2020年高考物理二轮复习专项训练 动量守恒多种模型的解题思路(教师版)
高考物理动量守恒定律解题技巧及练习题(含答案)
![高考物理动量守恒定律解题技巧及练习题(含答案)](https://img.taocdn.com/s3/m/262600e027284b73f24250a9.png)
高考物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0sin30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx == C 点相对于O 点的高度: h=2x 0sin30°+R+Rcos30°=(43)+x 0…⑤ 物块从O 到C 的过程中机械能守恒,得:12mv o 2=mgh+12mv c 2…⑥ 联立④⑤⑥得:0(53)o v gx +=…⑦ 设A 与B 碰撞后共同的速度为v B ,碰撞前A 的速度为v A ,滑块从P 到B 的过程中机械能守恒,得:12mv 2+mg (3x 0sin30°)=12mv A 2…⑧ A 与B 碰撞的过程中动量守恒.得:mv A =2mv B …⑨ A 与B 碰撞结束后从B 到O 的过程中机械能守恒,得:12•2mv B 2+E P =12•2mv o 2+2mg•x 0sin30°…⑩ 由于A 与B 不粘连,到达O 点时,滑块B 开始受到弹簧的拉力,A 与B 分离. 联立⑦⑧⑨⑩解得:033v gx =考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A 、B 到达P 点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高考物理动量守恒定律解题技巧讲解及练习题(含答案)
![高考物理动量守恒定律解题技巧讲解及练习题(含答案)](https://img.taocdn.com/s3/m/a5dde7588bd63186bcebbcb3.png)
高考物理动量守恒定律解题技巧讲解及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第1次碰撞后两小球的速度;(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离. 【答案】(1)043v 013v 方向均与0v 相同 (2)065L v (3)9L【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒;(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+222201122111222m v m v m v =+ 整理得:210122m v v m m =+,212012m m v v m m -=+解得1043v v =,2013v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有11x v t =,22x v t =由几何关系知:122x x L += 整理得:065Lt v =(3)两小球第2次碰撞时的位置与挡板的距离:235x L x L =-= 以向左为正方向,第2次碰前A 的速度043A v v =,B 的速度为013B v v =-,如图所示.设碰后A 的速度为A v ',B 的速度为B v '.根据动量守恒定律和机械能守恒定律,有1212A B A B m v m v m v m v ''+=+;2222121211112222A B AB m v m v m v m v ''+=+整理得:12212()2A B A m m v m v v m m -+'=+,21112()2B AB m m v m v v m m -+'=+解得:089A v v '=-,079B v v '=设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则B x x v t '''-=,A x x v t '''+=整理得:9x L '=2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2)Mm aM m M m ++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块 的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.冰球运动员甲的质量为80.0kg 。
2020届高考物理二轮复习能量与动量微专题突破 爆炸问题和反冲问题(带解析)
![2020届高考物理二轮复习能量与动量微专题突破 爆炸问题和反冲问题(带解析)](https://img.taocdn.com/s3/m/50a4eb93f78a6529647d53f2.png)
爆炸问题和反冲问题1、一个人在地面上立定跳远的最好成绩是(m)s ,假设他站立在船的右端处于静止状态要跳到距离(m)L 的岸上(设船与岸边同高,忽略水的阻力),则( ) A.L s <,他一定能跳上岸 B.L s <,他有可能跳上岸 C.L s =,他有可能跳上岸D.L s =,他一定能跳上岸2、将质量为1.00 g 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A .30/kg m s gB .5.7102/kg m s ⨯gC .6.0102/kg m s ⨯gD .6.3102/kg m s ⨯g3、质量为m 的炮弹以一定的初速度发射,其在水平地面上的射程为d ,若当炮弹飞行到最高点时炸裂成质量相等的两块,其中一块自由下落,则另一块的射程为( ) A.1. 5d B.2d C. d D.3d4、如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员在船尾,相对小船静止。
若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A.0mv v M+B.0mv v M-C.()00m v v v M ++ D.()00mv v v M+-5、向空中发射一炮弹,不计空气阻力,当炮弹的速度恰好沿水平方向时,炮弹炸裂为质量相等的a b、两块。
若a的速度方向仍沿原来的方向,且速度小于炸裂前瞬间的速度,则( )A.b的速度方向一定与炸裂前瞬间的速度方向相反B.从炸裂到落地这段时间内,a飞行的水平距离一定比b的大C.a b、一定同时到达地面D.炸裂的过程中,a b、动量的变化量大小一定不相等6、如图所示,一枚手榴弹开始时在空中竖直向下落,到某位置时爆炸成a、b两块同时落地,其中a落地时飞行的水平距离OA大于b落地时飞行的水平距离OB,下列说法正确的是()A.爆炸瞬间a、b两块的速度大小相等B.爆炸瞬间a、b两块的速度变化量大小相等C. a、b两块落地时的速度大小相等D.爆炸瞬间a、b两块的动量变化大小相等7、一弹丸在飞行到距离地面5m高时仅有水平速度2m/sv ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3:1,不计质量损失,重力加速度g取210m/s,则下列图中两块弹片飞行的轨迹可能正确的是()A. B.C. D.8、“世界航天第一人”是明朝的士大夫万户,他把47个自制的火箭绑在椅子上,自己坐在椅子上,双手举着大风筝,设想利用火箭的推力,飞上天空,然后利用风筝平稳着陆。
