高中数学-必修五模块检测卷(含详细答案)
2019版高中数学人教A版必修5:模块综合检测 含解析
( ) 解析:∵xy=1+(x+y)≤
������ + ������ 2
2,
∴(x+y)2-4(x+y)-4≥0, ∴x+y≥2( 2 + 1), 当且仅当 x=y = 2 + 1时等号成立.
答案:A
1=
������������ -
3
(
10 若数列{an}满足 a1=0,an+
3������������ + 1 n∈N*),则 a20 等于( )
=
1 2
+
1 4
+
…
+
1 2������ -
1
‒
2 - ������ 2������
( ) 1 ‒
=
1
-
1 2������ -
1
‒
2 - ������ 2������
=
2������������,
= ������ . ∴Sn 2������ - 1
当 n=1 时,S1=1 也符合该公式.
{ } 列
综上可知,数
������������
= + +…+ .
224
2������
∵当
n>1时,���2���������
=��1 2
+
…
+
������������ - ������������ 2������ - 1
1
‒
������������ 2������
( ) 1 ‒
由余弦定理,得 AC2=BA2+BC2-2BA·BC·cos 120°,
人教B版人教B版高中数学必修五必修模块5测试样题B版答案及评分参考.docx
数学必修模块测试样题答案及评分参考数学5(人教B 版)15.> 16.12n n a -= 17.(2,2)-18. 2(1)2 1 2)n n a n n =⎧=⎨-≥⎩(三、解答题(共3小题,共28分) 19.(本小题满分8分) 解:(Ⅰ)依题意,由余弦定理得222451cos 2452C +-==-⨯⨯. 120C ∠=︒ . ………………4分(Ⅱ)过点A 作AH 垂直BC 的延长线于H ,则sin 5sin 60AH AC ACH =⋅=︒=. 所以11422ABCS BC AH ∆=⋅=⨯= . ………………8分 20.(本小题满分10分)解:设水池底面的长为x 米,则宽为48003x米,易知0x >,又设水池总造价为y 元. 根据题意,有48001600150120(2323)3y x x=⨯+⨯+⨯⨯ 1600240000720()x x=++240000720≥+⨯ 297600=. 当1600,x x=即40x =时,等号成立. 所以,将水池的底面设计成边长为40米的正方形时,总造价最低,最低总造价为297600A元..………………10分21.(本小题满分10分) 解:(Ⅰ)答案如图所示:………………3分 (Ⅱ)易知,后一个图形中的着色三角形个数是前一个的3倍,所以,着色三角形的个数的通项公式为:13n n b -=. ………………6分(Ⅲ)由题意知(1)2n n n a +=,11(1)23231n n n n n c n n --+⨯⨯=⋅+=, 所以 01113233n n S n -=⋅+⋅++⋅L ①12131323(1)33n n n S n n -=⋅+⋅++-⋅+⋅L ②①-②得 0112(333)3n nn S n --=+++-⋅L2n S -=13313nn n --⋅-. 即 (21)31()4n n n S n -+=∈N + . ………………10分。
人教a版数学必修5模块过关测试题及详细答案
人教a 版数学必修5模块测试题一.选择题(本题共10小题,每小题5分,共50分.) 1. 在△ABC 中,角A 、B 、C 成等差数列,则角B 为( ) (A) 30° B 60° (C) 90° (D) 120°2.在ABC ∆中,bc c b a ++=222,则A 等于 ( )A ︒︒︒︒30.45.60.120.D C B3.在等比数列{}n a 中,若0n a >且3764a a =,5a 的值为 ( )A .2B .4C .6D .8 4.在等比数列}{n a 中, ,8,1641=-=a a 则=7a ( )A.4-B.4±C. 2-D. 2± 5.已知,,a b c R ∈,则下列推理正确的是 ( )A.22ab am bm >⇒> B.a ba b c c>⇒> C.3311,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcos C +ccos B =asin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.如图:B C D ,,三点在地面同一直线上,a DC=,从D C ,两点测得A 点仰角分别是()βαβ<a ,,则A 点离地面的高度AB 等于 ( )A.()αββα-⋅sin sin sin a B.()βαβα-⋅cos sin sin aC()αββα-⋅sin cos sin a D .()βαβα-⋅cos sin cos a8. 设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为( )9.定义在(-∞,0)∪(0,+∞)上的函数()f x ,如果对于任意给定的等比数列{a n},{f (a n)}仍是等比数列,则称()f x 为“保等比数列函数”。
人教新课标版数学高二-人教A版数学必修5 模块综合测试(习题答案解析,11页)
模块综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.在△ABC 中,a =1,b =3,B =120°,则A 等于( ) A .30° B .45° C .60°D .120°解析:由正弦定理可知a sin A =b sin B ⇒1sin A =3sin120°,∴sin A =12.又a <b ,∴A <B ,∴A =30°. 答案:A2.符合下列条件的三角形有且只有一个的是( ) A .a =1,b =2,c =3 B .a =1,b =2,A =30° C .a =1,b =2,A =100° D .b =c =1,B =45°解析:A 组不成三角形;对于B ,∵b sin30°=22<1<2,∴B 有两解;C 组不成三角形,D 正确.答案:D3.在△ABC 中,sin A :sin B :sin C =3:2:4,那么cos C =( ) A.23 B.14 C .-23D .-14解析:由正弦定理知sin A :sin B :sin C =3:2:4,得到a :b :c =3:2:4,令a =3k ,b =2k ,c =4k (k >0),由余弦定理知cos C =(3k )2+(2k )2-(4k )22×3k ×2k =-14,故选D.答案:D4.已知等差数列{a n }中,a n =4n -3,则首项a 1和公差d 的值分别为( )A .1,3B .-3,4C .1,4D .1,2解析:∵a n =4n -3,∴a 1=4-3=1,d =a n -a n -1=4. 答案:C5.已知等比数列{a n }的各项均为正数,前n 项之积为T n ,若T 5=1,则必有( )A .a 1=1B .a 3=1C .a 4=1D .a 5=1解析:∵T 5=a 1·a 2·a 3·a 4·a 5=(a 3)5=1, ∴a 3=1. 答案:B6.若△ABC 中,a =2b cos C ,则该三角形一定为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:∵a =2b cos C , ∴sin A =2sin B ·cos C .∴sin A =sin(B +C )=sin B ·cos C +cos B ·sin C =2sin B ·cos C . ∴sin B ·cos C -cos B ·sin C =sin(B -C )=0. ∴B =C ,故选A. 答案:A7.等比数列{a n }的公比为13,前n 项的和为S n ,n ∈N *如S 2,S 4-S 2,S 6-S 4成等比数列,则其公比为( )A .(13)2B .(13)6C.13D.23解析:∵S 4-S 2S 2=a 4+a 3a 2+a 1=q 2(a 2+a 1)a 2+a 1=q 2=(13)2.答案:A8.等比数列{a n }的各项均为正数,且a 5a 6+a 2a 9=18,则log 3a 1+log 3a 2+…+log 3a 10的值为( )A .12B .10C .8D .2+log 35解析:由题可知log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5,又因为在等比数列中a 5a 6+a 2a 9=18,所以a 5a 6=9,代入求解得原式的值为10,故选B.答案:B9.递减的等差数列{a n }的前n 项和S n 满足S 5=S 10,则欲使S n取最大值,n 的值为( )A .10B .7C .9D .7或8解析:∵S 5=S 10,∴a 6+a 7+a 8+a 9+a 10=0,∴a 8=0.由于数列递减,故数列前7项为正,从第9项开始为负, ∴S n 取最大值时,n =7或8. 答案:D10.(2012·陕西卷)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2解析:设甲、乙两地之间的距离为s .∵a <b ,∴v =2ss a +s b =2sab (a +b )s =2ab a +b <2ab2ab =ab .又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .答案:A11.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D.14解析:因为3a ·3b =3. 所以a +b =1.1a +1b =(a +b )(1a +1b )=2+b a +a b ≥2+2b a ·ab =4.当且仅当b a =ab 即a =b =12时“=”成立,故选B.答案:B12.差数列,每一列成等比数列,那么x +y +z 的值为( )A .1B .2C .3D .4解析:由题知表格中第三列成首项为4,公比为12的等比数列,故有x =1.根据每行成等差数列得第四列前两个数字依次为5,52,故其公比为12,所以y =5×(12)3=58,同理z =38.∴x +y +z =1+58+38=2.答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.不等式1x ≤x 的解集是________.解析:1x ≤x 等价于x -1x ≥0⇒x 2-1x ≥0,所以不等式的解集为{x |-1≤x <0,或x ≥1}.答案:{x |-1≤x <0,或x ≥1}14.如果关于x 的不等式2kx 2+kx -38<0对一切实数x 都成立,那么k 的取值范围是________.解析:当k =0时满足条件;当k ≠0时满足⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×(-38)<0,解得-3<k ≤0.答案:-3<k ≤015.已知在△ABC 中,A =60°,最大边和最小边的长是方程3x 2-27x +32=0的两实根,那么边BC 的长为________.解析:设方程3x 2-27x +32=0的两根分别为b ,c 由题意可知⎩⎪⎨⎪⎧b +c =9bc =323,由余弦定理可知BC 2=b 2+c 2-2bc cos60° =(b +c )2-3bc =81-32=49, ∴BC =7. 答案:716.等差数列{a n }中,S n 是它的前n 项之和,且S 6<S 7,S 7>S 8,则①此数列的公差d <0;②S 9一定小于S 6;③a 7是各项中最大的一项;④S 7一定是S n 中的最大值.其中正确的是________.(填入你认为正确的所有序号)解析:由题S 6<S 7,S 7>S 8可知a 7>0,a 8<0,等差数列为递减数列,故①正确,且④也正确,由等差数列的前n 项和为关于n 的二次式可知,其单调性为先增再减,而S 9离对称轴的距离比S 6离对称轴的距离要远,因此对应的函数值要小,故②正确.答案:①②④三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)在△ABC 中,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1.(1)求角C 的度数;(2)求c ;(3)求△ABC 的面积. 解:(1)∵2cos(A +B )=1,∴cos C =-12.∴角C 的度数为120°.(2)∵a ,b 是方程x 2-23x +2=0的两根, ∴a +b =23,ab =2.由余弦定理,得c 2=a 2+b 2-2ab cos C=(a +b )2-2ab (cos C +1)=12-2=10,∴c =10. (3)S =12ab sin C =32.18.(12分)已知公差不为零的等差数列{a n }中,a 1=1,且a 1,a 3,a 13成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n ,求数列{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d (d ≠0),由a 1,a 3,a 13成等比数列,得a 23=a 1·a 13即(1+2d )2=1+12d ,得d =2或d =0(舍去).故d =2, 所以a n =2n -1. (2)b n =2a n =22n -1,所以数列{b n }是以2为首项,4为公比的等比数列. ∴S n =2+23+25+…+22n -1=2(1-4n )1-4=23(4n -1).19.(12分)(2012·中山高二检测)如下图,从气球A 测得正前方的河流上的桥梁两端B ,C 的俯角α,β,如果这时气球的高度是h ,求桥梁BC 的长度.解:过A 作垂线AD 交CB 于D ,则在Rt △ADB 中,∠ABD =α,AB =h sin α.又在△ABC 中,∠C =β,∠BAC =α-β, 由正弦定理,得BC sin (α-β)=ABsin β,∴BC =AB ·sin (α-β)sin β=h ·sin (α-β)sin α·sin β.20.(12分)已知下列不等式①x 2-4x +3<0;②x 2-6x +8<0;③2x 2-9x +a <0.要使①②成立的x 也满足③,请你找一个这样的a 值.解:解①x 2-4x +3<0, 即(x -1)(x -3)<0,∴1<x <3.解②x 2-6x +8<0,即(x -2)(x -4)<0, ∴2<x <4,∴①②同时成立的x 的范围是2<x <3.2x 2-9x +a <0对应的二次方程为2x 2-9x +a =0,对应的二次函数f (x )=2x 2-9x +a 的对称轴为x =94∈(2,3).∵3-94>94-2,∴f (3)>f (2),∴只须f (3)≤0即可.即2×32-9×3+a ≤0,∴a ≤9.这样a 的值可取小于等于9中任一个,不妨取a =9.21.(12分)等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2nS n=4,n =1,2,…,(1)求数列{a n }的通项公式和S n ;(2)记b n =a n ·2n -1,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d ,由S 2nS n=4,得a 1+a 2a 1=4,所以a 2=3a 1=3,且d =a 2-a 1=2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1, S n =n (1+2n -1)2=n 2.(2)由b n =a n ·2n -1,得b n =(2n -1)·2n -1. 所以T n =1+3·21+5·22+…+(2n -1)·2n -1,① 2T n =2+3·22+5·23+…+(2n -3)·2n -1+(2n -1)·2n ,② ①-②得-T n =1+2·2+2·22+…+2·2n -1-(2n -1)·2n=2(1+2+22+…+2n -1)-(2n -1)·2n -1=2(1-2n )1-2-(2n -1)·2n -1.所以T n =(2n -1)·2n +1-(2n +1-2)=(n -1)·2n +1-2n +3.22.(12分)电视台某广告公司特约播放两部片集,其中片集甲每片播放时间为20分钟,广告时间为1分钟,收视观众为60万;片集乙每片播放时间为10分钟,广告时间为1分钟,收视观众为20万,广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于86分钟的节目时间(含广告时间).(1)问电视台每周应播放两部片集各多少集,才能使收视观众最多;(2)在获得最多收视观众的情况下,片集甲、乙每集可分别给广告公司带来a 和b (万元)的效益,若广告公司本周共获得1万元的效益,记S =1a +1b 为效益调和指数,求效益调和指数的最小值.(取2=1.41)解:(1)设片集甲、乙分别播放x ,y 集,则有⎩⎪⎨⎪⎧ x +y ≥6,21x +11y ≤86,x ,y ∈N .要使收视观众最多,则只要z =60x +20y 最大即可.如图作出可行域,易知满足题意的最优解为(2,4), z max =60×2+20×4=200,故电视台每周片集甲播出2集,片集乙播出4集,其收视观众最多.(2)由题意得:2a +4b =1,S =1a +1b =(1a +1b )(2a +4b ) =6+2a b +4b a ≥6+42=11.64(万元),当且仅当a =2-12,b =2-24时,取等号. 所以效益调和指数的最小值为11.64万元.。
