协方差与相关系数 PPT
合集下载
协方差与相关系数 PPT
D(V ) D(2X Y ) D(2X ) D(Y ) 2Cov(2X ,Y )
4D( X ) D(Y ) 2 2 Cov( X ,Y ) 17
所以
Cov(U ,V ) Cov(2X Y , 2X Y )
Cov(2X , 2X ) Cov(2X ,Y ) Cov(Y , 2X ) Cov(Y ,Y )
所以D(t0X*-Y*)=0,由方差得性质知它等价于 P{t0X*-Y* =0}=1,即P{Y=aX+b}=1
其中a=t0σ(Y)/σ(X),b=E(Y)- t0 E(X) σ(Y)/σ(X)、
• 性质3:若X与Y相互独立,则ρXY=0、 证明 若X与Y相互独立,则E(XY)=E(X)E(Y), 又 Cov(X,Y)= E(XY)-E(X)E(Y),所以
协方差与相关系数
一、协方差得概念及性质 二、相关系数得概念及性质 三、协方差得关系式
§1 协方差
• 定义:设二维随机向量(X,Y)得数学期望 (E(X),E(Y))存在,若E[(X-E(X))(Y-E(Y))]存在,则称 它为随机变量X与Y得协方差,记为Cov(X,Y),即
Cov(X,Y)= E[(X-E(X))(Y-E(Y))] • 协方差有计算公式
9 , XY
1 3
,设
U
2X
Y
,
V 2X Y , 求 UV .
解
Cov( X ,Y ) XY
D( X ) D(Y ) 1 3
49 2
D(U ) D(2X Y ) D(2X ) D(Y ) 2Cov(2X ,Y )
4D( X ) D(Y ) 2 2 Cov( X ,Y ) 33
E( X ) (1) 0.15 1 0.35 0.20
期望、协方差、方差与相关系数PPT22页
期望、协方差、方差与相关系数
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
期望、协方差、方差与相关系数
张宏浩
协方差的一些性质
独立意味着不相关
方差是协方差矩阵的对角元
多个随机变量之和的方差
方差的一些性质
切比雪夫不等式
相关系数的定义
相关系数的性质
ห้องสมุดไป่ตู้
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
期望、协方差、方差与相关系数
张宏浩
协方差的一些性质
独立意味着不相关
方差是协方差矩阵的对角元
多个随机变量之和的方差
方差的一些性质
切比雪夫不等式
相关系数的定义
相关系数的性质
ห้องสมุดไป่ตู้
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
协方差和相关系数的计算ppt(共24张PPT)
E(X 2) 2
D( X ) D(Y ) 2
E(Y 2 ) 2
cov(U ,V ) (a2 b2 ) 2
而 D(U ) a2D( X ) b2D(Y ) (a2 b2 ) 2
D(V ) a2D( X ) b2D(Y ) (a2 b2 ) 2
故
UV
a2 a2
b2 b2
XY 1 0 P pq
E(X ) p, E(Y ) p, D(X ) pq, D(Y ) pq, E(XY ) p, D(XY ) pq,
cov( X ,Y ) pq, XY 1
例2 设 ( X ,Y ) ~ N ( 1,12,2,22,), 求
XY .
解
cov( X ,Y )
当D(X ) > 0, D(Y ) > 0 时,当且仅当
P(Y E(Y ) t0 ( X E( X ))) 1
时,等式成立 —Cauchy-Schwarz不等式.
证明 令
g(t) E[(Y E(Y )) t( X E( X ))]2 D(Y ) 2t cov( X ,Y ) t2D( X )
在寒冷的年代里,母爱是温暖。
协方差和相关系数的计算
cov(U ,V ) 解 在文明的年代里,母爱是道德。
继续讨论:a,b 取何值时,U,V 不相关?
