样在课堂上介绍解析几何的历史.现在设计直角坐标系的教学,或者解析几何的教学,总会提到笛卡儿的名字.最简单的处理,是展示笛卡儿的画像,说明他建立了坐标系,创立了解析几何,使得数与形结合起来.陈述完了,也就结束了.有的著作则将做三个梦的传说,确定天花板上蜘蛛位置的想象,演染一番,却没有揭示笛卡儿创立坐标方法的文化底蕴.我们不妨再看看《中国数学教育》2006年第12期上发表的一个教学实录.师:你们可知道,画两条数轴来表示不在同一直线上的点的位置的方法,直到1637年,才被法国数学家笛卡儿发现.这里有一个资料,我们一起来了解一下.请一位同学朗读阅读资料,了解历史.生:早在1637年以前,法国数学家、解析几何的创始人笛卡儿受到了经纬度的启发,地理上的经纬度是以赤道和本初子午线为标准的,这两条线从局部上可以看成是平面内互相垂直的两条直线,所以笛卡儿的方法就是在平面内画两条原点重合、互相垂直且具有相同单位长度的数轴建立平面直角坐标系,从而解决了用一对实数表示平面内的点的位置的问题.[评析]重走科学家探索之路可让学生体验数学是从生活中产生,从而培养学生的探索精神,激发学生的学习兴趣.这段“阅读资料”不知从何而来.所谓笛卡儿受经纬度启发创立直角坐标系,估计是用想象代替事实.评析者说“重走科学家探索之路,体验数学是从生活中产生”未免牵强,恐怕是一种溢美之词.我们需要探讨的是,怎样帮助学生从笛卡儿创立坐标方法的历史中,获得文化教益?根据可靠的数学史实[2],首先要介绍笛卡儿是一位哲学家.他有一个大胆设想是:科学问题→数学问题→代数问题→方程问题.为了将度量化为方程问题,即建立算术运算和几何图形之间的对应,于是建立了斜坐标系和直角坐标系.这是一个大胆的设想,一次伟大的哲学思考,一种气势磅礴的科学想象.坐标系是在将几何与代数相互连接起来的深刻的科学思考中产生出来的.正如上述陈省身先生的题字那样:了解这段历史的变化是了解析几何的一个步骤.仅仅说坐标系起源于经纬线是不够的,是缺乏文化品位的.再进一步,在李文林的《数学史概论》中还有一段话非常精彩[2]:我们看到,笛卡儿《几何学》的整个思路与传统的方法大相径庭,在这里表现出笛卡儿向传统和权威挑战的巨大勇气.笛卡儿在《方法论》中尖锐地批判了经院哲学,特别是被奉为教条的亚里士多德“三段论”法则,认为三段论法则“只是在交流已经知道的事情时才有用,却不能帮助我们发现未知的事情.”他认为“古人的几何学”所思考的只限于形相,而近代的代数学则“太受法则和公式的束缚”,因此他主张“采取几何学和代数学中一切最好的东西,互相取长补短.”这种怀疑传统与权威、大胆思索创新的精神,反映了文艺复兴时期的时代特征.笛卡儿的哲学名言是:“我思故我在.”他解释说:“要想追求真理,我们必须在一生中尽可能地把所有的事物都来怀疑一次”,……用怀疑的态度代替盲从和迷信,依靠理性才能获得真理.可以设想,我们如果用这样的观点来介绍笛卡儿(尽管对中学生还要更加通俗),那么一定能够增加数学史的文化感染力.至于那些做梦的传说,还是不传为好.关于与天花板上蜘蛛,以及子午线的故事,虽不妨介绍,却不可当作信史传播.3 营造“数学史”知识的文化意境营造适当的文化意境,可以扩大在数学教育中运用数学史知识的范围.数学和文学都是人创立的,其间必然存在着人文的联系,特别是意境的契合.许多古代的文论作品,虽然并不是专门的数学创作,却具有数学意蕴,可以帮助我们理解数学.例8 关于“一尺之棰”.我们常常引用庄子《天下篇》的名句:“一尺之棰,日取其半,万世不竭”作为中国古代有无穷小思考的例证.其实庄子的这句话,本意在于:“万世不竭”,并非是说“这是趋向于0的极限过程.”那么为什么大家都认为它能帮助理解极限呢?主要在于意境.人们通过日取其半的动态过程,感受到“木棰虽越来越短,接近于零却不为零”的状态.庄子并非数学家,《庄子》也不算数学著作,但是能够用于数学教学,所以我们把它当作数学史料来处理.同样徐利治先生用李白的诗句:“孤帆远影碧空尽,唯见长江天际流”来描写极限过程,和“一尺之棰”的故事一样,都是利用了文学和数学在极限意境上的契合.前面提到日本数学教材运用“曹冲称象”的故事说明测量的意义,虽然这一历史故事并非来自数学著作,我们也可以看作是数学史的作用.例9 关于《登幽州台歌》的数学意境.近日与友人谈几何,不禁联想到初唐诗人陈子昂的名句(登幽州台歌):“前不见古人,后不见来者;念天地之悠悠,独怆然而涕下”.一般的语文解释说:上两句俯仰古今,写出时间绵长;第三句登楼眺望,写出空间辽阔.在广阔无垠的背景中,第四句描绘了诗人孤单寂寞悲哀苦闷的情绪,两相映照,分外动人.然而,从数学上看来,这是一首阐发时间和空间感知的佳句.前两句表示时间可以看成是一条直线(一维空间).诗人以自己为原点,前不见古人指时间可以延伸到负无穷大,后不见来者则意味着未来的时间是正无穷大.