山东省青岛二中高三11月月考 数学文
崂山区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
崂山区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若直线上存在点满足约束条件2y x =(,)x y 则实数的最大值为 30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩m A 、B 、C 、D 、1-3222. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( )A .3B .6C .7D .83.已知函数,且x x x f 2sin )(-=,则( ))2(),31(log ),23(ln 3.02f c f b f a ===A . B . C .D .c a b >>a c b >>a b c >>b a c>>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.4. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.5. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案6. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为( )A .①②B .①③C .②③D .③④7. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .2480642408. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .39. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( )12A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的1610.数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )A .﹣B .C .﹣1D .111.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .12.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系()A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a二、填空题13.已知,,则的值为.1sin cos 3αα+=(0,)απ∈sin cos 7sin12ααπ-14.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.15.如图所示是y=f (x )的导函数的图象,有下列四个命题:①f (x )在(﹣3,1)上是增函数;②x=﹣1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f (x )的极小值点.其中真命题为 (填写所有真命题的序号).16.设,记不超过的最大整数为,令.现有下列四个命题: x R ∈x []x {}[]x x x =-①对任意的,都有恒成立;x 1[]x x x -<≤②若,则方程的实数解为;(1,3)x ∈{}22sincos []1x x +=6π-③若(),则数列的前项之和为;3n n a ⎡⎤=⎢⎥⎣⎦n N *∈{}n a 3n 23122n n -④当时,函数的零点个数为,函数的0100x ≤≤{}22()sin []sin1f x x x =+-m {}()[]13xg x x x =⋅--零点个数为,则.n 100m n +=其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
山东省青岛二中高三11月月考 语文.pdf
山东省青岛二中2012-2013学年高三11月月考 语文试题 一、语文基础知识(每小题3分) 1.下列各组词语中加点的字,读音全都相同的一组是 A.嗔怪 称赞 目怒视 瞠目结舌 B.譬如 癖好 否极泰来 劈头盖脸 C.旋律 娴熟 悬崖勒马 弦外之音 D.磨坊 蓦然 脉脉含情 没齿不忘 2.下列各组词语中,没有错别字的一组是 A.钢毅 懦弱 坚如磬石 首鼠两端 B.简朴 奢糜 因陋就俭 暴殄天物 C.谦卑 狂妄 虚怀若谷 趾高气扬 D.勤勉 懈殆 披星带月 游手好闲 3.依次填入下列横线处的词语,最恰当的是 孩子是天真 的,不肯拘束自己的。
他活着整个就是在享受生命,世俗的 和规矩暂时都不在他眼里。
年龄的增长,染世渐深,俗虑和束缚愈来愈多,原本纯真的孩子才被改造成俗物。
A.烂漫 利益 由于 B.浪漫 利害 随着 C.烂漫 利害 随着 D.浪漫 利益 由于 4.下列各项中,没有语病的是 A.钓鱼岛争端,日本不但政治陷入混乱,更是冲击着日本脆弱的经济形势之前日本公然叫嚣“日企撤离,崩盘的将是中国”,但是日本财务省最新的统计数据这谎不攻自破 A.李清照的词以南渡为界限分为前后两个时期。
南渡前多写离愁闲愁,词风清丽柔媚;南渡后多写国恨家仇,词风凄恻哀婉,《醉花阴》《声声慢》都创作于这一时期。
B.《战国策》是一部反映战国至秦汉时的社会风貌和各国政治、经济、军事、外交的重大活动金陵十二钗是《红楼梦》里太虚幻境薄命司里记录的南京优秀女子,金陵十二钗正册林黛玉、薛宝钗、史湘云、妙玉、秦可卿《红楼梦》《金陵十二钗》是名著《红楼梦》的别名 阅读下面的文章,完成6—题。
6.下表述,不符合原文意思的一项是 AB.C.D. 阅读下面的文言文,完成9—12题。
尧、舜、禹、汤、文、武、成、康之际,何其爱民之深,忧民之切,而待天下以君子长者之道也。
有一善,从而赏之,又从而咏歌嗟叹之,所以乐其始而勉其终。
有一不善,从而罚之,又从而哀矜惩创之,所以弃其旧而开其新。
山东省青岛市高三数学11月月考 理 新人教A版
山东省青岛二中2012-2013学年高三11月月考理科数学试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin(1920)-的值为( )A.B .12-CD .12解析:sin(1920)sin(2406360)sin(18060)-=-⨯=+,即原式sin60=-,故选A .答案:A2.命题“x ∀∈R ,20x >”的否定是( )A .x ∀∈R ,20x ≤B .x ∃∈R ,20x >C .x ∃∈R ,20x <D .x ∃∈R ,20x ≤解析:全称命题的否定是特称命题,易知应选D .答案:D3.已知集合{P =正奇数}和集合{|M x x ==,,}a b a P b P ⊕∈∈,若M P ⊆,则M 中的运算“⊕”是( ) A .加法 B .除法C .乘法D .减法解析:由已知集合M 是集合P 的子集,设*21,21(,)a m b n m n =-=-∈N ,∵(21)(21)a b m n ⋅=--42()12[2()1]1mn m n mn m n P =-++=-++-∈,∴M P ⊆,而其它运算均不使结果属于集合P ,故选C .答案:C4.已知某几何体的侧视图与其正视图相同,相关的尺寸如下图所示,则这个几何体的体积是( )A. 8πB. 7πC. 2π`D.74π解析:依题意该几何体为一空心圆柱,故其体积2237[2()]124V ππ=-⨯=,选D .答案:D5.已知A 、B 两点分别在两条互相垂直的直线20x y -=和0x ay +=上,且AB 线段的中点俯视图正 视 图 侧视图为P 10(0,)a,则线段AB 的长为( ) A .8B .9C .10D .11解析:由已知两直线互相垂直得2a =,∴线段AB 中点为P (0,5),且AB 为直角三角形AOB 的斜边,由直角三角形的性质得||2||10AB PO ==,选C .答案:C6.已知各项为正的等比数列{}n a 中,4a 与14a 的等比中项为7112a a +的最小值为( )A .16B .8C .D .4解析:由已知24148a a ==,再由等比数列的性质有4147118a a a a ==,又70a >,110a >,71128a a +≥=,故选B .7.设函数2,0(),01x x bx c f x x ≥⎧++=⎨<⎩,若(4)(0)f f =,(2)2f =,则函数()()g x f x x=-的零点的个数是( )A .0B .1C .2D .3解析:已知即164422b c c b c ++=⎧⎨++=⎩,∴46b c =-⎧⎨=⎩,若0x ≥,则246x x x -+=,∴2x =,或3x =;若0x <,则1x =舍去,故选C .答案:C8.给出下列的四个式子:①1a b -,②1a b +,③1b a +,④1ba-;已知其中至少有两个式子的值与tan θ的值相等,则( ) A .cos 2,sin 2a b θθ== B .sin 2,cos 2a b θθ== C .sin,cos22a b θθ==D .cos,sin22a b θθ==解析:sin sin 21cos2tan ,cos2,sin 2cos 1cos2sin 2a b θθθθθθθθθ-===∴==+时,式子①③与tan θ的值相等,故选A .答案:A 9.设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .5]2C .1[2D .解析:在同一直角坐标系中画出集合A 、B 所在区域,取交集后如图,故M 所表示的图象如图中阴影部分所示,而d =表示的是M 中的点到(0,1)的距离,从而易知所求范围是15[,]22,选A .10.已知O 为平面上的一个定点,A 、B 、C 是该平面上不共线的三个动点,点P 满足条件2OB OC OP +=(),(0,)||cos ||cos AB ACAB B AC Cλλ++∈+∞,则动点P 的轨迹一定通过ABC ∆的( )A .重心B .垂心C .外心D .内心解析:设线段BC 的中点为D ,则2OB OCOD +=,∴2OB OC OP +=()||cos ||cos AB ACAB B AC Cλ++()||cos ||cos AB ACOD AB B AC Cλ=++,∴()||cos ||cos AB ACOP OD DP AB B AC Cλ-=+=,∴()()||cos ||cos ||cos ||cos AB AC AB BC AC BCDP BC BC AB B AC C AB B AC Cλλ⋅⋅⋅=+⋅=+||||cos()||||cos ()(||||)0||cos ||cos AB BC B AC BC CBC BC AB B AC Cπλλ-=+=-+=,∴DP BC ⊥,即点P 一定在线段BC 的垂直平分线上,即动点P 的轨迹一定通过ABC ∆的外心,选C . 答案:C二.填空题:本大题共5小题,每小题5分,共25分,把答案直接填在题中横线上. 11.1220x e dx =⎰______________.解析:1122220011|(1)22xx e dx e e ==-⎰.答案:1(1)2e - 12.定义运算a c ad bcb d =-,复数z 满足11z ii i=+,则复数z 的模为_______________.解析:由11z i i i=+得1212izi i i z i i +-=+⇒==-,∴z ==.13.已知方程22220x y kx y k ++++=所表示的圆有最大的面积,则直线(1)2y k x =-+的倾斜角α=_______________.解析:1r =≤,当有最大半径时有最大面积,此时0k =,1r =,∴直线方程为2y x =-+,设倾斜角为α,则由tan 1α=-且[0,)απ∈得34πα=.答案:34π14.已知函数2()m f x x -=是定义在区间2[3,]m m m ---上的奇函数,则()f m =_______. 解析:由已知必有23m m m -=+,即2230m m --=,∴3m =,或1m =-;当3m =时,函数即1()f x x -=,而[6,6]x ∈-,∴()f x 在0x =处无意义,故舍去; 当1m =-时,函数即3()f x x =,此时[2,2]x ∈-,∴3()(1)(1)1f m f =-=-=-.答案:1-15.在工程技术中,常用到双曲正弦函数2x xe e shx --=和双曲余弦函数2x x e e chx -+=,双曲正弦函数和双曲余弦函数与我们学过的正弦函数和余弦函数有许多相类似的性质,请类比正、余弦函数的和角或差角公式,写出关于双曲正弦、双曲余弦函数的一个正确的类似公式 .解析:由右边2222x x y y x x y ye e e e e e e e ----++--=⋅-⋅1()4x yx y x y x y x y x y x y x y e e e e e e e e +--+--+--+--=+++-++-()()1(22)()42x y x y x y x y e e e e ch x y ------+=+==-=左边,故知.答案:填入()c c c s s h x y hx hy hx hy -=-,()c c c s s h x y hx hy hx hy +=+,()c s sh x y shx hy chx hy -=-,()c s sh x y shx hy chx hy +=+四个之一即可.三.解答题:本大题共6小题,共75分,请给出各题详细的解答过程.16.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且*41()n n S a n =+∈N .(1)求1a ,2a ;(2)设3log ||n n b a =,求数列{}n b 的通项公式. 解答:(1)由已知1141S a =+,即1141a a =+,∴=1a 13,……………………2分 又2241S a =+,即1224()1a a a +=+,∴219a =-; ……………………5分 (2)当1n >时,1111(1)(1)44n n n n n a S S a a --=-=+-+,即13n n a a -=-,易证数列各项不为零(注:可不证),故有113n n a a -=-对2n ≥恒成立,∴{}n a 是首项为13,公比为13-的等比数列,∴1111()(1)333n n n n a ---=-=-, ……………………10分∴33log ||log 3n n n b a n -===-. ……………………12分17.(本小题满分12分)已知 1:(),3xp f x -=且|()|2f a <; q :集合2{|(2)10,}A x x a x x =+++=∈R ,且A ≠∅.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围. 解答:若1|()|||23af a -=<成立,则616a -<-<, 即当57a -<<时p 是真命题; ……………………4分 若A ≠∅,则方程2(2)10x a x +++=有实数根,由2(2)40a ∆=+-≥,解得4a ≤-,或0a ≥,即当4a ≤-,或0a ≥时q 是真命题; ……………………8分 由于p ∨q 为真命题,p ∧q 为假命题,∴p 与q 一真一假,故知所求a 的取值范围是(,5](4,0)[7,)-∞--+∞. ……………………12分(注:结果中在端点处错一处扣1分,错两处扣2分,最多扣2分) 18.(本小题满分12分)已知ABC ∆的两边长分别为25AB =,39AC =,且O 为ABC ∆外接圆的圆心.(注:39313=⨯,65513=⨯)(1)若外接圆O 的半径为652,且角B 为钝角,求BC 边的长; (2)求AO BC ⋅的值.解答:(1)由正弦定理有2sin sin AB ACR C B==, ∴253965sin sin C B ==,∴3sin 5B =,5sin 13C =, ……………………3分 且B 为钝角,∴12cos 13C =,4cos 5B =-,∴3125416sin()sin cos sin cos ()51313565B C B C C B +=+=⨯+⨯-=,又2sin BCR A=,∴2sin 65sin()16BC R A B C ==+=; ……………………6分 (2)由已知AO OC AC +=,∴22()AO OC AC +=,即2222||2||||39AO AO OC OC AC +⋅+== ……………………8分 同理AO OB AB +=,∴2222||2||||25AO AO OB OB AB +⋅+==, …………10分两式相减得22(3925)(3925)896AO OC AO OB ⋅-⋅=-+=,即2896AO BC ⋅=,∴448AO BC ⋅=. ……………………12分19.