E(UV
)
E(U
)E(V
)
为X,Y 的相关系数,记为
a E( X ) b E(Y ) 例2 设 ( X ,Y ) ~ N ( 1, 12, 2, 22,2 ), 求 2XY . 2
E( XY ) p, D( XY ) pq,
cov( X ,Y ) pq, XY 1
X X p ,Y Y p , P(X Y ) 1
协方差与相关系数(PPT课件)
2 误差rmin (1 XY ) DY , 其 中 XY
C ov(X , Y ) 为相关系数 DX DY
相关系数的性质 相关系数满足|ρXY |≤1且
XY 1 常数a, b, 使P{Y a bX } 1
2 证 由 (1 XY )
rmin 0 知 | XY | 1 DY
则称E ( X EX )(Y EY )为随机变量X 与Y的协方差, 记 为Cov( X ,Y ), 即
Cov( X ,Y ) E ( X EX )(Y EY )
将上式展开, 易得公式
Cov( X ,Y ) E ( XY ) ( EX )( EY )
特别, 当X与Y 相互独立时,有
解 Cov(X ,Y ) XY DX DY 0.5 4 16 4 例3 设 ( X , Y ) 服从参数为 1 ,
2 2 , 12 , 2 , 的
二维正态分布 , 求X 与Y 的相关 系数.
概率统计(ZYH)
例3 解 二维正态分布的密度是
f
exp(h) 2σ1σ 2 1 ρ 2
Cov( X , Y ) Cov( X , Y ) EX , b DX DX
2
Cov( X , Y ) Cov( X , Y ) E Y EY EX X DX DX
Cov(X , Y ) X EX E (Y EY ) DX
( σ1 σ 2 u 2 ) e
t2 2
t 2 u2 2
dtdu
u2 2
σ1σ 2
Hale Waihona Puke 1 e 2dt u
概率论教学课件第四章4.4协方差与相关系数
1
一、协方差
对于二维随机变量(X,Y),讨论描述X与Y之间相互 依赖关系的数字特征.
X与Y相互独立 E[(X EX )(Y EY )] 0
或者:E[(X EX )(Y EY )] 0 X与Y一定不相互独立
定义1. 若E[(X EX )(Y EY )]存在, 则称E[(X EX )(Y EY )]为X与Y的协方差.
(连续型).
-
3
或者用以下公式计算
Cov(X , Y ) E(XY ) EX EY
Cov (X , Y ) E[(X EX )(Y EY )]
E(XY XEY YEX EXEY ) E(XY ) EX EY EX EY EX EY E(XY ) EX EY
4
定义2* 设 DX 0 , DY 0,称X,Y的标准化随机变量
X , Y 的协方差 Cov ( X , Y ) 为X与Y的相关系数.
记 为 XY , 即
XY Cov( X , Y ) E( X Y ) EX EY E( X Y )
E[( X EX )(Y EY )] Cov( X ,Y ) .
其逆命题不真!
注:若Cov X,Y 0,即E XY EXEY,则X与Y不相互独立.
4. D(X Y ) DX DY 2Cov(X , Y ).
5
例4.14 设二维随机变量(X,Y )的联合分布列为
XY 0 1 pi 0 0.2 0.3 0.5 1 0.5 0 0.5
p j 0.7 0.3
1 R
2
R
dx
R
R2 x2
xydy
R2 x2
0,
Cov(X , Y ) E(XY ) EXEY 0 00 0 .
8
Cov(X , Y ) E(XY ) EXEY 0 .
一、协方差
对于二维随机变量(X,Y),讨论描述X与Y之间相互 依赖关系的数字特征.
X与Y相互独立 E[(X EX )(Y EY )] 0
或者:E[(X EX )(Y EY )] 0 X与Y一定不相互独立
定义1. 若E[(X EX )(Y EY )]存在, 则称E[(X EX )(Y EY )]为X与Y的协方差.
(连续型).
-
3
或者用以下公式计算
Cov(X , Y ) E(XY ) EX EY
Cov (X , Y ) E[(X EX )(Y EY )]
E(XY XEY YEX EXEY ) E(XY ) EX EY EX EY EX EY E(XY ) EX EY
4
定义2* 设 DX 0 , DY 0,称X,Y的标准化随机变量
X , Y 的协方差 Cov ( X , Y ) 为X与Y的相关系数.
记 为 XY , 即
XY Cov( X , Y ) E( X Y ) EX EY E( X Y )
E[( X EX )(Y EY )] Cov( X ,Y ) .