高中物理动量守恒题解题技巧
![高中物理动量守恒题解题技巧](https://img.taocdn.com/s3/m/685bf54626284b73f242336c1eb91a37f11132fc.png)
高中物理动量守恒题解题技巧动量守恒是高中物理中一个重要的概念,也是解题中常用的方法之一。
在解动量守恒题时,我们可以通过以下几个步骤来分析和解答。
1. 确定系统边界首先,我们需要明确题目中所涉及的物体是否构成一个封闭的系统。
如果是一个封闭系统,那么系统内的总动量在任何时刻都是守恒的。
如果不是一个封闭系统,我们需要考虑外力对系统的作用。
举个例子,假设有两个质量分别为m1和m2的物体A和B,它们在水平面上以不同的速度运动。
如果题目中明确指出A和B之间没有外力作用,那么A和B构成一个封闭系统,其总动量在运动过程中保持不变。
2. 分析系统内部的动量变化接下来,我们需要分析系统内部各个物体的动量变化。
通常,我们可以通过使用动量守恒定律来解决这个问题。
动量守恒定律可以表示为:系统内部各个物体的动量之和在任何时刻都保持不变。
例如,假设一个质量为m的物体在水平面上以速度v1运动,与一个质量为M的物体发生碰撞,碰撞后物体的速度分别为v2和V。
根据动量守恒定律,我们可以得到以下方程:mv1 + MV = mv2 + MV通过解这个方程,我们可以求解出碰撞后物体的速度v2和V。
3. 考虑外力对系统的作用如果题目中存在外力对系统的作用,我们需要将外力对系统的作用考虑进去。
外力对系统的作用会改变系统的总动量。
例如,假设一个质量为m的物体在水平面上以速度v1运动,与一个质量为M 的物体发生碰撞,碰撞后物体的速度分别为v2和V。
如果题目中明确指出碰撞过程中有一个外力F对系统产生作用,那么我们需要考虑这个外力对系统的动量变化。
根据牛顿第二定律,外力对物体的作用会改变物体的动量,动量的变化量等于外力的冲量。
我们可以使用冲量-动量定理来分析这个问题。
例如,如果外力F对物体A的作用时间为Δt,那么物体A的动量变化量可以表示为FΔt。
根据动量守恒定律,我们可以得到以下方程:mv1 + MV + FΔt = mv2 + MV通过解这个方程,我们可以求解出碰撞后物体的速度v2和V。
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析
![高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析](https://img.taocdn.com/s3/m/aff61995763231126edb11d0.png)
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
2020年高考物理二轮专题复习附解答:动量定理与动量守恒定律(解析版)
![2020年高考物理二轮专题复习附解答:动量定理与动量守恒定律(解析版)](https://img.taocdn.com/s3/m/3fb7ffcccc22bcd126ff0ca5.png)
动量定理与动量守恒定律一、选择题1.高空坠物极易对行人造成伤害。
若一个50 g 的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms ,则该鸡蛋对地面产生的冲击力约为A .10 NB .102 NC .103 ND .104 N解析 根据自由落体运动和动量定理有2gh =v 2(h 为25层楼的高度,约70 m),Ft =mv ,代入数据解得F ≈1×103 N ,所以C 正确。
答案 C2.(多选)在光滑的水平面上,原来静止的物体在水平力F 的作用下,经过时间t 、通过位移L 后,动量变为p 、动能变为E k ,以下说法正确的是A .在力F 的作用下,这个物体若是经过时间3t ,其动量将等于3pB .在力F 的作用下,这个物体若是经过位移3L ,其动量将等于3pC .在力F 的作用下,这个物体若是经过时间3t ,其动能将等于3E kD .在力F 的作用下,这个物体若是经过位移3L ,其动能将等于3E k解析 根据p =mv ,E k =12mv 2 联立解得p =2mE k根据动能定理FL =12mv 2,位移变为原来的3倍,动能变为原来的3倍,根据p =2mE k ,动量变为原来的3倍,故B 错误,D 正确。
根据动量定理Ft =mv ,时间变为原来的3倍,动量变为原来的3倍,根据E k =p 22m,知动能变为原来的9倍,故A 正确,C 错误。
答案 AD3.(多选)质量为m 的物块甲以3 m/s 的速度在光滑水平面上运动,有一轻弹簧固定在其左侧,另一质量也为m 的物块乙以4 m/s 的速度与甲相向运动,如图所示,两物块通过弹簧相互作用(未超出弹簧弹性限度)并最终弹开,则A.在压缩弹簧的过程中,两物块组成的系统动量守恒B.当两物块相距最近时,甲物块的速度为零C.甲物块的速率可能为5 m/sD.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s解析在压缩弹簧的过程中,两物块组成的系统所受合外力为零,系统动量守恒,选项A正确;当两物块相距最近时,两物块速度相等,甲物块的速度不为零,选项B错误;若甲物块的速率为5 m/s,根据动量守恒定律可得此时乙物块的速率为6 m/s或4 m/s,两物块组成的系统机械能增大,违反了能量守恒定律,选项C错误;当甲物块的速率为1 m/s,方向向左时,选取向右为速度的正方向,根据动量守恒定律,m·4 m/s-m·3 m/s=mv-m·1 m/s,解得乙物块的速率v=2 m/s,选项D正确。
2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
![2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)](https://img.taocdn.com/s3/m/4f70594fa1c7aa00b52acb8a.png)
2.某电影里两名枪手在房间对决,他们各自背靠墙壁,一左一右。假设他们之间的地面光滑随机放着一均匀木块,木块到左右两边的距离不一样。两人拿着相同的步枪和相同的子弹同时朝木块射击一发子弹,听天由命。但是子弹都没有射穿木块,两人都活了下来反而成为了好朋友。假设你是侦探,仔细观察木块发现右边的射孔(弹痕)更深。设子弹与木块的作用力大小一样,请你分析一下,哪个结论是正确的( )
2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
考纲指导
能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将动量与能量等基础知识融入其他问题考查,也常将动能定理、机械能守恒、功能关系、动量定理和动量守恒定律作为解题工具在综合题中应用。考查的重点有以下几方面:(1)动量定理和动量守恒定律的应用;(2)“碰撞模型”问题;(3)“爆炸模型”和“反冲模型”问题;(4)“板块模型”问题。
A.小车上表面长度
B.物体A与小车B的质量之比
C.A与小车B上表面的动摩擦因数
D.小车B获得的动能