2020-2021学年北师大版高中数学必修五模块测试卷及答案解析
(新课标)最新北师大版高中数学必修五必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c)cos A =acos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x(x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2C.a n =n +1D.a n =n8.设函数f(x)=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f(a)<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1)9.已知a>0,b>0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z=2x+y 中变量x,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f(x)对任意a ,b 满足f(a +b)=f(a)·f(b),且f(1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab)>1,则c 的取值范围是( ) A.0<c<1 B.1<c<8 C.c>8 D.0<c<1或c>8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且acosC ,bcosB ,ccosA 成等差数列,则角B=.14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为. 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为.16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n =.三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A)共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n+1=2a n +1(n ∈N*) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b Λ=n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20.解关于x的不等式ax2-2≥2x-ax(a∈R).21.已知等差数列{a n}的首项a1=4,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与前n项和S n;(2)将数列{a n}的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前三项,记{b n}的前n项和为T n,若存在m∈N+,使对任意n∈N+总有T n<S m+λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210 t时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =cb .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c)cos A =acos C ,由正弦定理得3sin Bcos A =sin Ccos A +cos Csin A⇒3sin Bcos A =sin(C +A)=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫⎝⎛t =⎪⎭⎫ ⎝⎛-5151t ×4t ,显然t ≠0,∴t =5.5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q>0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(q a q q a --=q 3(1-q)()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0,即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n(n ∈N +).8.A 点拨:不等式f(a)<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a<0,即不等式f(a)<a的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a 1=b1,且ab1=ab 时,取等号,故应选C. 10.C11.D 点拨:由f(a +b)=f(a)·f(b),可得f(n +1)=f(n)·f(1),)()1(n f n f +=f(1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b),即b =2a.又因为a ,b ,ab成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab)=log c 8>1=log c c ,有1<c<8,故选B. 二、13.60° 点拨:依题意得acos C +ccos A =2bcos B ,根据正弦定理得sin Acos C +sin Ccos A =2sin Bcos B ,则sin(A +C)=2sin Bcos B ,即sin B =2sin Bcos B ,所以cos B =21,又0°<B<180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f(t)=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f(t 1)-f(t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f(t 1)-f(t 2)>0.即f(t 1)>f(t 2).∴f(t)=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f(t)=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩ 点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sinA ·(sinA +3cosA)-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc ,又S △ABC =21bcsinA =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bcsinA =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n+1=2a n +1(n ∈N *),∴a n+1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n.即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214Λ=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n+1)-(n+1)]=(n+1)b n+1.②②-①,得2(b n+1-1)=(n+1)b n+1-nb n ,即(n -1)b n+1-nb n +2=0,③ ∴nb n+2-(n+1)b n+1+2=0.④④-③,得nb n+2-2nb n+1+nb n =0,即b n+2-2b n+1+b n =0,∴b n+2-b n+1=b n+1-b n (n ∈N *).∴{b n }是等差数列. 19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1.(2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2,又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21, 所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f(n)=n⎪⎭⎫ ⎝⎛21.因为f(n)=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值, 即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x(x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x(x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x(x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x(x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f(x)=x +x100(x ≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 所以f(x)=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。
高中数学_必修五模块检测卷[含详细答案解析]
高中数学必修五模块检测卷考试时间:120分钟 满分:150分一、选择题(共10小题,每小题5分,共50分)1、在等差数列{}n a 中,5a =33,45a =153,则201是该数列的第( )项A .60B .61C .62D .63 2、在100和500之间能被9整除的所有数之和为( )A .12699B .13266C .13833D .14400 3、等比数列{}n a 中,3a ,9a 是方程3x 2—11x +9=0的两个根,则6a =( )A .3B .611C .± 3D .以上皆非 4、四个不相等的正数d c b a ,,,成等差数列,则( )A .bc d a >+2B .bc d a <+2C .bc da =+2D .bc d a ≤+2 5、在ABC ∆中,已知︒=30A ,︒=45C ,2=a ,则ABC ∆的面积等于( )A .2 B .13+ C .22 D .)13(21+ 6、在ABC ∆中,c b a ,,分别是C B A ∠∠∠,,所对应的边,︒=∠90C ,则cba +的取值范围是( ) A .(1,2) B .)2,1( C .]2,1( D .]2,1[7、不等式1213≥--xx 的解集是( ) A .⎭⎬⎫⎩⎨⎧≤≤243|x x B .⎭⎬⎫⎩⎨⎧<≤243|x x C .⎭⎬⎫⎩⎨⎧≤>432|x x x 或D .{}2|<x x 8、关于x 的方程ax 2+2x -1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-19、若2,2,2x y x y ≤⎧⎨≤+≥⎩,则目标函数y x z 2+=的取值范围是 ( )A .[2 ,6]B . [2,5]C . [3,6]D . [3,5]10.在△ABC 中,已知|AB →|=4,|AC →|=1,S △ABC = 3 ,则AB →·AC →等于( )A.-2B.2C.±2D.±4二、填空题(共5小题,每小题5分,共25分) 11、在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||31x y x y 所表示的平面区域的面积为________________________12、数列{}n a 的前n 项的和122+-=n n S n ,则n a =_________________13、已知_______,41,4=-+-=>x xx y x 当函数时,函数有最_______值是________________ 14、不等式0)3)(2(2>--x x 的解集是____________________ 15、在下列函数中,①|1|x x y += ;②1222++=x x y ;③1)x ,0(2log log 2≠>+=且x x y x ;④x x y x cot tan ,20+=<<π;⑤xx y -+=33;⑥24-+=x x y ;⑦24-+=xx y ;⑧2log 22+=x y ;其中最小值为2的函数是 (填入正确命题的序号) 三、解答题(共6小题,共75分)16、(12分)解关于x 的不等式0)1)(1(<+--x x ax )1(±≠a17、(12分)在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S .18、(12分)已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边 【Ⅰ】若ABC ∆面积,60,2,23︒===∆A c S ABC 求a 、b 的值; 【Ⅱ】若B c a cos =,且A c b sin =,试判断ABC ∆的形状.19、(12分)某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.问这台机器最佳使用年限是多少年?并求出年平均费用的最小值.20、(13分)某村计划建造一个室内面积为8002m 的矩形蔬菜温室.在温室内,沿左.右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大?最大种植面积是多少?21、(14分)某厂使用两种零件A、B装配两种产品P、Q,该厂的生产能力是月产P产品最多有2500件,月产Q 产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个.已知P产品每件利润1000元,Q产品每件2000元,欲使月利润最大,需要组装P、Q产品各多少件?最大利润多少万元?参考答案一、选择题二、填空题 11、2312、⎪⎩⎪⎨⎧≥-==23412n n n a n ;13、5; 大;-614、}233|{<<-<x x x 或; 15、①②④⑤⑦ 三、解答题16、解:原不等式⇔0)1(1)((<-+-x x a x . 分情况讨论:(i )当1-<a 时,不等式的解集为}11|{<<-<x a x x 或; (ii )当11<<-a 时,不等式的解集为}11|{<<-<x a x x 或 (iii )当1>a 时,不等式的解集为}11|{a x x x <<-<或;17、(Ⅰ)122nn n a a +=+,11122n nn n a a +-=+,11n n b b +=+, 则n b 为等差数列,11b =,n b n =,12n n a n -=.(Ⅱ)1221022)1(232221--⨯+⨯-++⨯+⨯+⨯=n n n n n S n n n n n S 22)1(23222121321⨯+⨯-++⨯+⨯+⨯=-两式相减,得1222222121210+-⨯=----⨯-⨯=-n n n n n n n S .题号 12 3 4 5 6 7 8 9 10 答案BBCABCBDAC18、解:【Ⅰ】23sin 21==∆A bc S ABC ,2360sin 221=︒⋅∴b ,得1=b由余弦定理得:360cos 21221cos 222222=︒⋅⨯⨯-+=-+=A bc c b a所以3=a【Ⅱ】由余弦定理得:2222222c b a acb c a c a =+⇒-+⋅=, 所以︒=∠90C在ABC Rt ∆中,c a A =sin ,所以a cac b =⋅= 所以ABC ∆是等腰直角三角形;19、[解析]设这台机器最佳使用年限是n 年,则n 年的保养、维修、更换易损零件的总费用为:,23)1(1.04.03.02.02nn n +=++⋅⋅⋅+++2072.7203n 0.2n 0.27:22nn n ++=++++∴总费用为,),2.720(0.35207n 7.2y :2nn n n n ++=++=∴年的年平均费用为 ,2.1202.722.720=≥+n n等号当且仅当.12n 2.720时成立即==nn )(55.12.135.0min 万元=+=∴y 答:这台机器最佳使用年限是12年,年平均费用的最小值为1.55万元.20、解:设矩形温室的左侧边长为a m ,后侧边长为b m ,则 ab =800.蔬菜的种植面积 ).2(2808824)2)(4(b a a b ab b a S +-=+--=--=所以 ).(648248082m ab S =-≤当且仅当).(648,)(20),(40,22m S m b m a b a ====最大值时即答:当矩形温室的左侧边长为40m ,后侧边长为20m 时,蔬菜的种植面积最大,最大种植面积为648m 2.21、解:设分别生产P 、Q 产品x 件、y 件,则有⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+120002500012000821400064y x y x y x 依题意有设利润 z =1000x +2000y =1000(x +2y ) 要使利润最大,只需求z 的最大值.作出可行域如图示(阴影部分及边界) 作出直线l:1000(x +2y )=0,即x +2y =0由于向上平移平移直线l 时,z 的值增大,所以在点A 处z 取得最大值由⎩⎨⎧=+=+60004700032y x y x 解得⎩⎨⎧==10002000y x ,即A (2000,1000)因此,此时最大利润z max =1000(x +2y )=4000000=400(万元).答:要使月利润最大,需要组装P 、Q 产品2000件、1000件,此时最大利润为400万元.yx 250012004x+6y=140002x+8y=12000A(2000,1000)。