(本小题满分12分)在如图所示的多面体ABCDE中,AB⊥平面ACD ,DE⊥平面ACD ,AC=AD=CD=DE=2,AB=1,G 为AD 中点.(1)请在线段CE 上找到点F 的位置,使得恰有直线BF∥平面ACD ,并证明这一事实; (2)求平面BCE 与平面ACD 所成锐二面角的大小; (3)求点G 到平面BCE 的距离.解法一:以D 点为原点建立如图所示的空间直角坐标系,使得x 轴和z 轴的正半轴分别经过点A 和点E ,则各点的坐标为(0,0,0)D ,(2,0,0)A , (0,0,2)E ,(2,0,1)B,(1,0)C ,(1)点F 应是线段CE 的中点,下面证明:设F 是线段CE 的中点,则点F的坐标为1(2F,∴3(,0)2BF =-,显然BF 与平面xOy 平行,此即证得BF∥平面ACD ; ……………………4分 (2)设平面BCE 的法向量为(,,)n x y z =,则n CB ⊥,且n CE ⊥,由(1,CB =,(1,CE =-,∴020x z x z ⎧+=⎪⎨--+=⎪⎩,不妨设y =,则12x z =⎧⎨=⎩,即(1,3,2)n =,∴所求角θ满足(0,0,1)2cos 2||n n θ⋅==,∴4πθ=; ……………………8分(3)由已知G 点坐标为(1,0,0),∴(1,0,1)BG =--,由(2)平面BCE 的法向量为(1,3,2)n =, ∴所求距离3||24||BG n d n ⋅==……………………12分解法二:(1)由已知AB⊥平面ACD ,DE⊥平面ACD ,∴AB//ED , 设F 为线段CE 的中点,H 是线段CD 的中点,连接FH ,则//FH =12ED ,∴//FH =AB , …………………2分∴四边形ABFH 是平行四边形,∴//BF AH , 由BF ⊄平面ACD 内,AH ⊂平面ACD ,//BF ∴平面ACD ;……………4分(2)由已知条件可知ACD ∆即为BCE ∆在平面ACD 上的射影,设所求的二面角的大小为θ,则cos ACDBCES Sθ∆∆=, ……………………6分易求得BC=BE =CE=∴1||2BCES CE ∆==而2||4ACD S AC ∆==,∴cos 2ACD BCE S S θ∆∆==,而02πθ<<, ∴4πθ=;………………8分(3)连结BG 、CG 、EG ,得三棱锥C —BGE , 由ED ⊥平面ACD ,∴平面ABED ⊥平面ACD , 又CG AD ⊥,∴CG ⊥平面ABED ,设G 点到平面BCE 的距离为h ,则C BGE G BCE V V --=即1133BGE BCE S GC S h ∆∆⨯=⨯,由32BGE S ∆=,BCE S ∆CG =,∴BGE BCE S GC h S ∆∆⨯===即为点G 到平面BCE 的距离.………………12分 20.(本小题满分13分)已知椭圆22221y x ab+=(0)a b >>的一个顶点为B (0,4),离心率e=l 交椭圆于M 、N 两点. (1)若直线l 的方程为4y x =-,求弦MN 的长;(2)如果ΔBMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式.解答:(1)由已知4b =,且5c a =,即2215c a=,∴22215a b a-=,解得220a =,∴椭圆方程为2212016y x +=; ……………………3分 由224580x y +=与4y x =-联立,消去y 得29400x x -=,∴10x =,2409x =,∴所求弦长21||||9MN x x =-=; ……………………6分 (2)椭圆右焦点F 的坐标为(2,0), 设线段MN 的中点为Q 00(,)x y ,由三角形重心的性质知2BF FQ =,又(0,4)B , ∴00(2.4)2(2,)x y -=-,故得003,2x y ==-,求得Q 的坐标为(3,2)-; ……………………9分 设1122(,),(,)M x y N x y ,则12126,4x x y y +=+=-,且222211221,120162016x y x y +=+=, ……………………11分以上两式相减得12121212()()()()02016x x x x y y y y +-+-+=,1212121244665545MN y y x x k x x y y -+==-=-=-+-∴,故直线MN 的方程为62(3)5y x +=-,即65280x y --=. ……………………13分 (注:直线方程没用一般式给出但结果正确的扣1分) 21.(本小题满分14分)已知函数[)1()ln 1,sin g x x x θ=++∞⋅在上为增函数,且(0,)θπ∈,12()ln m ef x mx x x-+=--,m ∈R . (1)求θ的值;(2)当0m =时,求函数()f x 的单调区间和极值; (3)若在[1,]e 上至少存在一个0x ,使得00()()f x g x >成立,求m 的取值范围. 解答:(1)由已知/211()0sin g x xx θ=-+≥⋅在[1,)+∞上恒成立, 即2sin 10sin x x θθ⋅-≥⋅,∵(0,)θπ∈,∴sin 0θ>,故sin 10x θ⋅-≥在[1,)+∞上恒成立,只需sin 110θ⋅-≥, 即sin 1θ≥,∴只有sin 1θ=,由(0,)θπ∈知2πθ=; ……………………4分(2)∵0m =,∴12()ln ef x x x-+=--,(0,)x ∈+∞, ∴/2221121()e e x f x x x x ---=-=, 令/()0f x =,则21x e =-(0,)∈+∞,∴x ,/()f x 和()f x 的变化情况如下表:即函数的单调递增区间是(0,21)e -,递减区间为(21,)e -+∞,有极大值(21)1ln(21)f e e -=---; ……………………9分(3)令2()()()2ln m eF x f x g x mx x x +=-=--, 当0m ≤时,由[1,]x e ∈有0m mx x -≤,且22ln 0e x x--<,∴此时不存在0[1,]x e ∈使得00()()f x g x >成立;当0m >时,2/222222()m e mx x m e F x m x x x+-++=+-=, ∵[1,]x e ∈,∴220e x -≥,又20mx m +>,∴/()0F x >在[1,]e 上恒成立, 故()F x 在[1,]e 上单调递增,∴max ()()4mF x F e me e==--, 令40m me e -->,则241e m e >-, 故所求m 的取值范围为24(,)1ee +∞-. ……………………14分。
青岛市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
青岛市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A. B. C.D.2. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)3.已知向量=(2,1),=10,|+|=,则||=( ) A. B.C .5D .254. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .45. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( ) ①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .16.已知向量,且,则sin2θ+cos 2θ的值为( )A .1B .2C.D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. B. C. D.8. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π9. 在△ABC中,已知,则∠C=( )A .30°B .150°C .45°D .135°10.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( )A .x+y=0B .x+y=2C .x ﹣y=2D .x ﹣y=﹣2 11.已知实数x ,y满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .712.已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15 C .-5 D .5二、填空题13.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .14.(﹣)0+[(﹣2)3]= .15.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 .16.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.17.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系是 .18.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.三、解答题19.在△ABC 中,cos2A ﹣3cos (B+C )﹣1=0. (1)求角A 的大小;(2)若△ABC 的外接圆半径为1,试求该三角形面积的最大值.20.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .21.已知函数f (x )=lg (x 2﹣5x+6)和的定义域分别是集合A 、B ,(1)求集合A ,B ; (2)求集合A ∪B ,A ∩B .22.设函数f (x )=ax 2+bx+c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x ﹣6y ﹣7=0垂直,导函数f′(x)的最小值为﹣12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.23.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?24.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.青岛市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题13. .14..151617.12()()f x f x >] 18.D三、解答题19.20.解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1), 又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .则所求和为12nn - 6分21. 22.23.24.。
山东省青岛市青岛第二中学2024-2025学年高二上学期第一次月考数学试题(无答案)
青岛二中2024-2025学年第一学期10月份阶段练习一高二数学试题时间:90分钟 满分:120分一、选择题:本题共8小题;每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量,,且,则()A.-16B.16C.4D.-42.已知点,,若过点的直线与线段相交,则该直线斜率的取值范围是()A. B.C. D.3.已知空间向量,,若与垂直,则等于()4.设,为两个随机事件,以下命题正确的为( )A.若,是对立事件,则B.若,是互斥事件,,,则C.若,,且,则,是独立事件D.若,是独立事件,,,则5.已知点关于直线-对称的点在圆上,则()A.4B.5C.-4D.-56.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A.B.CD.7.边长为1的正方形沿对角线折叠,使,则三棱锥的体积为()()1,3,5a =-()2,,b x y = a b ∥x y -=()2,3A -()3,2B --()1,1P -AB 32,,43⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭][43,,32⎛⎫-∞-⋃+∞ ⎪⎝⎭34,23⎡⎤-⎢⎥⎣⎦43,32⎡⎤-⎢⎥⎣⎦()1,,2a n = ()2,1,2b =- 3a b - b aA B A B ()1P AB =A B ()13P A =()12P B =()16P A B +=()13P A =()12P B ≡()13P AB =A B A B ()13P A =()23P B =()19P A B ⋂=()0,1P -10x y -+=Q 22:50C x y mx +++=m =m n (),a m n =()1,1b =- θ0,2πθ⎛⎤∈ ⎥⎝⎦5121271256ABCD AC 14AD BC ⋅= D ABC -8.已知空间向量,,两两的夹角均为,且,.若向量,满足,,则的最大值是()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.下列说法正确的是()A.8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是B.若样本数据,,,的平均数为2,则数据,,,的平均数为3C 一组数据,,,,,的分位数为6D.某班男生30人、女生20人,按照分层抽样的方法从该班共抽取10人答题.若男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为6.810.已知,若过定点的动直线和过定点的动直线:交于点(与,不重合),则以下说法正确的是()A.B 点的坐标为B.为定值C.最大值为D.的最大值为11.在棱长为1的正方体中,,,,,,若直线与的夹角为,则下列说法正确的是()A.线段的最小值为1C.对任意点,总存在点,使得D.存在点,使得直线与平面所成的角为三、填空题:本题共4个小题,每小题5分,共20分.12.已知,,,若不能构成空间的一个基底,则_________.13.已知半径为1的圆经过点,则其圆心到直线距离的最大值为_______.a b c 602a b == 4c = x y ()x x a x b ⋅+=⋅ ()y y a y c ⋅+=⋅ x y -1+1+261111x 2x ⋯10x 121x -221x -⋯1021x -43265860%m ∈R A 1:20l x my m -+-=B 2l 240mx y m ++-=P P A B ()2,4-22PA PB +PAB S △2522PA PB +1111ABCD A B C D -1BP xBB yBC =+ x ()0,1y ∈11A Q z A C = []0,1z ∈1A P 11A B 45 1A P 1A Q PQ +P Q 1D Q CP⊥P 1A P 11ADD A 60()11,0,1n =- ()2,3,2n m =- ()30,1,1n =- {}123,,n n nm =()3,43430x y --=14.在长方体中,已知异面直线与,与所成角的大小分别为和,为中点,则点到平面的距离为_______.15.平面直角坐标系中,矩形的四个顶点为,,,,,光线从边上一点沿与轴正方向成角的方向发射到边上的点,被反射到上的点,再被反射到上的点,最后被反射到轴上的点,若,则的取值范围是_______.四、解答题:本题共3小题,共42分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分10分)已知直线,,且满足,垂足为.(I )求的值及点的坐标.(II )设直线与轴交于点,直线与轴交于点,求的外接圆方程.17.(本题满分15分)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送时,收到0的概率为,收到1的概率为.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到,,,则译码为1,若依次收到,,,则译码为1).(I )已知,,(1)若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率;(2)若采用单次传输方案,依次发送,,,判断事件“第三次收到的信号为”与事件“三次收到的数字之和为2”是否相互独立,并说明理由;(II )若发送1,采用三次传输方案时译码为0的概率不大于采用单次传输方案时译码为0的概率,求的取值范围.18.(本题满分17分)1111ABCD A B C D -1AC 11B C 1AC 11C D 6045 E 1CC E 1A BC ()0,0O ()8,0A ()8,6B ()0,6C OA ()04,0P x θAB 1P AB BC 2P BC OC 3P OC x ()4,0P t ()4,6t ∈tan θ()1:220l x m y +-=2:220l mx y +-=12l l ⊥C m C 1l x A 2l x B ABC △()1101p p <<11p -1()2201p p <<21p -101111134p =223p =00112p如图,四面体中,为等边三角形,且,为等腰直角三角形,且.第(I )问图(I )当时,(1)求二面角的正弦值;第(II )问图(2)当为线段中点时,求直线与平面所成角正弦值;(II )当时,若,且平面,为垂足,中点为,中点为;直线与平面的交点为,当三棱锥体积最大时,求的值.ABCD ABC △2AB =ADC △90ADC ∠= BD =D AC B --P BD AD APC 2BD =()01DP DB λλ=<<PH ⊥ABC H CD M AB N MN APC G P ACH -MGGN。