2.某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5 kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0 m的光滑圆形竖直轨道OAO′运动,玩具小车受水平面PB的阻力为其自身重力的0.5倍(g取10 m/s2),PB=16.0 m,O为PB中点。B点右侧是一个高h=1.25 m,宽L=2.0 m的壕沟。求:
【答案】BC
2.【解析】(1)在最高点mg= ,得vA= m/s
O→A:-mg2r= mv - mv ,得vO=5 m/s
FNO-mg= ,得FNO=6mg=30 N。
2024届高考物理二轮专题复习:应用动量守恒定律的常见模型 课件55张
![2024届高考物理二轮专题复习:应用动量守恒定律的常见模型 课件55张](https://img.taocdn.com/s3/m/f39cad65f011f18583d049649b6648d7c1c70829.png)
微专题二 应用动量守恒定律的常见模型
1234源自题型突破1 题型突破2 题型突破3 高考热点突破
(1)子弹击穿木块时,木块速度的大小和方向; (2)子弹击穿木块过程中,子弹和木块组成的系统损失的机械能; (3)被子弹击穿后,木块水平向右运动距 O 点的最大距离。
微专题二 应用动量守恒定律的常见模型
1
代入数据得:a=5.0 m/s2 木块向右运动到离 O 点最远时,速度为零,设木块向右移动最大 距离为 s1,有: u2=2as1 代入数据解得 s1=0.90 m。
[答案] (1)3 m/s,方向向右 (2)872.5 J (3)0.90 m
微专题二 应用动量守恒定律的常见模型
1
2
3
4
题型突破1 题型突破2 题型突破3 高考热点突破
微专题二 应用动量守恒定律的常见模型
1
2
3
4
题型突破1 题型突破2 题型突破3 高考热点突破
A.v10(s+L) C.21v0(s+L)
B.v10(s+2L) D.v10(L+2s)
微专题二 应用动量守恒定律的常见模型
1
2
3
4
题型突破1 题型突破2 题型突破3 高考热点突破
D [子弹穿过木块的过程,对子弹和木块组成的系统,所受外 力之和为零,动量守恒,有 mv0=mv1+mv2。设子弹穿过木块的过 程所受阻力为 Ff,对子弹:由动能定理得-Ff(s+L)=12mv21-12mv20,
反思感悟:子弹打木块模型的三点说明 (1)分析子弹打击木块的过程,弄清楚子弹是停留在木块中和木 块一起运动还是穿透木块和木块各自运动。 (2)子弹在打击木块的过程中,由于时间较短,内力远远大于外 力,故在打击的过程中动量守恒。
高考物理动量守恒定律解题技巧分析及练习题(含答案)含解析
![高考物理动量守恒定律解题技巧分析及练习题(含答案)含解析](https://img.taocdn.com/s3/m/ba656ef425c52cc58bd6beb3.png)
高考物理动量守恒定律解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高考物理动量守恒定律解题技巧分析及练习题(含答案)含解析
![高考物理动量守恒定律解题技巧分析及练习题(含答案)含解析](https://img.taocdn.com/s3/m/de9a8694581b6bd97e19ea0b.png)
高考物理动量守恒定律解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析
![高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析](https://img.taocdn.com/s3/m/c15f95934a7302768f993943.png)
高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:①物块A 相对B 静止后的速度大小; ②木板B 至少多长.【答案】①0.25v 0.②2016v L gμ=【解析】试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)联立①②得,v 2=0.25v 0. (1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律5.匀强电场的方向沿x 轴正向,电场强度E 随x 的分布如图所示.图中E 0和d 均为已知量.将带正电的质点A 在O 点由能止释放.A 离开电场足够远后,再将另一带正电的质点B 放在O 点也由静止释放,当B 在电场中运动时,A 、B 间的相互作用力及相互作用能均为零;B 离开电场后,A 、B 间的相作用视为静电作用.已知A 的电荷量为Q ,A 和B 的质量分别为m 和.不计重力.(1)求A 在电场中的运动时间t ,(2)若B 的电荷量q =Q ,求两质点相互作用能的最大值E pm (3)为使B 离开电场后不改变运动方向,求B 所带电荷量的最大值q m 【答案】(1)(2)145QE 0d (3)Q 【解析】 【分析】 【详解】解:(1)由牛顿第二定律得,A 在电场中的加速度 a ==A 在电场中做匀变速直线运动,由d =a 得 运动时间 t ==(2)设A 、B 离开电场时的速度分别为v A0、v B0,由动能定理得 QE 0d =m qE 0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q6.卢瑟福用α粒子轰击氮核发现质子。
2020版高考物理大二轮复习试题:动量定理和动量守恒定律(含答案)
![2020版高考物理大二轮复习试题:动量定理和动量守恒定律(含答案)](https://img.taocdn.com/s3/m/b076592565ce0508763213a4.png)
回扣练8:动量定理和动量守恒定律1.将一个光滑的半圆形槽置于光滑的水平面上如图,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A 点正上方由静止开始落下,从A 点落入槽内,则下列说法中正确的是( )A .小球在半圆槽内运动的过程中,机械能守恒B .小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C .小球在半圆槽内由B 点向C 点运动的过程中,小球与半圆槽组成的系统动量守恒D .小球从C 点离开半圆槽后,一定还会从C 点落回半圆槽解析:选D.只有重力做功时物体机械能守恒,小球在半圆槽内运动由B 到C 过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,故A 错误.小球在槽内运动的前半过程中,左侧物体对槽有作用力,小球与槽组成的系统水平方向上的动量不守恒,故B 错误.小球自半圆槽的最低点B 向C 点运动的过程中,系统在水平方向所受合外力为零,故小球与半圆槽在水平方向动量守恒,故C 错误.小球离开C 点以后,既有竖直向上的分速度,又有与槽相同的水平分速度,小球做斜上抛运动,然后可以从C 点落回半圆槽,故D 正确.故选D.2.