其逆命题不真!
注:若Cov X,Y 0,即E XY EXEY,则X与Y不相互独立.
4. D(X Y ) DX DY 2Cov(X , Y ).
5
例4.14 设二维随机变量(X,Y )的联合分布列为
XY 0 1 pi 0 0.2 0.3 0.5 1 0.5 0 0.5
p j 0.7 0.3
1 R
2
R
dx
R
R2 x2
xydy
R2 x2
0,
Cov(X , Y ) E(XY ) EXEY 0 00 0 .
8
Cov(X , Y ) E(XY ) EXEY 0 .
概率论与数理统计(第三版)第三章4协方差与相关系数-PPT精品文档
o 3 X , Y 不相关 E ( XY ) E ( X ) E ( Y ).
3. 相关系数的性质
是一个用来表征 X ,Y之间线性关系紧密 XY
程度的量 .
1 . 1 ρ XY
a , b使 1 的充要条件是 :存在常数 2 ρ XY
P { Y a bX } 1 .
0.3 0.7
0 . 3 0 0 . 7 1 0 . 7
0 . 6 1 0 . 4 2 1 . 4
0 . 9 50 . 7 1 . 4 0.03
c o v (,) X Y E X Y E X E Y
三、 相关系数的意义
1 . 当 ρ 表明 X,Y的线性关系联 XY 较大时
例1 已知 (X,Y)的分布律求Cov(X,Y)
x 0 1 y 1 2 0.15 0.15 0.45 0.25
解: c o v (,) X Y E X Y E X E Y
EX ( Y ) 0 .9 5
x 0 1
EX ( ) EY ( )
y 1 0.15 0.45 0.6
2 0.15 0.25 0.4
3.设X和Y是随机变量,若
E(XkYL)
k, L=1,2,…
存在,
称它为X和Y的k+L阶混合(原点)矩.
k L 4.若 E {[ X E ( X )] [ Y E ( Y )] } 存在,
称它为X和Y的k+L阶混合中心矩.
二、协方差与相关系数的概念及性质
1. 问题的提出
若随机变量 X 和 Y 相ቤተ መጻሕፍቲ ባይዱ独立 ,那么
3 Cov( X X , Y ) Cov( X , Y ) Co X , Y ). 1 2 1 2
一协方差与相关系数的概念及性质-27页PPT资料
σ 1σ22π 1ρ2 u eu 2 2du tet2 2dt
ρσ 1σ2 2 2, 2
故 C X 有 ,o Y ) v ρ 1 σ 2 ( σ .
于是 XY D C (X )o X ,D Y v ()Y )(.
结论
(1)二 维正态分布 中 ,参 密数 ρ度 代函 表X数 了 与Y的相关; 系数 ( 2)二 维正态X随 与 Y机 相变 关量 系数 等价 X与 于 Y相互.独立
例 2 已知 X,Y 分 随别 机 N (1 服 ,3 变 2)N ,从 (量 0,42), ρXY 12,设 ZX3Y2.
(1) 求Z的数学期望.和方差 (2) 求X与Z的相关系 . 数 (3) 问X与Z是否相互?为 独什 立?么
解 ( 1 ) 由 E ( X ) 1 , D ( X ) 9 , E ( Y ) 0 , D ( Y ) 1 .
5. 性质
( 1 )CX o ,Y ) v C (Y ,o X )v ; ( ( 2 )C a o ,b X ) v Y a ( C b X ,o Y ),v a ,b ( 为 ;常 ( 3 ) C X 1 X o 2 , Y ) C v X 1 ( , Y ) o C X v 2 , Y ) o ( .
例1 设 (X ,Y )~ N (μ 1 ,μ 2 ,σ 1 2 ,σ 2 2 ,ρ )试 , X 与 求 Y 的
相关 . 系数 解 由f(x,y) 1
2πσ1σ2 1ρ2
ex 2p(11ρ2)(x σ12 μ1)22ρ(xμσ 11 )σ(y2μ2)(y σ2 2 μ2)2
fX(x)
1 e(x2 σ μ 1 2 1)2,x, 2πσ1
一、协方差与相关系数的概念及性质
1. 问题的提出
ρσ 1σ2 2 2, 2
故 C X 有 ,o Y ) v ρ 1 σ 2 ( σ .