山东省青岛市10—11下学期高三数学(文科)月考考试试卷
青岛市高三教学质量统一检测数学(文科)2011.03本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)两部分,共150分,考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效. 参考公式:台体的体积公式为:121(3V S S h =++,其中1S ,2S 分别为台体的上、下底面积,h 为台体的高.第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数31ii ++(i 为虚数单位)的虚部是 A .2- B .2 C .i -D .1- 2.某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过60km /h 的汽车数量为 A .38辆B .28辆C .10辆D .5辆3.已知全集R U =,集合2{|20}A x x x =->,{|lg(1)}B x y x ==-,则()U BA ð等于A .{|2x x >或0}x <B .{|12}x x <<C .{|12}x x <≤D .{|12}x x ≤≤4.下列四个函数中,在区间(0,1)上为减函数的是A .2log y x =B .1y x =C .1()2xy =-D .13y x =5.设,a b 为两条不重合的直线,,αβ为两个不重合的平面,下列命题中为真命题的是 A .若,a b 与α所成角相等,则//a b B .若//,//,//a b αβαβ,则//a b C .若,,//a b a b αβ⊂⊂,则//αβ D .若,,a b αβαβ⊥⊥⊥,则a b ⊥6.已知4cos 5α=-,且(,)2παπ∈,则tan()4πα-等于 A .17-B .7-C .71D .77.已知实数m 是2,8的等比中项,则双曲线221y x m-=的离心率为 AB.2CD8.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4积是A .283π B .73πC .28πD .7π9.“0a =”是“函数ln ||y x a =-为偶函数”的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件10.定义运算a b c d ,ad bc =-则函数3()1f x =cos xx图象的一条对称轴方程是 A .56x π=B .23x π=C .3x π=D .6π=x11.若0,0,a b >>且4=+b a ,则下列不等式恒成立的是A .211>ab B .111≤+ba C .2≥abD .228a b +≥12.若函数)(x f 满足1()1(1)f x f x +=+,当[0,1]x ∈时,()f x x =,若在区间(1,1]-上,()()g x f x mx m =--有两个零点,则实数m 的取值范围是 A .)21,0[B .1[,)2+∞C .)31,0[D .]21,0(第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知向量、的夹角为60,||2,||3a b ==,则|2|a b -=_________; 14.右面程序框图中输出S 的值为______;15.若001x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最大值是__________;16.点P 是曲线2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值是________;三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)设集合{1,2}A =,{1,2,3}B =,分别从集合A 和B 中随机取一个数a 和b .(Ⅰ)若向量(,),(1,1)m a b n ==-,求向量m 与n 的夹角为锐角的概率;(Ⅱ)记点(,)P a b ,则点(,)P a b 落在直线x y n +=上为事件n C (25)n n ≤≤∈N ,,求使事件n C 的概率最大的n .18.(本小题满分12分)已知向量1(sin ,1),(3cos ,)2a xb x =-=-,函数()()2f x a b a =+⋅-. (Ⅰ)求函数()f x 的最小正周期T ;(Ⅱ)已知a 、b 、c 分别为ABC∆内角A 、B 、C 的对边,其中A 为锐角,4a c ==,且()1f A =,求,A b 和ABC ∆的面积S .19.(本小题满分12分)如图所示,正方形ADEF 与梯形ABCD 所在的平面互相垂直,,//,22AD CD AB CD CD AB AD ⊥==.(Ⅰ)求证:BC BE ⊥;(Ⅱ)在EC 上找一点M ,使得//BM 平面ADEF ,请确定M 点的位置,并给出证明.20.(本小题满分12分)数列}{n a 的前n 项和记为n S ,t a =1,点1(,)n n S a +在直线21y x =+上,N n *∈. (Ⅰ)当实数t 为何值时,数列}{n a 是等比数列? (Ⅱ)在(Ⅰ)的结论下,设31log n n b a +=,n T 是数列11{}n n b b +⋅的前n 项和,求2011T 的值.21.(本小题满分12分)已知函数32()2f x x ax x =+++.(Ⅰ)若1a =-,令函数()2()g x x f x =-,求函数()g x 在(1,2)-上的极大值、极小值;(Ⅱ)若函数()f x 在1(,)3-+∞上恒为单调递增函数,求实数a 的取值范围.22.(本小题满分14分)已知圆221:(1)8C x y ++=,点2(1,0)C ,点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)设,M N 是曲线W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若122OM ON OC +=,O 为坐标原点,求直线MN 的斜率k ;(Ⅲ)过点)31,0(-S 且斜率为k 的动直线...l 交曲线W 于,A B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,求出D 的坐标,若不存在,说明理由.青岛市高三教学质量统一检测 数学(文科)参考答案及评分标准2011.03一、选择题:本大题共12小题.每小题5分,共60分. DACBD DABAA DD二、填空题:本大题共4小题,每小题4分,共16分.13.13 14.94 15.3 16三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)解:(Ⅰ)设向量m 与n 的夹角为θ因为θ为锐角 ∴cos 0m n m nθ⋅=>,且向量m 与n 不共线,因为0,0a b >>,(1,1)n =-,显然m 与n 不共线,所以,0m n a b ⋅=->,a b >………………………2分 分别从集合A 和B 中随机取一个数a 和b 的基本事件有;(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)………………………………………5分 所以向量m 与n 的夹角为锐角的概率16P =……………………………6分 (Ⅱ)由(Ⅰ)知;当2n =时,满足条件的概率216P =………………………7分当3n =时,满足条件的概率313P =………………………………………8分当4n =时,满足条件的概率413P =………………………………………9分当5n =时,满足条件的概率516P =………………………………………10分所以使事件n C 的概率最大的n 值为3或4……………………………………12分18.(本小题满分12分)解:(Ⅰ)2()()22f x a b a a a b =+⋅-=+⋅-21sin 1cos 22x x x =+++-…………………………………………2分1cos 212222x x -=+-12cos 222x x =-sin(2)6x π=-……4分因为2ω=,所以22T ππ==…………………………………………6分(Ⅱ)()sin(2)16f A A π=-=因为5(0,),2(,)2666A A ππππ∈-∈-,所以262A ππ-=,3A π=……8分则2222cos a b c bc A =+-,所以211216242b b =+-⨯⨯,即2440b b -+= 则2b =…………………………………………10分 从而11sin 24sin 602322S bc A ==⨯⨯⨯=12分 19.(本小题满分12分)证明:(Ⅰ)因为正方形ADEF 与梯形ABCD 所在的平面互相垂直,DE AD ⊥所以DE ⊥平面ABCD DE BC ∴⊥………………………………………1分因为AB AD =,所以,4ADB BDC π∠=∠=BD ==取CD 中点N ,连接BN则由题意知:四边形ABND为正方形所以BC ====,BD BC =则BDC ∆为等腰直角三角形 则BD BC ⊥…………5分 则BC ⊥平面BDE则BC BE ⊥………………7分 (Ⅱ)取EC 中点M ,则有//BM 平面ADEF …………8分 证明如下:连接MN由(Ⅰ)知//BN AD ,所以 //BN 平面ADEF 又因为M 、N 分别为CE 、CD 的中点,所以//MN DE 则//MN 平面ADEF ………10分 则平面//BMN 平面ADEF ,所以//BM 平面ADEF ……………………12分20.(本小题满分12分)解:(Ⅰ)由题意得121n n a S +=+,121n n a S -=+(2)n ≥ ……1分两式相减得)2(3,211≥==-++n a aa a a n n n n n 即,……4分所以当2≥n 时,}{n a 是等比数列, 要使1≥n 时,}{n a 是等比数列,则只需31212=+=tt a a ,从而1=t .…7分 (Ⅱ)由(Ⅰ)得知13n n a -=,31log n n b a n +==,……9分11111(1)1n n b b n n n n +==-⋅++ ……10分 201112201120121111111(1)()()22320112012T b b b b =+⋅⋅⋅+=-+-+⋅⋅⋅+-20112012=…………………12分21.(本小题满分12分)解:(Ⅰ)3232()2(2)2g x x x x x x x x =--++=-++-,所以2()321g x x x '=-++由()0g x '=得1x =-或1x =………………………………………2分所以函数()g x 在3x =-处取得极小值27-;在1x =处取得极大值1-…6分 (Ⅱ)因为2()321f x x ax '=++的对称轴为3a x =-(1)若133a -≥-即1a ≤时,要使函数()f x 在1(,)3-+∞上恒为单调递增函数,则有24120a ∆=-≤,解得:a ≤≤1a ≤≤;…8分 (2)若133a -<-即1a >时,要使函数()f x 在1(,)3-+∞上恒为单调递增函数,则有2111()3()2()10333f a -=⋅-+⋅-+≥,解得:2a ≤,所以12a <≤;…10分综上,实数a的取值范围为2a ≤≤…………………12分22.(本小题满分14分)解:(Ⅰ)因为2QC 的垂直平分线交1QC 于点P .所以2PC PQ =222211112=>==+=+C C QC PQ PC PC PC所以动点P 的轨迹W 是以点21,C C 为焦点的椭圆……………3分设椭圆的标准方程为12222=+by a x则22,222==c a ,1222=-=c a b ,则椭圆的标准方程为2212x y +=…………5分 (Ⅱ)设1122(,),(,)M a b N a b ,则2222112222,22a b a b +=+= ①因为122OM ON OC +=,则121222,20a a b b +=-+= ②由①②解得112215,,24a b a b ===-=……………8分 所以直线MN 的斜率k 212114b b a a -==-……………10分 (Ⅲ)直线l 方程为13y kx =-,联立直线和椭圆的方程得: 221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩ 得229(12)12160k x kx +--=…………11分 由题意知:点)31,0(-S 在椭圆内部,所以直线l 与椭圆必交与两点,设).,(),,(2211y x B y x A 则121222416,3(12)9(12)k x x x x k k +==-++ 假设在y 轴上存在定点),0(m D ,满足题设, 则1122(,),(,)DA x y m DB x y m =-=-因为以AB 为直径的圆恒过点D ,则1122(,)(,)0DA DB x y m x y m ⋅=-⋅-=, 即:1212()()0x x y m y m +--= (*) 因为112211,33y kx y kx =-=-则(*)变为21212121212()()()x x y m y m x x y y m y y m +--=+-++……12分21212121111()()()3333x x kx kx m kx kx m =+----+-+ 221212121(1)()()339k x x k m x x m m =+-+++++222218(1)(9615)9(21)m k m m k -++-=+由假设得对于任意的R k ∈,0DA DB ⋅=恒成立,即221096150m m m ⎧-=⎪⎨+-=⎪⎩解得1m =. 因此,在y 轴上存在满足条件的定点D ,点D 的坐标为(0,1).……14分。
山东省青岛市高三数学11月月考 文 新人教A版