如图所示,质量为m 的A 球在水平面上静止放置,质量为2m的B 球向左运动速度大小为v 0,B 球与A 球碰撞且无机械能损失,碰后A 球速度大小为v 1,B 球的速度大小为v 2,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0,下列选项正确的是( ) A .e =1B .e =12C .e =13D .e =14解析:选A.AB 在碰撞的过程中,根据动量守恒可得,2mv 0=mv 1+2mv 2,在碰撞的过程中机械能守恒,可得12·2mv 20=12mv 21+12·2mv 22,解得v 1=43v 0,v 2=13v 0,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0=1,故A 正确,BCD 错误;故选A. 3.如图所示,AB 两小球静止在光滑水平面上,用轻弹簧相连接,A 球的质量小于B 球的质量.若用锤子敲击A 球使A 得到v 的速度,弹簧压缩到最短时的长度为L 1;若用锤子敲击B 球使B 得到v 的速度,弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为( )A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定解析:选C.若用锤子敲击A 球,两球组成的系统动量守恒,当弹簧最短时,两者共速,则m A v =(m A +m B )v ′,解得v ′=m A v m A +m B ,弹性势能最大,最大为ΔE p =12m A v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B );若用锤子敲击B 球,同理可得m B v =(m A +m B )v ″,解得v ″=m B v m A +m B ,弹性势能最大为ΔE p =12m B v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B ),即两种情况下弹簧压缩最短时,弹性势能相等,故L 1=L 2,C 正确.4.如图所示,足够长的传送带以恒定的速率v 1逆时针运动,一质量为m 的物块以大小为v 2的初速度从左轮中心正上方的P 点冲上传送带,从此时起到物块再次回到P 点的过程中,下列说法正确的是( )A .合力对物块的冲量大小一定为2mv 2B .合力对物块的冲量大小一定为2mv 1C .合力对物块的冲量大小可能为零D .合力对物块做的功可能为零解析:选D.若v 2>v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,达到速度v 1后做匀速直线运动,可知物块再次回到P 点的速度大小为v 1,规定向左为正方向,根据动量定理得,合外力的冲量I 合=mv 1-m (-v 2)=mv 1+mv 2.根据动能定理知,合外力做功W 合=12mv 21-12mv 22;若v 2<v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,物块再次回到P 点的速度大小为v 2,规定向左为正方向,根据动量定理得,合外力的冲量为:I 合=mv 2-m (-v 2)=2mv 2;根据动能定理知,合外力做功为:W 合=12mv 22-12mv 22=0.故D 正确,ABC 错误.故选D. 5.如图甲所示,工人利用倾斜钢板向车内搬运货物,用平行于钢板向上的力将货物从静止开始由钢板底端推送到顶端,到达顶端时速度刚好为零.若货物质量为100 kg ,钢板与地面的夹角为30°,钢板与货物间的滑动摩擦力始终为50 N ,整个过程中货物的速度—时间图象如图乙所示,重力加速度g 取10 m/s 2.下列说法正确的是( )A .0~2 s 内人对货物做的功为600 JB .整个过程中人对货物的推力的冲量为1 000 N·sC .0~2 s 和2~3 s 内货物所受推力之比为1∶2D .整个过程中货物始终处于超重状态解析:选A.0~2 s 内货物的加速度a 1=Δv Δt=0.5 m/s 2,根据牛顿第二定律:F 1-f -mg sin 30°=ma 1,解得F 1=600 N ;0~2 s 内货物的位移:x 1=12×2×1 m=1 m ;则人对货物做的功为W F =Fx 1=600 J ,选项A 正确;整个过程中,根据动量定理:I F -(f +mg sin 30°)t =0,解得整个过程中人对货物的推力的冲量为I F =(f +mg sin 30°)t =(50+100×10×0.5)×3=1 650 N·s,选项B 错误;2~3 s 内货物的加速度大小a 2=1 m/s 2,根据牛顿第二定律:f +mg sin 30°-F 2=ma 2所受推力F 2=450 N ;则0~2 s 和2~3 s 内货物所受推力之比为F 1∶F 2=600∶450=4∶3,选项C 错误;整个过程中货物的加速度先沿斜面向上,后向下,先超重后失重,选项D 错误;故选A.6.(多选)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s,所以碰撞后A 球的动量是2 kg·m/s;碰撞过程系统总动量守恒:m A v A +m B v B =-m A v A ′+m B v B ′所以碰撞后B 球的动量是10 kg·m/s,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,故C 正确,D 错误.碰撞前系统动能:p 2A 2m A +p 2B 2m B=622m A +622×2m A =27m A ,碰撞后系统动能为:p A ′22m A +p B ′22m B =222m A +1022×2m A =27m A,则碰撞前后系统机械能不变,碰撞是弹性碰撞,故A 正确,B 错误;故选AC.7.(多选)质量为M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量为m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2.则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.2 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m解析:选AD.可把小球和滑块水平方向的运动看作人船模型,设滑块M 在水平轨道上向右运动了x ,由滑块和小球系统在水平方向上动量守恒,有m M =x L -x,解得:x =0.3 m ,选项A 正确、B 错误.根据动量守恒定律,小球m 相对于初始位置上升到最大高度时小球和滑块速度都为零,由能量守恒定律可知,小球m 相对于初始位置可以上升的最大高度为0.45 m ,选项C 错误.此时杆与水平面的夹角为cos α=0.8,设小球从最低位置上升到最高位置过程中滑块M 在水平轨道上又向右运动了x ′,由滑块和小球系统在水平方向时动量守恒,有m M =x ′L cos α-x ′,解得:x ′=0.24 m .小球m 从初始位置到第一次到达最大高度的过程中,滑块在水平轨道上向右移动了x +x ′=0.3 m +0.24 m =0.54 m ,选项D 正确.8.(多选)如图所示,一辆质量为M =3 kg 的平板小车A 停靠在竖直光滑墙壁处,地面水平且光滑,一质量为m =1 kg 的小铁块B (可视为质点)放在平板小车A 最右端,平板小车A 上表面水平且与小铁块B 之间的动摩擦因数μ=0.5,平板小车A 的长度L =0.9 m .