圆周运动辅导班讲义

合集下载

圆周运动(3)教案讲义一对一专用

圆周运动(3)教案讲义一对一专用

一对一个性化辅导教案一对一个性化辅导教案学生 学校 培正中学年级 高一 次数 第2次 科目 物理教师日期时段1-3课题圆周运动(3)【知识回顾】1、物体做平抛运动,在它落地前的 1 s 内它的速度与水平方向夹角由 30°变成 60°,取 g =10m/s 2.求:(1)平抛运动的初速度 v 0; (2)平抛运动的时间; (3)平抛时的高度.【错题重做】1、如图是自行车传动装置的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为 A.πnr 1r 3r 2B.πnr 2r 3r 1C.2πnr 2r 3r 1D.2πnr 1r 3r 21.在水平面上转弯的摩托车,如图所示,向心力是( ) A .重力和支持力的合力 B .静摩擦力 C .滑动摩擦力D .重力、支持力、牵引力的合力新内容讲解提纲1、圆周运动中的运动参数2、离心运动与向心运动3、生活中的圆周运动 新内容讲解知识点1:圆周运动中的运动参数 线速度、角速度和周期的关系(1)线速度和周期的关系: v=_____ (2)角速度和周期的关系: ω=_____ (3)线速度和角速度的关系:v =_____【例题】1、(多选)质点做匀速圆周运动时,下列说法中正确的是( ) A .因为v =ωr ,所以线速度v 与轨道半径r 成正比 B .因为ω=vr ,所以角速度ω与轨道半径r 成反比 C .因为ω=2πn ,所以角速度ω与转速n 成正比. D .因为ω=2πT ,所以角速度ω与周期T 成反比.2、一质点做匀速圆周运动,其线速度大小为4 m/s ,转动周期为2 s ,则不正确的是( ) A .角速度为0.5 rad/s B .转速为0.5 r/s C .运动轨迹的半径为1.27 m D .频率为0.5 Hz 传动装置 三类传动装置对比同轴传动皮带传动齿轮传动装置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B两点分别是两个齿轮边缘上的点特点 角速度、周期相同 线速度大小相同 线速度大小相同 转动 方向相同相同相反规律线速度与半径成正比:v A v B =r R角速度与半径成反比:ωA ωB=rR .周期与半径成正比:T A T B=Rr角速度与半径成反比:ωAωB =r 2r 1.周期与半径成正比:T A T B =r 1r 2为A 、O 连线上的一点,R B =12R A ,R C =23R A ,当皮带轮匀速转动时,皮带与皮带轮之间不打滑,求A 、B 、C 三点的角速度之比、线速度之比、周期之比.2、如图所示,甲、乙、丙三个齿轮的半径分别为r 1、r 2、r 3.若甲齿轮的角速度为ω1,则丙齿轮的角速度为( )A.r 1ω1r 3B.r 3ω1r 1C.r 3ω1r 2D.r 1ω1r 23、两小球固定在一根长为L 的杆的两端,绕杆上的O 点做圆周运动,如图所示.当小球1的速度为v 1时,小球2的速度为v 2,则O 点到小球2的距离是 A.Lv 1v 1+v 2 B.Lv 2v 1+v 2. C.L (v 1+v 2)v 1 D.L (v 1+v 2)v 2向心加速度,向心力和线速度,角速度,周期的关系圆周运动是变速运动,变速运动必有加速度,匀速圆周运动的加速度指向圆心 向心加速度(1)定义:任何做匀速圆周运动的物体都具有的指向圆心的加速度. (2)大小①a n =v 2r ;②a n =ω2r .(3)方向:沿半径方向指向圆心,时刻与线速度方向垂直. (4)物理意义:描述线速度方向改变快慢的物理量判断对错1.匀速圆周运动的加速度的方向始终不变( ) 2.匀速圆周运动是匀变速曲线运动( )3.匀速圆周运动的加速度的大小不变( ) 4.根据a n =v 2r 知加速度a n 与半径r 成反比( ) 5.根据a n =ω2r 知加速度a n 与半径r 成正比( ) 6.任何做圆周运动的加速度都指向圆心( )【例题】2、(多选)关于向心加速度,以下说法中正确的是( ) A .向心加速度的方向始终与速度的方向垂直 B .向心加速度的方向保持不变 C .物体做匀速圆周运动时的加速度不变D .物体做匀速圆周运动时的加速度方向始终指向圆心对向心加速度的理解是本节的难点,要区分加速度和向心加速度两个概念.加速度是指合加速度,反映速度变化的快慢,在匀速圆周运动中,速度的大小不变,那么向心加速度等于合加速度,是反映速度方向变化快慢的物理量,向心加速度的大小不变,但方向时刻改变,是变化的加速度【例题】1、(多选)下列说法中,正确的是( )A .匀速圆周运动向心加速度大小不变,为匀变速曲线运动B .圆周运动是变速运动,其加速度方向总是指向圆心C .向心加速度是描述线速度方向变化快慢的物理量D .向心加速度总是跟速度的方向垂直,方向时刻在改变对向心加速度公式的理解与应用 1.公式a n =v 2r该公式表明,对于匀速圆周运动,当线速度一定时,向心加速度的大小与运动半径成反比;当半径一定时,向心加速度的大小与线速度的平方成正比.该公式常用于分析涉及线速度的圆周运动问题或有两个物体做圆周运动且它们的线速度大小相同的情景. 2.公式a n =ω2r该公式表明,对于匀速圆周运动,当角速度一定时,向心加速度的大小与运动半径成正比;当半径一定时,向心加速度的大小与角速度的平方成正比.该公式常用于分析涉及角速度的圆周运动问题或有两个物体做圆周运动且它们的角速度相同的情景. 3.公式拓展在以上两个公式的基础上,结合描述匀速圆周运动的各物理量之间的关系,可得到以下公式:a n =ωv =4π2T 2r =4π2n 2r .【例题】1、如图所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑动,大轮的半径是小轮的2倍,大轮上的一点S与转动轴O间的距离是大轮半径的13,当大轮边缘上P点的向心加速度大小是12 m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度分别为多大?2、(多选)一小球被细绳拴着,在水平面内做半径为R的匀速圆周运动,向心加速度为a n,那么()A.角速度ω=a nR B.时间t内通过的路程s=t a n RC.周期T=Ra n D.时间t内可能发生的最大位移为2R3、(向心加速度与皮带传动结合)如图所示,A、B两轮绕轴O转动.A和C两轮用皮带传动,A、B、C三轮的半径之比为2∶3∶3,a、b、c为三个轮边缘上的点.求a、b、c三点的向心加速度之比.4、自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图所示,当自行车悬空,大齿轮B带动后轮匀速转动时,A、B、C三轮边缘的向心加速度的大小之比a A∶a B∶a C等于()A1∶1∶8B.4∶1∶4C.4∶1∶32.D.1∶2∶45、(多选)一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方L2处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则() A.小球的角速度突然增大B .小球的线速度突然减小到零C .小球的向心加速度突然增大D .小球的向心加速度不变 向心力 (1)向心力①定义:做匀速圆周运动的物体产生向心加速度的原因是它受到了指向圆心的合力,这个力叫做向心力.②方向:始终沿着半径指向圆心. ③表达式a .F n =m v 2r . b .F n =mω2r .④效果力:向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力【例题】1、如图所示,有一个水平大圆盘绕过圆心的竖直轴匀速转动,某人站在距圆心为r 处的P 点随圆盘共同运动,下列关于人的受力的说法中正确的是( )A .人在P 点相对圆盘静止,因此不受摩擦力作用B .人随圆盘做匀速圆周运动,其重力和支持力充当向心力C .人随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力.D .若使圆盘以较小的转速转动时,人在P 点受到的摩擦力不变2、如图所示,把一个小球放在玻璃漏斗中,晃动漏斗,可以使小球沿光滑的漏斗壁在某一水平面内做匀速圆周运动.此时小球所受到的力有( )A .重力、支持力B .重力、支持力、向心力C .重力、支持力、离心力D .重力、支持力、向心力、沿漏斗壁的下滑力3、汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须( )A .减为原来的1/2倍B .减为原来的1/4倍C .增为原来的2倍D . 增为原来的4倍4、长为L 的细线,一端拴一质量为m 的小球(可看做质点),另一端固定于O 点,让小球在水平面内做匀速圆周运动,如图所示,当细线与竖直方向的夹角为α时,求:(1)细线的拉力F.(2)小球运动的线速度的大小.(3)小球运动的角速度及周期【学生出题】【三步一回头】竖直面内的圆周运动轻绳模型轻杆模型情景图示弹力特征弹力可能向下,也可能等于零弹力可能向下,可能向上,也可能等于零受力示意图力学方程mg+F T=m v2r mg±F N=mv2r临界特征F T=0,即mg=mv2r,得v=grv=0,即F向=0,此时F N=mgv=gr 的意义物体能否过最高点的临界点F N表现为拉力还是支持力的临界点【例题】1、一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小2、如图所示,一条不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0 kg的小球。