于是 XY D C (X )o X ,D Y v ()Y )(.
结论
(1)二 维正态分布 中 ,参 密数 ρ度 代函 表X数 了 与Y的相关; 系数 ( 2)二 维正态X随 与 Y机 相变 关量 系数 等价 X与 于 Y相互.独立
例 2 已知 X,Y 分 随别 机 N (1 服 ,3 变 2)N ,从 (量 0,42), ρXY 12,设 ZX3Y2.
(1) 求Z的数学期望.和方差 (2) 求X与Z的相关系 . 数 (3) 问X与Z是否相互?为 独什 立?么
解 ( 1 ) 由 E ( X ) 1 , D ( X ) 9 , E ( Y ) 0 , D ( Y ) 1 .
5. 性质
( 1 )CX o ,Y ) v C (Y ,o X )v ; ( ( 2 )C a o ,b X ) v Y a ( C b X ,o Y ),v a ,b ( 为 ;常 ( 3 ) C X 1 X o 2 , Y ) C v X 1 ( , Y ) o C X v 2 , Y ) o ( .
例1 设 (X ,Y )~ N (μ 1 ,μ 2 ,σ 1 2 ,σ 2 2 ,ρ )试 , X 与 求 Y 的
相关 . 系数 解 由f(x,y) 1
2πσ1σ2 1ρ2
ex 2p(11ρ2)(x σ12 μ1)22ρ(xμσ 11 )σ(y2μ2)(y σ2 2 μ2)2
fX(x)
1 e(x2 σ μ 1 2 1)2,x, 2πσ1
一、协方差与相关系数的概念及性质
1. 问题的提出
随机变量的方差、协方差与相关系数
随机变量的方差、 协方差与相关系数
目 录
• 随机变量的方差 • 随机变量的方差 • 随机变量的协方差 • 相关系数 • 方差、协方差与相关系数的关系 • 实例分析
01
CATALOGUE
随机变量的方差
协方差的定义
协方差是衡量两个随机变量同时偏离其各自期望值程度的量,表示两个随机变量 之间的线性相关程度。
03
当两个随机变量的尺度相差很大时,直接计算协方差可能 得出不准确的结果,此时归一化的相关系数更为适用。
方差、协方差与相关系数的应用场景
方差在统计学中广泛应用于衡量数据的离散程度,例如在计算平均值、中位数等统计量时需要考虑数 据的离散程度。
协方差在回归分析、时间序列分析等领域中有着广泛的应用,用于衡量两个变量之间的线性相关程度。
3
当只考虑一个随机变量时,方差即为该随机变量 与自身期望值之差的平方的期望值,因此方差是 协方差的一种特例。
协方差与相关系数的关系
01
相关系数是协方差的一种归一化形式,用于消除两个随机变量 尺度上的差异,计算公式为 $r = frac{Cov(X,Y)}{sigma_X sigma_Y}$。
02
相关系数的取值范围是 [-1,1],其中 1 表示完全正相关,1 表示完全负相关,0 表示不相关。
详细描述
对称性是指如果随机变量X和Y的相关系数是r,那么随机变量Y和X的相关系数也是r。有界性是指相关 系数的绝对值不超过1,即|r|≤1。非负性是指相关系数的值总是非负的,即r≥0。
相关系数的计算
总结词
相关系数的计算方法有多种,包括皮尔 逊相关系数、斯皮尔曼秩相关系数等。
VS
详细描述
皮尔逊相关系数是最常用的一种,其计算 公式为r=∑[(xi-x̄)(yi-ȳ)]/[(n-1)sxy],其 中xi和yi分别是随机变量X和Y的第i个观测 值,x̄和ȳ分别是X和Y的均值,sxy是X和 Y的协方差。斯皮尔曼秩相关系数适用于 有序分类变量,其计算方法是根据变量的 秩次进行计算。
目 录
• 随机变量的方差 • 随机变量的方差 • 随机变量的协方差 • 相关系数 • 方差、协方差与相关系数的关系 • 实例分析
01
CATALOGUE
随机变量的方差
协方差的定义