现给小铁块B 一个v 0=5 m/s 的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,重力加速度g =10 m/s 2.下列说法正确的是( )A .小铁块B 向左运动到达竖直墙壁时的速度为2 m/sB .小铁块B 与墙壁碰撞过程中所受墙壁的冲量为8 N·sC .小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为4 JD .小铁块B 在平板小车A 上运动的整个过程中系统损失的机械能为9 J解析:选BD.设小铁块B 向左运动到达竖直墙壁时的速度为v 1,根据动能定理得:-μmgL =12mv 21-12mv 20,解得:v 1=4 m/s ,选项A 错误.与竖直墙壁发生弹性碰撞,反弹速度为-4 m/s ,由动量定理可知,小铁块B 与墙壁碰撞过程中所受墙壁的冲量为I =2mv 1=8 N·s,选项B 正确.小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为μmgL =4.5 J ,选项C 错误.假设发生弹性碰撞后小铁块B 最终和平板小车A 达到的共同速度为v 2,根据动量守恒定律得:mv 1=(M +m )v 2,解得:v 2=1 m/s.设小铁块B 在平板小车A 上相对滑动的位移为x 时与平板小车A 达到共同速度v 2,则根据功能关系得:-μmgx =12(M +m )v 22-12mv 21,解得:x =1.2 m ,由于x >L ,说明小铁块B 在没有与平板小车A 达到共同速度时就滑出平板小车A ,所以小铁块B 在平板小车上运动的整个过程中系统损失的机械能为ΔE =2μmgL =9 J ,选项D 正确.9.(多选)在地面上以大小为v 1的初速度竖直向上抛出一质量为m 的皮球,皮球落地时速度大小为v 2.若皮球运动过程中所受空气阻力的大小与其速率成正比,重力加速度为g .下列判断正确的是( )A .皮球上升的最大高度为v 212gB .皮球从抛出到落地过程中克服阻力做的功为12mv 21-12mv 22 C .皮球上升过程经历的时间为v 1gD .皮球从抛出到落地经历的时间为v 1+v 2g解析:选BD.减速上升的过程中受重力、阻力作用,故加速度大于g ,则上升的高度小于v 212g ,上升的时间小于v 1g,故AC 错误;皮球从抛出到落地过程中重力做功为零,根据动能定理得克服阻力做功为W f =12mv 21-12mv 22,故B 正确;用动量定理,结合数学知识,假设向下为正方向,设上升阶段的平均速度为v ,则:mgt 1+kvt 1=mv 1,由于平均速度乘以时间等于上升的高度,故有:h =vt 1,即:mgt 1+kh =mv 1 ①,同理,设下降阶段的平均速度为v ′,则下降过程:mgt 2-kv ′t 2=mv 2,即:mgt 2-kh =mv 2 ②,由①②得:mg (t 1+t 2)=m (v 1+v 2),解得:t =t 1+t 2=v 1+v 2g,故D 正确;故选BD. 10.(多选)如图所示,足够长的光滑水平导轨间距为2 m ,电阻不计,垂直导轨平面有磁感应强度为1 T 的匀强磁场,导轨上相隔一定距离放置两根长度略大于间距的金属棒,a 棒质量为1 kg ,电阻为5 Ω,b 棒质量为2 kg ,电阻为10 Ω.现给a 棒一个水平向右的初速度8 m/s ,当a 棒的速度减小为4 m/s 时,b 棒刚好碰到了障碍物,经过很短时间0.5 s 速度减为零(不反弹,且a 棒始终没有与b 棒发生碰撞),下列说法正确的是( )A .从上向下看回路产生逆时针方向的电流B .b 棒在碰撞前瞬间的速度大小为2 m/sC .碰撞过程中障碍物对b 棒的平均冲击力大小为6 ND .b 棒碰到障碍物后,a 棒继续滑行的距离为15 m解析:选ABD.根据右手定则可知,从上向下看回路产生逆时针方向的电流,选项A 正确;系统动量守恒,由动量守恒定律可知:m a v 0=m a v a +m b v b 解得v b =2 m/s ,选项B 正确;b 碰到障碍物时,回路的感应电动势:E =BL (v a -v b )=4 V ;回路的电流:I =E R a +R b =415 A ;b 棒所受的安培力:F b =BIL =815N ;b 与障碍物碰撞时,由动量定理:(F b -F )t =0-m b v b 解得:F =8.5 N ,选项C 错误;b 碰到障碍物后,a 继续做减速运动,直到停止,此时由动量定理:B IL Δt =m a v a ,其中I Δt =q =ΔΦR a +R b =BLx R a +R b联立解得x =15 m ,选项D 正确;故选ABD. 11.(多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m/s(设为正),B 的速度v 2=-3 m/s ,则它们发生正碰后,其速度可能分别是( )A .均为1 m/sB .+4 m/s 和-5 m/sC .+2 m/s 和-1 m/sD .-1 m/s 和5 m/s解析:选AD.由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 21+12m 2v 22=12×4×9 J+12×2×9 J=27 J E k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A、B沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A′>0,v B′<0),这显然是不符合实际的,因此C错误.验证选项A、D均满足E k≥E k′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).。
2020年高考物理《动量守恒多种模型的解题思路》专题训练及答案解析
![2020年高考物理《动量守恒多种模型的解题思路》专题训练及答案解析](https://img.taocdn.com/s3/m/a1f54490fad6195f312ba68a.png)
高考物理《动量守恒多种模型的解题思路》专题训练1.(碰撞模型)甲、乙两球在光滑水平面上沿同一直线、同一方向运动,甲球的动量是p 1=5 kg·m/s,乙球的动量是p 2=7 kg·m/s,当甲球追上乙球发生碰撞后,乙球的动量变为p 2′=10 kg·m/s,设甲球的质量为m 1,乙球的质量为m 2,则m 1、m 2的关系可能是( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2【答案】 C【解析】碰撞过程中动量守恒,可知碰后甲球的动量p 1′=2 kg·m/s。
由于是甲追碰乙,碰撞前甲的速度大于乙的速度,有p 1m 1>p 2m 2,可得m 2>75m 1;碰撞后甲的速度不大于乙的速度,有p 1′m 1≤p 2′m 2,可得m 2≤5m 1。
碰撞后系统的动能不大于碰前系统的动能,由E k =p 22m 可知p 1′22m 1+p 2′22m 2≤p 212m 1+p 222m 2,解得m 2≥177m 1,联立得177m 1≤m 2≤5m 1,C 正确。