山东省青岛二中2012-2013学年高三11月月考文科数学试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin(1920)-o的值为( )A.B .12-CD .12解析:sin(1920)sin(2406360)sin(18060)-=-⨯=+ooooo,即原式sin 60=-o,故选A .答案:A2.命题“x ∀∈R ,20x >”的否定是( )A .x ∀∈R ,20x ≤B .x ∃∈R ,20x >C .x ∃∈R ,20x <D .x ∃∈R ,20x ≤解析:全称命题的否定是特称命题,易知应选D .答案:D3.已知集合{P =正奇数}和集合{|M x x ==,,}a b a P b P ⊕∈∈,若M P ⊆,则M 中的运算“⊕”是( ) A .加法 B .除法C .乘法D .减法解析:由已知集合M 是集合P 的子集,设*21,21(,)a m b n m n =-=-∈N ,∵(21)(21)a b m n ⋅=--42()12[2()1]1mn m n mn m n P =-++=-++-∈,∴M P ⊆,而其它运算均不使结果属于集合P ,故选C . 答案:C4.已知某几何体的侧视图与其正视图相同,相关的尺寸如下图所示,则这个几何体的体积是( )A. 8πB. 7πC. 2π`D.74π解析:依题意该几何体为一空心圆柱,故其体积2237[2()]124V ππ=-⨯=,选D .答案:D5.已知幂函数2()mf x x +=是定义在区间[1,]m -上的奇函数,则(1)f m +=( )俯视图正 视 图 侧视图A .8B .4C .2D .1解析:由已知必有1m =,函数即3()g x x =,∴3(1)(2)28f m f +===,选A .答案:A6.已知平面向量(1,),(1,2)a m b ==-r r,且a //b ,则23a b -r r =( )A .(5,2)B .(1,2)-C .(5,10)-D .(1,10)--解析:∵//,∴12(1)0m ⨯-⨯-=,∴2m =-,∴(1,2)a =-r, ∴232(1,2)3(1,2)(5,10)a b -=---=-r r ,故选C.答案:C7.已知A 、B 两点分别在两条互相垂直的直线20x y -=和0x ay +=上,且AB 线段的中点为P 10(0,)a,则线段AB 的长为( ) A .11B .10C .9D .8解析:由已知两直线互相垂直得2a =,∴线段AB 中点为P (0,5),且AB 为直角三角形AOB 的斜边,由直角三角形的性质得||2||10AB PO ==,选B .答案:B8.已知各项为正的等比数列{}n a 中,4a 与14a 的等比中项为,则7112a a +的最小值为( )A .16B .8C .D .4解析:由已知24148a a ==,再由等比数列的性质有4147118a a a a ==,又70a >,110a >,71128a a +≥=,故选B .9.设函数2,0(),01x x bx c f x x ≥⎧++=⎨<⎩,若(4)(0)f f =,(2)2f =,则函数()()g x f x x=-的零点的个数是( )A .0B .1C .2D .3解析:已知即164422b c c b c ++=⎧⎨++=⎩,∴46b c =-⎧⎨=⎩,若0x ≥,则246x x x -+=,∴2x =,或3x =;若0x <,则1x =舍去,故选C .答案:C10.设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M A B =I,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .25[,]2C .110[,]2 D .210[,] 解析:在同一直角坐标系中画出集合A 、B 所在区域,取交集后如图,故M 所表示的图象如图中阴影部分所示,而22(1)d x y =+-表示的是M 中的点到(0,1)的距离,从而易知所求范围是15[,]22,选A .答案:A二.填空题:本大题共7小题,每小题5分,共35分,把答案填在题中横线上.11.在空间直角坐标系中,点(1,,2)b -关于y 轴的对称点是(,1,2)a c --,则点P (,,)a b c 到坐标原点O 的距离||PO =_____________.解析:由点(,,)x y z 关于y 轴的对称点是(,,)x y z --,1a ∴=,1b =-,0c =,故所求距离||PO =2.答案:212.定义运算a cad bc b d =-,复数z 满足11z i i i=+,则复数z = _______________.解析:由11z i i i=+得1212izi i i z i i+-=+⇒==-.答案:2i -13.已知11{|2}82x A x -=<<,2{|log (2)1}B x x =-<,则A B =U ________________.解析:31111{|()()()}{|13}222x A x x x =<<=<<,{|022}{|24}B x x x x =<-<=<<,∴{|14}A B x x =<<U .答案:{|14}x x <<14.已知方程22220x y kx y k ++++=所表示的圆有最大的面积,则直线(1)2y k x =++的倾斜角α=_______________.解析:2214412r k k =+-≤,当有最大半径时圆有最大面积,此时0k =,1r =,∴直线方程为2y x =+,设倾斜角为α,则由tan 1α=,且[0,)απ∈得4πα=.答案:4π 15.在如图的表格中,每格填上一个数字后,使得每一横行成等差数列,每一纵列成等比数列,则a b c ++的值为________________.解析:由题意易得第一列的五个数依次为11111,,,,24816, 第三列的五个数依次为1112,1,,,248,即12a =,由于第四、五两行均成等差数列,故其公差分别为116和132, ∴可得11541616b =+=,113283216c =+⨯=,故153121616a b c ++=++=.答案:1 16.四棱锥ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是CB 、CD 的中点,若AC +BD=3,AC·BD=1,则EG 2+FH 2=___________. 解析:易知四边形EFGH 是平行四边形,而平行四边形对角线的平方和等于各边的平方和,∴222222112()2[()()]22EG FH HG EH AC BD +=+=+221()2AC BD =+22117[()2](321)222AC BD AC BD =+-=-⨯=g .答案:7217.在工程技术中,常用到双曲正弦函数2x xe e shx --=和双曲余弦函数2x x e e chx -+=,双曲正弦函数和双曲余弦函数与我们学过的正弦函数和余弦函数有许多相类似的性质,请类比正、余弦函数的和角或差角公式,写出关于双曲正弦、双曲余弦函数的一个正确的类似公式 .解析:由右边2222x x y y x x y ye e e e e e e e ----++--=⋅-⋅1()4x yx y x y x y x y x y x y x y e e e e e e e e +--+--+--+--=+++-++-()()1(22)()42x y x y x y x y e e e e ch x y ------+=+==-=左边,故知.答案:填入()c c c s s h x y hx hy hx hy -=-,()c c c s s h x y hx hy hx hy +=+,()c s sh x y shx hy chx hy -=-,()c s sh x y shx hy chx hy +=+四个之一即可.AB CDEH FG三.解答题:本大题共5小题,共65分,请给出详细的解答过程. 18.(本小题满分12分)已知函数()1sin cos f x x x =+.(1)求函数()f x 的最小正周期和单调递减区间; (2)若tan 2x =,求()f x 的值.解答:(1)已知函数即1()1sin 22f x x =+,∴22T ππ==,………………………3分令3222()22k x k k ππππ+<<+∈Z ,则3()44k x k k ππππ+<<+∈Z ,即函数()f x 的单调递减区间是3[,]()44k k k ππππ++∈Z ;………………………6分(2)由已知222222sin sin cos cos tan tan 1sin cos tan 1x x x x x x y x x x ++++==++,……………………9分 ∴当tan 2x =时,222217521y ++==+. ………………………12分19.(本小题满分12分)在如图所示的多面体ABCDE 中,AB⊥平面ACD ,DE⊥平面ACD ,AC=AD=CD=DE=2,AB=1. (1)请在线段CE 上找到点F 的位置,使得恰有直线BF∥平面ACD ,并证明这一事实; (2)求直线EC 与平面ABED 所成角的正弦值.解答:如图,(1)由已知AB⊥平面ACD ,DE⊥平面ACD ,∴AB//ED , 设F 为线段CE 的中点,H 是线段CD 的中点,连接FH ,则//FH =12ED ,∴//FH =AB , ……………3分∴四边形ABFH 是平行四边形,∴//BF AH ,由BF ⊄平面ACD 内,AH ⊂平面ACD ,//BF ∴平面ACD ;……………6分(2)取AD 中点G ,连接CG 、EG ,则CG ⊥AD , 又平面ABED ⊥平面ACD ,∴CG ⊥平面ABED ,∴CEG ∠即为直线CE 与平面ABED 所成的角,……………9分B设为α,则在Rt CEG∆中,有sin4CGCEα===……………12分20.(本小题满分13分)已知数列{}n a的前n项和为n S,且*41()n nS a n=+∈N.(1)求1a,2a;(2)设3log||n nb a=,求数列{}n b的通项公式.解答:(1)由已知1141S a=+,即1141a a=+,∴=1a13,………………3分又2241S a=+,即1224()1a a a+=+,∴219a=-;………………6分(2)当1n>时,1111(1)(1)44n n n n na S S a a--=-=+-+,即13n na a-=-,易知数列各项不为零(注:可不证不说),∴113nnaa-=-对2n≥恒成立,∴{}n a是首项为13,公比为13-的等比数列,………………10分∴1111()(1)333n n nna---=-=-,∴33log||log3nna n-==-,即nb n=-.………………13分21.(本小题满分14分)已知ABC∆的两边长分别为25AB=,39AC=,且O为ABC∆外接圆的圆心.(1)若外接圆O的半径652R=,且角B为钝角,求BC边的长;(2)求AO BC⋅u u u r u u u r的值.(注:39313=⨯,65513=⨯,且2sin sin sinBC AB ACRA C B===)解答:(1)由正弦定理有2sin sinAB ACRC B==,∴253965sin sinC B==,∴3sin5B=,5sin13C=,………………3分且B为钝角,∴12cos13C=,4cos5B=-∴3125416sin()sin cos sin cos()51313565B C B C C B+=+=⨯+⨯-=,又2sin BCR A=,∴2sin 65sin()16BC R A B C ==+=; ………………7分 (2)由已知AO OC AC +=u u u r u u u r u u u r ,∴22()AO OC AC +=u u u r u u u r u u u r ,即2222||2||||39AO AO OC OC AC +⋅+==u u u r u u u r u u u r u u u r u u u r ………………9分同理AO OB AB +=u u u r u u u r u u u r ,∴2222||2||||25AO AO OB OB AB +⋅+==u u u r u u u r u u u r u u u r u u u r ,……11分两式相减得22(3925)(3925)896AO OC AO OB ⋅-⋅=-+=u u u r u u u r u u u r u u u r,即2896AO BC ⋅=u u u r u u u r ,∴448AO BC ⋅=u u u r u u u r. ………………14分22.(本小题满分14分)已知函数32()(,)f x ax x ax a x =+-∈R . (1)当1a =时,求函数()f x 的极值;(2)若()f x 在区间[0,)+∞上单调递增,试求a 的取值或取值范围;(3)设函数118()()(2)1333h x f x a x a '=++-+,(]1,x b ∈-,(1)b >-,如果存在(],1a ∈-∞-,对任意(]1,x b ∈-都有()0h x ≥成立,试求b 的最大值.解答:(1)当1a =时,32()f x x x x =+-,∴/2()321f x x x =+-,令/()0f x =,则113x =,21x =-, ………………2分x 、/()f x 和()f x 的变化情况如下表 x(,1)-∞-1-1(1,)3-131(,)3+∞ /()f x+0 -0 +()f xZ极大值(1)1f -=]极小值15()327f =- Z即函数的极大值为1,极小值为527-; ………………5分 (2)2()32f x ax x a '=+-,若()f x 在区间[0,)+∞上是单调递增函数, 则()f x '在区间[0,)+∞内恒大于或等于零,若0a <,这不可能,若0a =,则2()f x x =符合条件,若0a >,则由二次函数2()32f x ax x a '=+-的性质知23(0)0af a ⎧-<⎪⎨⎪=->⎩,即00a a >⎧⎨<⎩,这也不可能, 综上可知当且仅当0a =时()f x 在区间[0,)+∞上单调递增; ……………10分 (3)由2()32f x ax x a '=+-,118()()(2)1333h x f x a x a '=++-+, ∴2()(21)(13)h x ax a x a =+++-,(]1,,(1)x b b ∈->-, 当1x b -<≤时,令2(21)(13)0ax a x a +++-≥,………………①, 由(],1a ∈-∞-,∴()h x 的图象是开口向下的抛物线,故它在闭区间上的最小值必在区间端点处取得, ……………11分 又(1)40h a -=->,∴不等式①恒成立的充要条件是()0h b ≥,即2(21)(13)0ab a b a +++-≥,∵1b >-,∴10b +>,且0a <,∴22311b b b a+-≤-+,依题意这一关于a 的不等式在区间(],1-∞-上有解,∴2max 231()1b b b a +-≤-+,即22311b b b +-≤+,240b b +-≤,∴1122b --+≤≤,又1b >-,故112b -+-<≤,从而max b =………………14分。
山东省青岛第二中学2018-2019学年高三上学期第三次月考试卷数学含答案(1)
山东省青岛第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .22. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259 B .2516 C .6116 D .31153. 若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( ) A .10 B .11 C.12 D .134.=( )A .﹣iB .iC .1+iD .1﹣i5. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A. B . C. D. 6. 设a=0.5,b=0.8,c=log 20.5,则a 、b 、c 的大小关系是( )A .c <b <aB .c <a <bC .a <b <cD .b <a <c7. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725- C. 725± D .24258. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.9. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A .3 B .5 C.7 D .34 10.四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为4511.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .112.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆31-,则该双曲线的离心率为( )2 3 C. 21 D. 31【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 14.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________. 15.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .16.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.三、解答题(本大共6小题,共70分。
山东省青岛第二中学高三数学上学期第一次月考(10月)试题 文(扫描版,无答案)(2021年整理)
山东省青岛第二中学2017届高三数学上学期第一次月考(10月)试题文(扫描版,无答案)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省青岛第二中学2017届高三数学上学期第一次月考(10月)试题文(扫描版,无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省青岛第二中学2017届高三数学上学期第一次月考(10月)试题文(扫描版,无答案)的全部内容。
崂山区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
=﹣2x+8.6
7. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出 1 个球,摸出红球的概率是 0.42,摸出白球的概 率是 0.28,那么摸出黒球的概率是( A.0.42 B.0.28 C.0.3 D.0.7 8. 设 x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的( A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 9. 设集合 S=|x|x<﹣1 或 x>5},T={x|a<x<a+8},且 S∪T=R,则实数 a 的取值范围是( A.﹣3<a<﹣1 A.40(8) B.﹣3≤a≤﹣1 C.50(8) C.a≤﹣3 或 a≥﹣1 ) ) D.55(8) D.a<﹣3 或 a>﹣1 10.把“二进制”数 101101(2)化为“八进制”数是( B.45(8) )
二、填空题
13.将曲线 C1: y 2sin( x 的最小值为_________. 14. M, N 是该抛物线上两点, |MF|+|NF|=6, M, N, F 三点不共线, 已知点 F 是抛物线 y2=4x 的焦点, 则△MNF
4
), 0 向右平移
6
个单位后得到曲线 C2 ,若 C1 与 C2 关于 x 轴对称,则
y=|2x﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( B.¬q 为真 C.p∨q 为真 D.p∧q 为假
2 x 1 , x 1 2. 设函数 f x ,则使得 f x 1 的自变量的取值范围为( 4 x 1, x 1
)
A. , 2 U 0,10 C. , 2 U 1,10
个单位长度后,所得
第 3 页,共 14 页
山东省青岛二中高三数学12月月考试题 文(含解析)
数学(文科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集R U =,{|21}x A y y ==-,则U C A =( ) A .[0,)+∞ B .(,0)-∞C .(0,)+∞D .(,0]-∞2.已知直线m 、n 和平面α,在下列给定的四个结论中,m ∥n 的一个必要但不充分条件是( ) A .m ∥α,n ∥α B .m ⊥α,n ⊥α C .m ∥α,n ⊂α D .m 、n 与α所成的角相等3.向量1(,tan )3a α=,(cos ,1)b α=,且a ∥b ,则cos()2πα+=( )A.13 B. 13- C. 23- D. 223- 【答案】B 【解析】试题分析:因为,向量1(,tan )3a α=,(cos ,1)b α=,且a ∥b ,所以,11cos tan 03αα⨯-=,11sin ,cos()sin 323πααα=+=-=-,故选B. 考点:共线向量,三角函数诱导公式.4.在正项等比数列}{n a 中,369lg lg lg 6a a a ++=,则111a a 的值是( ) A. 10000 B. 1000 C. 100 D. 10 【答案】A 【解析】试题分析:因为,正项等比数列}{n a 中,369lg lg lg 6a a a ++=,由对数运算法则及等比数列的性质,有6363693696lg 6,10,10a a a a a a a ===,6100a =,22111610010000a a a ===,故选A.考点:等比数列的性质,对数运算.5.已知0,a >且1a ≠,函数log ,,xa y x y a y x a ===+在同一坐标系中的图象可能是( )【答案】C 【解析】试题分析:a 是直线y x a =+的纵截距.根据指数函数、对数函数的性质,1a >时,函数log ,,x a y x y a y x a===+的图象同时上升;01a <<时 图象同时下降.对照选项可知,A,B,D 均矛盾,C 中01a <<,选C. 考点:一次函数、指数函数、对数函数的图象和性质6.定义运算a b ad bc c d=-,若函数()123x f x xx -=-+在(,)m -∞上单调递减,则实数m 的取值范围是( )A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D .(,2]-∞-7.已知,x y 满足10202 x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则目标函数3z x y =-的最小值是( )A.72B .4-C .7-D .8-【答案】C 【解析】试题分析:根据10202 x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩画出可行域及直线30x y -=(如图),平移直线30x y -=,当直线经过点A (2,3)时,3z x y =-的最小值为-7,故选C.考点:简单线性规划的应用8.已知函数()sin f x x ω=在304π[,]恰有4个零点,则正整数ω的值为( ) A .2或3B .3或4C .4或5D .5或69.函数()4230y x x x=-->的最大值是( ) A.223-B. 243-C. 223+D. 243+10.在ABC ∆中,若sin sin cos cos sin A A C A C -=,则ABC ∆的形状是( ) A.正三角形 B.等腰三角形C.直角三角形D.等腰直角形【答案】B 【解析】试题分析:由正弦定理、余弦定理,sin sin cos cos sin A A C A C -=可化为222222(1)22a b c b c a a c ab bc+-+--=⋅,整理得,a b =,所以,ABC ∆的形状是等腰三角形,选B.考点:正弦定理、余弦定理的应用11.设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( ) A .13a b =- B .//a b C .2a b = D .a b ⊥12.已知329()6,,()()()02f x x x x abc a b c f a f b f c =-+-===<<且,现给出如下结论: ①(0)(1)0f f >;②(0)(1)0f f <;③(0)(2)0f f >;④(0)(2)0f f <. 其中正确结论的序号为( ) A.①③ B.①④C.②④D.②③【答案】D 【解析】试题分析:由题意得,2f x 3x 9x 63x 1x 2'=-+=--()()(),∴当x 1<或x 2>时,fx 0'()>,当1x 2<<时,f x 0'()<, ∴函数f x ()的增区间是12-∞+∞(,),(,),减区间是12(,), ∴函数的极大值是5f 12abc =-(),函数的极小值是f 22abc =-(), ∵a b c <<,且f a f b f c 0===()()(),∴a 1b 2c f 10<<<<,()>且f 20()<,解得522abc <<,∴f 0abc 0=-()<,则f 0f 10f 0f 20()()<,()()>, 故选D .考点:应用导数研究函数的单调性,函数的零点.第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,这个几何体的体积是 .由导数的几何意义,切线的斜率为123|3(3)9n x nx -=⨯=,所以,由直线方程的点斜式得直线l 的方程为9630x y --=.考点:幂函数,导数的几何意义.15.已知函数()f x 是∞∞(-,+)上的奇函数,且()f x 的图象关于直线1x =对称,当[1,0]x ∈-时,()f x x =-,则(2013)(2014)f f += .16.若对任意x A ∈,y B ∈,(A 、R B ⊆)有唯一确定的(,)f x y 与之对应,称(,)f x y 为关于x 、y 的二元函数. 现定义满足下列性质的二元函数(,)f x y 为关于实数x 、y 的广义“距离”: (1)非负性:(,)0f x y ≥,当且仅当0x y ==时取等号; (2)对称性:(,)(,)f x y f y x =;(3)三角形不等式:(,)(,)(,)f x y f x z f z y ≤+对任意的实数z 均成立.今给出四个二元函数:①22(,)f x y x y =+;②2(,)()f x y x y =-③(,)f x y x y =-;④(,)sin()f x y x y =-.能够成为关于的x 、y 的广义“距离”的函数的所有序号是 . 【答案】①三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数2()2sin cos 233f x x x x ωωω=+0ω>)的最小正周期为π.(Ⅰ)求函数)(x f 的单调增区间; (Ⅱ)将函数)(x f 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象.求()y g x =在区间[0,10]π上零点的个数. 【答案】(Ⅰ))(x f 的单调增区间5[,],Z 1212k k k ππππ-+∈. (Ⅱ)()g x 在[]0,10π上有20个零点. 【解析】试题分析:(Ⅰ)由题意得,首先化简函数.得到()2sin(2)3f x x π=-.根据复合函数的单调性及正弦函数的单调增区间得 函数)(x f 的单调增区间5[,],Z 1212k k k ππππ-+∈.18.在ABC ∆中,角A B C 、、对边分别是a b c 、、,且满足222cos ()bc A a b c =-+. (Ⅰ)求角A 的大小;(Ⅱ)若43a =,ABC ∆的面积为43,b c . 【答案】(Ⅰ)23A π=;(Ⅱ)4b c ==. 【解析】19.已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,N n *∈.(Ⅰ)求n a ;(Ⅱ)令1(1)n n n c a =--,不等式2014(1100,N )k c k k *≥≤≤∈的解集为M ,求所有()k a k M ∈的和.【答案】(Ⅰ)1222n nn a -=⨯=;(Ⅱ)所有()k a k M ∈的和11451012(14)22048143--=-. 【解析】试题分析:(Ⅰ)设{}n a 的首项为1a ,公比为q , 依题意可建立其方程组,不难求得.(Ⅱ)根据1(1)1(2)n nn n c a =--=--, 要注意分n 为偶数, n 为奇数,加以讨论,明确{}()k a k M ∈是首项为112,公比为4的等比数列,利用等比数列的求和公式,计算得到所有()k a k M ∈的和. 试题解析:(Ⅰ)设{}n a 的首项为1a ,公比为q ,所以42911()a q a q =,解得1a q = …………2分 又因为212()5n n n a a a +++=,所以22()5n n n a a q a q +=则22(1)5q q +=,22520q q -+=,解得12q =(舍)或2q = …4分 所以1222n n n a -=⨯= …………6分(Ⅱ)则1(1)1(2)n n n n c a =--=--,当n 为偶数,122014n n c =-≥,即22013n≤-,不成立 …………8分当n 为奇数,1+22014n n c =≥,即22013n ≥, 因为10112=10242=2048,,所以21,549n m m =+≤≤ …………10分 {}()k a k M ∈组成首项为112,公比为4的等比数列,则所有()k a k M ∈的和11451012(14)22048143--=-……………12分 考点:等比数列的通项公式、求和公式20.在直四棱柱ABCD -A 1B 1C 1D 1中,DB =BC ,DB ⊥AC ,点M 是棱BB 1上一点.(1)求证:B 1D 1∥平面A 1BD ;(2)求证:MD ⊥AC ;(3)试确定点M 的位置,使得平面DMC 1⊥平面CC 1D 1D.【答案】(1)见解析. (2)见解析.(3)当点M 为棱BB 1的中点时,平面DMC 1⊥平面CC 1D 1D.【解析】试题分析:(1)由直四棱柱概念,得BB 1//DD 1,得到四边形BB 1D 1D 是平行四边形,从而B 1D 1∥BD ,由直线与平面平行的判定定理即得证.(2)注意到BB 1⊥平面ABCD ,AC ⊂平面ABCD ,推出BB 1⊥AC.又BD ⊥AC ,即得AC ⊥平面BB 1D 1D.而MD ⊂平面BB 1D 1D ,故得证.(3)分析预见当点M 为棱BB 1的中点时,符合题意.此时取DC 的中点N ,D 1C 1的中点N 1,连接NN 1交DC 1于O ,连接OM ,证得BN ⊥DC.又DC 是平面ABCD 与平面DCC 1D 1的交线,而平面ABCD ⊥平面DCC 1D 1,推出BN ⊥平面DCC 1D 1.又可证得,O 是NN 1的中点,由四边形BMON 是平行四边形,得出OM ⊥平面CC 1D 1D ,得证. 试题解析:(1)由直四棱柱概念,得BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD.而BD ⊂平面A 1BD ,B 1D 1⊄平面A 1BD ,∴B 1D 1∥平面A 1BD.(2)∵BB 1⊥平面ABCD ,AC ⊂平面ABCD ,∴BB 1⊥AC.又∵BD ⊥AC ,且BD ∩BB 1=B ,∴AC ⊥平面BB 1D 1D.而MD ⊂平面BB 1D 1D ,∴MD ⊥AC.21.某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交(13)a a ≤≤元的管理费,预计当每件商品的售价为(79)x x ≤≤元时,一年的销售量为2(10)x -万件.(1)求该连锁分店一年的利润L (万元)与每件商品的售价x 的函数关系式()L x ;(2)当每件商品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.【答案】(I )2()(4)(10),[7,9]L x x a x x =---∈.(II )当312a ≤≤每件商品的售价为7元时,该连锁分店一年的利润L 最大,最大值为279a -万元; 当332a <≤每件商品的售价为263a +元时,该连锁分店一年的利润L 最大,最大值为34(2)3a -万元.(I )由题意,该连锁分店一年的利润L (万元)与售价x 的函数关系式为2()(4)(10),[7,9]L x x a x x =---∈.(II )2()(4)(10),[7,9]L x x a x x =---∈,2'()3(482)1802(10)[3(182)]L x x a x a x x a =-+++=--+,令'()0L x =,得263x a =+或10x =, 因为,13a ≤≤,所以,2026833a ≤+≤. ①当2367,132a a +≤≤≤时,[7,9]x ∈,'()0L x ≤, 2()(4)(10),[7,9]L x x a x x =---∈是单调递减函数.故max ()(7)279L x L a ==- ……………10分 ②当2673a +>,即332a <≤时, 2[7,6]3x a ∴∈+时,'()0L x >;2[6,9]3x a ∈+时,()0L x '< ()L x ∴在2[7,6]3x a ∈+上单调递增;在2[6,9]3x a ∈+上单调递减, 故3max 2()(6)4(2)33a L x L a =+=- 答:当312a ≤≤每件商品的售价为7元时,该连锁分店一年的利润L 最大, 最大值为279a -万元;当332a <≤每件商品的售价为263a +元时,该连锁分店一年的利润L 最大,最大值为34(2)3a -万元. 考点:生活中的优化问题举例,应用导数研究函数的单调性、最值.22.已知函数()()()221ln 1x a x x f +-+=在()1,2--上是增函数,()2,-∞-上是减函数. (1)求函数()x f 的解析式;(2)若]1,11[--∈e ex 时,()m x f <恒成立,求实数m 的取值范围; (3)是否存在实数b ,使得方程()b x x x f ++=2在区间]2,0[上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.即()()b x x x F -++-=11ln 2,]2,0[∈x . …………7分 又()11121+-=+-='x x x x F ,令()0>'x F ,得21<<x ;令()0<'x F ,得10<<x .所以函数()x F 的增区间(]2,1,减区间[)1,0.要使方程有两个相异实根,则有()()()⎪⎩⎪⎨⎧-≥--=<--=≥-=b b F b F b F 03ln 23202ln 221010,解得3ln 232ln 32-≤<-b考点:应用导数研究函数的单调性、极值,函数与方程.。
2024-2025学年山东省青岛市青岛二中高三(上)月考数学试卷(8月份)(含答案)
2024-2025学年山东省青岛二中高三(上)月考数学试卷(8月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M ={x|y =lg (2x−3)},N ={y|y >12},则M ∩N =( )A. (−1,32)B. (32,+∞)C. (12,+∞)D. (12,32)2.某高中为鼓励全校师生增强身体素质,推行了阳光校园跑的措施,随机调查7名同学在某周周日校园跑的时长(单位:分钟),得到统计数据如下:35,30,50,90,70,85,60.则该组数据的中位数和平均数分别为( )A. 60,58B. 60,60C. 55,58D. 55,603.已知z =a +i 1+i (a ∈R)为纯虚数,则|z +zi|=( )A. 2 B. 2 C. 1 D. 54.曲线y =e x +sin 2x 在点(0,1)处的切线方程为( )A. 3x +2y−2=0B. 2x−2y +1=0C. 3x−y +1=0D. 3x−2y +2=05.已知锐角α,β满足sin α+sin αsin β=cos αcos β,则2α+β=( )A. π2 B. π3 C. π4 D. π6.过点P (1,−3)的直线l 与曲线M:(x−2)2+y 2=1(2≤x ≤3)有两个交点,则直线l 斜率的取值范围为( )A. (23,1] B. (43,2] C. (23,2] D. (23,4]7.已知椭圆T:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过F 且斜率为1的直线l 与T 交于A ,B 两点,若线段AB 的中点M 在直线x +2y =0上,则T 的离心率为( )A. 24 B. 53 C. 35 D. 228.如图,在平行四边形ABCD 中,tan ∠BAD =7,AB =5 2,AD =5,E 为边BC 上异于端点的一点,且AE ⋅DE =45,则sin ∠CDE =( )A. 210B. 725C. 513D. 14二、多选题:本题共3小题,共15分。
山东省青岛市10—11下学期高三数学(理科)月考考试试卷
山东省青岛市2011届高三教学质量统一检测数学(理科)2011.03本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)两部分,共150分,考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效. 参考公式:台体的体积公式为:121(3V S S h =++,其中1S ,2S 分别为台体的上、下底面积,h 为台体的高.第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数21iz i =-,则复数z 的共轭复数为 A .i +1B .1i -+C .1i -D .1i --2.已知全集U R =,集合2{|20}A x x x =->,{|lg(1)}B x y x ==-,则()U A Bð等于A .{|20}x x x ><或B .{|12}x x <<C .{|12}x x <≤D .{|12}≤≤x x3.下列四个函数中,在区间(0,1)上是减函数的是A .2log y x =B .1y x =C .1()2xy =-D .13y x =4.已知直线l 、m ,平面α、β,且l α⊥,m β⊂,则//αβ是l m ⊥的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.二项式62()x x-的展开式中,2x 项的系数为A .15B .15-C .30D .606.以坐标轴为对称轴,原点为顶点且过圆222690x y x y +-++=圆心的抛物线方程是 A .2233y x y x ==-或 B .23y x =C .2293y x y x =-=或D .22-9y x y x ==或7.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4积是A .283πB .73π C .28πD .7π8.若00x y x y y a -≤⎧⎪+≥⎨⎪≤⎩,若2z x y =+的最大值为3,则a 的值是A .1B .2C .3D .49.已知等差数列{}n a 的前项和为n S ,若M 、N 、P 三点共线,O 为坐标原点,且156ON a OM a OP =+(直线MP 不过点O ),则20S 等于A .15B .10C .40D .2010.定义运算:12142334a a a a a a a a =-,将函数sin ()cos x f x x -=向左平移m 个单位(0)m >,所得图象对应的函数为偶函数,则m 的最小值是 A .6πB .3πC .56πD .23π 11.下列四个命题中,正确的是A .已知函数0()sin af a xdx =⎰,则[()]1cos12f f π=-;B .设回归直线方程为2 2.5y x =-,当变量x 增加一个单位时,y 平均增加2个单位;C .已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>=D .对于命题p :x R ∃∈,使得210x x ++<,则p ⌝:x R ∀∈,均有210x x ++>12.若1()1(1)f x f x +=+,当[0x ∈,1]时,()f x x =,若在区间(1-,1]内()()g x f x mx m =--有两个零点,则实数m 的取值范围是A .[0,1)2B .1[2,)+∞C .[0,1)3D .(0,1]2第Ⅱ卷 (选择题 共60分)二、填空题:本大题共4小题,每小题4分,共16分.13.某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过60/km h 的汽车数量为____________14.执行如图所示的程序框图,若输出的b 的值为16,图中判断框内?处应填的数为________ 15.若不等式1|21|||a xx-?对一切非零实数x 恒成立,则实数a 的取值范围_______________ 16.点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-的距离的最小值是____________ 三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量(sin m x =u r ,1)-,向量n x =r ,1)2-,函数.()()f x m n m =+u r r u r .(Ⅰ)求()f x 的最小正周期T ;(Ⅱ)已知a ,b ,c 分别为ABC D 内角A ,B ,C 的对边,A为锐角,a =4c =,且()f A 恰是()f x 在[0,]2p上的最大值,求A ,b 和ABC D 的面积S .18.(本小题满分12分)如图,PDCE 为矩形,ABCD 为梯形,平面PDCE ^平面A B C ,90BAD ADC ???,12AB AD CD a ===,PD =. (Ⅰ)若M 为PA 中点,求证://AC 平面MDE ; (Ⅱ)求平面PAD 与PBC 所成锐二面角的余弦值. 19.(本小题满分12分)某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:(Ⅰ)从该单位任选两名职工,用h 表示这两人休年假次数之和,记“函数2()1f x x x =--h 在区间(4,6)上有且只有一个零点”为事件A ,求事件A发生的概率P ;(Ⅱ)从该单位任选两名职工,用x 表示这两人休年假次数之差的绝对值,求随机变量x 的分布列及数学期望E x .20.(本小题满分12分)已知数列{}n b 满足11124n n b b +=+,且172b =,n T 为{}n b 的前n 项和. (Ⅰ)求证:数列1{}2n b -是等比数列,并求{}n b 的通项公式; (Ⅱ)如果对任意*n N Î,不等式1227122nkn n T ?+-恒成立,求实数k 的取值范围.21.(本小题满分12分)已知函数322()233f x x ax x =-++. (Ⅰ)当14a =时,求函数()f x 在[2-,2]上的最大值、最小值; (Ⅱ)令()ln(1)3()g x x f x =++-?,若()g x 在1(2-,)+?上单调递增,求实数a 的取值范围.22.(本小题满分14分)已知圆1C :22(1)8x y ++=,点2(1C ,0),点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)设、M N 分别是曲线W 上的两个不同点,且点M 在第一象限,点N 在第三象限,若1+22OM ON OC =uuu r uuu r uuu r,O 为坐标原点,求直线MN 的斜率k ;(Ⅲ)过点(0S ,1)3-且斜率为k 的动直线l 交曲线W 于,A B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,求出D 的坐标,若不存在,说明理由.青岛市高三教学质量统一检测高中数学(理科)参考答案及评分标准2011.03一、选择题:本大题共12小题.每小题5分,共60分. ACBBD DBABA AD二、填空题:本大题共4小题,每小题4分,共16分.13.38 14.3 15.13[,]22- 16三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)解:(Ⅰ)21()()sin 1cos 2f x m n m x x x =+⋅=+++…………2分1cos 211sin 2222x x -=+++12cos 2222x x =-+sin(2)26x π=-+…………5分因为2ω=,所以22T ππ==…………6分 (Ⅱ)由(Ⅰ)知:()sin(2)26f A A π=-+[0,]2x π∈时,52666x πππ-≤-≤由正弦函数图象可知,当262x ππ-=时()f x 取得最大值3所以262A ππ-=,3A π=…………8分由余弦定理,2222cos a b c bc A =+-∴211216242b b =+-⨯⨯∴2b =………10分 从而11sin 24sin 602322S bc A ==⨯⨯=12分 18.(本小题满分12分)(Ⅰ)证明:连结PC ,交DE 与N ,连结MN ,PAC ∆中,,M N 分别为两腰,PA PC 的中点∴//MN AC …………2分因为MN ⊂面MDE ,又AC ⊄面MDE ,所以//AC 平面MDE …………4分(Ⅱ)设平面PAD 与PBC 所成锐二面角的大小为θ,以D 为空间坐标系的原点,分别以,,DA DC DP 所在直线为,,x y z 轴建立空间直角坐标系,则),(,,0),(0,2,0)P B a a C a(,,2),(,,0)PB a a a BC a a =-=-…………6分设平面PAD 的单位法向量为1n , 则可设1(0,1,0)n =…………7分设面PBC 的法向量2(,,1)n x y =,应有22(,,1)(,,2)0(,,1)(,,0)0n PB x y a a a n BC x y a a ⎧=-=⎪⎨=-=⎪⎩即:00ax ay ax ay ⎧+=⎪⎨-+=⎪⎩,解得:22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以22(22n =…10分∴121212cos 2||||1n n n n θ⋅===⨯…………11分 所以平面PAD 与PBC 所成锐二面角的余弦值为12…………12分 19.(本小题满分12分)解:(Ⅰ)函数()21f x x x η=--过(0,1)-点,在区间(4,6)上有且只有一个零点,则必有(4)0(6)0f f <⎧⎨>⎩即:1641036610ηη--<⎧⎨-->⎩,解得:153546η<< 所以,4η=或5η=…………3分当4η=时,211201015125068245C C C P C +==,当5η=时,11201522501249C C P C ==…5分 4η=与5η=为互斥事件,由互斥事件有一个发生的概率公式所以12681212824549245P P P =+=+=…………6分 (Ⅱ)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,则ξ的可能取值分别是0,1,2,3,…………7分于是()22225102015250207C C C C P C ξ+++===, 1111115101020152025022(1)49C C C C C C P C ξ++===,1111520101525010(2)49C C C C P C ξ+===,115152503(3)49C C P C ξ===…………10分 从而ξ的分布列:ξ的数学期望:0123749494949E ξ=⨯+⨯+⨯+⨯=. …………12分 20.(本小题满分12分)解:(Ⅰ)对任意*N n ∈,都有11124n n b b +=+,所以1111()222n n b b +-=- 则1{}2n b -成等比数列,首项为1132b -=,公比为12…………2分所以1113()22n n b --=⨯,1113()22n n b -=⨯+…………4分(Ⅱ)因为1113()22n n b -=⨯+所以2113(1)111123(1...)6(1)222222212n n n n n n n T --=+++++=+=-+-…6分 因为不等式1227(122)n k n n T ≥-+-,化简得272nn k -≥对任意*N n ∈恒成立…………7分 设272n n n c -=,则1112(1)72792222n nn n n n n nc c ++++----=-=…………8分 当5n ≥,1n n c c +≤,{}n c 为单调递减数列,当15n ≤<,1n n c c +>,{}n c 为单调递增数列45131632c c =<=,所以,5n =时,n c 取得最大值332…………11分 所以,要使272n n k -≥对任意*N n ∈恒成立,332k ≥…………12分21.(本小题满分12分)解:(Ⅰ)14a =时,3221()332f x x x x =-++,2()23(23)(1)f x x x x x '=-++=--+ 令()0f x '=,得1x =-或3x =…………2分可以看出在1x =-取得极小值,在2x =取得极大值…………5分 而48(2),(2)33f f -==由此, 在[2,2]-上,()f x 在1x =-处取得最小值116-,在32x =处取得最小值278…………6分(Ⅱ)()ln(1)3()g x x f x '=++-2ln(1)3(243)x x ax =+---++2ln(1)24x x ax =++-2'144(1)14()4411x a x ag x x a x x +-+-=+-=++…………7分在1(,)2-+∞上恒有10x +> 考察2()44(1)14h x x a x a =+-+-的对称轴为44182a a x --=-= (i )当1122a -≥-,即0a ≥时,应有216(1)16(14)0a a ∆=---≤ 解得:20a -<≤,所以0a =时成立…………9分 (ii )当1122a -<-,即0a <时,应有1()02h ->即:114(1)1402a a --⨯+-> 解得0a <…………11分综上:实数a 的取值范围是0a ≤…………12分22.(本小题满分14分)解:(Ⅰ)因为2QC 的垂直平分线交1QC 于点P . 所以2PC PQ =222211112=>==+=+C C QC PQ PC PC PC所以动点P 的轨迹ω是以点21,C C 为焦点的椭圆……………2分设椭圆的标准方程为12222=+b y a x则22,222==c a ,1222=-=c a b ,则椭圆的标准方程为2212x y +=……4分 (Ⅱ)设1122(,),(,)M a b N a b ,则2222112222,22a b a b +=+= ①因为122OM ON OC +=则121222,20a a b b +=-+= ②由①②解得112215,,2448a b a b ===-=……………7分 所以直线MN 的斜率k 212114b b a a -==-……………8分 (Ⅲ)直线l 方程为13y kx =-,联立直线和椭圆的方程得: 221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩ 得229(12)12160k x kx +--=…………9分 由题意知:点)31,0(-S 在椭圆内部,所以直线l 与椭圆必交与两点, 设).,(),,(2211y x B y x A 则121222416,3(12)9(12)k x x x x k k +==-++ 假设在y 轴上存在定点),0(m D ,满足题设,则1122(,),(,)DA x y m DB x y m =-=- 因为以AB 为直径的圆恒过点D ,则1122(,)(,)0DA DB x y m x y m ⋅=-⋅-=,即:1212()()0x x y m y m +--= (*) 因为112211,33y kx y kx =-=-则(*)变为21212121212()()()x x y m y m x x y y m y y m +--=+-++…11分21212121111()()()3333x x kx kx m kx kx m =+----+-+221212121(1)()()339k x x k m x x m m =+-+++++222216(1)1421()9(21)33(21)39k k k m m m k k +=--++++++222218(1)(9615)9(21)m k m m k -++-=+ 由假设得对于任意的R k ∈,0DA DB ⋅=恒成立,即221096150m m m ⎧-=⎪⎨+-=⎪⎩解得1m =……13分 因此,在y 轴上存在满足条件的定点D ,点D 的坐标为(0,1).………14分。