圆周运动讲义

圆周运动讲义

第3讲 圆周运动一、匀速圆周运动及描述 1.匀速圆周运动(1)定义:做圆周运动的物体,若在任意相等的时间内通过的圆弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心. 2.运动参量自测 (多选)一质点做匀速圆周运动,其线速度大小为4 m/s ,转动周期为2 s ,则( ) A .角速度为0.5 rad/s B .转速为0.5 r/s C .轨迹半径为4π m D .加速度大小为4π m/s 2二、匀速圆周运动的向心力 1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.大小F n =m v 2r =mrω2=m 4π2T2r =mωv =4π2mf 2r .3.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.判断正误 (1)物体做匀速圆周运动时,因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力.( )(2)物体做匀速圆周运动时,因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小.( ) (3)物体做匀速圆周运动时,向心力由物体所受的合外力提供.( ) 三、离心运动和近心运动1.离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动. 2.受力特点(如图1)(1)当F =0时,物体沿切线方向飞出; (2)当0<F <mrω2时,物体逐渐远离圆心;(3)当F >mrω2时,物体逐渐向圆心靠近,做近心运动.3.本质:离心运动的本质并不是受到离心力的作用,而是提供的力小于做匀速圆周运动需要的向心力.1.对公式v =ωr 的理解当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 3.常见的传动方式及特点(1)皮带传动:如图2甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图3甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴转动:如图4甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA =ωB ,由v =ωr 知v 与r 成正比.例1 (多选)(2019·福建漳州市第二次教学质量监测)明代出版的《天工开物》一书中记载:“其湖池不流水,或以牛力转盘,或聚数人踏转.”并附有牛力齿轮翻车的图画如图5所示,翻车通过齿轮传动,将湖水翻入农田.已知A 、B 齿轮啮合且齿轮之间不打滑,B 、C 齿轮同轴,若A 、B 、C 三齿轮半径的大小关系为r A >r B >r C ,则( )A .齿轮A 、B 的角速度相等B .齿轮A 的角速度比齿轮C 的角速度小 C .齿轮B 、C 的角速度相等D .齿轮A 边缘的线速度比齿轮C 边缘的线速度小变式1 (多选)如图6所示,有一皮带传动装置,A 、B 、C 三点到各自转轴的距离分别为R A 、R B 、R C ,已知R B =R C =R A2,若在传动过程中,皮带不打滑.则( )A .A 点与C 点的角速度大小相等B .A 点与C 点的线速度大小相等C .B 点与C 点的角速度大小之比为2∶1D .B 点与C 点的向心加速度大小之比为1∶41.向心力来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型运动模型向心力的来源图示飞机水平转弯火车转弯圆锥摆飞车走壁汽车在水平路面转弯水平转台(光滑)3.分析思路例2(多选)(2019·安徽合肥市第二次质检)如图7所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是()A.车受到地面的支持力方向与车所在平面平行B.转弯时车不发生侧滑的最大速度为μgRC.转弯时车与地面间的静摩擦力一定为μMgD.转弯速度越大,车所在平面与地面的夹角越小变式2如图8所示,长度不同的两根轻绳L 1与L2,一端分别连接质量为m1和m2的两个小球,另一端悬于天花板上的同一点O,两小球质量之比m1∶m2=1∶2,两小球在同一水平面内做匀速圆周运动,绳L1、L2与竖直方向的夹角分别为30°与60°,下列说法中正确的是()A.绳L1、L2的拉力大小之比为1∶3B.小球m1、m2运动的向心力大小之比为1∶6C.小球m1、m2运动的向心加速度大小之比为1∶6D.小球m1、m2运动的线速度大小之比为1∶2例3(多选)(2019·天津市南开区下学期二模)飞机飞行时除受到发动机的推力和空气阻力外,还受到重力和机翼的升力,机翼的升力垂直于机翼所在平面向上,当飞机在空中盘旋时机翼倾斜(如图9所示),以保证重力和机翼升力的合力提供向心力.设飞机以速率v在水平面内做半径为R的匀速圆周运动时机翼与水平面成θ角,飞行周期为T.则下列说法正确的是()A.若飞行速率v不变,θ增大,则半径R增大B.若飞行速率v不变,θ增大,则周期T增大C.若θ不变,飞行速率v增大,则半径R增大D.若飞行速率v增大,θ增大,则周期T可能不变拓展点实验:探究影响向心力大小的因素例4(2019·福建泉州市5月第二次质检)某同学做验证向心力与线速度关系的实验.装置如图10所示,一轻质细线上端固定在力传感器上,下端悬挂一小钢球.钢球静止时刚好位于光电门中央.主要实验步骤如下:①用游标卡尺测出钢球直径d;②将钢球悬挂静止不动,此时力传感器示数为F1,用米尺量出线长L;③将钢球拉到适当的高度处静止释放,光电门计时器测出钢球的遮光时间为t,力传感器示数的最大值为F2;已知当地的重力加速度大小为g,请用上述测得的物理量表示:(1)钢球经过光电门时的线速度表达式v=________,向心力表达式F向=m v2 R=________;(2)钢球经过光电门时所受合力的表达式F合=________;(3)若在实验误差允许的范围内F向=F合,则验证了向心力与线速度的关系.该实验可能的误差有:________________________________________________________________________.(写出一条即可)1.运动特点(1)竖直面内的圆周运动一般是变速圆周运动.(2)只有重力做功的竖直面内的变速圆周运动机械能守恒.(3)竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题,要注意物体运动到圆周的最高点的速度.(4)一般情况下,竖直面内的圆周运动问题只涉及最高点和最低点的两种情形.2.常见模型物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F弹=mv2R mg±F弹=mv2R临界特征F弹=0mg=mv min2R即v min=gRv=0即F向=0F弹=mg过最高点的条件在最高点的速度v≥gR v≥0模型归纳轻绳模型轻杆模型例5(2019·福建龙岩市期末质量检查)如图11甲所示,轻绳一端固定在O点,另一端固定一小球(可看成质点),让小球在竖直平面内做圆周运动.改变小球通过最高点时的速度大小v,测得相应的轻绳弹力大小F,得到F-v2图象如图乙所示,已知图线的延长线与纵轴交点坐标为(0,-b),斜率为k.不计空气阻力,重力加速度为g,则下列说法正确的是()A.该小球的质量为bgB.小球运动的轨迹半径为bkgC.图线与横轴的交点表示小球所受的合外力为零D.当v2=a时,小球的向心加速度为g模型2球—杆模型例6(2020·四川绵阳市诊断)如图12所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力.忽略空气阻力,重力加速度为g,则球B在最高点时()A.球B的速度为零B.球A的速度大小为2gLC.水平转轴对杆的作用力为1.5mg D.水平转轴对杆的作用力为2.5mg变式3一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图13所示,重力加速度为g,则下列说法正确的是()A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小模型3凹形桥与拱形桥模型概述当汽车通过凹形桥的最低点时,向心力F向=F N-mg=mv2r规律桥对车的支持力F N=mg+mv2r>mg,汽车处于超重状态概述当汽车通过拱形桥的最高点时,向心力F向=mg-F N=mv2r规律桥对车的支持力F N=mg-mv2r<mg,汽车处于失重状态.若v=gr,则F N=0,汽车将脱离桥面做平抛运动例7相等,汽车通过拱形桥桥顶时,对桥面的压力大小F N1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力大小为F N2,则F N1与F N2之比为()A.3∶1 B.3∶2 C.1∶3 D.1∶21.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=m v2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.例8(多选)如图14所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大变式4(多选)质量为m的小球由轻绳a和b分别系于一轻质细杆的A点和B点,如图15所示,绳a与水平方向成θ角,绳b在水平方向且长为l,当轻杆绕轴AB以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,重力加速度为g,则下列说法正确的是()A.a绳的张力不可能为零B.a绳的张力随角速度的增大而增大C.当角速度ω>gl tan θ,b绳将出现弹力D.若b绳突然被剪断,则a绳的弹力一定发生变化1.(2020·河北邢台市调研)如图1所示为公路自行车赛中运动员在水平路面上急转弯的情景,运动员在通过弯道时如果控制不当会发生侧滑而摔离正常比赛路线,将运动员与自行车看做一个整体,下列论述正确的是()A.运动员转弯所需向心力由地面对车轮的支持力与重力的合力提供B.运动员转弯所需向心力由地面对车轮的摩擦力提供C.发生侧滑是因为运动员受到的合力方向背离圆心D.发生侧滑是因为运动员受到的合力大于所需的向心力2.(多选)(2020·辽宁丹东市质检)在如图2所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的3.(多选)在修筑铁路时,弯道处的外轨会略高于内轨.如图3所示,当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度大小为v,重力加速度为g,两轨所在面的倾角为θ,则()A.该弯道的半径r=v2g tan θB.当火车质量改变时,规定的行驶速度大小不变C.当火车速率大于v时,内轨将受到轮缘的挤压D.当火车速率大于v时,外轨将受到轮缘的挤压4.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图4所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是() A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小5.(2019·辽宁沈阳市第一次质检)我国高铁技术发展迅猛,目前处于世界领先水平,已知某路段为一半径为5 600米的弯道,设计时速为216 km/h(此时车轮轮缘与轨道间无挤压),已知我国的高铁轨距约为1 400 mm,且角度较小时可近似认为tan θ=sin θ,重力加速度g等于10 m/s2,则此弯道内、外轨高度差应为()A.8 cm B.9 cm C.10 cm D.11 cm6.(多选)(2019·四川南充市第一次高考适应性考试)如图5所示,A、B两个物体放在水平旋转的圆盘上,A的质量是m,B的质量为2m,B离轴距离为R,A离轴距离为2R,在转盘转速增加的过程中,两物体始终相对盘静止,则()A.A与B的线速度大小之比为2∶1B.A与B的角速度之比为1∶1C.A与B的向心加速度大小之比为1∶1D.摩擦力对物体做正功7.(2019·四川遂宁市三诊)如图6所示,图(a)中甲汽车在水平路面上转弯行驶,图(b)中乙汽车在倾斜路面上转弯行驶.关于两辆汽车的受力情况,以下说法正确的是()A.两车都受到路面竖直向上的支持力作用B.两车都一定受平行路面指向弯道内侧的摩擦力C.甲车可能不受平行路面指向弯道内侧的摩擦力D.乙车可能受平行路面指向弯道外侧的摩擦力8.(多选)(2019·四川成都七中5月测试)天花板下悬挂的轻质光滑小圆环P可绕过悬挂点的竖直轴无摩擦地旋转.一根轻绳穿过P,两端分别连接质量为m1和m2的小球A、B(m1≠m2).设两球同时做如图7所示的圆锥摆运动,且在任意时刻两球均在同一水平面内,则()A.两球运动的周期相等B.两球的向心加速度大小相等C.球A、B到P的距离之比等于m2∶m1D.球A、B到P的距离之比等于m1∶m29.(2019·山东滨州市上学期期末)利用如图8实验装置可验证做匀速圆周运动的物体所受合外力与所需向心力的“供”“需”关系,启动小电动机带动小球做圆锥摆运动,不计一切阻力,移动水平圆盘,当盘与球恰好相切时关闭电动机,让球停止运动,悬线处于伸直状态.利用弹簧秤水平径向向外拉小球,使小球恰好离开圆盘且处于静止状态时,测出水平弹力的大小F.(1)为算出小球做匀速圆周运动时所需向心力,下列物理量还应该测出的有________.A.用秒表测出小球运动周期TB.用刻度尺测出小球做匀速圆周运动半径rC.用刻度尺测出小球到线的悬点的竖直高度hD.用天平测出小球质量m(2)小球做匀速圆周运动时,所受重力与线拉力的合力大小________弹簧秤测出F大小.(选填“大于”“等于”或“小于”)(3)当所测物理量满足________________关系式时,则做匀速圆周运动的物体所受合外力与所需向心力的“供”“需”平衡.10.(多选)如图9所示,置于竖直面内的光滑金属圆环半径为r,质量为m的带孔小球穿于环上,同时有一长为r的细绳一端系于圆环最高点,另一端系小球,当圆环以角速度ω(ω≠0)绕竖直直径转动时()A.细绳对小球的拉力可能为零B.细绳和金属圆环对小球的作用力大小可能相等C.细绳对小球拉力与小球的重力大小不可能相等D.当ω=2gr时,金属圆环对小球的作用力为零11.(2019·山东济南市上学期期末)如图10所示为固定在水平地面上的圆弧形容器,容器两端A、C在同一高度上,B为容器的最低点,圆弧上E、F两点也处在同一高度,容器的AB段粗糙,BC段光滑.一个可以看成质点的小球,从容器内的A点由静止释放后沿容器内壁运动到F以上、C点以下的H点(图中未画出)的过程中,则()A.小球运动到H点时加速度为零B.小球运动到E点时的向心加速度与运动到F点时大小相等C.小球运动到E点时的切向加速度与运动到F点时大小相等D.小球运动到E点时的切向加速度比运动到F点时的小12.(多选)摩擦传动是传动装置中的一个重要模型,如图11所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()图11A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度大小的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动。