2017-2018学年高中数学人教B版必修5 模块综合检测 含
模块综合检测(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系为( ) A .f (x )>g (x ) B .f (x )=g (x ) C .f (x )<g (x )D .随x 值变化而变化解析:选A 因为f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0,所以f (x )>g (x ).2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,B =60°,那么角A 等于( )A .135°B .90°C .45°D .30°解析:选C 由正弦定理知a sin A =bsin B, ∴sin A =a sin Bb =2sin 60°3=22. 又a <b ,B =60°,∴A <60°,∴A =45°. 3.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第4项是( ) A.116 B.117 C.110D.125解析:选C a 2=a 13a 1+1=13+1=14,a 3=a 23a 2+1=1434+1=17,a 4=a 33a 3+1=1737+1=110. 4.若关于x 的不等式x 2-3ax +2>0的解集为(-∞,1)∪(m ,+∞),则a +m =( ) A .-1 B .1 C .2D .3解析:选D 由题意,知1,m 是方程x 2-3ax +2=0的两个根,则由根与系数的关系,得⎩⎪⎨⎪⎧1+m =3a ,1×m =2,解得⎩⎪⎨⎪⎧a =1,m =2,所以a +m =3,故选D.5.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16 B .25 C .9D .36解析:选B (1+x )(1+y )≤⎣⎢⎡⎦⎥⎤+x++y22=⎣⎢⎡⎦⎥⎤2+x +y 22=⎝ ⎛⎭⎪⎫2+822=25,因此当且仅当1+x =1+y 即x =y =4时,(1+x )(1+y )取最大值25,故选B.6.已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43D .45解析:选B 设等差数列{a n }的公差为d , 则2a 1+3d =13,∴d =3,故a 4+a 5+a 6=3a 1+12d =3×2+12×3=42.7.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2D .1 解析:选B ∵S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°,若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC =5,此时△ABC 为钝角三角形,符合题意.故选B.8.已知S n 为正项等比数列{a n }的前n 项和,S 3=3a 1+2a 2,且a 2-12,a 4,a 5成等差数列,则a 1=( )A .2 B.12C.14D .4解析:选C 设数列{a n }的公比为q (q >0),则由S 3=3a 1+2a 2可得q 2-q -2=0,解得q =2或q =-1(舍去),又a 2-12,a 4,a 5成等差数列,所以2a 4=a 2-12+a 5,即a 2=12,所以a 1=14.9.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C.3+62D.3+394解析:选B 由余弦定理得AB 2+4-2·AB ×2×cos 60°=7,解得AB =3或AB =-1(舍去),设BC 边上的高为x ,由三角形面积关系得12·BC ·x =12AB ·BC ·sin 60°,解得x =332,故选B.10.某汽车公司有两家装配厂,生产甲、乙两种不同型的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和40辆乙型车,若要使所费的总工作时数最少,那么这两家工厂工作的时间分别为( )A .16,8B .15,9C .17,7D .14,10解析:选A 设A 工厂工作x 小时,B 工厂工作y 小时,总工作时数为z ,则目标函数为z =x +y ,约束条件为⎩⎪⎨⎪⎧x +3y ≥40,2x +y ≥40,x ≥0,y ≥0作出可行域如图所示,由图知当直线l :y =-x +z过Q点时,z 最小,解方程组⎩⎪⎨⎪⎧x +3y =40,2x +y =40,得Q (16,8),故A 厂工作16小时,B 厂工作8小时,可使所费的总工作时数最少.11.若log 4(3x +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3D .7+4 3解析:选D 由log 4(3a +4b )=log 2ab ,得12log 2(3a +4b )=12log 2(ab ),所以3a +4b =ab ,即3b +4a=1.所以a +b =(a +b )⎝ ⎛⎭⎪⎫3b +4a =3a b +4ba +7≥43+7,当且仅当3ab =4b a,即a =23+4,b =3+23时取等号,故选D.12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解析:选B 画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验x =2,y =0符合题意,∴2a +0=4,此时a =2,故选B.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 解析:因为实数x ,y 满足xy =1,所以x 2+2y 2≥2x 2·2y 2=2xy2=22,并且仅当x 2=2y 2且xy =1,即x 2=2y 2=2时等号成立,故x 2+2y 2的最小值为2 2.答案:2 214.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.解析:由于三边长构成公差为4的等差数列, 故可设三边长分别为x -4,x ,x +4.由一个内角为120°,知其必是最长边x +4所对的角. 由余弦定理得,(x +4)2=x 2+(x -4)2-2x (x -4)·cos 120°, ∴2x 2-20x =0,∴x =0(舍去)或x =10, ∴S △ABC =12×(10-4)×10×sin 120°=15 3.答案:15 315.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. 解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n16.若a >0,b >0,a +b =2,则下列不等式①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a+1b≥2,对满足条件的a ,b 恒成立的是________.(填序号)解析:因为ab ≤⎝⎛⎭⎪⎫a +b 22=1,所以①正确;因为(a +b )2=a +b +2ab =2+2ab ≤2+a +b =4,故②不正确;a 2+b 2≥a +b22=2,所以③正确;1a +1b =a +b ab =2ab≥2,所以④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)等差数列{a n }的前n 项和记为S n ,已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .解:(1)设{a n }的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50.解得⎩⎪⎨⎪⎧a 1=12,d =2.∴通项a n =a 1+(n -1)d =10+2n . (2)由S n =na 1+n n -2d =242,得12n +n n -2×2=242,解得n =11,或n =-22(舍去).故n =11.18.(12分)已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围. 解:(1)因为f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5), 所以2x 2+bx +c <0的解集是(0,5), 所以0和5是方程2x 2+bx +c =0的两个根, 由根与系数的关系,知-b 2=5,c2=0, 所以b =-10,c =0,所以f (x )=2x 2-10x .(2)对任意的x ∈[-1,1],f (x )+t ≤2恒成立等价于对任意的x ∈[-1,1],2x 2-10x +t-2≤0恒成立.设g (x )=2x 2-10x +t -2,则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数,所以g (x )max =g (-1)=10+t ,所以10+t ≤0,即t ≤-10,所以t 的取值范围为 (-∞,-10].19.(12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n n -2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5.解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1-2n-2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12( 1-1-11+11-13+…+12n -3-12n -1 )=n1-2n. 20.(12分)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处进行该仪器的垂直弹射,观察点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217s .A 地测得该仪器在C 处时的俯角为15°,A 地测得最高点H 的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340 m/s)解:由题意,设AC =x m , 则BC =x -217×340=(x -40)m ,在△ABC 内,由余弦定理:BC 2=BA 2+CA 2-2·BA ·CA ·cos∠BAC , 即(x -40)2=1002+x 2-100x ,解得x =420.在△ACH 中,AC =420 m ,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°, 由正弦定理:CH sin ∠CAH =ACsin ∠AHC ,可得CH =AC ·sin∠CAHsin ∠AHC=1406(m).即该仪器的垂直弹射高度CH 为140 6 m.21.(12分)在△ABC 中,BC =6,点D 在BC 边上,且(2AC -AB )cos A =BC cos C . (1)求角A 的大小;(2)若AD 为△ABC 的中线,且AC =23,求AD 的长;(3)若AD 为△ABC 的高,且AD =33,求证:△ABC 为等边三角形.解:(1)由(2AC -AB )cos A =BC cos C 及正弦定理,有(2sin B -sin C )cos A =sin A cosC ,得2sin B cos A =sin C cos A +sin A cos C =sin(A +C )=sin B ,所以cos A =12.因为0°<A <180°,所以A =60°. (2)由正弦定理BC sin A =ACsin B,得sin B =AC sin A BC =12. 因为A +B <180°,所以B =30°,所以C =90°. 因为D 是BC 的中点,所以DC =3, 由勾股定理,得AD =AC 2+DC 2=21.(3)证明:因为12AD ·BC =12AB ·AC sin A ,且AD =33,BC =6,sin A =32,所以AB ·AC=36.因为BC 2=AB 2+AC 2-2AB ·AC cos A , 所以AB 2+AC 2=72,所以AB =AC =6=BC , 所以△ABC 为等边三角形.22.(12分)已知数列{a n }的前n 项和S n 和通项a n 满足2S n +a n =1,数列{b n }中,b 1=1,b 2=12,2b n +1=1b n +1b n +2(n ∈N +).(1)求数列{a n },{b n }的通项公式;(2)数列{c n }满足c n =a n b n ,求证:c 1+c 2+c 3+…+c n <34.解:(1)由2S n +a n =1,得S n =12(1-a n ).当n ≥2时,a n =S n -S n -1=12(1-a n )-12(1-a n -1)=-12a n +12a n -1,即2a n =-a n +a n -1,∴a n a n -1=13(由题意可知a n -1≠0). ∴{a n }是公比为13的等比数列,而S 1=a 1=12(1-a 1),∴a 1=13,∴a n =13×⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n.由2b n +1=1b n +1b n +2,1b 1=1,1b 2=2,得d =1b 2-1b 1=1⎝ ⎛⎭⎪⎫d 为等差数列⎩⎨⎧⎭⎬⎫1b n 的公差, ∴1b n =n ,∴b n =1n.(2)证明:c n =a n b n =n ⎝ ⎛⎭⎪⎫13n,设T n =c 1+c 2+…+c n ,则T n =1×⎝ ⎛⎭⎪⎫131+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1,由错位相减,得23T n =13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13n -n ×⎝ ⎛⎭⎪⎫13n +1=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13-n ×⎝ ⎛⎭⎪⎫13n +1=12-12×⎝ ⎛⎭⎪⎫13n-n ×⎝ ⎛⎭⎪⎫13n +1,所以T n =34-34×⎝ ⎛⎭⎪⎫13n -12n ×⎝ ⎛⎭⎪⎫13n =34-2n +34×13n <34.。
2020-2021学年北师大版高中数学必修五模块质量检测2及答案解析