山东省青岛第二中学2015-2016学年高二11月模块考试数
青岛二中2015-2016学年第一学段高二模块考试——(文倾)数学满分:150分 时间:120分钟 第I 卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设m ∈N ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( ) A.若方程20x x m +-=有实根,则0m > B.若方程20x x m +-=有实根,则0m ≤ C.若方程20x x m +-=没有实根,则0m > D.若方程20x x m +-=没有实根,则0m ≤2. 某工厂生产C B,A,三种不同型号的产品,产品的数量之比为7:4:3,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( ) A. 50 B. 60 C. 70 D. 803. 设R x ∈,命题12:<-x p ,命题02:2>-+x x q ,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件4. 有一个袋子中装有标注数字,4,3,2,1的四个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出的小球标注的数字之和为5的概率是( ) A.121 B. 32 C. 61 D. 315. 已知α、β是不同的平面,m 、n 是不同的直线,则下列命题不.正确的( ) A . 若m m ,α⊥∥,,β⊂n n 则βα⊥ B . 若m ∥,αn αβ⋂=,则m ∥nC . 若m ∥n ,α⊥m ,则α⊥nD . 若m m ,α⊥,β⊥则α∥β6. 如图是歌手大奖赛中,七位评委给甲、乙两名选手打出的分数的茎叶图(其中Z m m ∈≤≤,90),现将甲、乙所得的一个最高分和一个最低分均去掉后,甲、乙两名选手得分的平均数分别为12a a ,,中位数分别为12b b ,,则有( ) A. 12a a >,12b b >B. 12a a <,12b b >C .12a a < ,12b b <D .12a a >,12b b <7. 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的41,且样本容量160,则中间一组的频数为( ) A . 0.2 B . 0.25 C . 32 D . 408. 已知椭圆的两个焦点分别是21,F F ,P 是椭圆上的一个动点,如果延长P F 1到Q ,使得PQ PF =2, 那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线9. 正三棱柱111ABC A B C -的底面边长为2,侧棱长为,D 为BC 中点,则三棱锥11A B DC -的体积为( )A. 3B.23C. 1D. 2310. 已知椭圆)0(12222>>=+b a by a x 的左顶点为A ,上顶点为B ,右焦点为F ,设线段AB 的中点为M ,若022≥+⋅BF MF MA ,该椭圆离心率的取值范围为( ) A. ]13,0(- B.)1,13[- C. ]21-3,0( D. )1,21-3[ 第II 卷 (共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题纸的相应位置上) 11.如果执行右边的框图,输入3=N ,则输出的数等于 .12.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为 .13. 椭圆11222=++k y x 的离心率为21,则k 的值为________. 14.已知“命题022,0:2≥+-≥∀ax x x p ”是真命题,则a 的取值范围为__________. 15. 给出下列命题:①如果数据n x x x x ,,,, 321的平均数为x ,标准差为S ,则:数据23232321+++n x x x ,,, 的平均数和标准差分别是23+x 和S 3;②“x R ∀∈,均有210x x ++≥”的否定;③“直线3221,l l l l ⊥⊥,则31l l ⊥”或“直线3221//,//l l l l ,则31//l l ”; ④“220x y +=”是“0xy =”的充要条件. 其中真命题的序号为__________________.三、解答题(本大题共6小题,共75分. 解答题应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)设命题p :函数1+=kx y 在R 上是增函数,命题q :曲线122++=kx x y 与x 轴交于不同的两点,如果q p ∧是假命题,q p ∨是真命题,求k 的取值范围.17.(本小题满分12分)为了解某校今年高二年级女生的身体素质状况,从该校高二年级女生中抽取了一部分学生进行“掷铅球”的项目测试.把获得的所有数据,分成[)[)[),,,7,5,5,3,3,1[)[]11,9,9,7五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间.(I )求实数a 的值及参加“掷铅球”项目测试的人数; (II )若从此次测试成绩最好的[]11,9和最差的[)3,1这两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.18.(本小题满分12分) 已知a 为实数且0a >,22:1,:210ap q x x a x a>-+-≥-,若p 是q ⌝的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分)已知12,F F 分别为椭圆)1(112222>=-+a a y a x 的左、右两个焦点,一条直线l 经过点1F ,且与椭圆交于,A B 两点, 且2ABF ∆的周长为8. (Ⅰ)求椭圆的标准方程;(Ⅱ)若直线l 的倾斜角为4π,求AB 的值.20.(本小题满分13分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,AD SA =,点,M P 分别是,SD BC 的中点,AN SC ⊥,且交SC 于点N .(Ⅰ)求证://MP 平面SAB ; (Ⅱ)求证:平面SAC ⊥平面AMN .21.(本小题满分14分)已知焦点在x 轴上的椭圆)0(12222>>=+b a by a x ,焦距为32,长轴长为4.(I )求椭圆的标准方程;(II )过点O 作两条互相垂直的射线,与椭圆交于A ,B 两点,证明:点O 到直线AB 的距离为定值,并求出这个定值. 附加题(本题满分10分)在平面直角坐标系xOy 中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ + 与AB共线?如果存在,求k 值;如果不存在,请说明理由.答案一、选择题 DCADB, BCACA 二、填空题 11.411 12.271 13.3521或 14. 2≤a 15. ①③ 三.解答题16. 因为函数y=kx+1在R 上是增函数, 所以0k >,又因为曲线122++=kx x y 与x 轴交于不同的两点, 所以0442>-=∆k ,解得1-<k 或1>k ,因为p q ∧是假命题,p q ∨是真命题,所以命题p ,q 一真一假,①若p 真q 假,则⎩⎨⎧≤≤->110k k 所以10≤<k ;②若p 假q 真,则⎩⎨⎧>-<≤110k k k 或所以1-<k .故实数k 的取值范围是()1,]1,0(-∞- .17. (Ⅰ)由题意可知(0.20.150.0750.025)21a ++++⨯= 解得0.05a =所以此次测试总人数为4400.052=⨯.答:此次参加“掷铅球”的项目测试的人数为40人.(Ⅱ) 设从此次测试成绩最好和最差的两组中随机抽取2名学生自不同组的事件为A :由已知,测试成绩在[1,3)有2人,记为,a b ;在[9,11]有4人,记为,,,A B C D . 从这6人中随机抽取2人有,,,,,,,,,,,,,,ab aA aB aC aD bA bB bC bD AB AC AD BC BD CD ,共15种情况.事件A 包括,,,,,,,,aA aB aC aD bA bB bC bD 共8种情况.所以8()15P A =.18.1:>-ax aP ,()a x a a a x a x 2,0,0)(2<<∴><-- ()[]()[]011:≥+---a x a x q ,a x a x a +≥-≤∴>110或 a x a q +<<-⌝11:P 是q ⌝的充分不必要条件,则q p ⌝⊂≠⎪⎩⎪⎨⎧>≥+≤-∴0211a a a a a (等号不同时成立) 121≤≤∴a19. 由椭圆的定义,得a AF AF 221=+,a BF BF 221=+, ………2分 又AB BF AF =+11,所以2ABF ∆的周长a BF AF AB 422=++=. ……………4分 又因为2ABF ∆的周长为8,所以84=a , 则2=a . ……………5分⑵ 由⑴得,椭圆22143x y +=, )0,1(1-F , ………………………7分 因为直线l 的倾斜角为4π,所以直线l 斜率为1,故直线l 的方程为1+=x y . ……………………8分由221,1,43y x x y =+⎧⎪⎨+=⎪⎩消去y ,得08872=-+x x , ……………9分设),(,),(2211y x B y x A ,78,782121-=-=+x x x x72478478212212=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=-+=x x k AB 20. (1)取SA 中点,记为E,连接ME,EB M,E 分别为SD,SA 中点 ME//AD,ME=21AD又P 为BC 中点,BP//AD,BP=21AD 所以ME//BP ,且ME=BP所以四边形MEBP 为平行四边形 所以MP//EBMP ⊄ 面SAB ,EB ⊂面SAB ,所以//MP 面SAB (2)因为SA ⊥平面ABCD,所以SA ⊥CD, 因为ABCD 为矩形, 所以CD ⊥AD,且SA ∩AD=A, 所以CD ⊥平面SAD,所以CD ⊥AM. 因为SA=AD,M 为SD 的中点, 所以AM ⊥SD,且CD ∩SD=D, 所以AM ⊥平面SCD,所以AM ⊥SC, 又因为SC ⊥AN,且AN ∩AM=A, 所以SC ⊥平面AMN, 因为SC ⊂平面SAC, 所以平面SAC ⊥平面AMN.21. (Ⅰ) 24c a ==2,a c == 2221b a c =-=所以椭圆的标准方程为2214x y += .(Ⅱ)(ⅰ)设),(),,(2211y x B y x A ,① 当直线AB 的斜率不存在时,则AOB ∆为等腰直角三角形,不妨设直线OA :x y =将x y =代入1422=+y x ,解得552±=x所以点O 到直线AB 的距离为552=d ;② 当直线AB 的斜率存在时,设直线AB 的方程为m kx y +=,代入椭圆2214x y +=联立消去y 得:222(14)8440k x kmx m +++-= 122814km x x k +=-+,21224414m x x k -=+ 因为OB OA ⊥,所以02121=+y y x x ,1212()()0x x kx m kx m +++=即0)()1(221212=++++m x x km x x k 所以2222222448(1)01414m k m k m k k -+-+=++,整理得2254(1)m k =+,所以点O 到直线AB 的距离d ==综上可知点O 到直线AB 的距离为定值552附加题:(Ⅰ)由已知条件,直线l 的方程为y kx =22(12x kx +=.整理得221102k x ⎛⎫+++=⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=->⎪⎝⎭,解得k <或k >.即k 的取值范围为⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,∞∞.(Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12x x +=. ②又1212()y y k x x +=++ ③而(01)()A B AB =,,.所以OP OQ + 与AB共线等价于1212)x x y y +=+,将②③代入上式,解得2k =.由(Ⅰ)知k <或k >,故没有符合题意的常数k .。
2022年山东省青岛市城阳第二中学高三数学文月考试卷含解析
2021-2022学年山东省青岛市城阳第二中学高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数,则f(x)的图象在点处的切线方程为A. B. C. D.参考答案:B【分析】先由题求出f(x)的导函数,可得出在点(0,f(0))的斜率,再根据切线公式可得结果.【详解】∵f(x)=,∴f′(x)=,∴f′(0)=-1,f(0)=1,即函数f(x)图象在点(0,1)处的切线斜率为-1,∴图象在点(0,f(0))处的切线方程为y=-x+1,即x+y-1=0.故选:B.【点睛】本题考查了曲线的切线方程,求导和熟悉公式是解题的关键,属于基础题.2. 已知,满足,,则在区间上的最大值与最小值之和为A.B.C.D.参考答案:A略3. 若不等式对于一切正数、恒成立,则实数的最小值为()A 2 B C D参考答案:D4. 已知三角形的面积,则角的大小为A. B. C. D.参考答案:B5. 如图,在△ABC中,AD=2DB,AE=3EC,CD与BE交于F,设为()A. B. C. D.参考答案:A,同理向量还可以表示为,对应相等可得,所以,故选A。