2.(碰撞模型综合)如图所示,在粗糙水平面上A 点固定一半径R =0.2 m 的竖直光滑圆弧轨道,底端有一小孔。
在水平面上距A 点s =1 m 的B 点正上方O 处,用长为L =0.9 m 的轻绳悬挂一质量M =0.1 kg 的小球甲,现将小球甲拉至图中C 位置,绳与竖直方向夹角θ=60°。
静止释放小球甲,摆到最低点B 点时与另一质量m =0.05 kg 的静止小滑块乙(可视为质点)发生完全弹性碰撞。
碰后小滑块乙在水平面上运动到A 点,并无碰撞地经过小孔进入圆轨道,当小滑块乙进入圆轨道后立即关闭小孔,g =10 m/s 2。
(1)求甲、乙碰前瞬间小球甲的速度大小;(2)若小滑块乙进入圆轨道后的运动过程中恰好不脱离圆轨道,求小滑块乙与水平面的动摩擦因数。
2020年高考物理考点题型归纳与训练专题十四动量守恒定律及其应用(含解析)
![2020年高考物理考点题型归纳与训练专题十四动量守恒定律及其应用(含解析)](https://img.taocdn.com/s3/m/a9b8fc0078563c1ec5da50e2524de518964bd35c.png)
2020 高考物理二轮复习题型概括与训练专题十四动量守恒定律及其应用题型一、动量定理的理解与应用【典例 1】(2019 ·武汉高三放学期 2 月调考 )运动员在水上做飞翔运动表演。
他控制发射式悬浮飞翔器将水带竖直奉上来的水反转180°后向下喷出,令自己悬停在空中,如下图。
已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,已知重力加快度大小g= 10 m/s2,水的密度ρ= 1.0×103kg/m3,则喷嘴处喷水的速度大概为()A . 2.7 m/s B. 5.4 m/s C. 7.6 m/s D . 10.8 m/s【答案】C【分析】设t 时间内有质量为m 的水射出,忽视重力冲量,对这部分水由动量定理得F t d2= 2mv, m=ρvΔt·π,设运动员与装备的总质量为M ,运动员悬停在空中,因此 F ′= Mg , 4由牛顿第三定律得 F ′= F ,联立解得v≈7.6 m/s, C 正确。
题型二、动量守恒定律的应用【规律方法】动量守恒定律解题的基本步骤1.明确研究对象,确立系统的构成(系统包含哪几个物体及研究的过程);2.进行受力剖析,判断系统动量能否守恒(或某一方向上动量能否守恒);3.规定正方向,确立初、末状态动量;4.由动量守恒定律列出方程;5.代入数据,求出结果,必需时议论说明.【典例 2】如下图,甲、乙两儿童各乘一辆冰车在水平冰面上嬉戏.甲和他的冰车的总质量为 M= 30 kg ,乙和他的冰车的总质量也是M= 30 kg. 甲推着一个质量为m=15 kg 的箱子和他一同以 2 m/s 的速度滑行,乙以相同大小的速度迎面滑来.为了防止相撞,甲忽然将箱子沿冰面推给乙,箱子滑到乙处时,乙快速抓住.若不计冰面摩擦,求甲起码以多大速度(相对地 )将箱子推出,才能防止与乙相撞?【分析】要想恰巧防止相撞,要求乙抓住箱子后与甲的速度正好相等,设甲推出箱子后的速度为 v1,箱子的速度为 v,乙抓住箱子后的速度为 v2.对甲和箱子,推箱子前后动量守恒,以甲初速度方向为正方向,由动量守恒定律有(M + m) v0=m v +Mv 1①对乙和箱子,抓住箱子前后动量守恒,以箱子初速度方向为正方向,由动量守恒定律有mv- Mv 0= (m+ M )v2②甲与乙恰巧不相撞的条件是v1= v2③联立①②③解得v= 5.2 m/s ,方向与甲和箱子初速度方向一致.【答案】 5.2 m/s题型三、碰撞模型的规律及应用【典例 3】. (多项选择 )(2019 ·山东济南高三第二次联考 )如图甲所示,圆滑水平面上有a、 b 两个小球, a 球向 b 球运动并与 b 球发生正碰后粘合在一同共同运动,其碰前和碰后的s - t 图象如图乙所示,已知 m a= 5 kg.若 b 球的质量为 m b,两球因碰撞而损失的机械能为E,则()A . m b= 1 kg B. m b=2 kgC. E=15 J D. E=35 J6【分析】:在 s -t 图象中图线的斜率表示小球运动的速度大小,因此v a=1m/s= 6 m/s,碰后粘合在一同共同运动的速度为v=5 a a a b)v,1m/s = 5 m/s,碰撞过程动量守恒,得 m v= (m + m解得 m b=1 kg ,故 A 正确, B 错误;依据功能关系得1212E =2m a v a-2(m a+ m b)v = 15J,故C 正确,D 错误.【答案】: AC题型四、动量与能量的综合应用【规律方法】利用动量和能量看法解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律.(2)动量守恒定律和能量守恒定律都只考察一个物理过程的初、末两个状态,对过程的细节不予追查.(3)注意发掘隐含条件,依据选用的对象和过程判断动量和能量能否守恒.【典例 4】 (2019 ·湖北孝感高三上学期期末八校联考)如下图,水平轨道OBC 与一半径为R= 0.5 m 的竖直圆滑半圆形轨道CD 相切于 C 点,此中 AB 部分粗拙,其余部分圆滑。
高考物理动量守恒定律解题技巧及练习题(含答案)及解析
![高考物理动量守恒定律解题技巧及练习题(含答案)及解析](https://img.taocdn.com/s3/m/5b52b58fa21614791611280c.png)
高考物理动量守恒定律解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示.图中E0和d均为已知量.将带正电的质点A在O点由能止释放.A离开电场足够远后,再将另一带正电的质点B放在O点也由静止释放,当B在电场中运动时,A、B间的相互作用力及相互作用能均为零;B离开电场后,A、B间的相作用视为静电作用.已知A的电荷量为Q,A和B的质量分别为m和.不计重力.(1)求A在电场中的运动时间t,(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m【答案】(1)(2)145QE0d (3)Q【解析】【分析】【详解】解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q3.如图的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作,已知P1、P2的质量都为m=1 kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4 m,g取10 m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞。
高考物理动量守恒定律解题技巧及练习题(含答案)
![高考物理动量守恒定律解题技巧及练习题(含答案)](https://img.taocdn.com/s3/m/084c319c02020740bf1e9b0e.png)