协方差是衡量两个随机变量同时偏离其各自期望值程度的量,表示两个随机变量 之间的线性相关程度。
03
当两个随机变量的尺度相差很大时,直接计算协方差可能 得出不准确的结果,此时归一化的相关系数更为适用。
方差、协方差与相关系数的应用场景
方差在统计学中广泛应用于衡量数据的离散程度,例如在计算平均值、中位数等统计量时需要考虑数 据的离散程度。
协方差在回归分析、时间序列分析等领域中有着广泛的应用,用于衡量两个变量之间的线性相关程度。
3
当只考虑一个随机变量时,方差即为该随机变量 与自身期望值之差的平方的期望值,因此方差是 协方差的一种特例。
协方差与相关系数的关系
01
相关系数是协方差的一种归一化形式,用于消除两个随机变量 尺度上的差异,计算公式为 $r = frac{Cov(X,Y)}{sigma_X sigma_Y}$。
02
相关系数的取值范围是 [-1,1],其中 1 表示完全正相关,1 表示完全负相关,0 表示不相关。
详细描述
对称性是指如果随机变量X和Y的相关系数是r,那么随机变量Y和X的相关系数也是r。有界性是指相关 系数的绝对值不超过1,即|r|≤1。非负性是指相关系数的值总是非负的,即r≥0。
相关系数的计算
总结词
相关系数的计算方法有多种,包括皮尔 逊相关系数、斯皮尔曼秩相关系数等。
VS
详细描述
皮尔逊相关系数是最常用的一种,其计算 公式为r=∑[(xi-x̄)(yi-ȳ)]/[(n-1)sxy],其 中xi和yi分别是随机变量X和Y的第i个观测 值,x̄和ȳ分别是X和Y的均值,sxy是X和 Y的协方差。斯皮尔曼秩相关系数适用于 有序分类变量,其计算方法是根据变量的 秩次进行计算。
协方差及相关系数PPT课件
3) 1 存在常数 a, b(b≠0), 使 P{ Y=aX+b }=1,
即: X 和 Y 以概率 1 线性相关.
相关系数刻划了X 和Y 间“线性相关”的程度.
概率论
可见, 若 ρ = ±1, Y 与 X 有严格线性关系; 若 ρ = 0, Y 与 X 无线性关系; 若 0 < |ρ| < 1, |ρ|的值越接近于1, Y 与 X的线性相关程度越高; |ρ|的值越接近于0, Y 与 X的线性相关程度越弱.
可见, 均值 E(X)是 X 的一阶原点矩, 方差 D(X)是 X的二阶中心矩。
概率论
2. 定义: 设 X 和 Y 是随机变量,
若 E X k Y l k ,l 1 ,2 , 存 在
称它为 X 和 Y 的 k+l 阶混合(原点)矩. ((k+l)-th mixed raw moment)
若 E [ X E ( X ) ] k [ Y E ( Y ) ] l k , l 1 , 2 ,存 在
称它为 X 和 Y 的 k+l 阶混合中心矩. ((k+l)-th mixed central moment)
可见, 协方差 cov(X, Y)是 X 和 Y 的二阶混合中心矩.
四、协方差矩阵
概率论
将二维随机变量 (X1, X2) 的四个二阶中心矩:
c11 E {X [1E (X 1)2} ]
c 1 2 E { X 1 [ E (X 1 )X ]2 [ E (X 2 )]}
若 cij coX vi,(Xj) E {X [i E (X i)] X j[ E (X j)]}
( i, j=1,2,…,n ) 都存在, 称矩阵:
c11
C
c21
即: X 和 Y 以概率 1 线性相关.
相关系数刻划了X 和Y 间“线性相关”的程度.
概率论
可见, 若 ρ = ±1, Y 与 X 有严格线性关系; 若 ρ = 0, Y 与 X 无线性关系; 若 0 < |ρ| < 1, |ρ|的值越接近于1, Y 与 X的线性相关程度越高; |ρ|的值越接近于0, Y 与 X的线性相关程度越弱.
可见, 均值 E(X)是 X 的一阶原点矩, 方差 D(X)是 X的二阶中心矩。
概率论
2. 定义: 设 X 和 Y 是随机变量,
若 E X k Y l k ,l 1 ,2 , 存 在
称它为 X 和 Y 的 k+l 阶混合(原点)矩. ((k+l)-th mixed raw moment)
若 E [ X E ( X ) ] k [ Y E ( Y ) ] l k , l 1 , 2 ,存 在
称它为 X 和 Y 的 k+l 阶混合中心矩. ((k+l)-th mixed central moment)
可见, 协方差 cov(X, Y)是 X 和 Y 的二阶混合中心矩.
四、协方差矩阵
概率论
将二维随机变量 (X1, X2) 的四个二阶中心矩:
c11 E {X [1E (X 1)2} ]
c 1 2 E { X 1 [ E (X 1 )X ]2 [ E (X 2 )]}
若 cij coX vi,(Xj) E {X [i E (X i)] X j[ E (X j)]}
( i, j=1,2,…,n ) 都存在, 称矩阵:
c11
C
c21
《概率论》第4章_协方差及相关系数
X ,Y互不相关
12/14 12/14
指 X ,Y之间没有线 性关系, 性关系,但可能有 其它关系
2 设 ( X ,Y) ~ N(µ1, µ2,σ12 ,σ2 , ρ), 则 ρ =0 相互独立 X ,Y相互独立 ρXY = 0
X ,Y互不相关
第四章 随机变量的数字特征
§3 协方差及相关系数 设 X 的概率密度为: 的概率密度为:
相关
第四章 随机变量的数字特征
§3 协方差及相关系数
Y
8/14
Y
Y = a0+b0 X ( b0 < 0 )
Y
Y= a0 +b0 X ( b0 > 0 )
O
ρXY = 1
Y
X
O
Y
ρXY = − 1
y = a0 +b0 x ( b0 < 0 )
X
O
y = a0 +b0 x ( b0 > 0 )
ρσ1σ2p{− −t /1 [∞x − µ−u / 2 ( 2 ) ∞ 2 f (x, y) = ex = e dt ⋅ u e du 2π σ 1− ρ π ∫−∞ 2(1− ρ )∫−∞ σ σ 2 (x − µ )( y − µ 2) ( y − µ ) − 2ρ σ1σ2σ − ρ + −t / 2 ]}∞ −u / 2 1 ∞ + σ te σ dt ⋅ ∫−∞ ue du ∫−∞ − µ x − µ 1 = ex − π 1 p{ 2 [( yσ − ρ σ ) + (1− ρ ) (x − µ ) ]} ( σ 2πσ σ 1− ρρσ1σ 2 2 1− ρ ) = −µ 2π µ2π = ρσ1− µ σ y 2π x− 1 x 21 2 令 t = 1 2( −ρ ), u = , J =1 σ σ1 σ1 1− ρ ρσ1σ2 Cov( X2Y ) , = =ρ ∴ ρXY = D( X ) D(Y) σ1σ2
12/14 12/14
指 X ,Y之间没有线 性关系, 性关系,但可能有 其它关系
2 设 ( X ,Y) ~ N(µ1, µ2,σ12 ,σ2 , ρ), 则 ρ =0 相互独立 X ,Y相互独立 ρXY = 0
X ,Y互不相关
第四章 随机变量的数字特征
§3 协方差及相关系数 设 X 的概率密度为: 的概率密度为:
相关
第四章 随机变量的数字特征
§3 协方差及相关系数
Y
8/14
Y
Y = a0+b0 X ( b0 < 0 )
Y
Y= a0 +b0 X ( b0 > 0 )
O
ρXY = 1
Y
X
O
Y
ρXY = − 1
y = a0 +b0 x ( b0 < 0 )
X
O
y = a0 +b0 x ( b0 > 0 )
ρσ1σ2p{− −t /1 [∞x − µ−u / 2 ( 2 ) ∞ 2 f (x, y) = ex = e dt ⋅ u e du 2π σ 1− ρ π ∫−∞ 2(1− ρ )∫−∞ σ σ 2 (x − µ )( y − µ 2) ( y − µ ) − 2ρ σ1σ2σ − ρ + −t / 2 ]}∞ −u / 2 1 ∞ + σ te σ dt ⋅ ∫−∞ ue du ∫−∞ − µ x − µ 1 = ex − π 1 p{ 2 [( yσ − ρ σ ) + (1− ρ ) (x − µ ) ]} ( σ 2πσ σ 1− ρρσ1σ 2 2 1− ρ ) = −µ 2π µ2π = ρσ1− µ σ y 2π x− 1 x 21 2 令 t = 1 2( −ρ ), u = , J =1 σ σ1 σ1 1− ρ ρσ1σ2 Cov( X2Y ) , = =ρ ∴ ρXY = D( X ) D(Y) σ1σ2
随机变量的协方差和相关系数.