后两句则描写三维的现实空间:天是平面,地是平面,悠悠地张成三维的立体几何环境.全诗将时间和空间放在一起思考,感到自然之伟大,产生了敬畏之心,以至怆然涕下.这样的意境,是数学家和文学家可以彼此相通的.进一步说,爱因斯坦的四维时空学说,也能和此诗的意境相衔接.4 提供数学史料,加深对数学知识的文化理解在当前的数学教学中,往往局限于一个概念、一个定理、一种思想的局部历史的介绍,缺乏宏观的历史进程的综合性描述.实际上,用宏观的数学史进程,可以更深刻地揭示数学的含义.例10 关于无限.无限是一个普通名词,也是一个数学名词.小学生学习数学,就要接触无限.例如,自然数是无限的.两条直线段无限延长不相交称为平行,无限循环小数等等,都是直接使用无限的用语,并没有特别的定义.这时,我们必须运用无限的自然语境———人们关于无限的直觉了.进一步,“无边落木萧萧下”,“夕阳无限好”等等词句的内涵,也支撑着学生对数学无限的理解.自然语言和数学语言12第11卷第1期 张奠宙:关于数学史和数学文化22高等数学研究 2008年1月的交互作用,可以帮助学生理解数学概念.但是数学,只有数学,才真正对无限进行了实质性的探究.数学哲学研究中,潜无限与实无限的差别,是关键的一步.单调函数概念的学习困难,其实源于要将“无限多对(x,y)的排序”.牛顿运用无限小量,形成了微积分;康托的集合论,对无限大进行了分析.这样的历史性的宏观考察,是数学史为数学教育服务的重要方面.类似地,我们可以考察“面积、体积、测度”概念的发展历史,考察“方程、函数、变换、曲线”概念之间联系的历史进程,还可以叙述数学不变量的发展历程———从三角形内角和,四边形内角和,对称变换的不变量,几何问题的定值,拓扑不变量,乃至陈省身类等.这样的宏观思考,值得进一步去做.比如,介绍函数概念的发展历程,应该多作一些分析,并非一个比一个“高级”,初中函数的变量说定义未必就过时了.对大多数人来说,函数的变量说也许比对应说更重要.最后,我们还应该运用数学史知识诠释一些好的数学教育工作,用历史鉴别现实.例12 三根导线的故事———在看不见的地方发现数学.1990年代的一天,上海51中学(今位育中学)的陈振宣老师对我讲了一个数学教育的故事.我以为,那是中国数学教育的一个亮点,堪称经典.陈老师的一个学生毕业后在和平饭店做电工.工作中发现在地下室控制10层以上房间空调的温度不准.分析之后,原来是使用三相电时,连接地下室和空调器的三根导线的长度不同,因而电阻也不同.剩下的问题是:如何测量这三根电线的电阻呢?用电工万用表无法量这样长的电线的电阻.于是这位电工想到了数学.他想:一根一根测很难,但是把三根导线在高楼上两两相连接,然后在地下室测量“两根电线”的电阻是很容易的.设三根导线的电阻分别是x,y,z.于是,他列出三个一次方程:x+y=a,y+z=b,z+x= c.解由此形成的三元一次方程组,即得三根导线的电阻.这样的方程谁都会解.但是,能够想到在这里用方程,才是真正的创造啊!我为这位电工的数学意识所折服.请代学者袁枚曾说:“学如箭镞,才如弓弩,识以领之,方能中鹄”.有知识,没有能力,就象只有箭,没有弓,射不出去.但是有了箭和弓,还要有见识,找到目标,才能打中.上面的例子说明,解这样的联立方程,知识和能力都不成问题,难的是要具有应用联立方程的意识和眼光.这使我想起第二次世界大战以后,1948年时在美国出现的数学.这一年,维纳发表《控制论》,仙农发表《信息论》,冯・诺依曼则提出了使用至今的计算机方案.这三项数学成就,不是通常我们所解决的那种数学问题.他们看见了我们没有看见的数学问题.试问:打电报传送的信息,可以是数学研究的对象吗?用大脑控制手去拾地下的铅笔,可以构成“数学控制论”吗?研究数字电子计算机会改变时代吗?他们看见了新的数学,在1948年不约而同地做出了创造性的杰出贡献,影响之大,使人类在20世纪下半叶进入信息时代.在别人看不见数学的地方,发现数学问题,解决数学问题,这是最高的数学创新.这比做别人给出的问题,更胜一筹.运用数学史料,对正在进行的数学教学以历史经验的衬托,将会对学生起到历史的激励作用.总之,努力揭示数学史知识的文化内涵,将会使得数学史进一步溶入数学教育,增强数学文化的教育作用.青年学子将会建构数学常识,感知数学文化,享受智慧人生.参考文献[1]梁启超.清代学术概论[M].上海:上海古籍出版社,1998:106.[2]李文林.数学史概论[M].北京:高等教育出版社,2002(第二版):140-141.[3]张奠宙.中国皇权与数学文化[J].科学文化评论,2005(1).[4]张奠宙.数学与诗词意境.文汇报,2006/12/30.[5]张奠宙.中华文化对今日数学教育之影响[J].基础教育学报(香港),2007(16).。