高考物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)dr r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第1次碰撞后两小球的速度;(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离. 【答案】(1)043v 013v 方向均与0v 相同 (2)065L v (3)9L【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒;(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+222201122111222m v m v mv =+ 整理得:210122m v v m m =+,212012m m v v m m -=+解得1043v v =,2013v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有11x v t =,22x v t =由几何关系知:122x x L += 整理得:065Lt v =(3)两小球第2次碰撞时的位置与挡板的距离:235x L x L =-= 以向左为正方向,第2次碰前A 的速度043A v v =,B 的速度为013B v v =-,如图所示.设碰后A 的速度为A v ',B 的速度为B v '.根据动量守恒定律和机械能守恒定律,有1212A B A B m v m v m v m v ''+=+; 2222121211112222A B AB m v m v m v m v ''+=+ 整理得:12212()2A B A m m v m v v m m -+'=+,21112()2B A B m m v m v v m m -+'=+解得:089A v v '=-,079B v v '=设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则B x x v t '''-=,A x x v t '''+=整理得:9x L '=4.28.如图所示,质量为m a =2kg 的木块A 静止在光滑水平面上。
2020年高考物理二轮复习专项训练 动量守恒多种模型的解题思路(学生版)
![2020年高考物理二轮复习专项训练 动量守恒多种模型的解题思路(学生版)](https://img.taocdn.com/s3/m/50fa256a14791711cd791761.png)
动量守恒多种模型的解题思路1.(碰撞模型)甲、乙两球在光滑水平面上沿同一直线、同一方向运动,甲球的动量是p1=5 kg·m/s,乙球的动量是p2=7 kg·m/s,当甲球追上乙球发生碰撞后,乙球的动量变为p2′=10 kg·m/s,设甲球的质量为m1,乙球的质量为m2,则m1、m2的关系可能是( )A.m1=m2B.2m1=m2C.4m1=m2D.6m1=m22.(碰撞模型综合)如图所示,在粗糙水平面上A点固定一半径R=0.2 m的竖直光滑圆弧轨道,底端有一小孔。
在水平面上距A点s=1 m的B点正上方O处,用长为L=0.9 m的轻绳悬挂一质量M=0.1 kg的小球甲,现将小球甲拉至图中C位置,绳与竖直方向夹角θ=60°。
静止释放小球甲,摆到最低点B点时与另一质量m=0.05 kg的静止小滑块乙(可视为质点)发生完全弹性碰撞。
碰后小滑块乙在水平面上运动到A点,并无碰撞地经过小孔进入圆轨道,当小滑块乙进入圆轨道后立即关闭小孔,g=10 m/s2。
(1)求甲、乙碰前瞬间小球甲的速度大小;(2)若小滑块乙进入圆轨道后的运动过程中恰好不脱离圆轨道,求小滑块乙与水平面的动摩擦因数。
3.(碰撞模型综合)如图所示,质量为m1=0.2 kg的小物块A,沿水平面与小物块B发生正碰,小物块B 的质量为m2=1 kg。
碰撞前,A的速度大小为v0=3 m/s,B静止在水平地面上。
由于两物块的材料未知,将可能发生不同性质的碰撞,已知A、B与地面间的动摩擦因数均为μ=0.2,重力加速度g取10 m/s2,试求碰后B在水平面上滑行的时间。
4.碰撞与板块综合类)质量为m B=2 kg的木板B静止于光滑水平面上,质量为m A=6 kg的物块A停在B的左端,质量为m C =2 kg 的小球C 用长为L =0.8 m 的轻绳悬挂在固定点O 。
现将小球C 及轻绳拉直至水平位置后由静止释放,小球C 在最低点与A 发生正碰,碰撞作用时间很短为Δt =10-2 s ,之后小球C 反弹所能上升的最大高度h =0.2 m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒多种模型的解题思路1.(碰撞模型)甲、乙两球在光滑水平面上沿同一直线、同一方向运动,甲球的动量是p 1=5 kg·m/s ,乙球的动量是p 2=7 kg·m/s ,当甲球追上乙球发生碰撞后,乙球的动量变为p 2′=10 kg·m/s ,设甲球的质量为m 1,乙球的质量为m 2,则m 1、m 2的关系可能是( )A .m 1=m 2 B .2m 1=m 2C .4m 1=m 2 D .6m 1=m 2【答案】 C【解析】碰撞过程中动量守恒,可知碰后甲球的动量p 1′=2 kg·m/s 。
由于是甲追碰乙,碰撞前甲的速度大于乙的速度,有>,可得m 2>m 1;碰撞后甲的速度不大于乙的速度,有≤,可得m 2≤5m 1。
碰撞p 1m 1p 2m 275p 1′m 1p 2′m 2后系统的动能不大于碰前系统的动能,由E k =可知+≤+,解得m 2≥m 1,联立得p 22m p 1′22m 1p 2′22m 2p 212m 1p 22m 2177m 1≤m 2≤5m 1,C 正确。
1772.(碰撞模型综合)如图所示,在粗糙水平面上A 点固定一半径R =0.2 m 的竖直光滑圆弧轨道,底端有一小孔。
在水平面上距A 点s =1 m 的B 点正上方O 处,用长为L =0.9 m 的轻绳悬挂一质量M =0.1 kg 的小球甲,现将小球甲拉至图中C 位置,绳与竖直方向夹角θ=60°。
静止释放小球甲,摆到最低点B 点时与另一质量m =0.05 kg 的静止小滑块乙(可视为质点)发生完全弹性碰撞。
碰后小滑块乙在水平面上运动到A 点,并无碰撞地经过小孔进入圆轨道,当小滑块乙进入圆轨道后立即关闭小孔,g =10 m/s 2。
(1)求甲、乙碰前瞬间小球甲的速度大小;(2)若小滑块乙进入圆轨道后的运动过程中恰好不脱离圆轨道,求小滑块乙与水平面的动摩擦因数。
【答案】(1)3 m/s (2)0.3或0.6【解析】(1)小球甲由C 到B ,由动能定理得:Mg (L -L cos θ)=Mv ,1220解得v 0=3 m/s 。
(2)甲、乙发生完全弹性碰撞,由动量守恒定律得Mv 0=Mv 1+mv 2,由能量守恒定律得Mv =Mv +mv ,12201221122解得v 2=4 m/s ,若小滑块乙恰能经过最高点,则最高点速度v t 满足mg =m ,v 2t R 解得v t =。
gR 从B 到圆轨道最高点,由动能定理有-μmgs -2mgR =mv -mv ,122t 122解得μ=0.3。
若滑块乙不能经过圆轨道最高点,则最高位置必与圆心同高,由动能定理得-μ′mgs -mgR =0-mv ,122解得μ′=0.6,所以小滑块与水平面的动摩擦因数为0.3或0.6。
3.(碰撞模型综合)如图所示,质量为m 1=0.2 kg 的小物块A ,沿水平面与小物块B 发生正碰,小物块B 的质量为m 2=1 kg 。
碰撞前,A 的速度大小为v 0=3 m/s ,B 静止在水平地面上。
由于两物块的材料未知,将可能发生不同性质的碰撞,已知A 、B 与地面间的动摩擦因数均为μ=0.2,重力加速度g 取10 m/s 2,试求碰后B 在水平面上滑行的时间。
