高三数学第一轮复习 第69课时 二项式定理(2)教案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.复习目标:

1.能利用二项式系数的性质求多项式系数的和与求一些组合数的和. 2.能熟练地逆向运用二项式定理求和.

3.能利用二项式定理求近似值,证明整除问题,证明不等式. 二.课前预习:

1.1003

)32(+的展开式中无理项的个数是 ( A ) ()A 84 ()B 85 ()C 86 ()D 87 2.设1510105)(2

3

4

5

++-+-=x x x x x x f ,则)(1

x f

-等于 ( C )

()A 51x + ()B 521--x ()C 521-+x ()D 51x -

3.如果21872221221=++++n n n n n C C C ,则=++++n

n n n n C C C C 210128. 4.n

n

n n n C n C C 11)1(3121121+-+-+- =1

1+n . 5.9)23(z y x +-展开式中含432z y x 的项为4

3290720z y x -. 6.若1001002210100

)1()1()1()

21(-++-+-+=+x a x a x a a x ,

则=++++99

531a a a a 2

15100-.

四.例题分析:

例1.已知}{n a 是等比数列,公比为q ,设n

n n n n n C a C a C a a S 123121+++++= (其中

+∈>N n n ,2),且n

n n n n n C C C C S ++++= 2101,如果1

lim

n

n

n S S ∞→存在,求公比q 的取值范围.

解:由题意11-⋅=n n q a a ,n

n S 21=,

)

0()

1()1(122

1

11221111≠+=++++=++++=q q a C q C q qC a C q a C q a qC a a S n

n n

n

n

n

n

n

n n n n

∴n

n n n n q a q a S S )21(2

)1(111+=+=.如果1lim n n n S S ∞→存在,则1|21|<+q 或121=+q , ∴212<+<-q 或1=q ,故13≤<-q 且0≠q .

例2.(1)求多项式6734102

34)157()53()

323(--⋅-⋅---x x x x x x 展开式各项系数和.

(2)多项式1000231000

)22(+--⋅-x x x x

展开式中x 的偶次幂各项系数和与x 奇次幂各项

系数和各是多少?

解:(1)设

)

()157()53()323()(2

21067

3410234N n x

a x a x a a x x x x x x x f n

n ∈++++=--⋅-⋅---= ,

其各项系数和为n a a a a ++++ 210.

又∵102

674102210316)157()53()3213()1(⋅=--⋅-⋅---=++++=n a a a a f ,

∴各项系数和为102

3

16⋅.

(2)设30013001101000231000

)22()(x a x a a x x x x

x f +++=+--⋅-= , ∴0)1(3001210=++++=a a a a f ,2)1(3001210=--+-=-a a a a f ,故

1300131-=+++a a a ,1300020=+++a a a ,

∴)(x f 展开式中x 的偶次幂各项系数和为1,x 奇次幂各项系数和为-1.

例3.证明:(1)

∑==n

k n k n k

C 0

32

)(N n ∈;

(2)1

2221223222120223222--⋅=++++++n n n n n n n n n C C C C C C )(N n ∈;

(3))(3)

11

(2N n n

n ∈<+

<;(4)2222212)1(21-⋅+=⋅++⋅+⋅n n

n n n

n n n C C C

由(i)知

例4.

小结:

五.课后作业: 班级 学号 姓名 1.若n

x

x )1(23

+

的展开式中只有第6项的系数最大,则不含x 的项为( C ) ()A 462 ()B 252 ()C 210 ()D 10

2.用88除78788

+,所得余数是 ( ) ()A 0 ()B 1 ()C 8 ()D 80

3.已知2002年4月20日是星期五,那么90

10天后的今天是星期 .

4.某公司的股票今天的指数是2,以后每天的指数都比上一天的指数增加%02.0,则100天后这家公司的股票指数约为2.442(精确到0.001).

5.已知5

5443322105)23(x a x a x a x a x a a x +++++=-,则

(1)5432a a a a +++的值为568;(2)=++++||||||||||54321a a a a a 2882. 6.若n ax 2)1(+和1

2)(++n a x 的展开式中含n x 项的系数相等(*

N n ∈,0≠a ),则a 的

取值范围为]3

2,21(

7.求满足500323210<+++++n

n n n n n nC C C C C 的最大整数n .

原不等式化为n ·2n-1

<499

∵27

=128,∴n=8时,8·27

=210

=1024>500. 当n=7时,7·26

=7×64=448<449. 故所求的最大整数为n=7.

8.求证:2

22222120)()()()(n n n n n n C C C C C =++++

证明 由(1+x)n ·(1+x)n =(1+x)2n

,两边展开得:

比较等式两边x n

的系数,它们应当相等,所以有:

9.已知(1+3x)n

的展开式中,末三项的二项式系数的和等于 121,求展开式中系数最大的项.

相关文档
最新文档