2.简单性质
(1) cov(X,C)= 0, C为常数; (2) cov(X,X)= D(X) (3) cov(X,Y)= cov(Y,X) (4) cov(aX+b, Y) = a cov(X,Y) a, b 是常数 (5) cov(aX, bY) = ab cov(X,Y) a, b 是常数 (6) cov(X1+X2,Y)= cov(X1,Y) + cov(X2,Y) (7) D(X±Y)=D(X)+D(Y)±2cov(X,Y)
X 与 Y 的相关系数 XY
1 147 . 46 147
Cov ( X ,Y ) 15 . D( X ) D(Y ) 69
2 2
2. 设二维连续型随机变量( X ,Y ) 的联合密度
6 2 1 ( x xy), 0 x 1, 0 y 2, 函数为 f ( x , y ) 7 2 其他 0, 求 ( X ,Y ) 的协方差矩阵及相关系 数.
解 E( X )
1 2
x f ( x , y )dxdy
cov( X i , X j ) D( X i ) D( X j )
vij vii v jj
( i, j=1,2,…,n )
都存在, 则称
11 21 矩阵 R n1
12 22
1n 2n
nn
这是一个非 负定对称矩阵
cov(X,Y)=E[X-EX][Y-EY]=EXY-EXEY
1) 当(X,Y)是离散型随机变量时,
cov( X , Y ) ( xi EX )( y j EY ) pij ,
i j
相关系数PPT课件
第1页/共21页
2、协方差的定义 (X, Y)为二维随机变量,则称下式为X、Y的协方差。
说明:
Cov(X,Y) =E{[ X-E(X)][Y-E(Y) ]}
⑴ 协方差为X,Y偏差[ X-E(X)] 与[Y-E(Y) ] 乘积的数学期望
(2) Cov(X,Y)>0,正相关;Cov(X,Y)<0, 负相关。=0,不相关
2 2
0.5,
0.4
x1*
0.5 0.4 0.3* 0.5 0.3 0.5 2* 0.4 0.3* 0.5
0.704
第20页/共21页
谢谢您的观看!
第21页/共21页
(3) Cov(aX, bY) =E{[aX-E(aX)][bY-bE(Y) ]} =E{ab [X-E(X)][Y-E(Y) ]} = ab cov(X, Y)
(4) Cov(X1+X2, Y)=E{[X1+X2 -E(X1+X2)][Y-E(Y) ]} =E{[X1 -E(X1)][Y-E(Y) ]}+E{[ X2 -E(X2)] [Y-E(Y) ]}} =Cov(X1, Y) + Cov(X2, Y)
(3) 当X,Y相同时,Cov(X, X) = D(X)=Var(X).
(4) 离散型 : COV ( X ,Y )
[xi E( X )][y j E(Y )] pij
ij
连续型 : COV (X ,Y ) [x E(X )][y E(Y )]f (x, y)dxdy
第2页/共21页
x12
2 1
(1
x1
)2
2 2
2x1(1
x1 )1 2
第19页/共21页
求D( P )
2、协方差的定义 (X, Y)为二维随机变量,则称下式为X、Y的协方差。
说明:
Cov(X,Y) =E{[ X-E(X)][Y-E(Y) ]}
⑴ 协方差为X,Y偏差[ X-E(X)] 与[Y-E(Y) ] 乘积的数学期望
(2) Cov(X,Y)>0,正相关;Cov(X,Y)<0, 负相关。=0,不相关
2 2
0.5,
0.4
x1*
0.5 0.4 0.3* 0.5 0.3 0.5 2* 0.4 0.3* 0.5
0.704
第20页/共21页
谢谢您的观看!