【答案】: 0.25 s≤t ≤0.5 s【解析】: 假如两物块发生的是完全非弹性碰撞,碰后的共同速度为v 1,则由动量守恒定律有m 1v 0=(m 1+m 2)v 1碰后,A 、B 一起滑行直至停下,设滑行时间为t 1,则由动量定理有μ(m 1+m 2)gt 1=(m 1+m 2)v 1解得t 1=0.25 s假如两物块发生的是弹性碰撞,碰后A 、B 的速度分别为v A 、v B ,则由动量守恒定律有m 1v 0=m 1v A +m 2v B 由机械能守恒有m 1v =m 1v +m 2v 1220122A 122B 设碰后B 滑行的时间为t 2,则μm 2gt 2=m 2v B解得t 2=0.5 s可见,碰后B 在水平面上滑行的时间t 满足0.25 s≤t ≤0.5 s4.碰撞与板块综合类)质量为m B =2 kg 的木板B 静止于光滑水平面上,质量为m A =6 kg 的物块A 停在B 的左端,质量为m C =2 kg 的小球C 用长为L =0.8 m 的轻绳悬挂在固定点O 。
现将小球C 及轻绳拉直至水平位置后由静止释放,小球C 在最低点与A 发生正碰,碰撞作用时间很短为Δt =10-2 s ,之后小球C 反弹所能上升的最大高度h =0.2 m 。
已知A 、B 间的动摩擦因数μ=0.1,物块与小球均可视为质点,不计空气阻力,取g =10 m/s 2。
求:(1)小球C 与物块A 碰撞过程中所受的撞击力大小;(2)为使物块A 不滑离木板B ,木板B 至少多长?【答案】:(1)1.2×103 N (2)0.5 m【解析】:(1)小球C 下摆过程,由动能定理:m C gL =m C v 122C 小球C 反弹过程,由动能定理:-m C gh =0-m C v C ′212碰撞过程,根据动量定理:-F Δt =m C (-v C ′)-m C v C联立以上各式解得:F =1.2×103 N(2)小球C 与物块A 碰撞过程,由动量守恒定律:m C v C =m C (-v C ′)+m A v A当物块A 恰好滑至木板B 右端并与其共速时,所求木板B 的长度最小。
此过程,由动量守恒定律:m A v A =(m A +m B )v由能量守恒定律:μm A g ·x =m A v -(m A +m B )v 2122A 12联立以上各式解得x =0.5 m5.(轨道模型)带有1/4光滑圆弧轨道质量为M 的滑车静止置于光滑水平面上,如图所示,一质量也为M 的小球以速度v 0水平冲上滑车,到达某一高度后,小球又返回车的左端,则( )A .小球以后将向左做平抛运动B .小球将做自由落体运动C .此过程小球对小车做的功为Mv 1220D .小球在弧形槽上上升的最大高度为v 202g 【答案】: BC【解析】: 小球上升到最高点时与小车相对静止,有共同速度v ′,由动量守恒定律和机械能守恒定律有:Mv 0=2Mv ′①Mv =2×+Mgh ②1220(12Mv ′2)联立①②得:h =,知D 错误。
v 204g 6.(轨道模型综合)(2018·南昌模拟)如图所示,质量为m 1=3 kg 的二分之一光滑圆弧形轨道ABC 与一质量为m 2=1 kg 的物块P 紧靠着(不粘连)静置于光滑水平面上,B 为半圆轨道的最低点,AC 为轨道的水平直径,轨道半径R =0.3 m 。
一质量为m 3=2 kg 的小球(可视为质点)从圆弧轨道的A 处由静止释放,g 取10 m/s 2,求:(1)小球第一次滑到B 点时的速度v 1;(2)小球第一次经过B 点后,相对B 能上升的最大高度h 。
【答案】: (1)2 m/s 方向向右 (2)0.27 m【解析】: (1)设小球第一次滑到B 点时的速度为v 1,轨道和P 的速度为v 2,取水平向左为正方向,由水平方向动量守恒有(m 1+m 2)v 2+m 3v 1=0根据系统机械能守恒m 3gR =(m 1+m 2)v +m 3v 1221221联立解得v 1=-2 m/s ,方向向右;v 2=1 m/s ,方向向左(2)小球经过B 点后,物块P 与轨道分离,小球与轨道水平方向动量守恒,且小球上升到最高点时与轨道共速,设为v ,则有:m 1v 2+m 3v 1=(m 1+m 3)v 解得v =-0.2 m/s ,方向向右由机械能守恒m 1v +m 3v =(m 1+m 3)v 2+m 3gh 122122112解得h =0.27 m7.如图所示,一质量M =2 kg 的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B 。
从弧形轨道上距离水平轨道高h =0.3 m 处由静止释放一质量m A =1 kg 的小球A ,小球A 沿轨道下滑后与小球B 发生弹性正碰,碰后小球A 被弹回,且恰好追不上平台。
已知所有接触面均光滑,重力加速度为g =10 m/s 2。
求小球B 的质量。
【答案】: 3 kg【解析】:设小球A 下滑到水平轨道上时的速度大小为v 1,平台水平速度大小为v ,由动量守恒定律有0=m A v 1-Mv 由能量守恒定律有m A gh =m A v +Mv 2122112联立解得v 1=2 m/s ,v =1 m/s小球A 、B 碰后运动方向相反,设小球A 、B 的速度大小分别为v 1′和v 2,由于碰后小球A 被弹回,且恰好追不上平台,则此时小球A 的速度等于平台的速度,有v 1′=1 m/s 由动量守恒定律得m A v 1=-m A v 1′+m B v 2由能量守恒定律有m A v =m A v 1′2+m B v 122112122联立解得m B =3 kg 。
8.(轨道模型综合)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。
某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3m(h 小于斜面体的高度)。
已知小孩与滑板的总质量为m 1=30 kg ,冰块的质量为m 2=10 kg ,小孩与滑板始终无相对运动。
取重力加速度的大小g =10 m/s 2。
(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?【答案】: (1)20 kg (2)见解析【解析】: (1)规定向右为速度正方向。
冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v ,斜面体的质量为m 3。
由水平方向动量守恒和机械能守恒定律得m 2v 20=(m 2+m 3)v ①m 2v =(m 2+m 3)v 2+m 2gh ②1222012式中v 20=-3 m/s 为冰块推出时的速度。
联立①②式并代入题给数据得m 3=20 kg ③(2)设小孩推出冰块后的速度为v 1,由动量守恒定律有m 1v 1+m 2v 20=0④代入数据得v 1=1 m/s ⑤设冰块与斜面体分离后的速度分别为v 2和v 3,由动量守恒和机械能守恒定律有m 2v 20=m 2v 2+m 3v 3⑥m 2v =m 2v +m 3v ⑦122201221223联立③⑥⑦式并代入数据得v 2=1 m/s ⑧9.(弹簧模型)由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩。