第12章变化的电磁场A
大学物理答案第12章
第十二章 电磁感应 电磁场和电磁波12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )(A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向(C ) 线圈中感应电流为逆时针方向(D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律ti M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为tΦπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势. 分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解. 在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E 和E 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高题 12-13 图分析 本题可用两种方法求解.方法1:用公式()l B d ⋅⨯=⎰l E v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=. 方法2:用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.12-14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 12 -14 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()ξξμξμ120020ln π2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域, ⎰⎰⋅-=⋅=SB tl E k d d d d ξ t B r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解 12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .题 12-16 图分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式I ΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.12-17 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)题 12-17 图分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 12-18 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).题 12-18 图分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 12-19 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .题 12-19 图分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=,故L IΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.12-20 如图所示,一面积为4.0 cm 2共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.题 12-20 图分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21/I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B200=,穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为 H 1028.6260-⨯===RS μN N I ψM A B A A (2)线圈A 中感应电动势的大小为 V 1014.3d d 4-⨯=-=t I ME A 互感电动势的方向和线圈B 中的电流方向相同.12-21 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少题 12-21 图解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 = ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为 ×10-3 C .求:当螺绕环中通有电流I 1时,铁磁质中的B 和铁磁质的相对磁导率μr .题 12-22 图分析 本题与题12-8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===SN Rq I n B C r μμ 相对磁导率 1991102==I n S N Rq C r μμ 12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为 Ω.求:(1) 如把线圈接到电动势E = V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:方法 1: 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能. 方法 2: 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布. 上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 20μ=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为 J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w m m (2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值R E I m = 按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得 ()s 1056.122ln 221ln 4-⨯=+=⎥⎦⎤⎢⎣⎡--=R L R L t 12-24 未来可能会利用超导线圈中持续大电流建立的磁场来储存能量.要储存1 kW ·h 的能量,利用T的磁场,需要多大体积的磁场 若利用线圈中500 A 的电流储存上述能量,则该线圈的自感系数应该多大解 由磁感强度与磁场能量间的关系可得302m 0.92/==μB W V m 所需线圈的自感系数为H 2922==I W L m 12-25 中子星表面的磁场估计为108T,该处的磁能密度有多大解 由磁场能量密度 21021098.32⨯==μB w m 3m /J 12-26 在真空中,若一均匀电场中的电场能量密度与一 T 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少解 2021E εw e =,022μB w m =,按题意,当m e w w =时,0220221μB E ε=则 1800m V 1051.1-⋅⨯==μεB E 12-27 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm ,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析 尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流I c ,而在平行板电容器间存在着位移电流I d ,它们使电路中的电流连续,即c d I I =.解 忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流2πd R j I d Sd d =⋅=⎰S j ,由此得位移电流密度的大小 222m A 9.15ππ-⋅===R I R I j c d d。
变化的电磁场-习题课ppt课件
d
l
H
d
l
L1
L2
(B)
H
d
l
H
d
l
L1
L2
(C)
H
d
l
H
d
l
L1
L2
(D) H d l 0
L1
H
L1
L2
10
7.一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行
的转轴 OO’ 转动,转轴与磁场方向垂直,转动角速度为ω,如图
则在过轴线的无限长直导线上,因场强处处与之垂直, 所以,电动势为零。而在无限远处 E 0, 故此回路中的
电动势就是给定的无限长直导线中的电动势。
该回路的磁通量: Φ 1 R2 B
2
dΦ (BS ) B 1 R2
dt t
t 2
与上述结果一致
15
[例3]电量Q均匀分布在半径为a、长为L(L >> a )的绝缘薄壁长
第17章 变化的电磁场电磁感应Fra bibliotek磁通量变化
磁场能量
感应电动势
1
Wm
B 2
HdV
dΦ
dt
自感磁能
互感磁能
动生电动势
感生电动势
1 LI2 2
(v B) dl
L
L
E感
dl
s
B t
dS
自感电动势
互感电动势
变化的电磁场
v
B
非静电场
Ek v B
动生电动势
(a→b)
b
动生
d m dt
(闭合时)
动生
b
a
v B dl
(a→b)
(b电势高) 电源内部:a 端(负极)到 b 端(正极)。
§16-2 动生电动势
二、动生电动势过程中的能量转换
电子的速度: v — 随导体运动的速度 u — 相对导体的定向运动速度
F
f2 f1
u -
u v
v
B
Pf 1 f1 u (ev B) u Pf 2 f 2 v (eu B) v
f1 f2
u
-
v
B
Pf 1 Pf 2 0
因为 B Br , t ,且回路静止,其形状、面积不
随时间变化, 所以有
B E感应 dl dS L ——电磁场基本方程 t S
式中 S 是以 L 为边界的,环路的绕向与面积的 法向成右手螺旋关系为正。
§16-3 感生电动势 感应电场 感应电场
§16-1 电磁感应定律
一、法拉第通量法则和楞次定律
当穿过闭合导体回路的磁通量发生变化时,闭合 导体回路中就会出现电流。称之为电磁感应现象。所 产生的电流称为感应电流。回路中的电动势称为感应 电动势。
法拉第通量法则(1831年)
回路上的感应电动势的大小与通过回路的磁通量的 变化率成正比。
楞次定律(1833年)
第 16 章 变化的电磁场
§16.1 电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 感应电场 §16.4 自感和互感 §16.5 电容和电感电路中的暂态电流 §16.6 磁场能量 §16.7 位移电流 §16.8 麦克斯韦电磁场方程组
第十二章 电磁感应电磁场(二)作业答案
一. 选择题[ A ] 1 (基础训练4)、两根很长的平行直导线,其间距离为a ,与电源组成闭合回路,如图12-18.已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的(A) 总磁能将增大. (B) 总磁能将减少.(C) 总磁能将保持不变.(D) 总磁能的变化不能确定【解答】212m W L I =,距离增大,φ增大,L 增大, I 不变,m W 增大。
[ D ]2(基础训练7)、如图12-21所示.一电荷为q 的点电荷,以匀角速度作圆周运动,圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i 、j分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为: (A)i t R q ωωsin 42π (B) j t Rq ωωcos 42π (C) k R q 24πω (D) )cos (sin 42j t i t Rq ωωω-π 图 12-21 【解答】设在0—t 的时间内,点电荷转过的角度为ωt ,此时,点电荷在O 点产生的电位移矢量为0D E ε=, ()222000cos sin ,444rqR q q E e ti tj R R R R ωωπεπεπε=-=-=-+ 式中的r e 表示从O 点指向点电荷q 的单位矢量。
()2sin cos 4d dD q J ti tj dt R ωωωπ∴==-。
[ C ] 3 (基础训练8)、 如图12-22,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H 的环流两者,必有: (A) >'⎰⋅1d L l H ⎰⋅'2d L l H . (B) ='⎰⋅1d L l H ⎰⋅'2d L l H .(C) <'⎰⋅1d L l H ⎰⋅'2d L l H. (D) 0d 1='⎰⋅L l H .【解答】全电流是连续的,即位移电流和传导电流大小相等、方向相同。
2023-2024学年高二上物理:电磁波的发现及应用(附答案解析)