高中数学美学认知三境界的探讨

高中数学美学认知三境界的探讨

高中数学美学认知三境界的探讨作者:***来源:《广东教育·综合》2021年第04期数学教育家张奠宙先生从数学教育者的角度就数学教学过程中如何展现数学美提出了四个层次:美观、美好、美妙、完美,并对每个层次做详细阐述. 本文从数学初学者角度和数学文化角度,提出初学者感悟数学美学的三种境界.对称性是最能给人以美感的一种形式,德国数学家和物理学家魏尔曾指出:“美和对称性紧密相关.”对称美反映了事物的秩序、简洁、完整以及彼此的联系,显示了运动的稳定性和对立的统一性,反映了审美对象和结构的平衡,体现了平衡之美.第一境界:以形感之——以数学形态让学生直观感受数学美第一境界与张奠宙先生的数学美第一层美观是一致的. 这主要是指数学对象以形态上的对称、和谐、简洁,给人带来感官上美丽、漂亮的感受. 从数学形态美入手,让学生感受数学形态之美,可以让学生对貌似繁杂的数学产生兴趣,萌生学好数学的念头.在对称美的教育中,我们可以通过对比,让学生直观感受“对称”带来的美;我们可以从自然形态中抽象出数学图形,让学生感受数学直觀形态之美,体现数学与自然的完美结合.例1:美与不美——有对比才有说服力.图形是非常直观的一种形式. 显然,在上述三图中,左右两边的图具有对称性,中间的图给人一种怪怪的感觉,相对于中间图形,左右两边的图形会让欣赏者更加心情愉悦.例2:自然与数学蜜蜂选择正六边形蜂巢不仅因为正六边形对称、漂亮,还有其他更深刻的原因,但这种自然的选择体现出数学对称美与自然的和谐统一.第二境界:以理服之——让学生理性认知数学美如果我们仅仅停留在对图形美的思考,学生既无法深入提升美学素养,也无法深入理解数学美学. 因此我们需要思考“美从何来?”“美本质在何处”,即穷美之理,以理服之.在以理服人的过程中,我们既可以结合生活实际,也可以与经验常识结合,使学生在纵横捭阖之间,打破数学学习的封闭性,不再囿于于数学本身,在数学原理、数学知识运用、数学手段掌握上能够更接地气,有利于学生内化数学知识、活用数学.在对称美的欣赏中,我们至少可以从两个角度进行赏析.第一角度:对称美的产生来源于内心的满足. 从美学角度,美是人对自身需求被满足时所产生的愉悦反应. 由对称的性质,我们可以对具有对称结构的事物“窥部分而得整体”,达到“一叶知秋”的效果;利用镜面对称也能达到“知一得二”的效果. 这两种效果都可以使我们利用“较少的已知信息”获取“较多的未知信息”,既能够满足“以小博大”“事半功倍”的人性,也可以使人减少对未知的恐惧,从而产生内心的愉悦,美由此产生.例3:利用对称结构进行条件转化.已知直线l ∶ x-2y+8=0和点A(2,0)、点B(-2,-4),在直线上求一点P,使|PA|+|PB|最小,则P点坐标是_______.分析:|PA|+|PB|≥|AB|,等号成立条件为A、B在P的两侧,显然原题不满足等号的条件. 若要满足等号的条件,A、B两点必须在直线的异侧. 为此我们可以利用对称性质,将点A转化到直线另一侧,然后利用两点之间线段最短的定理得到最小值.解:设点A(2,0)关于直线x-2y+8=0对称的点坐标为A′(a,b),则-b+8=0=-2 a=-2b=8,即A′(-2,8). 结合图形可知|PA|+|PB|≥|AB|,即三点A′、B、P共线时,|PA|+|PB|最小,此时直线A′B的方程为 x=-2,将x=-2代入直线x-2y+8=0可得交点P(-2,3).第二个角度:对称美体现了事物平衡. 对称是指事物整体中各个部分之间的匀称和对等,而匀称又往往与和谐的协调性相联系. 这种协调即是平衡. 平衡观的引入,为数学解题提供了思路,为数学学习赋予了生活气息,也为数学学习赋予了哲学意义.例4:从平衡角度思考问题的解决.我们在推导椭圆方程过程中,多次利用了对称美和平衡的思想.(1)对称建系很明显在上述三图中,中间的建系很漂亮,左右平衡、稳定美观. 这种对称建系给后续的化简带来美的体验,为最终结果的简洁性提供保障.(2)从平衡角度化简代数式根据椭圆的定义,设M(x,y)是椭圆上任意一点,椭圆的焦距为2c(c>0),那么焦点F1、F2的坐标分别为(-c,0)、(c,0). 根据椭圆的定义,设点M与焦点F1、F2的距离的和等于2a.由椭圆定义可知,椭圆可以看作点集P={M│|MF1|+|MF2|=2a}. 所以有:这一步的变换思路的来源即是满足等式的平衡. 从代数式整体结构来看,变换后等式两边结构更加均衡、稳定. 这种均衡为后续化简提供了便利.例5:从平衡角度思考等价转化.证明:对一切x∈(0,+∞),都有lnx>■-■成立.分析:本题从代数式结构来看,不等号左右两边的结构是不平衡的. 左边lnx是初等函数,形式简单;右边为指数函数和反比例函数的和函数,研究起来非常繁杂,即便求导后导数也很复杂. 从不等式结构均衡的角度,我们将不等号两边同时乘以x,将问题转化为证明xlnx>■-■,x∈(0,+∞),这样,左边代数式结构变复杂,但右边代数式结构变简单,不等式结构相对均衡,然后通过分别研究不等式两边的函数,得到不等式的证明.证明:易知f(x)=xlnx的最小值 f(■)=-■. 设(x)=■-■,(x∈(0,+∞)),则?覬′(x)=■;由?覬(x)的单调性易得?覬(x)max=?覬(1)=-■,因此xlnx≥-■≥■-■,因为两个等号不能同时取得,所以xlnx>■-■,即对一切x∈(0,+∞),都有lnx>■-■成立.第三境界:以用喜之——利用对称美解决实际问題以理服之,能够让学生深刻感受数学美学. 但如果不能用美学之理指引我们解决问题,于学生而言就止步于数学之门,停留在欣赏美学,不能产生数学的美学体验. 因此教师需要利用数学美学解决学生遇到的数学问题,让审美意识产生实际效用,使学生感受“美学之用”. 让内化的美学之理外显,指导学生解决问题,既丰富数学美学体验,也能感受数学之用.由前文所述,可以看到对称美的产生来源于可以用“较小的代价”获取“最多的信息”,因此利用对称美可以达到“化繁为简”的效果.例6:已知A、B分别为椭圆E:■+y2=1的左、右顶点,P为直线x=6上的动点,PA与E 的另一交点为C,PB与E的另一交点为D.证明:直线CD过定点.分析:本题解法很多,但是大都涉及到直线与椭圆联立方程、求点等,计算繁杂. 如果我们能够关注到C、D点的对称性,利用对称美学可以得到一个非常漂亮的解法.解:由椭圆的性质可知:kAC·kBC= -■;kAD·kBD =-■;∴■=■;因为P是直线x=6上的动点,由几何性质可知:kAC=kPA=■;kBD=kPB=■;∴3kAC=kBD,∴■=■=■;设直线CD方程为x=sy+t,由上述可知:3kAC=kBD且3kAD=kBC∵3kAC=kBDxC=syC+txD=syD+t 3■=■xC=syC+txD=syD+t2syC yD+(3t-9)yC-(t+3)yD=0……①同理:3kAD=kBC?圯2syCyD+(3t-9)yD-(t+3)yC=0……②则①-②得:(9-3t)(yD-yC)=(t+3)·(yD-yC)……③∵yC≠yD,由③可知,t=■. 所以直线CD的方程为x=sy+■,因此直线CD恒过点(■,0).将数学美学教学引入高中课堂,可从直观感知、理性认知、学以致用三个逐层递进的境界认知数学美学. 在这个过程中学生能够打破数学学习封闭性,提升数学学习兴趣、内化数学素养、增强学习内驱力. 更重要的是,以数学美学角度注入课堂教学,可以丰富学生情感体验、提升学生美学修养、提高学生核心素养. 这也是数学学习的价值和意义之所在.注:本文系广东省教育科学“十三五”规划课题“普通中学生态美育体系的研究与实践”(课题批准号:2020ZQ JK071)阶段性成果.责任编辑罗峰。

数学核心素养

数学核心素养

数学核心素养 The following text is amended on 12 November 2020.什么是数学核心素养一、张奠宙:数学核心素养包括“真、善、美”三个维度。

通俗地说,数学的核心素养有“真、善、美”三个维度:(1)理解理性数学文明的文化价值,体会数学真理的严谨性、精确性;(2)具备用数学思想方法分析和解决实际问题的基本能力;(3)能够欣赏数学智慧之美,喜欢数学,热爱数学。

不妨就一个人文学科的学者(例如从事新闻、出版、法律、外语、中文、历史等专业)来说,他们的数学素养也许就是在高中学段形成的(到大学不学数学了)。

对他们来说,在数学能力上要求不可过高,但是却必须具备现代的数学文化修养,能够欣赏数学美,理解数学文明,以便在记者采访、外语翻译、小说创作、历史考察等的职业生涯中,能够应对许多与数学文化有关的常识性问题,并与他人进行基本的数学交流与探究。

二、义务教育数学核心素养反映数学本质与数学思想数学核心素养可以理解为学生学习数学应当达成的有特定意义的综合性能力,核心素养不是指具体的知识与技能,也不是一般意义上的数学能力。

核心素养基于数学知识技能,又高于具体的数学知识技能。

核心素养反映数学本质与数学思想,是在数学学习过程中形成的,具有综合性、整体性和持久性。

数学核心素养与数学课程的目标和内容直接相关,对于理解数学学科本质,设计数学教学,以及开展数学评价等有着重要的意义和价值。

一般认为,“素养与知识(或认知)、能力(或技能)、态度(或情意)等概念的不同在于,它强调知识、能力、态度的统整,超越了长期以来知识与能力二元对立的思维方式,凸显了情感、态度、价值观的重要,强调了人的反省思考及行动与学习。

”“数学素养是指当前或未来的生活中为满足个人成为一个会关心、会思考的公民的需要而具备的认识,并理解数学在自然、社会生活中的地位和能力,做出数学判断的能力,以及参与数学活动的能力。

”可见,数学素养是人们通过数学学习建立起来的认识、理解和处理周围事物时所具备的品质,通常是在人们与周围环境产生相互作用时所表现出来的思考方式和解决问题的策略。

回溯数学之源 浸润数学文化——以“10000以内数的认识”一课为例

回溯数学之源 浸润数学文化——以“10000以内数的认识”一课为例

实践” ) 构成了小学数学文化 中外显 的“ 知识性成 分” 。 万以内数的认识是整数认识 的主要 内容 , 包含整数认识 的所 识” 一课为例 , 作了初步的尝试 与探索 。 有要素 , 不仅起着承上启 下的作用 , 而且在 日常生活 中有着 广泛


解读教材 . 挖掘文化 的应用 , 还有助于培养学 生的数感 。本单元 中 , 根据从易到难 、 螺 旋 上升的编排原则 , 先教学 1 0 0 0以内数 的认 识 , 再 教学 1 0 0 0 0 以


I I I I I ‘
千一 千地 数 , 1 0个 一 千 是 一 万 。
数数后通过整理数位顺 序表 , 进一步明确数位顺 序 、 位值制和
十进制计数法 , 理解数位的意义与作用 , 激发 学习的兴趣
壁 有多少啭 再
多角度数数 , 使学生感受 到数很 大 . 需要用较大的计 数单 位来
= F =张 三 = _ ’

这 个 数 是 由( ) 个千、 ( 和( ) 个 一组 成 的 。

) 个百 、 (

1 个f
数数 . 培 养数感 。同时 , 使学生更 直观地看 到数的组成 并表达 出
来, 渗 透 了 数 形 结 合 的 思 想 。深 化 对计 数 单位 的 认识 . 对 数 概 念 的
深 入 的 解 。
1 . 梳理 “ 知识性成分”
数学知识是数学 文化 的载体 , 数学知识的形成过程其实就是 数学文化的积累过程 。从这个意义上讲 , 小学数学教材安排 的四
部分课程内容 ( “ 数与代数” “ 图形 与 几 何 ” “ 统计与概率” “ 综合 与
的过程 , 是培养数 学素养 的重要 方式 , 也是数学教育 “ 以文 化人 ” 的重要 途径。为此 , 笔者 以人教版二年级下册“ 1 0 0 0 0以内数的认
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学文化与数学教育
——访张奠宙教授
一个阳光明媚的下午,笔者与叶中豪先生拜访了数学教育家、华东师范大学数学系教授张奠宙先生。