高考物理 圆周运动讲义

高考物理 圆周运动讲义

2011高考物理圆周运动讲义温故自查1.线速度(1)物理意义:描述质点沿圆周运动的快慢.(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的方向.(3)大小:v=(s是t时间内通过的弧长).切线2.角速度(1)物理意义:描述质点绕圆心转动的快慢.(2)大小:ω=(rad/s),φ是连结质点和圆心的半径在t时间内转过的角度.3.周期T、频率f做圆周运动的物体运动一周所用的叫周期.做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.4.v、ω、f、T的关系时间考点精析描述圆周运动的物理量有线速度、角速度、周期、频率、向心加速度五个物理量,线速度描述质点沿圆周运动的快慢,角速度描述质点绕圆心转动的快慢,周期和频率表示质点做圆周运动的快慢,向心加速度描述线速度方向变化的快慢.其中T、f、ω三个量是密切相关的,任意一个量确定,其它两个量就是确定的,其关系为当T、f、ω一定时,线速度v还与r有关,r越大,v越大;r越小,v越小.向心加速度是按效果命名的,总是指向圆心,方向时刻在变化,是一个变加速度.当ω一定时,a与r成正比,当v一定时,a与r成反比,关系式为a==ω2r.注意对公式中v、r的理解,严格地说,v是相对圆心的速度,r是物体运动轨迹的曲率半径.温故自查匀速圆周运动的向心力,是按作用效果命名的,其动力学效果在于向心加速度,即只改变线速度方向,不会改变线速度的大小.表达式:对于做匀速圆周运动的物体其向心力应由其所受合外力提供,mω2r考点精析1.向心力的作用效果:产生向心加速度以不断改变物体的线速度方向,维持物体做圆周运动.2.向心力的来源向心力可以是重力、弹力、摩擦力等各种力,也可以是各力的合力或某力的分力,总之,只要达到维持物体做圆周运动效果的力,就是向心力.向心力是按力的作用效果来命名的.对各种情况下向心力的来源应明确.如:水平圆盘上跟随圆盘一起匀速转动的物体[如图(a)]和水平地面上匀速转弯的汽车,其摩擦力是向心力;圆锥摆[如图(b)]和以规定速度转弯的火车,向心力是重力与弹力的合力.3.圆周运动中向心力的分析(1)匀速圆周运动:物体做匀速圆周运动时受到的外力的合力就是向心力,向心力大小不变,方向始终与速度方向垂直且指向圆心,这是物体做匀速圆周运动的条件.(2)变速圆周运动:在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心.合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小.4.圆周运动中的动力学方程无论是匀速圆周运动,还是非匀速圆周运动,向心力和向心加速度关系仍符合牛顿第二定律即:温故自查1.定义做匀速圆周运动的物体,在合外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐圆心的运动,叫做离心运动.远离2.离心运动的应用和危害利用离心运动制成离心机械,如:离心干燥器、洗衣机的脱水筒等.汽车、火车转弯处,为防止离心运动造成的危害,一是限定汽车和火车的转弯速度不能太;二是把路面筑成外高内低的斜坡以向心力.大增大考点精析物体做离心运动的条件:(1)做圆周运动的物体,由于本身具有惯性,总是想沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动,如图中B情形所示.(2)当产生向心力的合外力消失,F=0,物体便沿所在位置的切线方向飞出去,如图中A所示.(3)当提供向心力的合外力不完全消失,而只是小于应当具有的向心力F′=mrω2,即合外力不足以提供所需的向心力的情况下,物体沿切线与圆周之间的一条曲线运动,如图中C 所示.命题规律同轴转动或皮带传动过程中,确定线速度、角速度、向心加速度之间的关系.[考例1]某种变速自行车,有六个飞轮和三个链轮,如图所示,链轮和飞轮的齿数如下表所示,前、后轮直径约为660mm,人骑该车行进速度为4m/s时,脚踩踏板做匀速圆周运动的角速度最小值约为()A.1.9rad/s B.3.8rad/sC.6.5rad/s D.7.1rad/s[解析]车行驶速度与前、后车轮边缘的线速度相等,故后轮边缘的线速度为4m/s,后轮的角速度飞轮与后轮为同轴装置,故飞轮的角速度ω1=ω=12rad/s,飞轮与链轮是用链条连接的,故链轮与飞轮线速度相同,所以ω1r1=ω2r2,r1,r2分别为飞轮和链轮的半径,因此周长L=NΔL=2πr,N为齿数,ΔL为两邻齿间的弧长,故r∝N,所以ω1N1=ω2N2.[答案] B[总结评述]皮带传动、齿轮传动装置,两轮边缘各点的线速度大小相等,根据v=ωr、a =v2/r即可讨论两轮的角速度和边缘的向心加速度的关系.在同一轮上,各点的角速度相同,根据v=ωr、a=ω2r即可讨论轮上各点的线速度和向心加速度的关系.如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r1、r2、r3.若甲轮的角速度为ω1,则丙轮的角速度为()[解析]对甲轮边缘的线速度v1=r1ω1对乙轮边缘的线速度v2=r2ω2对丙轮边缘的线速度v3=r3ω由各轮边缘的线速度相等得:r1ω1=r2ω2=r3ω3[答案] A命题规律物体在水平面内做匀速圆周运动,确定轨道平面,确定圆心位置,确定向心力的方向,根据牛顿运动定律,求向心力或向心加速度、线速度、角速度.[考例2]如图所示,质量M=0.64kg的物体置于可绕竖直轴匀速转动的平台上,M用细绳通过光滑的定滑轮与质量为m=0.3kg的物体相连.假定M与轴O的距离r=0.2m,与平台的最大静摩擦力为2N.为使m保持静止状态,水平转台做圆周运动的角速度ω应在什么范围?(g=10m/s2)[解析]m保持静止状态时,M做圆周运动的半径不变,M的向心力由绳的拉力和静摩擦力的合力提供,由于静摩擦力的大小、方向不定,所以存在临界问题.当ω最小时,M受到的最大静摩擦力的方向与拉力的方向相反,则有mg-F fm=代入数据得ω1=2.80rad/s当ω增大时,静摩擦力减小,当ω′=4.84rad/s时,静摩擦力为零.当ω继续增大时,M受到的静摩擦力方向反向,与拉力方向相同,静摩擦力与拉力的合力提供做圆周运动的向心力.当ω最大时有mg+F fm=Mωr代入数据得ω2=6.25rad/s因此ω的取值范围为2.80rad/s≤ω≤6.25rad/s[答案] 2.80rad/s≤ω≤6.25rad/s一个圆盘在水平面内匀速转动,角速度是4 rad/s.盘面上距圆盘中心0.10m的位置有一个质量为0.10kg的小物体能够随圆盘一起运动,如下图所示.(1)求物体做匀速圆周运动时所受向心力的大小.(2)关于物体的向心力,甲、乙两人有不同意见:甲认为该向心力等于圆盘对物体的静摩擦力,指向圆心;乙认为物体有向前运动的趋势, 摩擦力方向和相对运动趋势的方向相反,即向后,而不是和运动方向垂直,因此向心力不可能是静摩擦力.你的意见是什么?说明理由.[解析](1)根据牛顿第二运动定律得:F=mω2r=0.1×42×0.1N=0.16N.(2)甲的意见是正确的.静摩擦力的方向与物体相对接触面运动的趋势方向相反.设想一下,如果在运动过程中,转盘突然变得光滑了,物体将沿轨迹切线方向滑动,这就如同在光滑的水平面上,一根细绳一端固定在竖直立柱上,一端系一小球,让小球做匀速圆周运动,突然剪断细绳一端,小球将沿轨迹切线方向飞出.这说明物体在随转盘匀速转动的过程中,相对转盘有沿半径向外的运动趋势.[答案](1)0.16 N(2)同意甲的意见命题规律(1)根据物体在竖直平面内做圆周运动的临界条件,确定物体在最高点或最低点的速度大小或物体受力情况.(2)根据物体在竖直平面内做圆周运动的速度,由牛顿运动定律确定物体所受合力或物体所受的压力或拉力.[考例3]如图所示,LMPQ是光滑轨道,LM水平,长为5.0m,MPQ是一半径为R=1.6m 的半圆,QOM在同一竖直线上,在恒力F作用下,质量m=1kg的物体A由静止开始运动,当达到M时立即停止用力.欲使A刚好能通过Q点,则力F大小为多少?(取g=10m/s2)[解析]物体A经过Q点时,其受力情况如图所示.由牛顿第二定律得mg+F N=物体A刚好过Q点时有F N=0=4m/s对物体从L到Q全过程,由动能定理得Fx LM-2mgR=m v2解得F=8N.[答案]8N[总结评述](1)正确理解A物体“刚好能通过Q点”的含义是解决本题的关键.常用来表达临界状态的词语还有“恰好”“恰能”“至少”“至多”等,同学们在审题时必须高度注意.小球沿圆弧M→P→Q通过最高点Q时,应服从圆周运动的规律,即应从向心力与线速度的关系求解小球经过Q点的临界速度.(2)圆周运动常与机械能守恒定律、动能定理、电荷在磁场中的偏转等知识相联系,构成综合性较强的题目.如图所示的“S”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,固定在竖直平面内,轨道弯曲部分是由两个半径相等的半圆连接而成,圆半径比细管内径大得多,轨道底端与水平地面相切.弹射装置将一个小球(可视为质点)从a点水平弹射向b点并进入轨道,经过轨道后从P点水平抛出.已知小物体与地面ab段间的动摩擦因数μ=0.2,不计其他机械能损失,ab段长L=1.25m,圆的半径R=0.1m,小物体质量m=0.01kg,轨道质量为M=0.15kg,g=10m/s2.求:(1)若v0=5m/s,小物体从P点抛出后的水平射程;(2)若v0=5m/s,小物体经过轨道的最高点时管道对小物体作用力的大小和方向;(3)设小球进入轨道之前,轨道对地面的压力大小等于轨道自身的重力.当v0至少为多大时,可出现轨道对地面的瞬时压力为零.[解析](1)小物体运动到P点时的速度大小为v,对小物体由a点运动到P点过程应用动能定理得小物体自P点做平抛运动,设运动时间为t,水平射程为s,则:(2)设在轨道最高点时管道对小物体的作用力大小为F,取竖直向下为正方向F+mg=联立代入数据解得F=1.1N,方向竖直向下.(3)分析可知,要使小球以最小速度v0运动,且轨道对地面的压力为零,则小球的位置应该在“S”形轨道的中间位置,设此时速度为v1,解得:v0=5m/s.[答案](1)0.4 m(2)1.1N方向竖直向下(3)5m/s命题规律生活中的圆周运动随处可见,和分析一般圆周运动类似,对物体正确的受力分析,确定向心力、轨迹圆是求解的关键.[考例4]铁路转弯处的弯道半径r是由地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还取决于火车在弯道处的行驶速率.下面表格中是铁路设计人员技术手册中弯道半径r及与之对应的内外轨道的高度差h.(g取10m/s2)(1)根据表中数据,试导出h和r的关系表达式,并求出当r=440m时,h的设计值;(2)铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L=1435mm,结合表中数据,算出我国火车的转弯速率v(以km/h为单位,结果取整数).(设轨道倾角θ很小时,tanθ≈sinθ)[解析](1)分析表中数据可得,每组h与r的乘积都等于常数C=660×50×10-3m2=33m2,因此,hr=C,得h=当r=440m时,有h==0.075m=75mm(2)若转弯时,内外轨对车轮均没有侧向压力,火车的受力如图甲所示.由牛顿第二定律得mg tanθ=代入数据解得v≈15m/s=54km/h[答案](1)75mm(2)54km/h[总结评述]近几年,人们对交通运输的快捷提出了更高的要求,为了提高运输力,国家对铁路不断进行提速,这就要求铁路转弯处对应的速率也要提高,由题中表达式v=可知,提高速度可采用两种方法:(1)适当增加内外轨的高度差h;(2)适当增加轨道半径r.如图所示,医学上常用离心分离机加速血液的沉淀,其“下沉”的加速度可这样表示:而普通方法靠“重力沉淀”产生的加速度为a′式子中ρ0,ρ分别为液体密度和液体中固体颗粒的密度,r表示试管中心到转轴的距离,ω为转轴角速度,由以上信息回答:(1)当满足什么条件时,“离心沉淀”比“重力沉淀”快?(2)若距离r=0.2m,离心机转速度n=3000r/min,求a a′.[解析](1)比较两个加速度a和a′可知:只要rω2>g,即ω> 离心沉淀就比重力沉淀快.命题规律物体做圆周运动具有周期性,正确分析物体运动过程,确定物体运动的多解.[考例5]在半径为R的水平圆板中心轴正上方高为h处,水平抛出一小球,圆板匀速转动.当圆板半径OA与初速度方向一致时开始抛出小球,如图所示,要使球与圆板只碰一次,且落点为A,则小球的初速度v0为多大?圆板转动的角速度为多大?[解析]对做平抛运动的小球的运动情况分析可得在竖直方向:如图所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:(1)小球从圆弧轨道上释放时的高度H;(2)转筒转动的角速度ω.[解析](1)设小球离开轨道进入小孔的时间为t,则由平抛运动规律得ωt=2nπ(n=1,2,3…).命题规律根据物体受力分析和物体运动情况,确定物体做圆周运动时的角速度(或转速)大小范围.[考例6]如图所示,两绳系一个质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长L=2m,两绳都拉直时与轴夹角分别为30°和45°,问球的角速度在什么范围内,两绳始终张紧?[解析]两绳张紧时,小球受的力如图所示,当ω由0逐渐增大时,ω可能出现两个临界值.(1)BC恰好拉直,但F2仍然为零,设此时的角速度ω1,则有F x=F1sin30°=mωL sin30°,①F y=F1cos30°-mg=0, ②代入已知解①②得,ω1≈2.40rad/s.(2)AC由拉紧转为恰好拉直,但F1已为零,设此时的角速度为ω2,则有F x=F2sin45°=mωL sin30°,③F y=F2cos45°-mg=0, ④代入已知解③④得ω2≈3.16rad/s.可见,要使两绳始终张紧,ω必须满足2.4rad/s≤ω≤3.16rad/s.[答案] 2.4rad/s≤ω≤3.16rad/s如图所示,把一个质量m=1kg的物体通过两根等长的细绳与竖直杆上A、B两个固定点相连接,绳a、b长都是1 m,AB长度是1.6m,直杆和球旋转的角速度等于多少时,b绳上才有张力?[解析]已知a、b绳长均为1 m,即sinθ=0.6,θ=37°小球做圆周运动的轨道半径b绳被拉直但无张力时,小球所受的重力mg与a绳拉力F Ta的合力F为向心力,其受力分析如图所示,由图可知小球的向心力为F=mg tanθ根据牛顿第二定律得F=mg tanθ=mr·ω2解得直杆和球的角速度为=3.5rad/s.当直杆和球的角速度ω>3.5rad/s时,b中才有张力.[答案]ω>3.5rad/s命题规律考查识别图象、分析物体在各位置的运动状态等主要知识内容.[考例7]如图甲所示,在同一竖直平面内的两条正对着的相同半圆形的光滑轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动,今在最高点与最低点各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来,当轨道距离变化时,测得两点压力差与距离x的图象如图乙所示,g取10m/s2,不计空气阻力,求:(1)小球的质量为多少?(2)若小球在最低点B的速度为20m/s,为使小球能沿轨道运动,x的最大值为多少?[解析](1)设轨道半径为R,由机械能守恒定律:由图象可得:截距6mg=6,即m=0.1kg[答案](1)0.1kg(2)15m[总结评述]随着高考改革的深入,新高考更加突出对考生应用能力及创新能力的考查,本题就是构建了新的情景:将常见的竖直平面内的圆周变换成两正对着的相同半圆光滑轨道,同时将环内圆周运动和机械能综合,并结合了利用传感器所得的图象,考查了识别图象、分析小球在各位置的状态(特别是特殊点处,如最高点与最低点)等重要知识内容.在本题中既考查了中学阶段很重要的受力分析能力,又对圆周运动的相关知识进行考查,更重要的是考查了同学们在新情景下构建模型、从图象获取信息进行解题的能力.。

高一寒假辅导班必修二讲义5.7生活中圆周运动

高一寒假辅导班必修二讲义5.7生活中圆周运动

5.7生活中圆周运动一、生活中圆周运动:1、汽车在水平弯道上转弯时,受 、 、 作用, 向心力是由 提供。

2、火车转弯:转弯处要选择内外轨适当的 ,使转弯时所需的向心力完全由 和 来提供,这样 就不受轮缘的挤压了。

3、汽车过拱桥的问题:汽车过桥的最高点时对桥面的压力 ,汽车过桥的最低点时对桥面的压力4、航天器中的失重现象:当v= 时,航天员处于失重状态。

5、离心运动:做匀速圆周运动的物体,在所受合力 提供圆周运动的所需的向心力的情况下,就做逐渐 的运动,这种运动称作为离心运动。

6、离心运动的应用有离心运动的危害又有例1、铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ(图),弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于θan Rgt ,则( )A .内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压C .这时铁轨对火车的支持力等于mg/cosθD .这时铁轨对火车的支持力大于mg/cosθ【变式训练】如图所示,一小球套在光滑轻杆上,绕着竖直轴O O '匀速转动,下列关于小球的说法中正确的是( )A.小球受到重力、弹力和向心力B.小球受到重力和弹力C.小球受到重力、弹力的合力指向圆心D.小球受到重力、弹力的合力是恒力例2、物体做离心运动时,运动轨迹( )A .一定是直线B .一定是曲线C .可能是直线,也可能是曲线D .可能是圆二、几个重要圆周运动模型①轻绳系一小球在竖直平面内做圆周运动,最高点的最小速度。

②轻杆固定一小球在竖直平面内做圆周运动,最高点的最小速度。

③小球沿竖直平面内光滑圆环的内侧做圆周运动,最高点的最小速度。

④【例3住细绳的手为圆心在竖直平面内做圆周运动,则(不计空气阻力) ( )A .小球在最高点的向心加速度大于等于gB .小球通过最高点的线速度可能为零C .小球通过最高点的线速度最小为gRD .小球运动到最高点时比到最低点时人对绳拉力要小【变式训练】小球固定在轻直杆的一端,球随杆一起绕0在竖直平面内做圆周运动,己知杆长为L ,当小球运动到最高点时,以下说法中正确的是( )A .小球速度至少等于LgB .小球对杆的作用一定是压力;C .小球对杆的作用一定是拉力D .小球对杆的作用可能是压力,也可能是拉力.针对练习1.如图所示,汽车以一定的速度经过一个圆弧形桥面的顶点时,关于汽车的受力及汽车对桥面的压力情况,以下说法正确的是( )A.在竖直方向汽车受到三个力:重力、桥面的支持力和向心力B.在竖直方向汽车只受两个力:重力和桥面的支持力C.汽车对桥面的压力小于汽车的重力D.汽车对桥面的压力大于汽车的重力2.一质量为m的小物块沿半径为R的圆弧轨道下滑,滑到最低点时的速度为v,若小物块与轨道间的动摩擦因数为μ,则当小物块滑到最低点时所受到的摩擦力为()A.μmgB.μmv2/RC.μm(g+ v2/R)D.μm(g- v2/R)3.细杆的一端与小球相连,可绕过另一端的水平轴自由转动,先给小球一初速度,使它在竖直平面内做圆周运动。

圆周运动(5)教案讲义一对一专用

圆周运动(5)教案讲义一对一专用

一对一个性化辅导教案一对一个性化辅导教案学生学校培正中学年级高一次数第2次科目物理教师日期时段1-3课题圆周运动(5)【知识回顾】【错题重做】2、如图所示,质量为m的小球固定在长为L的细杆一端,绕细杆的另一端O在竖直面内做圆周运动,小球转到最高点A时,线速度大小为gL2,则()A.细杆受到mg2的拉力B.细杆受到mg2的压力C.细杆受到3mg2的拉力D.细杆受到3mg2的压力4、如图所示,杂技演员在表演“水流星”,用长为1.6 m轻绳的一端,系一个总质量为0.5 kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,若“水流星”通过最高点的速度为 4 m/s,g 取10 m/s2,则下列说法正确的是()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器的底部受到的压力均为零C.“水流星”通过最高点时处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5 N小结:绳子模型和杆模型的区别新内容讲解提纲1、竖直面内,水平面内的圆周运动2、离心运动与向心运动3、生活中的圆周运动新内容讲解知识点1:竖直面内,水平面内的圆周运动【例题】1、如图所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R,人体受重力为mg,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为( )A.0B.gRC.2gRD.3gR2、(多选)如图所示,长为L的轻杆一端固定一质量为m的小球,另一端有固定轴O,杆可在竖直平面内绕轴O无摩擦转动,已知小球通过最高点P时,速度的大小为v P=2gL,已知小球通过最低点Q时,速度的大小为v Q=6gL,则小球的运动情况为()A.小球到达圆周轨道的最高点P时受到轻杆向上的弹力B.小球到达圆周轨道的最低点Q时受到轻杆向上的弹力.C.小球到达圆周轨道的最高点P时不受轻杆的作用力D.若小球到达圆周轨道的最高点P速度增大,则在P点受到轻杆向下的弹力增大.3、半径为R的光滑半圆球固定在水平面上,顶部有一个小物体m,如图所示,今给它一个水平的初速度v0=gR,则物体将()A.沿球面下滑至M点B.先沿球面至某点N,再离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道运动D.立即离开半球做平抛运动4、某飞行员的质量为m,驾驶飞机在竖直面内以速度v做匀速圆周运动,圆的半径为R,在圆周的最高点和最低点比较,飞行员对坐椅的压力在最低点比最高点大(设飞行员始终垂直于坐椅的表面)()A.mgB. 2mgC.mg+mv2R D.2mv2R5、(多选)如图所示,一个固定在竖直平面上的光滑圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,下列说法中正确的是()A.小球通过管道最低点时,小球对管道的压力向下B.小球通过管道最低点时,小球对管道的压力向上C.小球通过管道最高点时,小球对管道的压力可能向上D.小球通过管道最高点时,小球对管道可能无压力6、如图是小型电动打夯机的结构示意图,电动机带动质量为m=50 kg的重锤(重锤可视为质点)绕转轴O匀速运动,重锤转动半径为R=0.5 m.电动机连同打夯机底座的质量为M=25 kg,重锤和转轴O之间连接杆的质量可以忽略不计,重力加速度g取10 m/s2.求:(1)重锤转动的角速度为多大时,才能使重锤通过最高点时打夯机底座刚好离开地面?(2)若重锤以上述的角速度转动,当打夯机的重锤通过最低位置时,打夯机对地面的压力为多大?水平面内圆周运动1/如图所示,两个质量相同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则下列说法正确的是( )A. 周期相同B. 线速度的大小相等C. 向心力的大小相等D. 向心加速度的大小相等2、图所示,把一个长为20cm,系数为360N/m的弹簧一端固定,作为圆心,弹簧的另一端连接一个质量为0.50kg的小球,当小球以360r/min的转速在光滑水平面上做匀速圆周运动时,弹簧的伸长应为()A. 5.2cmB. 53cmC. 5.0cmD. 5.4cm3、甲、乙两名溜冰运动员,M甲=80kg,M乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两人相距0.9m,弹簧秤的示数为9.2N,下列判断中正确的是A. 两人线速度相同,约为40m/sB. 两人的角速度相同,为6rad/sC. 两人的运动半径相同,都是0.45mD. 两人的运动半径不同,甲为0.3m,乙为0.6m.4、如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和小球B紧贴圆锥筒内壁分别在水平面内做匀速圆周运动,则下列说法中正确的是()A. A球的线速度必定小于B球的线速度B. A球的角速度必定大于B球的角速度C. A球运动的周期必定大于B球的周期D. A球对筒壁的压力必定大于B球对筒壁的压力5、有一种叫“飞椅”的游乐项目,示意图如图所示,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.【学生出题】【三步一回头】知识点2:生活中的圆周运动火车转弯问题1.火车车轮的特点火车的车轮有凸出的轮缘,火车在铁轨上运行时,车轮与铁轨有水平与竖直两个接触面,这种结构特点,主要是避免火车运行时脱轨,如图所示.2.向心力的来源分析火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tanθ.3.规定速度分析设内外轨间的距离为L,内外轨的高度差为h,火车转弯的半径为R,火车转弯的规定速度为v0,α为轨道所在平面与水平面的夹角,由如图所示的力的合成得到向心力为F合=mg tanα≈mg sinα=mghL,(α很小时,tanα≈sinα)由牛顿第二定律,得F合=mv20R,所以mg hL=mv20R,即火车转弯的规定速度v0=Rgh L4.轨道压力分析【例题】1、有一列重为100 t的火车,以72 km/h的速率匀速通过一个内外轨一样高的弯道,轨道半径为400 m.(g取10 m/s2)(1)试计算铁轨受到的侧压力大小;(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,试计算路基倾斜角度θ的正切值2、(火车转弯问题)当火车以速率v通过某弯道时,内、外轨道均不受侧向压力作用,此速率称为安全速率.下列说法正确的是()A.弯道半径R=v2 gB .若火车以大于v 的速率通过该弯道时,则外轨将受到侧向压力作用C .若火车以小于v 的速率通过该弯道时,则外轨将受到侧向压力作用D .当火车质量改变时,安全速率也将改变3、(多1、选)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定,若在某转弯处规定行驶速度为v ,则下列说法正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨4、铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则 A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C . 这时铁轨对火车的支持力等于mgcos θ D .这时铁轨对火车的支持力大于mgcos θ 汽车过拱形桥问题 1.过凸形桥顶(如图甲)(1)合力等于向心力:mg -F N =m v 2R ,F N <mg ,汽车处于失重状态,速度越大,支持力越小. (2)汽车安全过桥的条件:由mg -F N =m v 2R 知,当F N =0时,v =gR ,这时汽车会以该速度从桥顶做平抛运动.故汽车安全过桥的条件是在桥顶的速度v <gR .2.过凹形桥底(如图乙)合力等于向心力:F N -mg =m v 2R ,F N >mg ,汽车处于超重状态,速度越大,支持力越大 【例题】1、一辆质量为800 kg 的汽车在圆弧半径为50 m 的拱桥上行驶(g 取10 m/s 2). (1)若汽车到达桥顶时速度为v 1=5 m/s ,汽车对桥面的压力是多大? (2)汽车以多大速度经过桥顶时,恰好对桥面没有压力?2、如下图所示,质量m=2.0×104 kg的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为60 m,如果桥面承受的压力不超过3.0×105 N,则汽车允许的最大速率是多少?(g取10 m/s2)3、半径为R的光滑半圆球固定在水平面上(如图),顶部有一小物体A,现给它一个水平初速度v0=Rg,则物体将()A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道做圆周运动D.立即离开半圆球做平抛运动课堂小练1、在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R的在水平面内的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A.gRhL B.gRhd C.gRLh D.gRdh2、(多选)如图,质量为M的赛车,在比赛中要通过一段凹凸起伏的路面,若圆弧半径都是R,汽车的速率恒为v=gR,则下列说法正确的是()A.在凸起的圆弧路面的顶部,汽车对路面的压力为零B.在凹下的圆弧路面的底部,汽车对路面的压力为3MgC.在凸起的圆弧路面的顶部,汽车的向心力为0D.在凹下的圆弧路面的底部,汽车的向心力为Mg.3、一辆汽车匀速率通过一座圆弧形拱桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱桥桥顶时,对桥面的压力F1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为F2,求F1与F2之比知识点3:离心运动与向心运动对离心现象的理解(1)物体做离心运动的原因:提供向心力的外力突然消失,或者外力不能提供足够的向心力.注意:物体做离心运动并不是物体受到离心力作用,而是由于外力不能提供足够的向心力.所谓“离心力”实际上并不存在.(2)合外力与向心力的关系(如右图所示).①若F合=mrω2或F合=mv2r,物体做匀速圆周运动,即“提供”满足“需要”.②若F合>mrω2或F合>mv2r,物体做半径变小的近心运动,即“提供过度”,也就是“提供”大于“需要”.③若F合<mrω2或F合<mv2r,则外力不足以将物体拉回到原轨道上,而做离心运动,即“需要”大于“提供”或“提供不足”.④若F合=0,则物体做直线运动【例题】1、如图是摩托车比赛转弯时的情形,转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动,对于摩托车滑动的问题,下列论述正确的是()A.摩托车一直受到沿半径方向向外的离心力作用B.摩托车所受外力的合力小于所需的向心力C.摩托车将沿其线速度的方向沿直线滑去D.摩托车将沿其半径方向沿直线滑去2、(多选)(离心运动)如图,在匀速转动的洗衣机脱水桶内壁上,有一件湿衣服随圆桶一起转动而未滑动,则()A.衣服随脱水桶做圆周运动的向心力由衣服的重力提供B.水会从脱水桶甩出是因为水滴受到的向心力很大C.加快脱水桶转动角速度,衣服对桶壁的压力也增大D.加快脱水桶转动角速度,脱水效果会更好离心现象的三点注意(1)在离心现象中并不存在离心力,是外力不足以提供物体做圆周运动所需的向心力而引起的,是惯性的一种表现形式.(2)做离心运动的物体,并不是沿半径方向向外远离圆心.(3)物体的质量越大,速度越大(或角速度越大),半径越小时,圆周运动所需要的向心力越大,物体就越容易发生离心现象.【例题】1、如图所示,光滑水平面上,质量为m的小球在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化.下列关于小球运动情况的说法中正确的是A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动【学生课堂总结】巩固训练一、单选题1.两根长度不同的细线下面分别悬挂两个小球,细线上端固定在同一点,若两个小球以相同的角速度绕共同的竖直轴在水平面内做匀速圆周运动,则两个摆球在运动过程中,相对位置关系示意图正确的是图中的( )A .B .C .D . 2.如图为一个半圆形的固定硬杆AB ,一根绳子跨过B 端的定滑轮后,连接一个套在杆上的小环.小环在绳子的拉动下从靠近A 端开始沿着杆AB 运动到B 端,已知拉绳速度恒定为v ,则小环从A 到B 的运动情况是( )A .越来越快B .越来越慢C .先变快后变慢D .先变慢后变快3.太极球是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简化成如图所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A 、B 、C 、D 位置时球与板间无相对运动趋势.A 为圆周的最高点,C 为最低点,B 、D 与圆心O 等高且在B 、D 处板与水平面夹角为.设球的质量为m ,圆周的半径为R ,重力加速度为g ,不计拍的重力,若运动过程到最高点时拍与小球之间作用力恰为mg ,则A .圆周运动的周期为:22R T gπ= B .圆周运动的周期为:C .在B 、D 处球拍对球的作用力为2sin mg θD .在B 、D 处球拍对球的作用力为sin mg θ4.在水平面上有A 、B 两物体,通过一根跨过定滑轮的轻绳相连,现A 物体以v 1的速度向右匀速运动,当绳被拉成与水平面的夹角分别为α、β时(如图所示),B 物体的运动速度v B 为(绳始终有拉力)( )A .1sin sin v αβB .1cos sin v αβC .1sin cos v αβD .1cos cos v αβ 5.质量分别为 M 和 m 的两个小球,分别用长 2l 和 l 的轻绳拴在同一转轴上,当转轴稳定转动时,拴质量 为 M 和 m 小球的悬线与竖直方向夹角分别为α和β,如图所示,则( )A .cos cos 2βα= B .cos α=2cos β C .tan tan 2βα=D .tan α=tan β6.如图所示,一根细线下端栓一个金属小球P ,细线的上端固定在金属块Q 上,Q 放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动,现使小球在一个更高的水平面上做匀速圆周运动,而金属块Q 始终静止在桌面上的同一位置,则改变高度后与原来相比较,下面的判断中正确的是( )A .细线所受的拉力不变B .Q 受到桌面的静摩擦力变小C .小球P 运动的周期变大D .小球P 运动的线速度变大7.如图所示,一圆盘可以绕其竖直轴在水平面内运动,圆盘半径为R ,甲、乙两物体的质量分别为M 和m (M >m ),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用长为L 的轻绳连在一起,L <R 。

天津南开中学名师讲义(圆周运动)

天津南开中学名师讲义(圆周运动)

天津市南开中学名师讲义第三讲:曲线运动、万有引力专题1. 曲线运动这一章所研究的运动形式是自然界中普遍发一生的,但研究方法仍与直线运动的研究方法相同,即根据牛顿运动定律研究物体做曲线运动时力与运动的关系。

2. 分析平抛运动,主要是抓住水平方向的匀速直线运动和竖直方向的自由落体运动。

要注意对所学知识的变通和迁移的理解。

3. 匀速圆周运动,除了搞清线速度、角速度、周期和向心加速度的关系外,更重要的是要找到向心力的来源。

总的原则:做圆周运动的物体,在客观上,需要一个指向圆心的力即向心力,而此向心力是由物体所受的沿半径方向的合力来提供。

若主观提供的恰好等于客观需要的,则物体做圆周运动,否则将做近心或离心运动。

所以,分析圆周运动问题应把物体的受力分解到半径方向和沿切线方向。

4. 万有引力定律一章重点讲述万有引力定律的发现、发展过程和该定律的具体应用。

[例1] 标准排球场总长度是18m ,女排比赛网高2.24m ,在一场校际比赛中,女排队员甲在后排起跳强攻的位置刚好在距网3m 的正上方,然而她击球的速度(水平方向)无论多大,不是下网就是出界,试分析原因。

解析:当击球位置到球网水平距离恒定时,由平抛运动规律可知,排球被水平击出的初速度越大,越不容易触网。

但若速度过大,又会击球出界,显然为使球不触网,不出界,则0v 必须在一个范围内。

而题目所出现的情况,原因就在于击球点的高度不够。

设:该球员的击球点高度为h ,则必须满足 2)3(21)24.2(v g h ≥- 1024.245v h v =-≥为使击球不出界,应满足 gh v S 20≥ 即 5120h v ≥,20512v hv =≤ 由上述分析可知,出现不是下网就是出界的原因是 21v v >即hh 51224.245⋅>- ∴ 39.2<h (m ) [例2] 如图水平转盘可绕竖直轴OO ’旋转,盘上水平杆上穿着两个质量相等的小球A 和B ,现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连,已知两球与杆之间的最大静摩擦力都是m f 。

圆周运动(讲义)-【教育机构专用】高三物理寒假讲义

圆周运动(讲义)-【教育机构专用】高三物理寒假讲义

专题09 圆周运动(讲义)
一、核心知识
(一)匀速圆周运动和非匀速圆周运动
1.匀速圆周运动
(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动.
(2)性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动.
(3)质点做匀速圆周运动的条件
合力大小不变,方向始终与速度方向垂直且指向圆心.
2.非匀速圆周运动
(1)定义:线速度大小、方向均发生变化的圆周运动.
(2)合力的作用
①合力沿速度方向的分量F t产生切向加速度,F t=ma t,它只改变速度的大小.
②合力沿半径方向的分量F n产生向心加速度,F n=ma n,它只改变速度的方向.
(二)圆周运动各物理量间的关系
(三)圆周运动中的运动学分析
(1)对公式v =ωr 的理解
当r 一定时,v 与ω成正比;
当ω一定时,v 与r 成正比;
当v 一定时,ω与r 成反比.
(2)对a =v 2r
=ω2r =ωv 的理解 在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.
(3)常见的传动方式
①同轴传动:固定在一起共轴转动的物体上各点角速度大小相等,如图所示,ωA。

高中物理--圆周运动--最全讲义及典型习题及答案详解

高中物理--圆周运动--最全讲义及典型习题及答案详解

第三节圆周运动【知识清单】(一)匀速圆周运动的概念1、质点沿圆周运动,如果______________________________,这种运动叫做匀速圆周运动。

2、匀速圆周运动的各点速度不同,这是因为线速度的______时刻在改变。

(二)描述匀速圆周运动的物理量1、匀速圆周运动的线速度大小是指做圆周运动的物体通过的弧长与所用时间的比值。

方向沿着圆周在该点的切线方向。

2、匀速圆周运动的角速度是指做圆周运动的物体与圆心所连半径转过的角度跟所用时间的比值。

3、匀速圆周运动的周期是指____________________________所用的时间。

(三)线速度、角速度、周期1、线速度与角速度的关系是V=ωr ,角速度与周期的关系式是ω=2π/T。

2、质点以半径r=0.1m绕定点做匀速圆周运动,转速n=300r/min,则质点的角速度为_______rad/s,线速度为_______m/s。

3、钟表秒针的运动周期为_______s,频率为_______Hz,角速度为_______rad/s。

(四)向心力、相信加速度1、向心力是指质点做匀速圆周运动时,受到的总是沿着半径指向圆心的合力,是变力。

2、向心力的方向总是与物体运动的方向_______,只是改变速度的_______,不改变线速度的大小。

3、在匀速圆周运动中,向心加速度的_______不变,其方向总是指向_______,是时刻变化的,所以匀速圆周运动是一种变加速曲线运动。

4、向心加速度是由向心力产生的,在匀速圆周运动中,它只描述线速度方向变化的快慢。

5、向心力的表达式_______________。

向心加速度的表达式_______________。

6、向心力是按照效果命名的力,任何一个力或几个力的合力,只要它的作用效果是使物体产生_______,它就是物体所受的向心力。

7、火车拐弯时,如果在拐弯处内外轨的高度一样,则火车拐弯所需的向心力由轨道对火车的弹力来提供,如果在拐弯处外轨高于内轨,且据转弯半径和规定的速度,恰当选择内外轨的高度差,则火车所需的向心力完全由__________和________的合力来提供。

圆周运动辅导班讲义

圆周运动辅导班讲义

圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。

2、分类: ⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。

物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。

注意:这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量(1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。

(2)线速度(v ):①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。

②定义式:tsv =③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。

(3)角速度(ω,又称为圆频率):①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。

②大小:Ttπϕω2==(φ是t 时间内半径转过的圆心角)③单位:弧度每秒(rad/s )(4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。

(5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。

各物理量之间的关系:r t r v f T t rf Tr t s v ωθππθωππ==⇒⎪⎪⎭⎪⎪⎬⎫======2222计算时,采用国际单位制,角度的单位采用弧度制。

(6)圆周运动的向心加速度①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。

圆周运动讲义--精编

圆周运动讲义--精编

小结⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧====∅==⎩⎨⎧fTTrvTrvfTbtwasmcbtsvaba1;2;;2343::2/::;:121πωωπ、关系:)频率()周期(单位;)角速度(单位:矢量;)线速度(、描述快慢的物理量的弧长在相等的时间通过相等物体在圆周上运动、定义:匀速圆周运动【复习检测】1、分析下图中,A、B两点的线速度有什么关系?2、分析下列情况下,轮上各点的角速度有什么关系?3、皮带传动装置BArr21=,BCrr21=,求A、B、C三点的ω与v的大小关系?4、如图所示,质点P以O为圆心、r为半径作匀速圆周运动,周期为了T,当质点P经过图中位置A时,另一质量为m、初速度为零的质点Q受到沿OA方向的拉力F作用从静止开始在光滑水平面上作直线运动,为使P、Q在某时刻速度相同,拉力F必须满足条件______.A AB BBCO(1)如图1和图2所示,没有物体支撑的小球,注意:绳对小球只能产生沿绳收缩方向的拉力①临界条件:在最高点,绳子或轨道对小球没有力的做用:mg =m v 2Rv 临界=gR②能过最高点的条件:v ≥gR ,当v >gR 时,绳对球产生拉力,轨道对球产生压力.v <v 临界时,实际上球还没到最高点时就脱离了轨道)例1. 如右图所示,质量为0.1kg 的木桶内盛水0.4kg 后,用50cm 的绳子系桶,使它在竖直面内做圆周运动。

如果木桶在最高点和最低点时的速度大小分别为9m/s 和10m/s ,求木桶在最高点和最低点对绳的拉力和水对桶底的压力。

(g=10m/s 2)(2)如图3和图4所示,有物体支撑或光滑硬管中的小球,注意:杆对球既能产生拉力,也能对球产生支持力。

①当v =0时,F N =mg (F N 为支持力).②当0<v <gR 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =gR 时,F N =0.④当v >gR 时,F N 为拉力,F N 随v 的增大而增大.例2.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g (R +r )B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 (3)如图5,小物体在竖直平面内的外轨道,做圆周运动。

(完整版)圆周运动讲义

(完整版)圆周运动讲义

圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。

匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。

2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s 和所以时间t 的比值叫做线速度 ③大小:v =s/t ,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。

实际上就是该点的瞬时速度。

3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。

③大小:=/t ,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。

4.周期T 、频率f 和转速n①周期T :在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。

在国际单位制中,单位是秒(s )。

匀速圆周运动是一种周期性的运动。

②频率f :每秒钟完成圆周运动的转数。

在国际单位制中,单位是赫兹(Hz )。

③转速n:单位时间内做匀速圆周运动的物体转过的转数。

在国际单位制中,单位是转/秒(n/s). 匀速圆周运动的T 、f 和n 均不变。

5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系: ②线速度和周期的关系: ③角速度和周期的关系: ④周期和频率之间的关系: 6。

描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。

向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。

做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。

(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224T r m r m r v m F πω=== 其中r 为圆运动半径。

高中物理必修二专题03 圆周运动的描述——学生版辅导讲义

高中物理必修二专题03  圆周运动的描述——学生版辅导讲义

专题3 圆周运动的描述(教师版)一、目标要求二、知识点解析1.圆周运动和匀速圆周运动(1)圆周运动:如果物体运动的轨迹是圆,物体做的就是圆周运动.(2)匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”.说明:物体做匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动.2.线速度和角速度(1)线速度:①线速度就是速度.注:线速度的大小用物体通过的弧长与所用时间的比值来度量:svt=,当所取的时间间隔很小时,这样得到的就是瞬时速度.①大小:2πs rvt T==单位为:m/s.①方向:某点线速度的方向即为该点的切线方向.(与半径垂直)①物理意义:从长度方面描述圆周运动的快慢.注:对于匀速圆周运动,在任意相等时间内通过的弧长都相等,即线速度大小不变,但方向时刻改变.(2)角速度:①定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度ϕ跟所用时间t的比值,就是质点运动的角速度.①大小:2πt Tϕω==单位:rad/s.①物理意义:从角度方面描述圆周运动的快慢.注:对于匀速圆周运动,角速度大小不变.3.周期、频率、转速(1)周期:做匀速圆周运动的物体,转过一周所用的时间叫做周期.用T表示,单位s.⑵频率:做匀速圆周运动的物体在1 s内转的圈数叫做频率.用f表示,其单位为:转/秒(或赫兹),符号为r/s(或Hz).⑶转速:工程技术中常用转速来描述转动物体上质点做圆周运动的快慢.转速是指物体单位时间所转过的圈数,常用符号n表示,转速的单位为转/秒,符号是r/s,或转/分(r/min).4.匀速圆周运动中线速度、角速度、周期、频率的关系5.三种传动方式(1)同轴传动:如图所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB.(2)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A=v B.(3)齿轮传动:如图所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即:v A=v B.6.匀速圆周运动中的加速度匀速圆周运动的速度方向不断改变,一定是变速运动,必定有加速度;匀速圆周运动的加速度总是指向圆心,所以其方向不断变化.(1)匀速圆周运动的向心加速度及推导如图所示,设质点沿半径为r 的圆周做匀速圆周运动,在某时刻位于A 点,速度为v A ,经过很短的时间∆t ,运动到B 点,速度为v B ,把速度矢量v A 和v B 的始端移至一点,求出速度矢量的改变量,如乙图所示.①向心加速度的方向:比值∆∆vt是质点在∆t 时间内的平均加速度,方向与∆v 的方向相同,当∆t 足够短,或者说∆t 趋近于零时,∆∆vt就表示质点在A 点的瞬时加速度,在图乙所示的矢量三角形中,v A 和v B 的大小相等,当∆t 趋近于零时,θ∆也趋近于零,∆v 的方向趋近于跟v A 垂直而指向圆心.②向心加速度的大小:做匀速圆周运动的质点在任一点的瞬时加速度方向都沿半径指向圆心.甲图中三角形ABO 与乙图中的矢量三角形是相似三角形,用v 表示A v 和B v 的大小,用∆l 表示弦AB 的长度,则有:∆∆=v l v r 或∆=∆v v l r ,用上式除以∆t 得∆∆=⋅∆∆v l v t t r .当∆t 趋近于零时,∆∆v t表示向心加速度a 的大小,∆∆lt 表示线速度的大小v ,于是得到2=v a r.综上所述,对向心加速度做个总结:定义:做匀速圆周运动的物体,加速度指向圆心,这个加速度称为向心加速度. 大小:222222224π4π4πn v r a r n r f r v r Tωω======.方向:总是沿着圆周运动的半径指向圆心.(即方向始终与运动方向垂直,方向时刻改变,所以圆周运动一定是变加速曲线运动.)t 图甲图乙物理意义:描述线速度方向改变的快慢.一般用符号a n表示向心加速度.(2)对向心加速度的理解①根据题目中所给的条件,应灵活选取a n的表达式.例:若已知或要求量为v,则选a n=2vr,若已知或要求量为ω,则选a n=ω2r.②向心加速度的每个公式都涉及三个物理量的变化关系,所以必须在某一物理量不变时,才可以判断另外两个物理量之间的关系.在v一定的情况下,可认为物体的向心加速度a n与r成反比;而在ω一定的情况下,可认为物体的向心加速度a n与r成正比.③向心加速度公式也适用于非匀速圆周运动.当物体做匀速圆周运动时,向心加速度就是总加速度.当物体做非匀速圆周运动时,物体在向心加速度之外还有一个切向加速度,所以总加速度不指向圆心.三、考查方向题型1:圆周运动各物理量的关系典例一:(多选)质点做匀速圆周运动时()A.线速度越大,其转速一定越大B.角速度大时,其转速一定大C.线速度一定时,半径越大,则周期越长D.无论半径大小如何,角速度越大,则质点运动的周期一定越长题型2:共轴传动典例二:如图所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点()A.角速度大小之比ωA∶ωB1B.角速度大小之比ωA∶ωB=1C.线速度大小之比v A∶v B1D.线速度大小之比v A∶v B=1题型3:皮带传动典例三:如图为自行车传动机构的示意图,经过测量A、B轮的半径比为2∶1,C轮的半径为32 cm.假设脚踏板每2 s转1圈,则自行车前进的速度约为()A .2 m/sB .3 m/sC .4 m/sD .5 m/s题型4:向心加速度的计算典例四:某变速箱中有甲、乙、丙三个齿轮,如图,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为( )A.2213r r ωB .22321r r ωC .22322r r ωD .2123r r r ω四、模拟训练一、基础练习1.下列关于匀速圆周运动的说法中正确的是( ) A .是速度不变的运动 B .是角速度不变的运动 C .是角速度不断变化的运动 D .是相对圆心位移不变的运动2.(多选)质点做匀速圆周运动时( ) A .线速度越大,其转速一定很大 B .角速度大时,其转速一定大 C .线速度一定时,半径越大则周期越大D .无论半径大小如何,角速度越大,则质点的速度方向变化得越快 3.(多选)关于线速度和角速度,下列说法正确的是( ) A .半径一定,线速度大小与角速度大小成正比 B .半径一定,线速度大小与角速度大小成反比C .线速度大小一定,角速度大小与半径成反比D .角速度大小一定,线速度大小与半径成反比B4.(多选)A 、B 两个质点,分别做匀速圆周运动,在相等时间内它们通过的弧长比s A ∶s B =2∶3,转过的圆心角比θA ∶θB =3∶2.则下列说法中正确的是( )A .它们的线速度比v A ∶vB =2∶3 B .它们的角速度比ωA ∶ωB =2∶3C .它们的周期比T A ∶T B =2∶3D .它们的周期比T A ∶T B =3∶25.一物体以一定的半径做匀速圆周运动,它的线速度为v ,角速度为ω,经过一段短暂的时间后,物体通过的弧长为S ,半径转过的角度为ϕ,则下列关于S 的表达式中正确的是( )A .v S φω⋅=B .v S ωφ⋅=C .S vωφ⋅=D .S v ωφ=⋅ 6.走时准确的机械表,分针与时针由转动轴到针尖的长度之比是1.3∶1,则下列判断正确的是( ) A .分针与时针的周期之比是1∶24 B .分针与时针的角速度之比是60∶1C .分针针尖与时针针尖的线速度之比是600∶13D .分针和时针从重合至第二次重合所经历的时间是1211h 7.关于做匀速圆周运动物体的向心加速度方向,下列说法正确的是( )A .与线速度方向始终相同B .与线速度方向始终相反C .始终指向圆心D .始终保持不变8.(多选)关于质点做匀速圆周运动的下列说法中正确的是( )A .由a =2v r 可知,a 与r 成反比B .由a =ω2r 可知,a 与r 成正比C .当v 一定时,a 与r 成反比D .由ω=2πn 可知,角速度ω与转速n 成正比9.关于向心加速度,下列说法正确的是( ) A .向心加速度是描述线速度大小变化快慢的物理量 B .向心加速度是描述线速度的方向变化快慢的物理量 C .向心加速度时刻指向圆心,方向不变 D .向心加速度是平均加速度,大小可用0-=t v v a t来计算 10.关于匀速圆周运动的向心加速度,下列说法中正确的是( )A .由于2v a r =,所以线速度大的物体向心加速度大B .由于2v a r =,所以半径大的物体向心加速度小C .由于a =rω2,所以角速度大的物体向心加速度大D .由于a =rω2,所以角速度大的物体向心加速度可能大11.如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列说法中正确的是()A.线速度v A=v BB.线速度v A>v BC.周期T A<T BD.周期T A>T B12.(多选)如图所示,一个球绕中心轴线OO′以角速度ω做匀速圆周运动,则( )A.a、b两点线速度相同B.a、b两点角速度相同:v b2C.若θ=30°,则a、b两点的线速度之比v:a b2D.若θ=30°,则a、b两点的向心加速度之比a13.如图所示,一球体绕轴O1O2以角速度ω旋转,A、B为球体上两点,下列几种说法中正确的是()A.A、B两点具有相同的角速度B.A、B两点具有相同的线速度C.A、B两点的向心加速度方向都指向球心D.A、B两点的向心加速度相同14.在如图所示的齿轮传动中,三个齿轮的半径之比为1∶3∶5,当齿轮转动的时候,比较小齿轮边缘的A点和大齿轮边缘的B点有()A.A点和B点的角速度之比为5∶1B.A点和B点的角速度之比为1∶1C.A点和B点的向心加速度之比为1∶5D.A点和B点的线速度大小之比为1∶515.如图,靠轮传动装置中右轮半径为2r,a为它边缘上的一点,b为轮上的一点,b距轴为r;左侧为一轮轴,大轮的半径为4r,d为它边缘上的一点;小轮半径为r,c为它边缘上的一点.若传动中靠轮不打滑,则下列说法错误的是()A.b点与d点的周期之比为2∶1B.a点与c点的线速度之比为1∶1C.c点与b点的角速度之比为2∶1D.a点与d点的向心加速度大小之比为1∶416.(多选)如图为一皮带传动装置,右轮半径为r,a为它边缘上一点;左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心的距离为r.c点和d点分别位于左侧小轮和大轮的边缘上.若传动过程中皮带不打滑,则( )A.a点和b点的线速度大小相等B.a点和b点的角速度大小相等C.a点和c点的线速度大小相等D.a点和d点的向心加速度大小相等17.如图是自行车传动机的示意图,其中①是大齿轮,①是小齿轮,①是后轮.(1)假设脚踏板的转速为n r/s,则大齿轮的角速度是___________rad/s;(2)要知道在这种情况下自行车前进的速度有多大,除需要测量大齿轮①的半径r1,小齿轮①的半径r2外,还需要测量的物理量是_________________;(3)用上述量推导出自行车前进速度的表达式.二、提升练习1.A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同的时间内,它们通过的路程之比是4:3,运动方向改变的角度之比是3:2,则它们()A.线速度大小之比为4:3B.角速度大小之比为3:4C.圆周运动的半径之比为2:1D.向心加速度大小之比为1:22.火车以60/m s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10s内匀速转过了约10 .在此10s 时间内,火车( )A .运动路程为600mB .加速度为零C .角速度约为1/rad sD .转弯半径约为3.4km3.如图,带有一白点的黑色圆盘,可绕过其中心,垂直于盘面的轴匀速转动,每秒沿顺时针方向旋转30圈.在暗室中用每秒闪光31次的频闪光源照射圆盘,观察到白点每秒沿( )A .顺时针旋转31圈B .逆时针旋转31圈C .顺时针旋转1圈D .逆时针旋转1圈4.图示为某一皮带传动装置。

15.圆周运动—【新教材】人教版(2019)高中物理必修第二册讲义(机构)

15.圆周运动—【新教材】人教版(2019)高中物理必修第二册讲义(机构)

教师辅导讲义学员编号:1 年 级:高一年级 课 时 数: 学员姓名:辅导科目:物理学科教师:授课类型 T 同步(圆周运动 )授课日期及时段教学内容一.匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二.匀速圆周运动的线速度、角速度和周期1.线速度:质点做匀速圆周运动通过的弧长Δs 和所用时间Δt 的比值叫线速度.即v =ΔsΔt .2.角速度:连接质点和圆心的半径所转过的角度Δφ跟所用时间Δt 的比值叫角速度,即ω=ΔφΔt .3.周期:做匀速圆周运动的物体运动一周所用的时间叫做周期.三.线速度、角速度、周期之间的关系1.线速度与周期的关系:v =2πrT.同步知识梳理T 同步——圆周运动2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v =ωr .三.线速度1.线速度(1)定义式:v =ΔsΔt.如果Δt 取的足够小,v 就为瞬时线速度.此时Δs 的方向就与半径垂直,即沿该点的切线方向. (2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向. (3)物理意义:描述质点沿圆周运动的快慢. 2.匀速圆周运动的特点 (1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度”.四.角速度和周期1.角速度:半径转过的角度Δφ与所用时间Δt 的比值,即ω=ΔφΔt (如图所示).国际单位是弧度每秒,符号是rad/s.2.转速与周期(1)转速n :做圆周运动的物体单位时间内转过的圈数,常用符号n 表示. (2)周期T :做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示. (3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T =1n.五.描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v =2πrT.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v =ωr .一、单选题1.(2020·云南省泸西县第一中学高一期中)如图所示,皮带传动装置的皮带轮O 和O '上有三点A 、B 和C ,OA O C r ='=,2O B r '=。

圆周运动教师讲义

圆周运动教师讲义

圆周运动(圆周运动为高考重点)教学目标:1.掌握描述圆周运动的物理量及相关计算公式2.学会应用牛顿定律和动能定理解决竖直面内的圆周运动问题本讲重点:1.描述圆周运动的物理量及相关计算公式2.用牛顿定律和动能定理解决竖直面内的圆周运动问题本讲难点:用牛顿定律和动能定理解决竖直面内的圆周运动问题考点点拨:1.“皮带传动”类问题的分析方法2.竖直面内的圆周运动问题3.圆周运动与其他运动的结合一、考点扫描(一)知识整合匀速圆周运动:质点沿圆周运动,在相等的时间里通过的弧长相等。

描述圆周运动的物理量1.线速度(1)大小:v = ts (s 是t 时间内通过的弧长) (2)方向:矢量,沿圆周的切线方向,时刻变化,所以匀速圆周运动是变速运动。

(3)物理意义:描述质点沿圆周运动的快慢2.角速度(1)大小:ω=t φ (φ是t 时间内半径转过的圆心角) 单位:rad/s(2)对某一确定的匀速圆周运动来说,角速度是恒定不变的(3)物理意义:描述质点绕圆心转动的快慢3.描述匀速圆周运动的各物理量间的关系:r fr Tr v ωππ===22 4.向心加速度a (1)大小:a =ππω442222===r Tr r v 2 f 2r (2)方向:总指向圆心,时刻变化(3)物理意义:描述线速度方向改变的快慢。

5.向心力:是按效果命名的力,向心力产生向心加速度,即只改变线速度方向,不会改变线速度的大小。

(1)大小:R f m R Tm R m R v m ma F 22222244ππω=====向 (2)方向:总指向圆心,时刻变化做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。

做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力。

(二)重难点阐释在竖直平面内的圆周运动问题在竖直平面内做圆周运动的物体,按运动轨道的类型,可分为:(1)无支撑(如球与绳连结,沿内轨道的“过山车”)在最高点物体受到弹力方向向下.当弹力为零时,物体的向心力最小,仅由重力提供, 由牛顿定律知mg=Rv m 20,得临界速度gR v =0 .当物体运动速度v <v 0,将从轨道上掉下,不能过最高点.因此临界速度的意义表示了物体能否在竖直面上做圆周运动的最小速度.(2)有支撑(如球与杆连接,车过拱桥等)因有支撑,在最高点速度可为零,不存在“掉下”的情况.物体除受向下的重力外,还受相关弹力作用,其方向可向下,也可向上.当物体实际运动速度gR v >产生离心运动,要维持物体做圆周运动,弹力应向下.当gR v <物体有向心运动倾向,物体受弹力向上.所以对有约束的问题,临界速度的意义揭示了物体所受弹力的方向.(3)对于无约束的情景,如车过拱桥,当gR v >时,有N=0,车将脱离轨道.此时临界速度的意义是物体在竖直面上做圆周运动的最大速度.以上几种情况要具体问题具体分析,但分析方法是相同的。

2023年新教材高中物理圆周运动讲义新人教版必修第二册

2023年新教材高中物理圆周运动讲义新人教版必修第二册

1.圆周运动(1)认识圆周运动、匀速圆周运动的特点,了解描述圆周运动快慢的基本思路,了解转速和周期的意义.(2)理解线速度的物理意义,知道匀速圆周运动中线速度的方向.(3)理解角速度的物理意义,掌握线速度和角速度的关系.(4)能在具体的情境中确定线速度和角速度.一、线速度1.大小:Δt非常非常小时,弧长Δs与时间的比值称为线速度(linear velocity).2.定义式:________.3.意义:描述做圆周运动的物体运动的快慢.4.方向:线速度是矢量,线速度的方向为物体做圆周运动时该点的切线方向.5.匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小________的运动.这种运动叫作匀速圆周运动(uniform circular motion).(2)性质:线速度的方向是时刻________的,所以是一种________运动.举例:生活中的圆周运动二、角速度1.定义:物体在Δt时间内由A运动到B.半径OA在这段时间内转过的角Δθ与所用时间Δt之比叫作角速度(angular velocity).2.定义式:ω=ΔΔΔΔ3.单位:在SI制中,弧度每秒,符号是________.在运算中,通常把“弧度”或“rad”略去不写,所以角速度的单位可以写为s-1.4.物理意义:用来描述物体绕圆心转动快慢的物理量.拓展:角度、弧度的单位换算度量角的大小的两种单位制提醒:匀速圆周运动中的“匀速”指的是线速度的大小(速率)不变,匀速直线运动中的“匀速”指的是速度的大小和方向都不变,两者含义不同.三、周期1.定义:做匀速圆周运动的物体,运动一周所用的时间叫作周期(period),用T表示.2.单位:________,符号是________.3.转速:转速是指物体转动的圈数与所用时间之比,常用符号n表示,转速的单位为转每秒(r/s),或转每分(r/min).四、线速度与角速度的关系1.两者关系在圆周运动中,线速度的大小等于角速度大小与半径的________.2.关系式:v=________.导学:拍苍蝇与物理有关.市场上出售的苍蝇拍(如图所示)拍把长约30 cm,拍头长约12 cm、宽约10 cm,这种拍的使用效果往往不好,拍未到,蝇已飞.有人将拍把增长到60 cm,结果是打一个准一个,你能解释其原因吗?提示:苍蝇的反应很灵敏,只有拍头的速度足够大时才能击中,而人转动手腕的角速度是有限的.由v =ωr 知,当增大转动半径(即拍把长)时,如由30 cm 增大到60 cm ,则拍头速度增大为原来的2倍,此时,苍蝇就难以逃生了.知识点一 描述圆周运动的物理量导学探究闹钟与手表为什么会有上述快慢之争?提出你的看法,和同学进行讨论. 探究总结1.描述圆周运动的物理量(1)线速度:单位时间(1 s 内)转过的弧长. (2)角速度:单位时间(1 s 内)转过的圆心角. (3)周期:转一圈所用的时间.(4)频率(转速):单位时间内转过的圈数. 2.描述圆周运动的各物理量之间的关系: (1)v =ΔΔΔΔ=2ΔΔΔ=2πnr (2)ω=ΔΔΔΔ=2ΔΔ=2πn (3)v =ωr3.各物理量之间关系的分析技巧:(1)角速度、周期、转速之间关系的理解:物体做匀速圆周运动时,由ω=2ΔΔ=2πn 知,角速度、周期、转速三个物理量,只要其中一个物理量确定了,其余两个物理量也唯一确定了.(2)线速度与角速度之间的关系理解:由v =ωr 知,r 一定时,v ∝ω;v 一定时,ω∝1Δ;ω一定时,v ∝r .典例示范题型一 线速度的理解与计算【例1】 (多选)某同学参加了糕点制作的选修课,在绕中心匀速转动的圆盘上放了一块直径约25 cm 的蛋糕(圆盘与蛋糕中心重合).他要在蛋糕上均匀“点”上奶油,挤奶油时手处于圆盘上方静止不动,奶油竖直下落到蛋糕表面,若不计奶油下落时间,每隔2 s“点”一次奶油,蛋糕一周均匀“点”上10个奶油.下列说法正确的是( )A .圆盘转动一周历时18 sB .圆盘转动一周历时20 sC .蛋糕边缘的奶油(可视为质点)线速度大小约为π80 m/sD .蛋糕边缘的奶油(可视为质点)线速度大小约为π10 m/s 题型二 角速度的理解与计算【例2】 某品牌的机械鼠标内部结构如图所示,机械鼠标中的定位球的直径是2.0 cm ,某次操作中将鼠标沿直线匀速移动12 cm 需要的时间为1 s ,则定位球的角速度为( )A .π12 rad/s B .π6 rad/s C .6 rad/sD .12 rad/s题型三 描述圆周运动的几个物理量间的关系【例3】 (多选)质点做匀速圆周运动时,以下说法中正确的是( )A.线速度越大,其角速度也一定越大B.角速度越大,其转速也一定越大C.线速度一定时,半径越大则周期越长D.角速度一定时,半径越大则周期越长练1 (多选)一质点做匀速圆周运动,其线速度大小为4 m/s,转动周期为2 s,则下列说法正确的( )A.角速度为0.5 rad/sB.转速为0.5 r/sC.运动轨迹的半径约为1.27 mD.频率为0.5 Hz知识点二圆周运动的三种传动方式导学探究跷跷板的支点位于板的中点,两个小朋友坐在两端.讨论:在跷跷板运动的某一时刻,两个小朋友的线速度的大小关系及角速度的大小关系如何?探究总结三种传动装置及其特点典例示范【例4】如图所示,A、B、C分别是自行车的大齿轮、小齿轮和后轮的边缘上的三个点,到各自转动轴的距离分别为3r、r和10r.支起自行车后轮,在转动踏板的过程中,A、B、C三点( )A.角速度大小关系是ωA>ωB=ωCB.线速度大小关系是v A<v B<v CC.转动周期之比T A∶T B∶T C=3∶1∶1D.转速之比n A∶n B∶n C=3∶3∶1练2 如图所示,地球可以看作一个球体,O点为地球球心,位于长沙的物体A和位于赤道上的物体B,都随地球自转做匀速圆周运动,则( )A.物体的周期T A=T BB.物体的周期T A>T BC.物体的线速度大小v A>v BD.物体的角速度大小ωA<ωB练3 在汽车无极变速器中,存在如图所示的装置,A是与B同轴相连的齿轮,C是与D 同轴相连的齿轮,A、C、M为相互咬合的齿轮.已知齿轮A、C规格相同,半径为R,齿轮B、D规格也相同,半径为1.5R,齿轮M的半径为0.9R.当齿轮M如图方向转动时以下说法正确的是( )A .齿轮D 和齿轮B 的转动方向相反 B .齿轮D 和齿轮B 的转动周期之比为1∶1C .齿轮M 和齿轮B 边缘某点的线速度大小之比为1∶1D .齿轮M 和齿轮C 的角速度大小之比为9∶10 思维方法:解答传动问题要“三看、一记、二明确”(1)三看:一看题,看题目说明的情境;二看图,看图片是同轴传动还是皮带传动;三看联系,看内部结构的各个组成部分之间是什么关系,即靠齿轮、皮带、摩擦等.(2)一记:一记是指记公式,公式有v =ωr 、T =2ΔΔ以及v =rω=2ΔΔΔ=2πrn 等.(3)二明确:①在通常情况下,同轴传动的各点角速度ω、转速n 和周期T 相等,线速度v =ωr ,即与半径成正比.②在认为皮带不打滑的情况下,传动皮带和与皮带连接的轮边缘上各点的线速度大小相等,由ω=ΔΔ可知,角速度与半径成反比.1.关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下列说法中正确的是( )A.线速度大的角速度一定大B.线速度大的周期一定小C.角速度大的运动半径一定小D.角速度大的周期一定小2.一户外健身器材如图所示.当器材上轮子转动时,轮子上A、B两点的( )A.转速n B>n AB.周期T B>T AC.线速度v B>v AD.角速度ωB>ωA3.(多选)明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图所示),记录了我们祖先的劳动智慧.若A、B两齿轮的半径关系为r A>r B,则( )A.齿轮A、B的角速度大小相等B.齿轮A的角速度大小小于齿轮B的角速度大小C.齿轮A、B边缘的线速度大小相等D.齿轮A边缘的线速度大小小于齿轮B边缘的线速度大小4.(多选)如图所示是中国古代玩具饮水鸟的示意图,它的神奇之处是,在鸟的面前放上一杯水,鸟就会俯下身去,把嘴浸到水里,“喝”了一口水后,鸟将绕着O点不停摆动,一会儿它又会俯下身去,再“喝”一口水.P、Q是饮水鸟上两点,且r PO>r QO,则在摆动过程中( )A.P点的线速度小于Q点的线速度B.P、Q两点的角速度大小相等C.相同时间内P、Q两点通过的弧长相等D.P、Q两点的线速度方向相反5.火车以15 m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s内匀速转过了约10°.在此10 s时间内,下列对火车的说法正确的是( ) A.运动路程为150 m B.加速度为零C.角速度约为1 rad/s D.周期约为60 s1.圆周运动预习填空一、2.v=ΔΔΔΔ5.(1)处处相等(2)变化变速二、3.rad/s三、2.秒s四、1.乘积2.ωr知识点精讲知识点一提示:闹钟和手表是从不同角度看圆周运动的:闹钟指的是秒针针尖的线速度;手表则指的是描述秒针运动的另一个物理量,这个物理量就是角速度.【例1】 【解析】 每隔2 s“点”一次奶油,蛋糕一周均匀“点”上10个奶油,则圆盘转动一圈的时间T =20 s ,A 错误,B 正确;蛋糕边缘的奶油(可视为质点)线速度大小约为v =ΔΔΔΔ=2ΔΔΔ=2π×0.25220m/s =π80 m/s ,C 正确,D 错误.【答案】 BC【例2】 【解析】 根据线速度定义式有v =ΔΔ,定位球的线速度为v =121 cm/s =12 cm/s ,角速度与线速度关系为v =ωr ,因此定位球的角速度为ω=ΔΔ=121 rad/s =12 rad/s ,选项D 正确.【答案】 D【例3】 【解析】 由v =ωr 知,当半径一定时,线速度越大,角速度越大,A 错误;由ω=2n π知,角速度越大,转速越大,B 正确;由v =2ΔΔΔ知,线速度一定时,半径越大,周期越长,C 正确;由ω=2ΔΔ知,角速度一定时,周期一定,与半径无关,D 错误.【答案】 BC练1 解析:由题意知v =4 m/s ,T =2 s ,根据角速度与周期的关系可知ω=2ΔΔ=π rad/s .由线速度与角速度的关系v =ωr 得r =ΔΔ=4π m≈1.27 m.由v =2πnr 得转速n =Δ2ΔΔ=0.5 r/s .由频率与周期的关系得f =1Δ=0.5 Hz ,故选项A 错误,B 、C 、D 正确.答案:BCD 知识点二提示:线速度的大小和角速度的大小都相同.【例4】 【解析】 大齿轮与小齿轮是链条传动,边缘点线速度相等,则有v A ∶v B =1∶1,根据v =ωr ,则有ωA ∶ωB =r B ∶r A =1∶3;小齿轮与后轮是同轴传动,角速度相等,则有ωB ∶ωC =1∶1,根据v =ωr ,则有v B ∶v C =1∶10,所以角速度大小关系是ωA ∶ωB ∶ωC=1∶3∶3,线速度大小关系是v A ∶v B ∶v C =1∶1∶10,根据T =2ΔΔ,可知T A ∶T B ∶T C =3∶1∶1,根据ω=2πn 可知,转速之比是n A ∶n B ∶n C =1∶3∶3,故选项C 正确.【答案】 C练2 解析:A 对,B 、D 错:两物体随地球自转,同轴传动,所以角速度ω相同,根据ω=2ΔΔ可知两物体周期相同,即ωA =ωB ,T A =T B .C 错:物体做圆周运动的半径由物体指向地轴,根据题图可知r A <r B ,根据v =ωr 可知两物体线速度大小关系为v A <v B .答案:A练3 解析:A 错:A 、M 、C 三个紧密咬合的齿轮是同缘传动,因为M 顺时针转动,故A 逆时针转动,C 逆时针转动,又A 、B 同轴传动,C 、D 同轴传动,所以齿轮D 和齿轮B 的转动方向相同.B 对:A 、M 、C 三个紧密咬合的齿轮是同缘传动,边缘线速度大小相同,齿轮A 、C 规格相同,半径为R ,根据v =ωr 得,A 、C 转动的角速度相同,A 、B 同轴传动,角速度相同,C 、D 同轴传动,角速度相同,且齿轮B 、D 规格也相同,所以齿轮D 和齿轮B 的转动周期相同.C 错:A 、M 、C 三个紧密咬合的齿轮是同缘传动,边缘线速度大小相同;A 与B 属于同轴传动,角速度相等,由于B 的半径大于A 的半径,所以B 边缘的线速度大于A 边缘的线速度,所以B 边缘的线速度也大于M 边缘的线速度.D 错:A 、M 、C 三个紧密咬合的齿轮是同缘传动,边缘线速度大小相同,根据v =ωr 得:ΔΔΔΔ=ΔΔΔΔ=R 0.9R =109. 答案:B随堂练习1.解析:由v =ωr 知,r 一定时,v 与ω成正比;v 一定时,ω与r 成反比,故A 、C 错误.由v =2ΔΔΔ知,r 一定时,v 越大,T 越小,故B 错误.由ω=2ΔΔ可知,ω越大,T 越小,故D 正确.答案:D2.答案:C3.解析:齿轮A 、B 为齿轮传动,齿轮A 、B 边缘的线速度大小相等,且齿轮A 的半径比齿轮B 的大,根据v =ωr 可知齿轮A 的角速度大小小于齿轮B 的角速度大小,A 、D 错误,B 、C 正确.答案:BC4.解析:鸟将绕着O 点不停摆动,P 、Q 是饮水鸟上两点,属于同轴转动.P 点离O 点更远,绕O 点转动的半径大.根据同轴转动角速度相等知P 、Q 两点的角速度大小相等,故B 正确;P 、Q 两点的角速度大小相同,P 点绕O 点转动的半径大,根据v =ωr 知,P 点的线速度较大,故A 错误;P 、Q 两点的线速度大小不同,故相同时间内通过的弧长不相等,故C错误;P 、Q 在O 点两端,两点的线速度方向均与杆垂直,故两点的线速度方向相反,选项D 正确.答案:BD5.解析:火车以15 m/s 的速率转弯,可看成做匀速圆周运动,则在10 s 内的路程为s =vt =150 m ,A 正确;火车做曲线运动,速度在不断变化,因此加速度一定不为零,B 错误;指南针在10 s 内匀速转过了约10°,又10°=10360×2π rad=π18 rad ,根据角速度的定义可得角速度约为ω=π1810 rad/s =π180 rad/s ,C 错误;根据角速度与周期的关系可得周期为T =2πω≈2ππ180 s =360 s ,D 错误.答案:A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。

2、分类: ⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。

物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。

注意:这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量(1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。

(2)线速度(v):①定义:质点沿圆周运动,质点通过的弧长S和所用时间t 的比值,叫做匀速圆周运动的线速度。

②定义式:tsv =③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。

(3)角速度(ω,又称为圆频率):①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。

②大小:Ttπϕω2==(φ是t时间内半径转过的圆心角)③单位:弧度每秒(ra d/s )(4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。

(5)频率(f,或转速n):物体在单位时间内完成的圆周运动的次数。

各物理量之间的关系:r t r v f T t rf Tr t s v ωθππθωππ==⇒⎪⎪⎭⎪⎪⎬⎫======2222计算时,采用国际单位制,角度的单位采用弧度制。

(6)圆周运动的向心加速度①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。

②大小:r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 2222ππω=⎪⎭⎫ ⎝⎛==) ③方向:其方向时刻改变且时刻指向圆心。

对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0)(7)圆周运动的向心力向心力的大小为:r m rv m ma F n n 22ω===()r f m r T m mv F n 2222ππω=⎪⎭⎫ ⎝⎛==);向心力的方向时刻改变且时刻指向圆心。

(8)离心运动当物体受到的合外力n n ma F =时,物体做匀速圆周运动; 当物体受到的合外力n n ma F <时,物体做离心运动 当物体受到的合外力n n ma F >时,物体做近心运动齿轮传动1.线速度大小相等,即v A=vB2.周期与半径成正比,即错误!未定义书签。

=错误!未定义书签。

3.角速度与半径成反比,即错误!未定义书签。

=rR1、皮带传动问题如图所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A. a点与b点的线速度大小相等B. a点与b点的角速度大小相等C. a点与c点的线速度大小相等D.a点与d点的向心加速度大小相等解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向心加速度,由, ,所以,故,D正确。

本题正确答案C、D。

点评:处理皮带问题的要点为:皮带(链条)上各点以及两轮边缘上各点的线速度大小相等,同一轮上各点的角速度相同。

2、水平面内的圆周运动转盘:物体在转盘上随转盘一起做匀速圆周运动,物体与转盘间分无绳和有绳两种情况。

无绳时由静摩擦力提供向心力;有绳要考虑临界条件。

如图所示,水平转盘上放有质量为m的物体,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间的最大静摩擦力是其正压力的倍。

求:(1)当转盘的角速度时,细绳的拉力。

(2)当转盘的角速度时,细绳的拉力。

解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得(1)因为,所以物体所需向心力小于物与盘间的最大摩擦力,则物与盘产生的摩擦力还未达到最大静摩擦力,细绳的拉力仍为0,即。

(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿第二定律得,解得。

圆锥摆:圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。

其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。

也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。

3、竖直面内的圆周运动竖直面内圆周运动最高点处的受力特点及题型分类。

(1)弹力只可能向下,如绳拉球。

这种情况下有,即,否则不能通过最高点;(2)弹力只可能向上,如车过桥。

在这种情况下有, ,否则车将离开桥面,做平抛运动;(3)弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。

这种情况下,速度大小v可以取任意值。

但可以进一步讨论:a. 当时物体受到的弹力必然是向下的;当时物体受到的弹力必然是向上的;当时物体受到的弹力恰好为零。

b. 当弹力大小时,向心力有两解;当弹力大小时,向心力只有一解;当弹力时,向心力等于零,这也是物体恰能过最高点的临界条件。

如图所示,杆长为,球的质量为,杆连球在竖直平面内绕轴O自由转动,已知在最高点处,杆对球的弹力大小为,求这时小球的瞬时速度大小。

解析:小球所需向心力向下,本题中,所以弹力的方向可能向上也可能向下。

(1)若F向上,则,;(2)若F向下,则,例:一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),在圆管中有两个直径与细管内径相同的小球A、B,质量分别为、,沿环形管顺时针运动,经过最低点的速度都是,当A球运动到最低点时,B球恰好到最高点,若要此时作用于细管的合力为零,那么、、R和应满足的关系是。

解析:由题意分别对A、B小球和圆环进行受力分析如图所示。

对于A球有对于B球有根据机械能守恒定律由环的平衡条件而,由以上各式解得例:如图所示,一根轻质细杆的两端分别固定着A、B两个质量均为m的小球,O点是一光滑水平轴,已知,,使细杆从水平位置由静止开始转动,当B球转到O点正下方时,它对细杆的拉力大小是多少?解析:对A、B两球组成的系统应用机械能守恒定律得因A、B两球用轻杆相连,故两球转动的角速度相等,即设B球运动到最低点时细杆对小球的拉力为,由牛顿第二定律得解以上各式得,由牛顿第三定律知,B球对细杆的拉力大小等于,方向竖直向下。

4、圆周运动的极值问题例:如图所示,用细绳一端系着的质量为的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为的小球B,A的重心到O点的距离为。

若A与转盘间的最大静摩擦力为,为使小球B保持静止,求转盘绕中心O旋转的角速度的取值范围。

(取)解析:要使B静止,A必须相对于转盘静止——具有与转盘相同的角速度。

A需要的向心力由绳拉力和静摩擦力合成。

角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O。

对于B:对于A:,ωB Am联立解得,所以例:如图所示,两绳系一质量为m=0.1kg 的小球,两绳的另一端分别固定于轴的AB 两处,上面绳长l=2m ,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终有张力?[解析]设两细线都拉直时,A 、B 绳的拉力分别为A T 、B T ,小球的质量为m,A 线与竖直方向的夹角为︒=30θ,B 线与竖直方向的夹角为︒=45α,受力分析,由牛顿第二定律得:当B 线中恰无拉力时,θωθsin sin 21l m T A = ①mg T A =θcos ② 由①、②解得33101=ωrad/s当A 线中恰无拉力时,θωαsin sin 22l m T B = ③ mg T B =αcos ④ (3分) 由③、④解得3102=ωrad /s 所以,两绳始终有张力,角速度的范围是3310rad /s 310<<ω r ad/s例:如图,光滑的水平桌面上钉有两枚铁钉A 、B,相距,长的柔软细线一端拴在A 上,另一端拴住一个质量为500g 的小球,小球的初始位置在AB 连线上A 的一侧,把细线拉直,给小球以2m/s 的垂直细线方向的水平速度,使它做圆周运动,由于钉子B 的存在,使细线逐步缠在A、B 上,若细线能承受的最大拉力 ,则从开始运动到细线断裂的时间为多少?解析:小球转动时,由于细线逐步绕在A、B 两钉上,小球的转动半径逐渐变小,但小球转动的线速度大小不变。

小球交替地绕A 、B 做匀速圆周运动,线速度不变,随着转动半径的减小,线中拉力 不断增大,每转半圈的时间t不断减小。

在第一个半圆内 ,在第二个半圆内 ,在第三个半圆内,在第n 个半圆内 ,令 ,得 ,即在第8个半圆内线还未断,n 取8,经历的时间为万有引力定律一.开普勒三定律以及三定律出现的过程:(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。

(2)任何一个行星与太阳的连线在相等的时间内扫过的面积相等。

(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

即R 3 / T 2=k二.牛顿的万有引力定律1.内容:自然界任何两个物体之间都存在着相互作用的引力,两物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.表达式:F =G221rm m其中G=6.67×10-11 N ·m 2/kg 2,叫万有引力常量,卡文迪许在实验室用扭秤装置,测出了引力常量.2.适用条件:①公式适用于质点间的相互作用,②当两个物体间的距离远大于物体本身的大小时,物体可视为质点. ③均匀球体可视为质点,r 为两球心间的距离.3.万有引力遵守牛顿第三定律,即它们之间的引力总是大小相等、方向相反. 三.用开普勒第三定律、向心力、牛顿第三定律推导牛顿的万有引力定律:四、用万有引力定律分析天体的运动1.基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供,即F =mg =2r GMm =2ωmr =r v m 2=2)2(T mr π 2rGM g =2.估算天体的质量和密度① “T 、 r ”法由G2r Mm=mr T 224π得:M =2324Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量.由ρ=VM ,V=34πR3得:ρ=3233RGT r π.R为中心天体的星体半径当r =R时,即卫星绕天体M表面运行时,ρ=23GTπ,由此可以测量天体的密度.②“g 、R ”法 ρ⇒⇒=M RGMg 2 3.卫星的绕行速度、角速度、周期与半径的关系(1)由Gr v mr Mm 22=得:v=r GM. 即轨道半径越大,绕行速度越小(2)由G 2r Mm =m ω2r得:ω=3r GM 即轨道半径越大,绕行角度越小(3)由G3r Mm =4π22T mR得:T =2πGM R 3 即轨道半径越大,绕行周期越大.4.三种宇宙速度(1)第一宇宙速度(环绕速度):v1=7.9 km/s 是人造地球卫星的最小发射速度,最大绕行速度.“飘”起来的速度(2)第二宇宙速度(脱离速度):v 2=11.2 km/s 是物体挣脱地球的引力束缚需要的最小发射速度.(3)第三宇宙速度(逃逸速度):v 3=16.7 km/s 是物体挣脱太阳的引力束缚需要的最小发射速度.5.地球同步卫星所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h.要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h .(高度、运行方向、加速度、角速度、线速度大小相同,质量不同)由G2224)(Tm h R Mm π=+(R +h )得:h=43122106.3)4(⨯=-R GMT πkm =5.6R R表示地球半径六、万有引力复习中应注意的几个问题 1、不同公式和问题中的r,含义不同万有引力定律公式221r m m GF ⋅=中的r 指的是两个物体间的距离,对于相距很远因而可以看做质点的物体,指的是两个球心的距离。

相关文档
最新文档