2023-2024学年高二上物理:13.4电磁波的发现及应用一.选择题(共8小题)1.关于麦克斯韦电磁场理论,下列说法正确的是()A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.交变电场在它的周围空间一定产生同频率的交变磁场2.关于电磁波,下列说法中不正确的是()A.电磁波既可以在介质中传播,又可以在真空中传播B.在电磁波发射技术中,使电磁波随各种信号而改变的技术叫调谐C.电磁波在真空中传播时,频率和波长的乘积是一个恒量D.振荡电路的频率越高,发射电磁波的本领越大3.下列关于磁场和电场的说法正确的是()A.恒定的磁场能够在其周围空间产生恒定的电场B.均匀变化的磁场能够在其周围空间产生恒定的电场C.均匀变化的磁场能够在其周围空间产生均匀变化的电场D.按正弦规律变化的磁场能够在其周围空间产生恒定的电场4.下列关于电磁波说法中正确的是()A.电磁波在真空中以光速c传播B.电磁波是纵波C.电磁波不能在空气中传播D.光需要介质才能传播5.根据麦克斯韦电磁场理论,下列说法中正确的是()A.变化的磁场会激发电场,这种电场与静电场相同,其电场线不是闭合曲线B.变化的电场会激发磁场,这种磁场与电流的磁场不同,其磁感线不是闭合曲线C.均匀变化的电场激发变化的磁场,空间将产生电磁波D.振荡的电场激发同频率的振荡的磁场,空间将产生电磁波6.在5G技术领域,华为绝对是领跑者。
与4G相比,5G使用的电磁波频率更高。
下列说法中正确的是()A.5G使用的电磁波是横波B.4G使用的电磁波是纵波C.5G使用的电磁波在真空中传播速度比4G的快D.5G使用的电磁波比4G的更容易绕过障碍物7.下列设备工作时,没有利用电磁波的是()A.移动电话通话B.雷达发现飞机C.电动机通电后正常运转D.收音机接收广播电台信号8.如图,为生活中遇到的各种波,以下关于波的说法正确的是()A.声波可以发生多普勒效应B.Wifi信号的传播需要介质C.丙图是泊松亮斑图样D.月全食时的红月亮是因为红光在月球表面发生干涉所致二.多选题(共4小题)9.关于电磁波,以下说法中正确的是()A.电磁波本身就是物质,因此可在真空中传播B.电磁波由真空进入介质,速度变小,频率不变C.在真空中,频率高的电磁波波速较大D.只要发射电路的电磁振荡停止,产生的电磁波立即消失10.关于电磁波谱,下列说法中正确的是()A.X射线穿透性强,机场安检用来检查旅客是否携带违禁品B.高温物体才能向外辐射红外线C.紫外线可使钞票上的荧光物质发光D.无线电波可广泛用于通信和广播11.甲、乙两种磁场的磁感应强度B随时间t变化如图所示()第1页共10页第2页共10页。
变化的电磁场
习题1616-1.如图所示,金属圆环半径为R,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。
当圆环以恒定速度v在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a、b间的电势差。
解:(1)由法拉第电磁感应定律iddtεΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势iε=;(2)利用:()aab bv B dlε=⨯⋅⎰,有:22abBv R Bv Rε=⋅=。
【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线中通有电流AI0.5=,在与其相距cm5.0=d处放有一矩形线圈,共1000匝,设线圈长cm0.4=l,宽cm0.2=a。
不计线圈自感,若线圈以速度cm/s0.3=v沿垂直于长导线的方向向右运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。
首先用0lB dl Iμ⋅=∑⎰求出电场分布,易得:02IBrμπ=,则矩形线圈内的磁通量为:00ln22x axI I l x al drr xμμππ++Φ=⋅=⎰,由idNd tεΦ=-,有:11()2iN I l d xx a x dtμεπ=--⋅+∴当x d=时,有:041.92102()iN I l a vVd aμεπ-==⨯+。
解法二:利用动生电动势公式解决。
由0lB dl Iμ⋅=∑⎰求出电场分布,易得:02IBrμπ=,考虑线圈框架的两个平行长直导线部分产生动生电动势,近端部分:11NB l vε=,远端部分:22NB lvε=,则:12εεε=-=00411() 1.921022()N I N I al vl v Vd d a d d aμμππ--==⨯++。
16-3.如图所示,长直导线中通有电流强度为I的电流,长为l的金属棒ab与长直导线共面且垂直于导线放置,其a端离导线为d,并以速度v平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a、U b的电势大小。
同济大学物理变化的电磁场活 答案
大作业解答变化的电磁场P.1一、选择题1.一导体圆线圈在均匀磁场中运动, 能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动, 轴与磁场方向平行.(B) 线圈绕自身直径轴转动, 轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.2.如图, 长度为l 的直导线ab 在均匀磁场中以速度移动, 直导线ab 中的电动势为(A) Bl v . (B) Bl v sin a . (C) Bl v cos a . (D) 0.B v Bva bα⎰⋅⨯ba lB d )(vP.23.如图所示, 直角三角形金属框架abc 放在均匀磁场中, 磁场平行于ab 边, bc 的长度为l . 当金属框架绕ab 边以匀角速度ω转动时, abc 回路中的感应电动势εi 和a 、c 两点间的电势差U a –U c 为B 2i 21,0)A (l B U U c a ωε=-=2i 21,0)B (l B U U c a ωε-=-=22i 21,)C (l B U U l B c a ωωε=-=22i 21,)D (l B U U l B c a ωωε-=-=Bl b acωP.34. 对于单匝线圈取自感系数的定义式为L =Φm /I . 当线圈的几何形状、大小及周围磁介质分布不变, 且无铁磁性物质时, 若线圈中的电流强度变小, 则线圈的自感系数L(A) 不变.(B) 变小.(C) 变大, 与电流成反比关系.(D) 变大, 但与电流不成反比关系.P.4VB LI W μ22m 2121==nI B μ=222πr l n V n L μμ==5.有两个长直密绕螺线管, 长度及线圈匝数均相同, 半径分别为r1和r 2, 管内充满均匀介质, 其磁导率分别为μ1和μ2. 设r 1:r 2=1:2, μ1:μ2=2:1, 当将两只螺线管串联在电路中通电稳定后, 其自感系数之比L1:L 2与磁能之比W m1:W m2分别为:(A)L1:L 2 = 1:1, W m1:W m2 = 1:1(B)L 1:L 2= 1:2, W m1:W m2= 1:1(C)L 1:L2 = 1:2, W m1:W m2 = 1:2(D)L 1:L 2 = 2:1, W m1:W m2= 2:1解: 已知自感系数与长直密绕螺线管内部磁场分别为磁场能量为P.5St B Sd ⋅∂∂=⎰ε6.在圆柱形空间内有一磁感应强度为的均匀磁场,如图所示. 的大小以速率变化. 有一长度为l 0的金属棒先后放在磁场的两个不同位置ab 和a 'b ',那么,金属棒在这两个位置时棒内的感应电动势的大小关系为(A)(B)(C)(D)Oa 'bb 'a ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B Bt B d d 0≠=''b a ab εεabb a εε>''abb a εε<''0==''ab b a εεB 解:P.67:电磁波的电场强度、磁场强度和传播速度的关系是(A) 三者互相垂直, 而和位相相差(B) 三者互相垂直, 而、、构成右旋系统(C) 三者中和是同方向的, 但都与垂直(D) 三者中和可以是任意方向的, 但都必须与垂直E H u u E E E E H H u u H H 2π/P.7St D S j I I l H S S d Ld d d 0⋅∂∂+⋅=+=⋅⎰⎰⎰8.如图所示, 平板电容器(忽略边缘效应)充电时, 沿环路L 1、L 2磁场强度的环流中, 必有:(A) (B) (C) (D) H⎰⎰⋅>⋅21d d L L l H l H ⎰⎰⋅=⋅21d d L L l H l H ⎰⎰⋅<⋅21d d L L l H l H 0d 1=⋅⎰L l H L 2L 1解:P.8二、填空题1.一根直导线在磁感应强度为的均匀磁场中以速度切割磁力线运动, 导线中对应于非静电力的场强(称作非静电场场强) ⎽⎽⎽⎽⎽⎽⎽⎽.B v =k E解:lE l B L Ld d )(i ⋅=⋅⨯=⎰⎰感v εB ⨯v 2.载有恒定电流I 的长直导线旁有一半圆环导线MN, 半圆环半径为b , 环面与直导线垂直, 且半圆环两端点连线的延长线与直导线相交, 如图所示.当半圆环以速度沿平行于直导线的方向平移时, 半圆环上的感应电动势的大小是⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.v abM O N 的方向I v 解:⎰⋅⨯==L l B d )(MN MN v εεba b a I -+⋅=ln π20v μP.9I o rωa 3.如图所示, 一半径为r 的很小的金属圆环, 在初始时刻与一半径为a (a >>r )的大金属圆环共面且同心. 在大圆环中通以恒定的电流I , 方向如图. 如果小圆环以角速度ω绕其任一方向的直径转动, 并设小圆环的电阻为R , 则任一时刻t 通过小圆环的磁通量Φm =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽; 小圆环中的感应电流i = ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.解:t r a It BS Φωμωcos π2cos 20m =≈tr aR I t ΦR R i ωωμεsin π2d d 120===P.10 4.如图, 通有电流I0的长直导线旁, 有一与其共面、且相距为d 的U 形导轨, 在导轨上有电阻为R 的金属棒AB,其长度为a , 以速度向右沿导轨平动, 不计一切摩擦, 则AB 棒上的感应电动势为; AB 棒所受安培力的大小为, 方向为⎽⎽⎽⎽⎽⎽⎽⎽.v r r I l B a d d d 2πd )(00i v v ⎰⎰+=⋅⨯=με d ad I +ln 2π00vμ⎰⨯=B l I F d ⎰++⋅=ad d r r I d a d I R F d π2ln 2π0000μμv 向左Ad R aBR vIR d a d I v 200ln 2π⎥⎦⎤⎢⎣⎡+μP.115.自感系数L =0.3H 的长直螺线管中通以I =8A 的电流时, 螺线管存储的磁场能量W m =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.解:221LI L =J6.983.0212=⨯⨯=6.将条形磁铁插入与冲击电流计串联的金属环中时,有q =2.0⨯10-5C 的电荷通过电流计. 若连接电流计的电路总电阻R =25Ω, 则穿过环的磁通量的变化∆Φm =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.解:m 1ΦR q ∆-=RqΦ=∆m Wb 105.04-⨯P.127.由半径为r 的两块圆板组成的平行板电容器,在放电时两板间的电场强度的大小为,式中E 0、RC t E E -=e 0R 、C 均为常数. 则两板间的位移电流的大小为⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽; 其方向与场强方向⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.解:S t Dt ΦI d d d d d D ==St Ed d 0ε=RCtr RC E --=e π200ε流向与电场方向相反P.13试判断下列结论是包含于或者等效于哪一个麦克斯韦方程式的,将你确定的方程式用代号填在相应结论后的空白处::(1) 变化的磁场一定伴随有电场: ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽;(2) 磁感应线是无头无尾的: ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽;(3) 电荷总伴随有电场: ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽.231⎰∑==⋅s n i q S D 0i d ⎰-=⋅L t Φl E d d d m⎰=⋅sS B 0d ⎰∑+=⋅=L ni tΦI l H d d d D0i 8.反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:(1)(2)(4)(3)P.14三、计算题解:rr I l B t l a t a d 2πsin d )(0cos cos i μθεθθ⎰⎰+++-=⋅⨯=v v v v θθθμcos cosln sin 2π0t a t l a I v v v +++-=A 端电势髙a a +lO r 1. 如图所示, 一长直导线中通有电流I ,有一垂直于导线、长度为l 的金属棒AB 在包含导线的平面内, 以恒定的速度沿与棒成θ角的方向移动. 开始时, 棒的A 端到导线的距离为a , 求任意时刻金属棒中的动生电动势, 并指出棒哪端的电势高.v I a lA BvθP.15直于磁场方向,如图所示.回路的CD 段为滑动导线,以匀速远离A 端运动,且始终保持回路为等边三角形.设滑动导线CD 到A 端的垂直距离为x ,且初始x =0.试求回路ACDA 中的感应电动势ε和时间t 的关系.(其中为常矢量)的均匀磁场中,回路平面垂t B B 0=0Bv 2.将等边三角形平面回路ACDA 放在磁感应强度为⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯v A C DB x 解:⎰⎰=⋅=S S S t B S B Φd d 0mtS B S t B S 00d ==⎰320203330tan t B tx B v =︒=220m3d d t B t Φv -=-=εP.16220200013330tan d d d )d(d t B x B S B S t t B S t B v =︒===⋅∂∂-=⎰⎰⎰ ε220233230tan 2)(tB x B CD B v v v =︒⋅=⋅⨯= ε22022022021333233t B t B t B v v v =+=+=∴εεε⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯v A C D B x 另解:P.173.无限长直导线通以电流.有一与之共面的矩形线圈,其长边与长直导线平行.已知长边为L ,两长边距离长直导分别为a 、b ,位置如图所示.求:(1) 矩形线圈内的感应电动势的大小和感应电动势的方向; (2) 导线与线圈的互感系数.)4exp(0t I I -= b L Ia解: 建立坐标系Oxx L x I x BL S B Φd π2d d d 0m μ==⋅= O x abILx L x I Φb a ln π2d π200m μμ⎰==tIa bLt Φd d ln π2d d 0m i ⋅-=-=μεP.18tI t I I I 404t -0e 4d d e --== t i a b LI 400e ln π2-=∴με方向:顺时针 bLIaabLI abLI I ΦM ln π2ln π200m μμ===tIa bLt I M t Φi d d ln π2d d d d 0m ⋅-=-=-=μεP.19r L l 1R 2R I I 4.由半径为R 1和R 2的的两个薄圆筒形导体组成一同轴电缆,中间填充磁导率为μ的均匀磁介质.电缆内层导体通电流I ,外层导体作为电流返回路径,如图所示.求长度为l 的一段电缆内的磁场储存的能量.解:选图示的安培环路,由介质中的环路定理⎰∑=⋅L I l H d 得:)(π221R r R r IH <<=r IH B π2μμ==磁能密度:222m π821r I BH w μ==体积元:rrl V d π2d =磁场能量:122m m ln π4d 21R R l I V w W R R μ==⎰。
第十二章-电磁感应电磁场(一)作业答案
一.选择题[ A ]1.(基础训练1)半径为a的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60︒时,线圈中已通过的电量与线圈面积及转动时间的关系是:(A)与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】[ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】dt dI LL -=ε,在每一段都是常量。
dtdI[ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω (B) =0,U a – U c =221l B ω- (C) =2l B ω,U a – U c =221l B ω (D) =2l B ω,U a – U c=221l B ω-【解析】金属框架绕ab 转动时,回路中0d d =Φt,所以0=ε。
2012c L a c b c bc b U U U U v B d l lBdl Bl εωω→→→⎛⎫-=-=-=-⨯⋅=-=- ⎪⎝⎭⎰⎰[ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。
当直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220ra a R Ir +-πμ (B)a r a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=εaIR q 21φφ-=感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为:∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daR Ir R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈[ C ]6.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. 【解析】自感系数为l r n V n L 222πμμ==,磁能为221LI W m =[ B ]7.(附录C3)在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示,B的大小以速率dB/dt 变化。
大学物理2课件:第12章变化的电磁场A
m
Bdscos
s
匀强磁场、平面线圈:m BS cos
(ii)求导: i
dm
dt
6
i
dm
dt
3.符号法则:
若i >0, 则i 的方向与原磁场的正方向组成
右手螺旋关系;
若i <0, 则i 的方向与原磁场的负方向组成
右手螺旋关系。
B
例如: m,
dm
dt
0,
i
dm
dt
0
i
7
4. 对N匝线圈,则
=Bosin t·Scos t
i
dm
dt
= -BoS cos2 t
14
例题1-4 长直电流I与ABC共面, AB=a, BC=b。(1)I=Iocos t(Io 和为常量) , ABC 不 动, 求: ABC=?
解
m
Bds
s
m=
xbo I ( x b r) a dr
x 2r
b
I
tg=a/b A
解 由m=BScos 得
m=µonI·ba2
a
b
I
B
i
dm
dt
ona2Io sint
Ii
i
R
1 R
ona2 Io
sint
如果b<a ,结果怎样?
11
例题1-3 平面线圈以在匀强 B中匀速转动时产生 的感应电动势。
解 对匀速转动的线圈:
m=BScos =BScos (t+o)
(1)矩形线圈(a×b),t=0时
1) 阻碍的意思是:
B Ii
B Ii
若m增加, 感应电
流Ii与原磁场B的反方向 成右手螺旋关系。
《电磁学第十二章》幻灯片课件
该点产生的场强的矢量合。 证明:
F
q
0
E
2. 单位:牛顿/库仑(N·C1);方向:检验电荷在该点的受力方向。 ◆电场强度与检验电荷无关,只与场源电荷和场点位置有关。 ◆检验电荷电量和线度要很小。
12
二. 点电荷的场强
E
F q0
1
4
0
qq0 q0r2
r0
1
4
0
q r2
r0
三.场叠加原理
§12.2电场 与电场强度
点电荷系:空间某点的场强为各个点电荷在
电磁学知识体系形成简史
静磁现象和静电现象很早就受到人 类注意。系统地对这些现象进行研究则 始于16世纪。1600年英国医生吉尔伯特 发表了《论磁、磁体和地球作为一个巨 大的磁体》。
有一天,您可以对它征税,大 人。
——法拉第在被财政大臣问到 电的实用价时的回答
吉尔伯特 英国 (1544-1603)
1
电磁学发 1600年吉尔伯特发表了《论磁、磁体和地球作为一个
电子与质子间的库仑力Fe与万有引力F引之比
Fe 1 e2 2.2 61309
F引 40Gmpme
11
电场是电荷周围存在的一种特殊物质。
电场E
q1
q2
§12.2电场 与电场强度
一.电场强度E:检验电荷q0的电量和q0在电场中
受力F的比值。是描写电场性质的物理量。
1. 定义:
E
F
2F
3F
q
q0 2q0 3q0
运动状态无关。
8
§12.1电荷 库仑定律
◆点电荷:当带电体本身的线度比所研究的问题中涉及的
距离小得多时,该带电体就可看着是一个带电的点。
变化电磁场的基本规律课件
雷达在军事、航空、气象等领域有广 泛应用,如导弹制导、飞机导航、气 象观测等。
医学成像
医学成像利用电磁波对人体的穿透和反射特性,实现对人体内部结构的无创检测。
常见的医学成像技术包括X射线、超声波、磁共振等,为医生提供诊断依据。
医学成像技术不断发展,提高成像质量和分辨率,为医疗诊断和治疗提供更准确的 信息。01限差分法 Nhomakorabea有限元法等。
02
分析了不同求解方法的适用范围和优缺点,以及求解过程中需
要注意的问题。
提供了几个典型的电磁场问题求解实例,包括静电场、恒定磁
03
场、时变电磁场等问题的求解过程和结果分析。
04
电磁波的传播
电磁波的传播方式
横波传播
电磁波的振动方向与传播方向垂 直,如光波、无线电波等。
纵波传播
电磁场的性质
总结词
电磁场具有波动性和粒子性,是一种横波,其传播速度等于光速。
详细描述
电磁场表现出波动性和粒子性两种性质。波动性表现为场量的振动和传播,而 粒子性则表现为传递力和能量的粒子。电磁场的传播速度与光速相同,证明了 光也是一种电磁波。
电磁场的分类
总结词
根据产生方式和表现形式,电磁场可分为静电场、恒定磁场、时变场和交变场等类型。
动态电磁场
当电荷或电流在空间中移 动或变化时,会产生动态 的电磁场。
交变电磁场
当电场或磁场随时间周期 性变化时,会产生交变的 电磁场。
变化的电磁场性质
电场和磁场相互依存
变化的电磁场中,电场和磁场是相互依存的,它们之间存在相互 作用。
传播速度
变化的电磁场以光速传播,这是电磁波传播的基本规律。
波动性质
电磁波的振动方向与传播方向平 行,如声波。
大学物理下——变化的电磁场
例12-3 长直电流I与直角ABC共面, AB=a, BC=b。 分三种情况求: ABC=? (1)I=I0cost (I0 和为常量) , ABC 不动。 tg=a/b 解 m s B dS BdS A
m=
x b
x
I a ( b x r ) dr 2r b
5
Michael Faraday,1791-1867 英国物理学家、化学家,自 学成才的典范。
6
2. 法拉第实验 Ii
Ii
I(t)
Ii
共同点: 当一个闭合回路面积上的磁通量发生变化时,回路中 便产生感应电动势(感应电流)。这就是电磁感应现象。
7
8
电磁感应现象:当穿过一个闭合导体回路磁通量发生 变化时,回路中就会产生感应电流的现象。 感 应 电 流:当穿过闭合导体回路的磁通量发生变 化时,回路中产生的电流。 感应电动势:当穿过导体回路的磁通量发生变化时, 回路中产生的电动势。 产生感应电流的条件: 穿过一闭合导体回路的磁通量发生变化。
随导体向右的速度; V u 沿导体向下的u
f
b
++
B
u
V
-- f 电子所受洛伦兹力也分为两部分: F a 与v相应的部分: f q B 方向:向下
与u相应的部分:
f qu B
方向:向左
F f f
合力与合速度垂直,洛伦兹力不做功。
F q B
在a端出现负电荷,b端出现正电荷。
当电场力与洛沦兹力相等时,导体两端的电 荷分布保持稳定,导体ab相当于一个电源。
F
fe
++
大学物理第十二章 习题答案
第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。
解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。
因而应填“不会”;“通过线圈的磁通量没有发生变化”。
12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。
解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。
12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。
解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。
所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。
图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。
选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。
高二物理竞赛课件:变化的电磁场
(2)线圈L2产生感应电动势
令
互感系数
同理 可证
(略)
2. 例 已知两线圈半径,求互感 (1)设电流
圆线圈 (2)求磁通
(3)用公式
二.自感 1.现象
开关电路
2.规律
(1)电磁感应
(2)自感电动势 类比互感
令
自感系数
当 线圈形状不变
(计算用) (测量用)
变化的电磁场
第六章 变化的电磁场 第一节 电磁感应定律
一.两类现象 1.线圈不动,磁场变化 2.磁场不变,线圈运动
二. 法拉第电磁感应定律
三. 楞次定律 “效果”阻止“原因”
感应电流的磁通量 原磁通量的变化 右手螺旋法则
四. 法拉第电磁感应定律应用
当电流变化
,线框上感应电动势?
第二节 电路中的电磁感应
矿石 炼制特电流的机械效应
通过某闭合回路的磁通量变化,回路产生(E或I)
导体
涡电流
质点系角动量 1、质点角动量
2、推广多质点
对定点 对同一点
质点系角动量定理 质点系力矩矢量和
任一对内力的力矩和 内力矩之和等于0
天津理工大学 恒定磁场 变化的电磁场 大学物理
28
考虑把一根磁棒的N极插入一线圈或从线圈中拔出
N
v
N
磁棒插入,磁力线方向向左, 可看出磁棒插入过程中穿过线圈 的向左的磁通量增加。根据右手 定则可知这时感应电流所激发的 磁场方向向右,其作用相当于阻 止线圈中磁通量的增加。 磁棒N极从线圈中拔出, 穿过线圈向左的磁通量N减少, 因此这时感应电流所激发的磁 场方向向左,其作用相当于阻 止磁通量的减少。 29
9
电势能
Wab Aab q0 E d l
a
b
在电场中把一个试验电荷q0从a点移到b点,它的电势 能的减少Wab定义为在此过程中静电场力对它所作的功Aab
b Wab Aab U ab E dl a q0 q0
电势差
a、b两点间的电势差定义为从a到b移动单位正电荷 时电场力所作的功。或者说,单位正电荷的电势能差。
法拉弟
19
电磁感应现象
当穿过一个闭合导 体回路所包围的面 积内的磁通量发生 变化时,在导体回 路中就会产生感应 电流,这种现象称 为电磁感应现象。
G
1、
A
K
K闭合和打开瞬间,电流计指针偏转.
20
2、
a
b a b左右滑动时,电流计指针偏转。
3、
G
由于线圈中插入铁芯后,线圈中 的感应电流大大增加,这说明感应电流 的产生是因为磁感应强度的变化。 21
11
磁通量 通过磁场中某一曲面的磁力线数叫做通过此曲面的磁通量, 用m表示。 在曲面上任取一面元ds,此面元ds所在处的B与单位法 线n之间的夹角是,那么通过此面元的磁通量为
dm Bdscos
n
ds
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
§12-1 电磁感应的基本定律
Ii
Ii
I(t)
Ii
共路中的磁通量随时间变化而在回路中出现 电流的现象称为电磁感应现象。
解: m
Bdscos
s
m=
xbo I ( x b r) a dr
x 2r
b
I
A tg=a/b
dr a
oIa [( x b)ln x b b]
2b
x
i
dm
dt
r
x
Bb C
ds
oaIo sint[( x b)ln x b b]
2b
x
17
m
o Ia 2b
[( x
b)ln
x
x
b
18
m
o Ia 2b
[( x
b)ln
x
x
b
b]
(3) 若 I=Iocost,ABC以速度向右平移,求 AB边与长直导线相距x时, ABC=?
解: i
dm ,x(t),
dt
dx dt
I
A
a
i
oa 2b
ddIt [(x
b)ln
x
x
b
b]
x
B
I d [(x b)ln x b b]
dt
x
14
例1-3 平面线圈以在匀强 B中匀速转动时产生
的感应电动势。
解: 对匀速转动的线圈:
m=BScos =BScos (t+o)
(1) 矩形线圈(a×b),t=0时
B平行于线圈平面。
a
m=Babcos
(
t
+
2
)
i
N
dm
dt
=Bab
sin(
t
+
2
)
=Bab cos t
B
b
15
(2) bcd(bcd=60º, bc=cd=a)绕oo´轴转动,转速每
螺旋关系,即顺时针方向。
13
例1-2 长直螺线管(半径a,n),I=Iocos t (Io、 为常量)。求同轴的圆线圈(半径b、电阻R) 中i和Ii。
解: 由m=BScos 得:
a
m=µonI·ab2
b
I
B
i
N
dm
dt
ona2Io sint
Ii
i
R
1 R
ona2Io sint
如果b<a,结果怎样?
阻碍的意思是:
B Ii
B Ii
若m增加, 感应电
流Ii与原磁场B的反方向 成右手螺旋关系。
若m减少, 感应电
流Ii与原磁场B的正方向 成右手螺旋关系。
5
企图 感应电流总是企图用它产生的磁通,去阻碍原磁 通的改变,但又无法阻止原磁通的变化,因而感应电 流还是不断地产生。
楞次定律是能量守恒定律的必然结果。
分电动势的代数和。
若 i 0 , 但回路中各段的 i不一定都为零。
7
4. 若回路线圈有面积相同的N 匝,则
i
N
dm
dt
=Nm为线圈的磁通链。上式意义:N匝线圈的
感应电动势等于该线圈的磁通链对时间的一阶导数。
5. 若闭合回路的总电阻为R,则回路中的感应电流
Ii
i
R
1 R
dm
dt
8
对闭合导体回路, 感应电动势的方向和感应 电流的方向是相同的。
第12章
变化的电磁场
Electromagnatic field changed
1
1819年奥斯特实验发现了电流的磁效应。电流既 然能够产生磁场,那能否利用磁场来产生电流呢?
从1822年起,法拉第开始对此进行有目的的实验 研究。在1831年取得突破性进展,发现了电磁感应现 象及其基本规律。
电磁感应现象的发现,不仅深刻地揭示了电和磁 之间的内在联系,推动了电磁理论的发展,且在生产 技术上具有划时代的意义。
分钟n转, t=0时如图,求导线bcd中的i。
解: 连接bd组成一个三 角形回路bcdb。
c B
m=BScos ( t+o)
ob
B 1 3 a a cost
22
n 2 n
60 30
d o´
i
dm
dt
1 120
3na 2B sin(n t)
30
16
例1-4 长直电流I与ABC共面,AB=a, BC=b。 (1) I=Iocos t(Io和为常量),ABC不动,求ABC=?
fm
按楞次定律,要想维持
fm
回路中电流,必须有外力不
断作功。
楞次定律能量守恒
“阻碍”改为“助长”违背能量守恒
6
二 . 法拉第电磁感应定律
回路中的感应电动势:
i
dm
dt
1. m 通过回路面积的磁通量;
负号“”是楞次定律的数学表示。
2. i 决定于m的瞬时变化率,与m无直接关系。
3. i 是回路中的总电动势,是指闭合回路中各部
(i) 首先计算磁通量(取正值):
m
Bds cos
s
匀强磁场、平面线圈:m BS cos
(ii)
求导: i
dm
dt
(iii) 用愣次定律判断感生电动势的方向。
11
符号法则:
i
dm
dt
若i >0,则i 的方向与原磁场的正方向组成右手
螺旋关系;
若i <0,则i 的方向与原磁场的负方向组成右手
螺旋关系。
例如:m,ddtm 0,
i
dm
dt
0
B
i
12
例1-1 圆线圈,m=8×10-5sin100t(wb),N=100
匝,求t=0.01s时感应电动势的大小和方向。
解:
i
N
dm
dt
i
=-0.8 cos100t
代入t=0.01,得
i =0.8 =2.51(v)
由于i >0, i 的方向与原磁场的正方向组成右手
I
i
只要回路的磁通量发生变化,这个回路中便一 定有感应电动势存在。
只有回路闭合,才有感应电流。
9
6. 设在t1和t2两个时刻,通过回路所围面积的
磁通量分别为1和2,则在t1→t2这段时间内,通
过回路任一截面的感应电量为
qi
t2
t1 Iidt
2 1
R1 dm
即
qi
1
2
R
10
法拉第电磁感应定律解题步骤:
bC
19
i
oa 2b
dI dt
[(
x
b)ln
x
x
b]
(2) 若 I为常量,ABC以速度向右平移,求AB
边与长直导线相距x时, ABC=?
解: i
dm
dt
,x(t),
dx dt
I
i
dm
dx
dx dt
dm
dx
oIa d [( x b)ln x b b]
2b dx
x
A
a dr
r
x
Bb C
ds
oIa (ln x b b )
2b
xx
3
可见:
m BS cos
A. 产生电磁感应现象的条件: dm 0
dt
B. 实现电磁感应的手段有两类:
1) B 不变,导体作切割磁力线运动;
(S, 随时间改变)
2) 导体回路不动,B 随时间变化。
下面研究感应电流的大小和方向。
4
一. 楞次定律
闭合导体回路中感应电流的方向,总是企图使它 自身产生的通过回路面积的磁通量,去阻碍原磁通量 的改变。