茶香、书香四溢,不久我们就切入了正题。

张奠宙(以下简记为“张”):近来我十分关注数学文化,一直在思索如何营造优秀的数学文化。

数学文化的形成需要相当长的过程。

我国现代数学起步于20世纪初,到2002年有实力举办国际数学家大会,经历了近100年。

数学文化离不开社会文化的滋养。

举一个例子,20世纪30、40年代,中国的北京天津,传统文化的底蕴深厚,出了很多好的数学家;在南方的杭州、温州,受西方文化的影响,也出了不少好的数学家。

但商业文化最发达的上海,却并未孕育出多少数学家。

沙国祥(以下简称“沙”):西方文化中的数学,具有明显的理性特点。

张:这是古希腊的“奴隶主”民主的产物。

由于奴隶主之间彼此平等,所以需要“证明”和说服。

于是,“对顶角相等”虽然看起来十分显然,但仍然用“等量减等量,其差相等”的公理加以证明。

中国古代有灿烂的数学成就。

主要典籍是《九章算术》。

那是数学家向君王提出如何丈量田亩、征取税金、摊派徭役、计算土方”等实用数学问题的总结。

在这样的君臣不对等的政治环境下,“对顶角相
等”是没有用的。

所以说古希腊和古代中国政治文化决定了两种数学文化的走向。

沙:现在的义务教育数学课程标准中,对几何证明的要求降低了。

张:不同的人学习不同的数学。

对多数学生,关于证明的要求不必过高,但对优秀学生,这方面应当加强。

项武义教授指出,中国数学教育要强调理性精神。

沙:公理化重要吗?
张:公理化思想重要,但不是数学的核心。

1970年前后许多西方发达国家的“新数学”运动,将活生生的数学等同于逻辑、公理体系,结果失败了。

不能认为数学就是逻辑。

那是把光彩照人的数学女王,在X光照射下变成了干巴巴的骷髅。

数学还是要依靠猜想和想象,逻辑只是保持数学健康的卫生规则(大数学家H Weyl语)而已。

沙:有时,人们将猜想、探索过程看得太简单,如由22—12=3,32—22=5,42—32=7,〃〃〃〃〃〃猜想一般的规律。

张:我指的是创造性的想象。

例如由一次方程到二次方程的求解,自然会问三次、四次方程如何〃,五次方程是否有根式解,超越方程、微分方程…,每一次扩展都是全新的数学视野,需要新的概念和架构。

沙:怎样使数学变得有血有肉?
张:应该直面原初的现象或数学问题,从中引出数学的思想方法。

如概率论起源于对赌金期望值的研究;控制论的产生,与实战中对火
炮控制的需要有关,并且得益于神经系统反馈机制的启示;信息论肇始于通信技术中有效信息的研究,在研究过程中香农发现信息与概率有着密切的联系。

晚近的小波分析,混沌理论,分形数学,金融数学技术等等,都起源于实际问题。

黎曼猜想、歌德巴赫猜想等也是原始问题。

沙:钱学森认为,数学不是个别人的技巧,而是一种眼光、一种看法。

例如,比赛评分中去掉一个最高分、最低分,可以用统计的眼光去看。

我们再谈谈数学教育改革。

教育上的事情也许“新”的不一定都好。

张:教育是文化现象的一部分。

外国的东西不宜照搬。

我国有科举考试文化,严谨的考据文化,熟能生巧的教育文化,善于计算的数学文化等等。

我国数学教育有自己的优势,如重视数学“双基”,注重“启发式教学”、“变式教学”。

这些传统需要继承,也需要更新。

不能妄自菲薄,也不可故步自封。

如果说计划经济时代的思想,必须转变到“社会主义市场经济”的轨道上来,而在教育上,似乎无须“转变”观念,学习国内外的先进经验,提高认识也就够了。

因为原来的教育并不是错误的教育。

沙:的确,各国的数学文化、数学教育往往有自己的特点。

张:应倡导多元的民主的文化。

例如俄罗斯数学教育强调基础性、理论性;而美国的数学教育更注重探索与创新,鼓励个性发展。

基础与创新,是同一辆车的两个轮子,不能过分强调其中一个。

台湾搞数学教育改革,热衷于学生自主建构,忽视了基础,曾导致学生计算能
力大大下降,甚至连23×5这样的简单乘法也不会。

台湾学者说:“我们要深思熟虑的”建构“,不要盲目跟风的“贱购”!这也值得我们深思。

沙:课堂上如何体现数学文化呢?
张:数学文化往往狭义地理解为介绍历史上的数学家和数学事件。

其实应当结合课程内容展开。

以文学为例。

对称和对联,就有共同之处。

“清风”对“明月”,上联变下联,正如对称图形,变过去相互重合一样。

都是变换后的不变性质。

徐利治先生把“孤帆远影碧空尽”当作“极限”的意境。

陈子昂诗“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下”,这是一维时间和三维空间的结合“。

人类的文化是相通的。

沙:我国有自己的国情。

现在升学压力大,课时任务紧,怎样处理好“打基础”与“探索创新”之间的关系?
张:探索创新是复杂的过程,如果什么都退到原始去探索,既不可能,也无必要;同样,也不能什么都要求彻底理解,有些内容可以先接受,日后慢慢理解领悟。

数学开放题是有利于创新的,如果能够和基础相结合1,就更好了。

在打好基础之上创新,在创新指导下打基础,这是未来大家探索的方向。

沙:谢谢张教授,我们从您的谈话中受益匪浅,以后我们杂志上要多多渗透数学文化内涵。

1浙江省教材中有“钟面数字问题”:将钟面上12个数字添上正负号,使之代数和为零。

答案有26个。

此题开放度大,但是密切结合正负数运算。

做到了打基础与创新的有机结合。

相关文档
最新文档