(新课标)最新北师大版高中数学必修五模块质量检测(二)(江西专用)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180D .300解析: ∵a 2+a 8=a 3+a 7=a 4+a 6=2a 5, ∴由已知得5a 5=450,∴a 5=90 ∴a 2+a 8=2a 5=180. 答案: C2.在△ABC 中,若b =2asin B ,则角A 为( ) A .30°或60° B .45°或60° C .120°或60°D .30°或150° 解析: 根据正弦定理sin B =2sin Asin B , 所以sin A =12,所以A =30°或150°.答案: D3.a ∈R ,且a 2+a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3C .-a 3>a 2>-aD .a 2>-a >-a 3解析: 由a 2+a <0得-1<a <0, ∴-a >a 2>-a 3. 答案: B4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析: a 4+a 6=2a 5=-6∴d =a 5-a 15-1=2∴S n =-11n +n (n -1)2·2=n 2-12n故n =6时S n 取最小值. 答案: A5.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32B .1+ 3C.2+32D .2+ 3解析: 2b =a +c ,S =12acsin B =32∴ac =6又∵b 2=a 2+c 2-2accos B ∴b 2=(a +c)2-2ac -2accos 30° ∴b 2=4+23,即b =1+3,故选B. 答案: B6.若数列{x n }满足lg x n +1=1+lg x n (n ∈N +),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102B .101C .100D .99解析: 由lg x n +1=1+lg x n 得x n +1x n=10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100, x 102=x 2·q 100,…,x 200=x 100·q 100, ∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102.7.已知△ABC 中,sin 2A =sin 2B +sin 2C ,bsin B -csin C =0,则△ABC 为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形解析: ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2, ∴△ABC 是直角三角形,A =90°.又∵bsin B -csin C =0,即bsin B =csin C , ∴sin 2B =sin 2C ,又∵A =90°,∴B =C. ∴△ABC 是等腰直角三角形. 答案: C8.在平面直角坐标系中,不等式组⎩⎨⎧x +y ≥0x -y +4≥0x ≤1表示的平面区域面积是( )A .3B .6 C.92D .9解析: 如图所示,不等式组表示的平面区域为△ABC 边界及其内部的部分,由⎩⎨⎧x =1x -y +4=0可得A(1,5),同理可得B(-2,2),C(1,-1),故AC =6,△ABC 的高h =3,所以S △ABC =12·AC ·h =9.9.已知数列{a n }的前n 项和为S n ,且S n =a n-2(a 为常数且a ≠0),则数列{a n }( ) A .是等比数列B .当a ≠1时是等比数列C .从第二项起成等比数列D .从第二项起成等比数列或等差数列解析: a n =⎩⎨⎧a -2 n =1,a n -1(a -1)n ≥2,当a ≠0,n ≥2,a n =an -1(a -1),a ≠1是等比数列,当a =1,是等差数列. 答案: D10.在R 上定义运算⊗:x ⊗y =x(1-y).若不等式(x -a)⊗(x +a)<1对任意实数x 均成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: ∵(x -a)⊗(x +a)=(x -a)(1-x -a), ∴不等式(x -a)⊗(x +a)<1对任意实数x 成立, 即(x -a)(1-x -a)<1对任意实数x 成立, 即使x 2-x -a 2+a +1>0对任意实数x 成立, 所以Δ=1-4(-a 2+a +1)<0, 解得-12<a <32,故选C.答案: C二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上) 11.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析: 因为cos C =13,得sin C =223.因为S △ABC =12absin C =12×32×b ×223=43,所以b =2 3. 答案: 2 312.在等比数列{a n }中,若a 3,a 7是方程3x 2-11x +9=0的两根,则a 5的值为________.解析: 由a 3a 7=3,知a 52=3,所以a 5=± 3. 答案: ± 313.设点P(x ,y)在函数y =4-2x 的图像上运动,则9x+3y的最小值为________. 解析: ∵y =4-2x , ∴9x+3y=9x+34-2x=9x+819x≥281=18. 答案: 1814.若不等式组⎩⎨⎧x ≥0y ≥02x +y -6≤0x -y +m ≤0表示的平面区域是一个三角形,则实数m 的取值范围是________.解析: 先画部分可行域⎩⎨⎧x ≥0y ≥02x +y -6≤0,设直线x -y +m =0与x 轴的交点为(-m,0),另外A(3,0),B(0,6),由图形可知:当m ∈(-∞,-3]∪[0,6)时,可行域为三角形.故实数m 的取值范围是(-∞,-3]∪[0,6). 答案: (-∞,-3]∪[0,6)15.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.解析: ∵三角形为钝角三角形,∴⎩⎨⎧a +a +1>a +2-12≤a 2+(a +1)2-(a +2)22a (a +1)<0,解得32≤a <3.答案:32≤a <3 三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =5,AC =7,DC =3,求AB 的长.解析: 在△ACD 中,由余弦定理,得 cos C =AC 2+CD 2-AD 22AC ·CD =72+32-522×7×3=1114.∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫11142=5143. 在△ABC 中,由正弦定理,得AB sin C =ACsin B ,∴AB =AC ·sin C sin B =7×5143sin 45°=562.17.(12分)数列{a n }中,a 1=13,前n 项和S n 满足S n +1-S n =⎝ ⎛⎭⎪⎫13n +1(n ∈N +).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t(S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.解析: (1)由S n +1-S n =⎝ ⎛⎭⎪⎫13n +1得a n +1=⎝ ⎛⎭⎪⎫13n +1(n ∈N *);又a 1=13,故a n =⎝ ⎛⎭⎪⎫13n (n ∈N *).从而,S n =13×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)由(1)可得S 1=13,S 2=49,S 3=1327.从而由S 1,t(S 1+S 2),3(S 2+S 3)成等差数列可得: 13+3⎝ ⎛⎭⎪⎫49+1327=2×⎝ ⎛⎭⎪⎫13+49t , 解得t =2.18.(12分)已知全集U =R ,集合A ={x|x 2+(a -1)x -a>0},B ={x|(x +a)(x +b)>0(a ≠b)},M ={x|x 2-2x -3≤0}.(1)若∁U B =M ,求a ,b 的值; (2)若-1<b<a<1,求A ∩B ;(3)若-3<a<-1,且a 2-1∈∁U A ,求实数a 的取值范围.解析: 由题意,得A ={x|(x +a)(x -1)>0},∁U B ={x|(x +a)(x +b)≤0},M ={x|(x +1)(x -3)≤0}.(1)若∁U B =M ,则(x +a)(x +b)=(x +1)(x -3), 所以a =1,b =-3,或a =-3,b =1. (2)若-1<b<a<1,则-1<-a<-b <1,所以A ={x|x<-a 或x>1},B ={x|x<-a 或x>-b}. 故A ∩B ={x|x <-a 或x >1}. (3)若-3<a<-1,则1<-a<3,所以A ={x|x<1或x>-a},∁U A ={x|1≤x ≤-a}. 又由a 2-1∈∁U A ,得1≤a 2-1≤-a ,即⎩⎨⎧a 2-2≥0a 2+a -1≤0,解得-1-52≤a ≤- 2.19.(12分)已知f(x)=ax 2+(b -8)x -a -ab ,当x ∈(-3,2)时,f(x)>0; x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y =f(x)的解析式;(2)c 为何值时,ax 2+bx +c ≤0的解集为R.解析: (1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b -8)x -a -ab =0的两根⎩⎪⎨⎪⎧-3+2=-b -8a ,-3×2=-a -ab a,⇒⎩⎨⎧a =-3,b =5.∴f(x)=-3x 2-3x +18.(2)由a<0,知二次函数y =ax 2+bx +c 的图像开口向下.要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0⇔c ≤-2512.∴当c ≤-2512时,ax 2+bx +c ≤0的解集为R.20.(12分)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问:(1)乙船每小时航行多少海里?(2)甲、乙两船是否会在某一点相遇,若能,求出甲从A 1处到相遇点共航行了多少海里? 解析: (1)如图,连接A 1B 2,A 2B 2=102, A 1A 2=2060×302=102,∴△A 1A 2B 2是等边三角形,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 12+A 1B 22-2A 1B 1·A 1B 2cos 45° =202+(102)2-2×20×102×22=200B 1B 2=10 2.因此乙船的速度的大小为10220×60=302海里/小时.(2)若能在C 点相遇,则显然A 1C <B 1C.因为甲、乙两船的航速恰好相等,因此不可能相遇.21.(15分)设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n =1,2,3,…. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n +1=b n +a n ,求数列{b n }的通项公式; (3)设c n =n(3-b n ),数列{c n }的前n 项和为T n ,求证:T n <8. 解析: (1)∵n =1时,a 1+S 1=a 1+a 1=2, ∴a 1=1.∵S n =2-a n ,即a n +S n =2, ∴a n +1+S n +1=2.两式相减:a n +1-a n +S n +1-S n =0. 即a n +1-a n +a n +1=0 故有2a n +1=a n ,∵a n ≠0,∴a n +1a n =12(n ∈N +),∴a n =⎝ ⎛⎭⎪⎫12n -1.(2)∵b n +1=b n +a n (n =1,2,3,…),∴b n +1-b n =⎝ ⎛⎭⎪⎫12n -1.得b 2-b 1=1,b 3-b 2=12,b 4-b 3=⎝ ⎛⎭⎪⎫122,…b n -b n -1=⎝ ⎛⎭⎪⎫12n -2(n =2,3,…).将这n -1个等式相加,得b n -b 1=1+12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -2=1-⎝ ⎛⎭⎪⎫12n -11-12=2-⎝ ⎛⎭⎪⎫12n -2.又∵b 1=1,∴b n =3-⎝ ⎛⎭⎪⎫12n -2(n =1,2,3…).(3)证明:∵c n =n(3-b n )=2n ⎝ ⎛⎭⎪⎫12n -1.∴T n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫120+2×⎝ ⎛⎭⎪⎫12+3×⎝ ⎛⎭⎪⎫122+…+(n -1)×⎝ ⎛⎭⎪⎫12n -2+n ×⎝ ⎛⎭⎪⎫12n -1.① 而12T n = 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12+2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+…+(n -1)×⎝ ⎛⎭⎪⎫12n -1+n ×⎝ ⎛⎭⎪⎫12n .② ①-②得12T n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫120+⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-2×n ×⎝ ⎛⎭⎪⎫12n . T n =4×1-⎝ ⎛⎭⎪⎫12n1-12-4×n ×⎝ ⎛⎭⎪⎫12n&知识就是力量&=8-82n -4×n ×⎝ ⎛⎭⎪⎫12n =8-8+4n 2n (n =1,2,3,…). ∴T n <8.。
最新精编高中人教A版必修五高中数学模块综合测评1(1)和答案
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是( )A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有( )A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于( )A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,1.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12--=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC的面积为3,则a 的值为( ) A .1 B .2 C.32D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3. 【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+nn -2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0.【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A.189 B.186 C.180 D.192【解析】由a n+1=2a n,知{a n}为等比数列,∴a n=2n.∴2b n=2n+2n+1,即b n=3·2n-1,∴S6=3·1+3·2+…+3·25=189.【答案】 A10.已知a,b,c∈R,a+b+c=0,abc>0,T=1a+1b+1c,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c b+aabc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b =3,则c=( )A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形.由勾股定理得c =12+32=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21q n -1=2.又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,所以a n 1·qn n -2=64,即(a 21qn -1)n =642,即2n =642,所以n =12. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________.【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3,12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2+2n -2=-n n +2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n n -2+n 2=n n +2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n +1n n +2.【答案】 (-1)n +1n n +2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·ta n B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3actan B,所以cos B =a 2+c 2-b 22ac =32tan B,即tan B cos B =32,即sin B =32,所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a<-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞. 20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =1.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154.∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝ ⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n+1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a n a n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 tA,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B 产品225t 时,可得最大利润. (2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15, 则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245t ,B 产品225t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
高中数学人教A版必修五 模块综合测评1 Word版含答案
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0. 【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( ) A .T >0 B .T <0 C .T =0 D .T ≥0【解析】 法一 取特殊值,a =2,b =c =-1, 则T =-32<0,排除A ,C ,D ,可知选B.法二 由a +b +c =0,abc >0,知三数中一正两负, 不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc=ab -c 2abc .∵ab <0,-c 2<0,abc >0,故T <0,应选B. 【答案】 B11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1【解析】 由正弦定理得:a sin A =bsin B , ∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0. ∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形. 由勾股定理得c =12+(3)2=2. 【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n 1·q n (n -1)2=64,即(a 21q n -1)n=642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n+1n (n +1)2.【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B , 所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1; (3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225 t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
[精品]新人教A版必修五高中数学模块综合测评2和答案
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n可能是( )A.2n B.2n+1C.2n-1 D.2n-1【解析】取n=1时,a1=1,排除A、B,取n=2时,a2=3,排除D.【答案】 C2.不等式x2-2x-5>2x的解集是( )A.{x|x≤-1或x≥5}B.{x|x<-1或x>5}C.{x|1<x<5}D.{x|-1≤x≤5}【解析】不等式化为x2-4x-5>0,所以(x-5)(x+1)>0,所以x<-1或x>5.【答案】 B3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256【解析】∵{a n}是等比数列且由题意得a1·a19=16=a210(a n>0),∴a8·a10·a12=a310=64.【答案】 C4.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 【解析】5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12B.32 C .1D.34【解析】 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12,故选 A.【答案】 A6.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25【解析】 由等比数列的性质得a 3a 6a 18=a 6a 10a 11=a 8a 9a 10=a 39,而T 17=a 179,故T 17为常数.【答案】 C7.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1. 代入公式S n =a 1-q n1-q,即381=a 1-271-2,∴a 1=381127=3.∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx的取值范围是( ) A .(0,1) B .(0,1] C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示.yx表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,yx的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形B .正三角形C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B , 即sin A cos B -cos A sin B =0, 所以sin (A -B )=0. 又因为-π<A -B <π, 所以A -B =0, 即A =B . 【答案】 A11.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【解析】 ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+x -+3x -1=x -2+x -+3x -1=x -1+3x -1+2≥23+2.【答案】 A12.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且tan B =2-3a 2-b 2+c 2,BC →·BA →=12,则tan B 等于( ) A.32B.3-1 C .2D .2- 3【解析】 由BC →·BA →=12,得ac cos B =12,∴2ac cos B =1.又由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-1, ∴a 2-b 2+c 2=1, ∴tan B =2-31=2- 3.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P (1,-2)及其关于原点的对称点均在不等式 2x +by +1>0表示的平面区域内,则b 的取值范围是______. 【导学号:05920089】【解析】 点P (1,-2)关于原点的对称点为点P ′(-1,2).由题意知⎩⎪⎨⎪⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32.【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1, ∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝⎛⎭⎪⎫1-111=2011.【答案】 201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc ,∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A ,∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】316.若1a <1b<0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab>2;⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b<0,∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由.【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0,∴-247<d <-3.(2)∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,∴⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0,∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值.【解】 ∵⎩⎪⎨⎪⎧α+β=-a ,αβ=2b ,∴⎩⎪⎨⎪⎧a =-α+β,b =αβ2,∵0≤α≤1,1≤β≤2,∴1≤α+β≤3,0≤αβ≤2.∴⎩⎪⎨⎪⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率. 取B (-1,0),C (-3,1), 则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,试求当△ABC 的面积取最大值时,△ABC 的形状. 【导学号:05920090】【解】 (1)∵(2b -c )cos A -a cos C =0,由余弦定理得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab=0,整理得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π,∴A =π3. (2)由(1)得b 2+c 2-bc =3及b 2+c 2≥2bc 得bc ≤3.当且仅当b =c =3时取等号.∴S △ABC =12bc sin A ≤12×3×32=334. 从而当△ABC 的面积最大时,a =b =c = 3.∴当△ABC 的面积取最大值时△ABC 为等边三角形.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R .(1)求a 的取值范围;(2)解关于x 的不等式x 2-x -a 2+a <0. 【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立.①当a =0时,1≥0,不等式恒成立;②当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a , 即0≤a <12时, a <x <1-a ;②当1-a =a ,即a =12时,⎝⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时, 1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a ); 当a =12时,原不等式的解集为∅; 当12<a ≤1时,原不等式的解集为(1-a ,a ). 21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和. 【解】 (1)由a 21=1,a 25=9,得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1,∵a n >0,∴a n =2n -1.数列{a n }的通项公式为a n =2n -1.(2)a 2n ⎝ ⎛⎭⎪⎫12n =(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,①12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n , 即数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n . 22.(本小题满分12分)如图1所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)图1【解】 轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行,由此可见,BC =4EB .设EB =x ,则BC =4x ,由已知得∠BAE =30°,在△AEC 中,由正弦定理得EC sin ∠EAC =AEsin C , 即sin C =AE sin ∠EAC EC =5sin 150°5x =12x, 在△ABC 中,由正弦定理得BC sin ∠BAC =ABsin C, 即AB =BC sin C sin 120°=4x ×12x sin 120°=43=433. 在△ABE 中,由余弦定理得 BE 2=AE 2+AB 2-2AE ·AB cos 30°=25+163-2×5×433×32=313, 所以BE =313(千米). 故轮船的速度为v =313÷2060=93(千米/时).。
高考数学高中数学模块综合测试卷人教版B必修五
求 a 的取值范围 . 解: 由 A={x|x 2- 5x+4≤0} 令 f ( x ) =x2-2ax+a+2.
A={x|1 ≤x≤4}.
∵B A 且 B≠ ,
0, 1 a 4,
∴
f (1) 0, f (4) 0.
a 2 a 2 0, 1 a 4, 3 a 0, 18 7a 0.
a 2或 a 1,
∵-1 < k< 0,∴ 0< 1+k<1. ∴( 1+k)n >0.
又∵P0> 0, k< 0,∴P0 (1+k) n·k< 0.
即 Pn+1-Pn< 0,∴Pn+1< Pn.
答案: B
7. 设 b> 0,二次函数 y=ax 2+bx+a2-1 的图象为下列之一,则 a 的值为(
)
A.1
B.-1
C.
2ac
2
a2 c2 b2
,
2ac
即(
2
a+c) - 1=3ac≤
3( a
c) 2 .
2
解得 a+c≤2.
又∵ a+c> 1,∴ 1<a+c≤2.
20. (本题满分 12 分)某商场预计全年分批购入每台价值为
2 000 元的电视机共 3 600 台 .
每批都购入 x 台( x∈ N*),且每批均需付运费 400 元 . 贮存购入的电视机全年所付保管费与
每批购入电视机的总价值(不含运费)成正比 . 若每批购入 400 台,则全年需用去运输和保
管总费用 43 600 元 . 现在全年只有 24 000 元资金用于支付这笔费用,请问能否恰当安排每
批进货的数量使资金够用 ?写出你的结论,并说明理由 .
2020年高中数学人教A版必修五 模块综合测评1 Word版含答案
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32.【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52,∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0. 【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( ) A .T >0 B .T <0 C .T =0 D .T ≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c(b+a)abc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b=3,则c=()A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A=3 2.又0<A<π,∴A=π6,∴B=2A=π3.∴C=π-A-B=π2,∴△ABC为直角三角形.由勾股定理得c=12+(3)2=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有()A.13项B.12项C.11项D.10项【解析】设该数列的前三项分别为a1,a1q,a1q2,后三项分别为a1q n-3,a1q n -2,a1q n-1.所以前三项之积a31q3=2,后三项之积a31q3n-6=4,两式相乘,得a61q3(n-1)=8,即a21q n-1=2.又a1·a1q·a1q2·…·a1q n-1=64,所以a n1·q n(n-1)2=64,即(a21q n-1)n=642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n+1n (n +1)2.【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B ,所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4. ∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n+1=-2a n+5×3n,∴a n+1-3n+1=-2(a n-3n).又∵a1-3=2,∴a n-3n≠0,∴{a n-3n}是以2为首项,-2为公比的等比数列.∴a n-3n=2×(-2)n-1,即a n=2×(-2)n-1+3n(n∈N*).22.(本小题满分12分)某厂用甲、乙两种原料生产A,B两种产品,制造1 t A,1 t B产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料每种产品所需原料(t)现有原料数(t)A B甲2114乙1318利润(万元/t)53—(2)每吨B产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】(1)生产A,B两种产品分别为x t,y t,则利润z=5x+3y,x,y满足⎩⎨⎧2x+y≤14,x+3y≤18,x≥0,y≥0,作出可行域如图:当直线5x+3y=z过点B⎝⎛⎭⎪⎫245,225时,z取最大值3715,即生产A产品245t,B 产品225t时,可得最大利润.(2)设每吨B产品利润为m万元,则目标函数是z=5x+my,直线斜率k=-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t......................................使用本文档删除后面的即可 致力于打造全网一站式文档服务需求,为大家节约时间 文档来源网络仅供参考 欢迎您下载可以编辑的word 文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
人教A版高中数学必修五模块检测(含答案详解).docx
模块检测(苏教版必修5)一、填空题(每小题5分,共70分)1.已知一等比数列的前三项依次为22x,x ,+33x +,那么2113-是此数列的第项. 2.若数列{ }的前n 项和S n =n 2-2n +3,则此数列的前3项依次为. 3.已知三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =.4.在ABC △中,tan A 是以-4为第三项,4为第 七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是. 5.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a +++310log a =.6.若x ,y 均为整数,且满足约束条件20200≤,≥,≥,x y x y y +-⎧⎪-+⎨⎪⎩则2z x y =+的最大值为.7.已知在等差数列{ }中,01511>,=a S S ,则第一个使0<n a 的项是. 8.已知{}a 是等比数列,12==a a ,,则13221++++n n a a a a a a =.9.如果在△ABC 中,2sin cos =sin A B C,那么△ABC 一定是 . 10.若关于x 的不等式()201x a x ab +++>的解集是{}1或4x|x x <->,则实数a b +的值为. 11.用两种材料做一个矩形框,按要求其长和宽分别选用价格为每米3元和5元的两种材料,且长和宽必须为整数米,现预算花费不超过100元,则做成的矩形框所围成的最大面积是 平方米.12.如图,在山脚A 处测得该山峰仰角为θ,对着山峰在平行地面上前进600 m 后测得仰角为原来的2倍,继续在平行地面上前进200 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度为.13.在200 m 高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为30°和60°,则塔高为. 14.甲船在岛B 的正南方A 处,AB =10千米,甲船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是.二、解答题(共90分)15.(14分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD,DC ,且拐弯处的转角为120︒.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).16.(14分)研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”有如下解法:解:由20ax bx c -+>得2110a b c x x ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭,令1y x =,则121y <<,所以不等式20cx bx a -+>的解集为112,⎛⎫⎪⎝⎭.参考上述解法,已知关于x 的不等式0k x bx a x c++<++的解集为()()2123,,--,求关于x 的不等式1011kx bx ax cx -+<--的解集.17.(14分)某家具厂有方木料90 ,五合板600 ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 ,五合板2 ,生产每个书橱需要方木料0.2 ,五合板1 ,出售一张书桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所获利润最大?18.(16分)已知{}为各项都为正数的等比数列,=1,=256,为等差数列{}的前n项和,=2,5=2.(1)求{}和{}的通项公式;(2)设=++…+,求.19.(16分)已知数列{}n a满足1112n na,a a+==+ ()1n+∈N.(1)求数列{}n a的通项公式;(2)若数列{}n b满足114b-•214b-•…•14n b-=(1)n bna+(n∈+N),证明:{}n b是等差数列.20.(16分)已知函数2222()f x x x =-+,数列{ }的前n 项和为 ,点 (n , )(n ∈ )均在函数()y f x =的图象上. (1)求数列{ }的通项公式 及前n 项和 ;(2)存在k ∈ ,使得1212nS S S k n+++<对任意n ∈ 恒成立,求出k 的最小值.模块检测答题纸得分:一、填空题1. 2.3. 4.5. 6.7.8.9.10.11.12. 13.14.二、解答题15.16.17.18.19.20.模块检测 参考答案1.4 解析:由题意得 ,解得1x =-或4x =-.当1x =-时,220x +=,故舍去,所以333x q +==,所以131134n -⎛⎫⨯-=-,所以4n =.2.213,, 解析:当1n =时,21112132-a S ==⨯+=;当2n =时,由221222233-S a a =+=⨯+=,得21a =;当3n =时,由2233233631-S a a a =++=⨯+=,得33a =.3.)2(:1:4-解析:22222,2,(2),540a c b c b a ab c b a a ab b +==-==--+=, 又,a b ≠∴4,2a b c b ==-.4.锐角三角形 解析:设等差数列为{}n a ,公差为d ,则7344,a a =-=,所以2d =,所以 设等比数列为{}n b ,公比为q ,则313b =,6b 9=,所以3q =,所以所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形.5.10 解析:313231031210log log log log ()a a a a a a +++=5103563log ()log (3)10a a ===.6.4 解析:作出可行域如图中阴影部分,可知在可行域内的整点有()()()()()()201000102011,,,,,,,,,,,,---()()()011102,,,,,,分别代入2z x y =+可知当20,x y ==时,z 最大,为4.7.9a 解析:由511=S S 得12150+=a d .又10>a ,所以0<d . 而2 =()()12212170a n d n d +-=-<,所以2170->n ,即85>n .. 8.()32143n -- 解析: 41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a )41(332n --. 9.等腰三角形 解析一:∵ 在△ABC 中,++=πA B C ,即()C A B =π-+,∴()sin =sin +C A B . 由2sin cos =sin A B C ,得2sin cos =sin cos +cos sin A B A B A B ,即0sin cos -cos sin =A B A B ,即()0sin -=A B . 又∵-π<-<πA B ,∴ 0-=A B ,即=A B .∴△ABC 是等腰三角形. 解析二:利用正弦定理和余弦定理.2sin cos =sin A B C 可化为2a ·2222a +cbc ac-=, 即2222+-=a c b c ,即22-=0a b ,22=a b ,故=a b . ∴△ABC 是等腰三角形.10.-3 解析:由不等式的解集为{}1或4x|x x <->可得14,-是方程()210a x b x a +++=的两根,∴()14114,,a ab ⎧-+=-+⎪⎨-⨯=⎪⎩解得41,a b .=-=⎧⎨⎩∴3a b +=-.11.40 解析:设长x 米,宽y 米,则610100≤x y +,即3550≤x y +.∵5035+x y ≥≥35x y =时等号成立,又∵, x y 为正整数,∴ 只有当324525,x y ==时面积最大,此时面积40xy =平方米.12.300 m 解析:依题意可知600====AB BP BC CP ,,∴ 222cos 222θ+-==⋅BC BP PC BC BP ∴23015,θθ=︒=︒,∴ 60300sin (m )PD PC =∙︒==.13.4003m 解析:依题意可得图象如图所示, 从塔顶向山体引一条垂线CM ,垂足为M , 则0=∙︒AB BD tan 6,0=∙︒=AM CM BD CM tan 3,, ∴200tan 30tan 603=⨯︒=︒AB AM ,∴塔高()20040020033=-= C D m . 点评:本题主要考查构造三角形求解实际问题,属基础题. 14.514小时 解析:假设经过x 小时两船相距最近,甲、乙分别行至,C D , 可知1046120﹣,,BC x BD x CBD ==∠=︒,22222212cos 104362104628201002﹣∠(﹣)(﹣)CD BC BD BC BD CBD x x x x x x ⎛⎫=+∙∙=+-∙∙∙-=-+ ⎪⎝⎭,当514x =小时,即1507分钟时距离最小. 点评:本题主要考查余弦定理的应用,关键在于画出图象,属基础题.15.解法一:设该扇形的半径为r 米.由题意,得500CD =米,300DA =米,60CDO ∠=︒, 在△CDO 中,2222cos 60 CD OD CD OD OC +-∙∙︒=,即()()222150030025003002r r r +--⨯-⨯=,解得490044511r =≈(米). 解法二:连接AC ,作OH AC ⊥,交AC 于点H , 由题意,得500CD =米,300AD =米,120,CDA ∠=︒在ACD △中,22222212cos 12050030025003007002AC CD AD CD AD =+-∙∙∙︒=++⨯⨯⨯=,∴700AC =(米),22211cos .214AC AD CD CAD AC AD +-∠==⋅⋅ 在HAO Rt △中,350AH =米,11cos 14∠HAO =, ∴ 4900445cos 11∠AH OA HAO ==≈(米).点评:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;16.解:由于不等式0k x bx a x c++<++的解集为2123(,)(,)--, 则方程0k x bx a x c++=++的根分别为2123,,,--. 由1011kx bx ax cx -+<--,得1011 b k x a c x x-+<--, 因此方程1011 b k x a c x x-+=--的根为1111223--,,,. 所以不等式1011kx bx ax cx -+<--的解集为1111232,,⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭. 17.解:由题意可列表格如下:(1)设只生产书桌a 张,可获得利润b 元, 则01902600⎧⎨⎩.a a ≤,≤,解得900300⎧⎨⎩a a ≤,≤,即300a ≤.又80=b a ,所以当300=a 时,8030024000=⨯=b max (元), 即如果只安排生产书桌,最多可生产300张,可获得利润24000元.(2)设只生产书橱c 个,可获利润d 元,则02901600∙⎧⎨⎩.c c ≤,≤,解得450600⎧⎨⎩c c ≤,≤,即450c ≤.又120=d c ,所以当450=c 时,12045054000=⨯=d max (元), 即如果只安排生产书橱,最多可生产450个,可获得利润54000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则010*********≤,≤,≥且,≥且,.x .y x y x x y y +⎧⎪⎪⎨⎪⎪+∈∈⎩Z Z 即2900260000≤,≤,≥且,≥且x y x y x x y y .⎧⎪⎪⎨++∈∈⎪⎪⎩Z Z 80120z x y =+.在平面直角坐标内作出上面不等式组 所表示的平面区域,即可行域如图阴 影部分. 作直线230:l x y +=. 把直线l 向右上方平移至1l 的位置时, 直线经过可行域上的点M ,此时 80120z x y =+取得最大值.由29002600,,x y x y +=+=⎧⎨⎩解得点M 的坐标为100400(,),所以当100400,x y ==时,8010012040056000max z =⨯+⨯=(元).因此,生产书桌100张、书橱400个,可使所获利润最大.18.解:(1)设{}n a 的公比为q ,由 = ,得4q =,所以 = .设{}n b 的公差为d ,由5852=S S 及12b =得3d =,所以1131()n n b n b d =+-=-.(2)因为()21124548431n n T n -=⨯⨯⨯++++-,①()244245431n n T n ⨯⨯=+++-,②由②-①,得213234444312324())()(n n n n T n n ---++++-=+-∙=. 所以22433n n T n ⎛⎫=-∙+ ⎪⎝⎭.19.(1)解:∵ =2 +1(n ∈+N ),∴1+1=2+1n n a a +(),即1+1=2+1n n a a +,∴{}1n a +是以112a +=为首项,2为公比的等比数列.∴12nn a +=,即 -1( +N ).(2)证明:∵()121114441n n b b b b n a ---=+,∴()1242n n b b b nnb +++-=.∴()122n n b b b n nb ⎡⎤+++-=⎣⎦, ①()()()1211211n n n b b b b n n b ++⎡⎤++++-+=+⎣⎦. ②②-①,得()()11211n n n b n b nb ++-=+-,即()1120n n n b nb +--+=,③()21120n n nb n b ++-++=. ④ ④-③,得2120n n n nb nb nb ++-+=,即2120n n n b b b ++-+=,211+++-=-∈+N n n n n b b b b n (),故{}n b 是等差数列.20.解:(1)因为点 (n , )(n ∈ )均在函数()y f x =的图象上,所以2222n S n n =-+.当1n =时, = =20;当2≥n 时, = - 424n =-+.120S =也符合.所以 (n ∈ ).(2)存在k ∈ ,使得1212n S S S k n +++<对任意n ∈ 恒成立,只需1212max n S S S n k ⎛⎫+++ ⎪⎝⎭>,由(1)知 ,所以222211()nS n n n -+=-=.当11n <时,0nS n >;当11n =时,0n S n=; 当11n >时,0n S n <. 所以当10n =或11n =时,1212n S S S n+++有最大值110.所以110k >. 又因为∈N k +,所以k 的最小值为111.。
最新北师大版高中数学必修五模块测试卷(附答案)
2.设 a,b,c,d∈R,且 a>b,c>d,则下列结论正确的是( A. a+c>b+d B. a-c>b-d C. ac>bd a b D. d>c
3.已知 a,b,c 分别是△ABC 的三个内角 A,B,C 所对的边,若 A=45°,B=60°,a =6,则 b 等于( A. 3 B. 3 ) C. 3 D. 2 )
第 3 页 共 7 页
a b c 18. 同学们对正弦定理的探索与研究中, 得到sinA=sinB=sinC=2R(R 为△ABC 外接圆 的半径).请利用该结论,解决下列问题:
(1)现有一个破损的圆块如图 1,只给出一把带有刻度的直尺和一个量角器,请你设计 一种方案,求出这个圆块的直径的长度. (2)如图 2,已知△ ABC 三个角满足(sin∠ CBA) +(sin∠ ACB) -(sin∠ CAB) =sin∠
8.已知 0<x<1,则 x(3-3x)取最大值时 x 的值为( 1 A.3 1 B.2 3 C.4 2 D.3
9.在△ABC 中,已知 a4+b4+c4=2c2(a2+b2),则 C 等于( A.30° B.60° C.45°或 135° D.120°
)
10.设{an}是任意等比数列,它的前 n 项和,前 2n 项和与前 3n 项和分别为 X,Y,Z, 则下列等式中恒成立的是( )
2 2 2
CBA·sin∠ACB,AD 是△ABC 外接圆直径,CD=2,BD=3,求∠CAB 和直径的长.
参考答案
一、选择题 a5 1 1 3 3 1.D ∵a5=a2q ,∴q =a2=8,∴q=2. 2.A 3.A
第 4 页 共 7 页
4.B 画出可行域如图,分析图可知当直线 u=x+2y 经过点 A、C 时分别对应 u 的最大 值和最小值. 2 2 5.A 因数列{an}是等比数列,a2a4=a3,a4a6=a5,代入条件 a2a4+2a3a5+a4a6=25,得 2 2 a3+2a3a5+a5=25,(a3+a5)2=25,又 an>0,所以 a3+a5=5. 6.C 设 a+b=t,则 a=t-b;代入 a +2b =6 中得,(t-b) +2b =6,整理得 3b2-2tb+t2-6=0,∵b∈R,∴Δ=4t2-12(t2-6)≥0, ∴-3≤t≤3.即(a+b)min=-3. 7.C ∵运算满足 xy=x(1-y),∴不等式(x-a) (x+a)<1 化为(x-a)(1-x-
2020高中数学人教A必修5模块综合测评2 Word版含解析
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n可能是( )A.2n B.2n+1C.2n-1 D.2n-1【解析】取n=1时,a1=1,排除A、B,取n=2时,a2=3,排除D.【答案】 C2.不等式x2-2x-5>2x的解集是( )A.{x|x≤-1或x≥5}B.{x|x<-1或x>5}C.{x|1<x<5}D.{x|-1≤x≤5}【解析】不等式化为x2-4x-5>0,所以(x-5)(x+1)>0,所以x<-1或x>5.【答案】 B3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256【解析】∵{a n}是等比数列且由题意得a1·a19=16=a210(a n>0),∴a8·a10·a12=a310=64.【答案】 C4.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 【解析】5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12B.32 C .1D.34【解析】 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A , ∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12,故选 A.【答案】 A6.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25【解析】 由等比数列的性质得a 3a 6a 18=a 6a 10a 11=a 8a 9a 10=a 39,而T 17=a 179,故T 17为常数.【答案】 C7.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1.代入公式S n =a 11-q n 1-q ,即381=a 11-271-2,∴a 1=381127=3.∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则y x 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示. y x 表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,y x 的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形 B .正三角形 C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B ,即sin A cos B-cos A sin B=0,所以sin (A-B)=0.又因为-π<A-B<π,所以A-B=0,即A=B.【答案】 A11.函数y=x2+2x-1(x>1)的最小值是( )A.23+2 B.23-2 C.2 3 D.2【解析】∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥23+2. 【答案】 A12.在△ABC中,角A,B,C的对边分别是a,b,c,且tan B=2-3a2-b2+c2,BC→·BA→=12,则tan B等于( )A.32B.3-1C .2D .2- 3【解析】 由BC →·BA →=12,得ac cos B =12,∴2ac cos B =1.又由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-1, ∴a 2-b 2+c 2=1, ∴tan B =2-31=2- 3.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P (1,-2)及其关于原点的对称点均在不等式2x +by +1>0表示的平面区域内,则b 的取值范围是______. 【导学号:05920089】【解析】 点P (1,-2)关于原点的对称点为点P ′(-1,2). 由题意知⎩⎪⎨⎪⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32.【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =n -12+n2=n 2+n -22.又∵a 1=1,∴a n =n 2+n 2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝ ⎛⎭⎪⎫1-111=2011.【答案】 201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sinA -sinB )=(c -b )sinC ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C=2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A ,∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】316.若1a <1b<0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2;⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b<0,∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由. 【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0, ∴⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0, ∴-247<d <-3.(2)∵S 12>0,S 13<0, ∴⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,∴⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0, ∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值.【解】 ∵⎩⎪⎨⎪⎧α+β=-a ,αβ=2b ,∴⎩⎨⎧a =-α+β,b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2. ∴⎩⎪⎨⎪⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,试求当△ABC 的面积取最大值时,△ABC 的形状. 【导学号:05920090】【解】 (1)∵(2b -c )cos A -a cos C =0,由余弦定理得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0,整理得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π, ∴A =π3.(2)由(1)得b 2+c 2-bc =3及b 2+c 2≥2bc 得bc ≤3. 当且仅当b =c =3时取等号. ∴S △ABC =12bc sin A ≤12×3×32=334.从而当△ABC 的面积最大时,a =b =c = 3.∴当△ABC 的面积取最大值时△ABC 为等边三角形.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)解关于x 的不等式x 2-x -a 2+a <0.【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立. ①当a =0时,1≥0,不等式恒成立;②当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0, 解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时, a <x <1-a ;②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时, 1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a ); 当a =12时,原不等式的解集为∅; 当12<a ≤1时,原不等式的解集为(1-a ,a ). 21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和. 【解】 (1)由a 21=1,a 25=9,得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1,∵a n >0,∴a n =2n -1.数列{a n }的通项公式为a n =2n -1.(2)a 2n ⎝ ⎛⎭⎪⎫12n =(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,① 12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n , 即数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n .。
高中数学人教版必修5模块测试题及答案
必修五数学模块测试题一、选择题:本大题共10小题,每小题5分,共50分1.在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,则下列关系正确的是 A.222cos C a b c =+-B.222cos C a b c =-+C.222cos 2a b c C ab+-=D.222cos a b c C ab +-=2.不等式(2)(1)0x x +->的解集为 A.{}21x x x <->或 B.{}21x x -<< C.{}12x x x <->或D.{}12x x -<<3.n S 是等差数列{}n a 的前n 项和,如果10120S =,那么110a a +的值是 A.12B.24C.36D.484.在△ABC 中,,,A B C ∠∠∠所对的边分别为,,a b c ,若2220a b c +-<,则△ABC 是 A.锐角三角形B.直角三角形C.等腰三角形D. 钝角三角形5.在△ABC中,1,AB AC ==∠A =30︒,则△ABC 的面积等于D.126.对于任意实数a 、b 、c 、d ,下列命题: ①若a b >,0c ≠,则ac bc >; ②若a b >,则22ac bc >; ③若22ac bc >,则a b >; ④若a b >,则11a b< 中,真命题为 A. ①B. ②C. ③D. ④7.在△ABC 中, ,,A B C ∠∠∠所对的边分别为,,a b c ,若8,60,75a B C =∠=︒∠=︒,则b 等于A.B.C.D.3238.已知实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则y x z 42+=的最大值为A.24B.20C.16D.129.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则1a 等于 A.4-B.6-C.8-D.10-10.在R 上定义运算a c ad bc b d =-,若32012x x x <-成立,则x 的取值范围是 A.(4,1)-B.(1,4)-C.(,4)(1,)-∞-+∞D.(,1)(4,)-∞-+∞二、填空题:本大题共4小题,每小题5分,共20分.11.比较大小:(2)(3)x x -+ 27x x +-(填入“>”,“<”,“=”之一). 12.在各项均为正数的等比数列{}n a 中,已知1231,6,a a a =+=则数列{}n a 的通项公式为 .13.用绳子围成一块矩形场地,若绳长为20米,则围成最大矩形的面积是__________平方米. 14.数列{}n a 的前n 项和为21n S n =+(*n ∈N ),则它的通项公式是_______. 三、解答题:本大题共3小题,共30分. 15.(10分)已知函数6)(2++=ax x x f .(Ⅰ)当5=a 时,解不等式0)(<x f ;(Ⅱ)若不等式()0f x >的解集为R ,求实数a 的取值范围.C16.(10分)某货轮在A 处看灯塔B在货轮北偏东75︒,距离为mile ;在A 处看灯塔C在货轮的北偏西30︒,距离为mile.货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120︒,求: (Ⅰ)A 处与D 处之间的距离; (Ⅱ)灯塔C 与D 处之间的距离.21.(本小题满分10分) (Ⅰ)下面图形由单位正方形组成,请观察图1至图4的规律,并依此规律,在横线上方处画出适当 的图形;(Ⅱ)下图中的三角形称为希尔宾斯基三角形,在下图四个三角形中,着色三角形的个数依次构成数列的前四项,依此着色方案继续对三角形着色,求着色三角形的个数的通项公式n b ;(Ⅲ)依照(Ⅰ)中规律,继续用单位正方形绘图,记每个图形中单位正方形的个数为(1,2,3,)n a n = ,设21n nn a b c n =+,求数列{}n c 的前n 项和n S .图1 图2 图3 图4数学必修5模块测试题答案及评分参考二、填空题(每小题5分,共20分) 15.> 16.12n n a -= 17.25 18. 2(1)2 1 2)n n a n n =⎧=⎨-≥⎩(三、解答题(共3小题,共30分) 19.(本小题满分10分)解: (Ⅰ)当5=a 时,65)(2++=x x x f .由0)(<x f ,得652++x x <0.即 (0)3)(2<++x x .所以 32x -<<-.………………5分(Ⅱ)若不等式0)(>x f 的解集为R ,则有=∆0642<⨯-a .解得6262<<-a ,即实数a的取值范围是)62,62(-. ……………10分20.(本小题满分10分)解:(Ⅰ)在△ABD 中,由已知得 ∠ADB =60,B =45. 由正弦定理得1sin 24sin AB BAD ADB===.………………5分(Ⅱ)在△ADC 中,由余弦定理得 2222c o s 30C D A D A CA D A C =+-⋅︒,解得CD =.所以A 处与D 处之间的距离为24 n mile ,灯塔C 与D 处之间的距离为 ………………10分21.(本小题满分10分) 解:(Ⅰ)答案如图所示:………………3分 (Ⅱ)易知,后一个图形中的着色三角形个数是前一个的3倍,所以,着色三角形的个数的通项公式为:13n n b -=. ………………6分(Ⅲ)由题意知(1)2n n n a +=,11(1)23231n n n n n c n n --+⨯⨯=⋅+=, 所以 01113233n n S n -=⋅+⋅++⋅①12131323(1)33n n n S n n -=⋅+⋅++-⋅+⋅ ②①-②得 0112(333)3n n n S n --=+++-⋅2n S -=13313nn n --⋅-. 即 (21)31()4n n n S n -+=∈N + . ………………10分。
人教版高中数学必修五模块综合检测题 试题+答案解析(精教版)
人教版高中数学必修五模块综合检测题(满分150分,时间120分钟)一、单选题.(每小题5分,共12题)1. 在ABC ∆中,若sin sin A B >,则角A 与角B 的大小关系是.A A B > .B A B < .C A B = .D 不能确定 2. ABC ∆中,78,7o A a b ===,则此三角形.A 有一个解 .B 有两个解 .C 无解 .D 不能确定 3. 已知在ABC ∆中,cos cos b A a B =,则ABC ∆是.A 等边三角形 .B 等腰三角形 .C 直角三角形 .D 锐角三角形4. 已知ABC ∆的三边分别为a 、b 、c ,且1a =,45o B =,2ABC S ∆=,则ABC ∆外接圆的直径为.A .5B .C.D 5. 如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75o 距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为 .A海里/时 .B海里/时 .C/时 .D/时6. 若0a b >>,0c d <<,则一定有.a b A c d > .a b B c d < .C a b d c > .a b D d c< 7. 数列{}n a 中,n n a =,则{}na 是.A 递增数列 .B 递减数列 .C 常数列 .D 摆动数列8. 已知1x +与1y -的等差中项为10,则x y +等于.0A .5B .10C .20D9. 等差数列{}n a 共有3m 项,若前2m 项的和为200,前3m 项的和为225,则中间m 项的和为 .25A .75B .100C .125D 10. 在等比数列{}n a 中,已知121264a a a =,则46a a 的值为.16A .24B .48C .128D 11. 若数列{}n a 是等比数列,则下列数列一定是等比数列的是{}.l g n A a {}.1n B a + 1.n C a ⎧⎫⎨⎬⎩⎭.DMN12. 已知集合{}240A t t =-≤,对于满足集合A 的所有实数t ,关于x 的不等式,221x tx t x +->-恒成立,则x 的取值范围为 ()().,13,A -∞-+∞ .B ()(),13,-∞+∞ ().,1C -∞- ().3,D +∞二、填空题.(每小题5分,共4小题)13. 若变量,x y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值为 .14. 已知0,0x y >>. 若2282y x m m x y+>+恒成立,则实数m 的取值范围为 . 15. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若tan 21tan A c B b+=,则A = .16. 在日常生活中,“糖水加糖更甜”,即加糖融化后,糖水的浓度变大了. 若a 克糖水中含b 克糖()0a b >>,再加()0m m >克糖融化后,则糖水更甜,用一个不等式表示这个现象为 . 三、解答题.17. (10分)已知关于x 的不等式20ax bx c ++≥的解集为{}12x x -≤≤,求不等式20cx bx a -+<的解集.18.(12分)如图,公园想修建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现在 有44米铁丝网可供使用(铁丝网可以有剩余),若利用x 米墙, (1)求x 的取值范围;(2)求最少需要多少米铁丝网.(精确到0.1米)19. (10分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c,已知()cos cos cos 0C A A B +=. (1)求角B 的大小;(2)若1a c +=,求b 的取值范围.20.(12分)某公司2019年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元, 甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该广告公司所作的每分钟广告能给公司带来的收益为分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?21.(12分)已知数列{}*,n n a a N ∈,n S 是其前n 项和,()212n n S a =+.(1)求证:{}n a 是等差数列;(2)设1302n n b a =-,求数列{}n b 的前n 项和的最小值.22.(12分)等比数列{}n a 的前n 项和为n S ,已知对任意的*n N ∈,点(),n n S 均在函数x y b r =+(0b >且1b ≠,,b r 均为常数)的图象上. (1)求r 的值;(2)当2b =时,记()*14n nn b n N a +=∈,求数列{}n b 的前n 项和n T .人教版高中数学必修五模块综合检测题参考答案一、单选题. 1.【答案】.A 【解析】根据正弦定理sin sin a b A B=,∵ sin sin A B >,∴ a b >,∴ A B >。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修五模块检测卷
考试时间:120分钟 满分:150分
一、选择题(共10小题,每小题5分,共50分)
1、在等差数列{}n a 中,5a =33,45a =153,则201是该数列的第( )项
A .60
B .61
C .62
D .63 2、在100和500之间能被9整除的所有数之和为( )
A .12699
B .13266
C .13833
D .14400 3、等比数列{}n a 中,3a ,9a 是方程3x 2—11x +9=0的两个根,则6a =( )
A .3
B .
6
11
C .± 3
D .以上皆非 4、四个不相等的正数d c b a ,,,成等差数列,则( )
A .bc d a >+2
B .bc d a <+2
C .bc d
a =+2
D .bc d a ≤+2 5、在ABC ∆中,已知︒=30A ,︒=45C ,2=a ,则ABC ∆的面积等于( )
A .
2 B .13+ C .22 D .
)13(2
1
+ 6、在ABC ∆中,c b a ,,分别是C B A ∠∠∠,,所对应的边,︒=∠90C ,则c
b
a +的取值范围是( ) A .(1,2) B .)2,1( C .]2,1( D .]2,1[
7、不等式
121
3≥--x
x 的解集是( ) A .⎭⎬⎫⎩⎨⎧≤≤243|x x B .⎭⎬⎫⎩⎨⎧<≤243|x x C .⎭⎬⎫⎩⎨⎧≤>432|x x x 或D .{}2|<x x 8、关于x 的方程ax 2+2x -1=0至少有一个正的实根,则a 的取值范围是( )
A .a ≥0
B .-1≤a <0
C .a >0或-1<a <0
D .a ≥-1
9、若2,
2,2
x y x y ≤⎧⎨≤+≥⎩,则目标函数y x z 2+=的取值范围是 ( )
A .[2 ,6]
B . [2,5]
C . [3,6]
D . [3,5]
10.在△ABC 中,已知|AB →|=4,|AC →|=1,S △ABC = 3 ,则AB →·AC →
等于( )
A.-2
B.2
C.±2
D.±4
二、填空题(共5小题,每小题5分,共25分) 11、在坐标平面上,不等式组⎩⎨
⎧+-≤-≥1
||31
x y x y 所表示的平面区域的面积为________________________
12、数列{}n a 的前n 项的和122
+-=n n S n ,则n a =_________________
13、已知_______,41
,4=-+
-=>x x
x y x 当函数时,函数有最_______值是________________ 14、不等式0)3)(2(2
>--x x 的解集是____________________ 15、在下列函数中,
①|1|x x y += ;②1
2
22++=x x y ;③1)x ,0(2log log 2≠>+=且x x y x ;
④x x y x cot tan ,2
0+=<
<π
;⑤x
x y -+=33;⑥24
-+
=x x y ;⑦24-+
=x
x y ;⑧2log 22+=x y ;其中最小值为2的函数是 (填入正确命题的序号) 三、解答题(共6小题,共75分)
16、(12分)解关于x 的不等式0)
1)(1(<+--x x a
x )1(±≠a
17、(12分)在数列{}n a 中,11a =,122n
n n a a +=+.
(Ⅰ)设1
2
n
n n a b -=
.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S .
18、(12分)已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边 【Ⅰ】若ABC ∆面积,60,2,2
3
︒===
∆A c S ABC 求a 、b 的值; 【Ⅱ】若B c a cos =,且A c b sin =,试判断ABC ∆的形状.
19、(12分)某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.问这台机器最佳使用年限是多少年?并求出年平均费用的最小值.
20、(13分)某村计划建造一个室内面积为8002
m 的矩形蔬菜温室.在温室内,沿左.右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大?最大种植面积是多少?
21、(14分)某厂使用两种零件A、B装配两种产品P、Q,该厂的生产能力是月产P产品最多有2500件,月产Q 产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个.已知P产品每件利润1000元,Q产品每件2000元,欲使月利润最大,需要组装P、Q产品各多少件?最大利润多少万元?
参考答案
一、选择题
二、填空题 11、2
3
12、⎪⎩
⎪
⎨⎧≥-==23412n n n a n ;
13、5; 大;-6
14、}233|{<<-<x x x 或; 15、①②④⑤⑦ 三、解答题
16、解:原不等式⇔0)1(1)((<-+-x x a x . 分情况讨论:
(i )当1-<a 时,不等式的解集为}11|{<<-<x a x x 或; (ii )当11<<-a 时,不等式的解集为}11|{<<-<x a x x 或 (iii )当1>a 时,不等式的解集为}11|{a x x x <<-<或;
17、(Ⅰ)122n
n n a a +=+,
11
122n n
n n a a +-=+,11n n b b +=+, 则n b 为等差数列,11b =,n b n =,1
2n n a n -=.
(Ⅱ)12
21022
)1(232221--⨯+⨯-++⨯+⨯+⨯=n n n n n S Λ n n n n n S 22)1(23222121321⨯+⨯-++⨯+⨯+⨯=-Λ
两式相减,得
1222222121210+-⨯=----⨯-⨯=-n n n n n n n S Λ.
18、解:【Ⅰ】23sin 21==∆A bc S ABC Θ,2360sin 221=︒⋅∴b ,得1=b
由余弦定理得:360cos 21221cos 22
2
2
2
2
=︒⋅⨯⨯-+=-+=A bc c b a
所以3=a
【Ⅱ】由余弦定理得:2222
222c b a ac
b c a c a =+⇒-+⋅
=, 所以︒=∠90C
在ABC Rt ∆中,c a A =
sin ,所以a c
a
c b =⋅=
所以ABC ∆是等腰直角三角形;
19、[解析]设这台机器最佳使用年限是n 年,则n 年的保养、维修、更换易损零件的总费用为:
,2
3)1(1.04.03.02.02n
n n +=++⋅⋅⋅+++
20
72.7203n 0.2n 0.27:22n
n n ++=++++∴总费用为,
),2.720(0.35207n 7.2y :2n
n n n n ++=++
=
∴年的年平均费用为 ,2.120
2
.722.720=≥+n n Θ
等号当且仅当
.12n 2
.720时成立即==n
n )(55.12.135.0min 万元=+=∴y 答:这台机器最佳使用年限是12年,年平均费用的最小值为1.55万元.
20、解:设矩形温室的左侧边长为a m ,后侧边长为b m ,则 ab =800.
蔬菜的种植面积 ).2(2808824)2)(4(b a a b ab b a S +-=+--=--=
所以 ).(648248082
m ab S =-≤
当且仅当).(648,)(20),(40,22m S m b m a b a ====最大值时即
答:当矩形温室的左侧边长为40m ,后侧边长为20m 时,蔬菜的种植面积最大,最大种植面积为648m 2. 21、解:设分别生产P 、Q 产品x 件、y 件,则有
⎪⎪⎩⎪
⎪⎨⎧≤≤≤≤≤+≤+1200
02500012000821400064y x y x y x 依题意有
设利润 z =1000x +2000y =1000(x +2y ) 要使利润最大,只需求z 的最大值. 作出可行域如图示(阴影部分及边界) 作出直线l:1000(x +2y )=0,即x +2y =0
由于向上平移平移直线l 时,z 的值增大,所以在点A 处z 取得最大值
由⎩⎨
⎧=+=+60004700032y x y x 解得⎩⎨⎧==1000
2000
y x ,即A (2000,1000)
因此,此时最大利润z max =1000(x +2y )=4000000=400(万元).
答:要使月利润最大,需要组装P 、Q 产品2000件、1000件,此时最大利润为400万元.。