6. 在平面直角坐标系xOy中,双曲线C:的一条渐近线与圆相切,则C的离心率为A.B.C.D.参考答案:B7. 函数的单调减区间为()A. B. C. D.参考答案:D略8. 函数的图象大致是()参考答案:D 9. 函数的图象大致为()A B C D参考答案:D因为,所以舍去A;因此选D.10. 将一骰子抛掷两次,所得向上点数分别为和,则函数在上为增函数的概率是A. B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 设等差数列{a n}的公差d不为零,a1=9d.若a k是a1与a2k的等比中项,则k=.参考答案:4考点:等差数列与等比数列的综合.专题:计算题;综合题.分析:由ak是a1与a2k的等比中项,知ak2=a1a2k,由此可知k2﹣2k﹣8=0,从而得到k=4或k=﹣2(舍).解答:解:因为ak是a1与a2k的等比中项,则ak2=a1a2k,[9d+(k﹣1)d]2=9d?[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.点评:本题考查等差数列的性质和应用,解题时要认真审题,仔细解答.属基础题12. 已知△的内角、、所对的边为、、,则“”是“”的 条件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一种).参考答案:充分非必要试题分析:由余弦定理可知,所以,故满足充分性,取三角形的边长为,令,,但是,,所以不满足必要性,故为充分非必要条件. 考点:余弦定理,重要不等式,充要条件的判断.13. 连续掷两次骰子,以先后得到的点数m 、n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17外部的概率应为__. 参考答案:略14. 已知{a n }是等比数列,a 5=,4a 3+a 7=2,则a 7= .参考答案:1【考点】等比数列的通项公式.【分析】利用等比数列通项公式列出方程组,求出首项和公比,由此能求出a 7的值. 【解答】解:∵{a n }是等比数列,,∴,解得,a 7==1.故答案为:1.15. 已知表示三条不同的直线,表示三个不同的平面,有下列四个命题:其中正确的是 . ①若且,则;②若相交,且都在外,,则;③若,,则;④若,则.参考答案: ②③16. 求值:=参考答案:17. 已知,设复数.若复数z 为纯虚数,实数m =_______.参考答案:3 【分析】利用复数是纯虚数的特点求解,可得的取值.【详解】因为为纯虚数,所以,解得.【点睛】本题主要考查纯虚数的概念,复数是纯虚数则有且,侧重考查数学运算的核心素养.三、 解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省青岛二中2012-2013学年高三11月月考文科数学试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin(1920)- 的值为( )A.B .12-CD .12解析:sin(1920)sin(2406360)sin(18060)-=-⨯=+ ,即原式sin60=-,故选A .答案:A2.命题“x ∀∈R ,20x >”的否定是( )A .x ∀∈R ,20x ≤B .x ∃∈R ,20x >C .x ∃∈R ,20x <D .x ∃∈R ,20x ≤解析:全称命题的否定是特称命题,易知应选D .答案:D3.已知集合{P =正奇数}和集合{|M x x ==,,}a b a P b P ⊕∈∈,若M P ⊆,则M 中的运算“⊕”是( ) A .加法B .除法C .乘法D .减法解析:由已知集合M 是集合P 的子集,设*21,21(,)a m b n m n =-=-∈N ,∵(21)(21)a b m n ⋅=--42()12[2()1]1mn m n mn m n P =-++=-++-∈,∴M P ⊆,而其它运算均不使结果属于集合P ,故选C .答案:C4.已知某几何体的侧视图与其正视图相同,相关的尺寸如下图所示,则这个几何体的体积是( )A . 8πB . 7πC . 2π`D .74π解析:依题意该几何体为一空心圆柱,故其体积2237[2()]124V ππ=-⨯=,选D .答案:D俯视图正 视 图 侧视图5.已知幂函数2()m f x x +=是定义在区间[1,]m -上的奇函数,则(1)f m +=( ) A .8B .4C .2D .1解析:由已知必有1m =,函数即3()g x x =,∴3(1)(2)28f m f +===,选A .答案:A6.已知平面向量(1,),(1,2)a m b ==-,且//,则23a b - =( )A .(5,2)B .(1,2)-C .(5,10)-D .(1,10)--解析:∵//,∴12(1)0m ⨯-⨯-=,∴2m =-,∴(1,2)a =-,∴232(1,2)3(1,2)(5,10)a b -=---=-,故选C.答案:C7.已知A 、B 两点分别在两条互相垂直的直线20x y -=和0x ay +=上,且AB 线段的中点为P 10(0,)a,则线段AB 的长为( ) A .11B .10C .9D .8解析:由已知两直线互相垂直得2a =,∴线段AB 中点为P (0,5),且AB 为直角三角形AOB 的斜边,由直角三角形的性质得||2||10AB PO ==,选B .答案:B8.已知各项为正的等比数列{}n a 中,4a 与14a 的等比中项为7112a a +的最小值为( )A .16B .8C .D .4解析:由已知24148a a ==,再由等比数列的性质有4147118a a a a ==,又70a >,110a >,71128a a +≥=,故选B .9.设函数2,0(),01x x bx c f x x ≥⎧++=⎨<⎩,若(4)(0)f f =,(2)2f =,则函数()()g x f x x=-的零点的个数是( )A .0B .1C .2D .3解析:已知即164422b c c b c ++=⎧⎨++=⎩,∴46b c =-⎧⎨=⎩,若0x ≥,则246x x x -+=,∴2x =,或3x =;若0x <,则1x =舍去,故选C .答案:C10.设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M A B = ,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B.5]2C.1[2 D. 解析:在同一直角坐标系中画出集合A 、B 所在区域,取交集后如图,故M 所表示的图象如图中阴影部分所示,而d =的是M 中的点到(0,1)的距离,从而易知所求范围是15[,]22,选A . 答案:A二.填空题:本大题共7小题,每小题5分,共35分,把答案填在题中横线上.11.在空间直角坐标系中,点(1,,2)b -关于y 轴的对称点是(,1,2)a c --,则点P (,,)a b c 到坐标原点O 的距离||PO =_____________.解析:由点(,,)x y z 关于y 轴的对称点是(,,)x y z --,1a ∴=,1b =-,0c =,故所求距离||PO=12.定义运算a c ad bcb d =-,复数z 满足11z ii i =+,则复数z = _______________. 解析:由11z i i i=+得1212izi i i z i i +-=+⇒==-.答案:2i -13.已知11{|2}82x A x -=<<,2{|log (2)1}B x x =-<,则A B = ________________.解析:31111{|()()()}{|13}222x A x x x =<<=<<,{|022}{|24}B x x x x =<-<=<<,∴{|14}A B x x =<< .答案:{|14}x x <<14.已知方程22220x y kx y k ++++=所表示的圆有最大的面积,则直线(1)2y k x =++的倾斜角α=_______________.解析:1r =≤,当有最大半径时圆有最大面积,此时0k =,1r =,∴直线方程为2y x =+,设倾斜角为α,则由tan 1α=,且[0,)απ∈得4πα=.答案:4π 15列,则a b c ++的值为________________.解析:由题意易得第一列的五个数依次为11111,,,,24816, 第三列的五个数依次为1112,1,,,248,即12a =,由于第四、五两行均成等差数列,故其公差分别为116和132, ∴可得11541616b =+=,113283216c =+⨯=,故153121616a b c ++=++=. 答案:1 16.四棱锥ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是CB 、CD 的中点,若AC +BD=3,AC·BD=1,则EG 2+FH 2=___________. 解析:易知四边形EFGH 是平行四边形,而平行四边形对角线的平方和等于各边的平方和,∴222222112()2[()()]22EG FH HG EH AC BD +=+=+ 221()2AC BD =+22117[()2](321)222AC BD AC BD =+-=-⨯= .答案:7217.在工程技术中,常用到双曲正弦函数2x xe e shx --=和双曲余弦函数2x x e e chx -+=,双曲正弦函数和双曲余弦函数与我们学过的正弦函数和余弦函数有许多相类似的性质,请类比正、余弦函数的和角或差角公式,写出关于双曲正弦、双曲余弦函数的一个正确的类似公式 . 解析:由右边2222x x y y x x y ye e e e e e e e ----++--=⋅-⋅1()4x yx y x y x y x y x y x y x y e e e e e e e e +--+--+--+--=+++-++-()()1(22)()42x y x y x y x y e e e e ch x y ------+=+==-=左边,故知.答案:填入()c c c s s h x y hx hy hx hy -=-,()c c c s s h x y hx hy hx hy +=+,AB CDEH FG()c s sh x y shx hy chx hy -=-,()c s sh x y shx hy chx hy +=+四个之一即可.三.解答题:本大题共5小题,共65分,请给出详细的解答过程. 18.(本小题满分12分)已知函数()1sin cos f x x x =+.(1)求函数()f x 的最小正周期和单调递减区间; (2)若tan 2x =,求()f x 的值.解答:(1)已知函数即1()1sin 22f x x =+,∴22T ππ==,………………………3分令3222()22k x k k ππππ+<<+∈Z ,则3()44k x k k ππππ+<<+∈Z ,即函数()f x 的单调递减区间是3[,]()44k k k ππππ++∈Z ;………………………6分 (2)由已知222222sin sin cos cos tan tan 1sin cos tan 1x x x x x x y x x x ++++==++,……………………9分 ∴当tan 2x =时,222217521y ++==+. ………………………12分 19.(本小题满分12分)在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC=AD=CD=DE=2,AB=1. (1)请在线段CE 上找到点F 的位置,使得恰有直线BF ∥平面ACD ,并证明这一事实; (2)求直线EC 与平面ABED 所成角的正弦值.解答:如图, (1)由已知AB ⊥平面ACD ,DE ⊥平面ACD ,∴AB//ED , 设F 为线段CE 的中点,H 是线段CD 的中点,连接FH ,则//FH =12ED ,∴//FH =AB , ……………3分∴四边形ABFH 是平行四边形,∴//BF AH ,由BF ⊄平面ACD 内,AH ⊂平面ACD ,//BF ∴平面ACD ;……………6分B(2)取AD 中点G ,连接CG 、EG ,则CG ⊥AD , 又平面ABED ⊥平面ACD ,∴CG ⊥平面ABED ,∴CEG ∠即为直线CE 与平面ABED 所成的角,……………9分 设为α,则在Rt CEG ∆中,有sin CG CE α===……………12分20.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,且*41()n n S a n =+∈N . (1)求1a ,2a ;(2)设3log ||n n b a =,求数列{}n b 的通项公式. 解答:(1)由已知1141S a =+,即1141a a =+,∴=1a 13,………………3分 又2241S a =+,即1224()1a a a +=+,∴219a =-; ………………6分 (2)当1n >时,1111(1)(1)44n n n n n a S S a a --=-=+-+,即13n n a a -=-,易知数列各项不为零(注:可不证不说),∴113n n a a -=-对2n ≥恒成立, ∴{}n a 是首项为13,公比为13-的等比数列, ………………10分 ∴1111()(1)333n n n n a ---=-=-,∴33log ||log 3n n a n -==-,即n b n =-. ………………13分21.(本小题满分14分)已知ABC ∆的两边长分别为25AB =,39AC =,且O 为ABC ∆外接圆的圆心.(1)若外接圆O 的半径652R =,且角B 为钝角,求BC 边的长; (2)求AO BC ⋅的值.(注:39313=⨯,65513=⨯,且2sin sin sin BC AB ACR A C B===) 解答:(1)由正弦定理有2sin sin AB ACR C B==, ∴253965sin sin C B ==,∴3sin 5B =,5sin 13C =, ………………3分且B 为钝角,∴12cos 13C =,4cos 5B =-∴3125416sin()sin cos sin cos ()51313565B C B C C B +=+=⨯+⨯-=,又2sin BCR A=,∴2sin 65sin()16BC R A B C ==+=; ………………7分 (2)由已知AO OC AC += ,∴22()AO OC AC += ,即2222||2||||39AO AO OC OC AC +⋅+== ………………9分 同理AO OB AB += ,∴2222||2||||25AO AO OB OB AB +⋅+== ,……11分两式相减得22(3925)(3925)896AO OC AO OB ⋅-⋅=-+=,即2896AO BC ⋅= ,∴448AO BC ⋅=. ………………14分22.(本小题满分14分)已知函数32()(,)f x ax x ax a x =+-∈R . (1)当1a =时,求函数()f x 的极值;(2)若()f x 在区间[0,)+∞上单调递增,试求a 的取值或取值范围;(3)设函数118()()(2)1333h x f x a x a '=++-+,(]1,x b ∈-,(1)b >-,如果存在(],1a ∈-∞-,对任意(]1,x b ∈-都有()0h x ≥成立,试求b 的最大值.解答:(1)当1a =时,32()f x x x x =+-,∴/2()321f x x x =+-, 令/()0f x =,则113x =,21x =-, ………………2分x 、/()f x 和()f x 的变化情况如下表 x (,1)-∞-1-1(1,)3-131(,)3+∞ /()f x+0 -0 +()f x极大值(1)1f -=极小值15()327f =-即函数的极大值为1,极小值为527-; ………………5分 (2)2()32f x ax x a '=+-,若()f x 在区间[0,)+∞上是单调递增函数,则()f x '在区间[0,)+∞内恒大于或等于零,若0a <,这不可能,若0a =,则2()f x x =符合条件,若0a >,则由二次函数2()32f x ax x a '=+-的性质知23(0)0af a ⎧-<⎪⎨⎪=->⎩,即00a a >⎧⎨<⎩,这也不可能, 综上可知当且仅当0a =时()f x 在区间[0,)+∞上单调递增; ……………10分 (3)由2()32f x ax x a '=+-,118()()(2)1333h x f x a x a '=++-+, ∴2()(21)(13)h x ax a x a =+++-,(]1,,(1)x b b ∈->-, 当1x b -<≤时,令2(21)(13)0ax a x a +++-≥,………………①, 由(],1a ∈-∞-,∴()h x 的图象是开口向下的抛物线,故它在闭区间上的最小值必在区间端点处取得, ……………11分 又(1)40h a -=->,∴不等式①恒成立的充要条件是()0h b ≥,即2(21)(13)0ab a b a +++-≥,∵1b >-,∴10b +>,且0a <,∴22311b b b a+-≤-+,依题意这一关于a 的不等式在区间(],1-∞-上有解,∴2max 231()1b b b a +-≤-+,即22311b b b +-≤+,240b b +-≤,∴b ≤≤1b >-,故1b -<≤,从而max 12b -=………………14分。