第21页/共21页
(3) Cov(aX, bY) =E{[aX-E(aX)][bY-bE(Y) ]} =E{ab [X-E(X)][Y-E(Y) ]} = ab cov(X, Y)
(4) Cov(X1+X2, Y)=E{[X1+X2 -E(X1+X2)][Y-E(Y) ]} =E{[X1 -E(X1)][Y-E(Y) ]}+E{[ X2 -E(X2)] [Y-E(Y) ]}} =Cov(X1, Y) + Cov(X2, Y)
(3) 当X,Y相同时,Cov(X, X) = D(X)=Var(X).
(4) 离散型 : COV ( X ,Y )
[xi E( X )][y j E(Y )] pij
ij
连续型 : COV (X ,Y ) [x E(X )][y E(Y )]f (x, y)dxdy
第2页/共21页
x12
2 1
(1
x1
)2
2 2
2x1(1
x1 )1 2
第19页/共21页
求D( P )
概率论协方差与相关系数
D ( X * ) D (Y * ) 2 XY 1 1 2 XY 2(1 XY ) ,
*
*
由此可得 | XY | 1 .
* * D ( X Y ) 2(1 XY ) ,易知 (2) 由上述证明,得
XY 1 的充分必要条件是
例1 已知 X ,Y 的联合分布为
Y
pij X
1 p 0
0 0 q 0 < p <1 p+q=1
1
0
求 Cov (X ,Y ), XY
解
X P 1 0 Y P 1 0 XY P 1 0
p q
p q
p
q
E ( X ) p, E (Y ) p, D( X ) pq, D(Y ) pq,
D( X * Y * ) 0 ,
* * * * E ( X Y ) E ( X ) E ( Y ) 0 及方差的性质知, 再由 上式
等价于
X E ( X ) Y E (Y ) P 0 1 , D(Y ) D( X )
取
则X ,Y 相互独立
0
X ,Y 不相关
例3 设 ( X ,Y ) ~ N ( 1,1,4,4,0.5 ), Z = X + Y , 求 XZ 解 D ( X ) D (Y ) 4,
Cov( X , Y ) XY DX DY 2 Cov( X , Z ) Cov( X , X ) Cov( X , Y ) 6
D( Z ) D( X Y ) D( X ) D(Y ) 2Cov( X , Y ) 12 3 故 XZ 3 / 12 2 .
例4 设 X , Y 服从圆域x2 y2 r 2上的均匀分布,证明
*
*
由此可得 | XY | 1 .
* * D ( X Y ) 2(1 XY ) ,易知 (2) 由上述证明,得
XY 1 的充分必要条件是
例1 已知 X ,Y 的联合分布为
Y
pij X
1 p 0
0 0 q 0 < p <1 p+q=1
1
0
求 Cov (X ,Y ), XY
解
X P 1 0 Y P 1 0 XY P 1 0
p q
p q
p
q
E ( X ) p, E (Y ) p, D( X ) pq, D(Y ) pq,
D( X * Y * ) 0 ,
* * * * E ( X Y ) E ( X ) E ( Y ) 0 及方差的性质知, 再由 上式
等价于
X E ( X ) Y E (Y ) P 0 1 , D(Y ) D( X )
取
则X ,Y 相互独立
0
X ,Y 不相关
例3 设 ( X ,Y ) ~ N ( 1,1,4,4,0.5 ), Z = X + Y , 求 XZ 解 D ( X ) D (Y ) 4,
Cov( X , Y ) XY DX DY 2 Cov( X , Z ) Cov( X , X ) Cov( X , Y ) 6
D( Z ) D( X Y ) D( X ) D(Y ) 2Cov( X , Y ) 12 3 故 XZ 3 / 12 2 .
例4 设 X , Y 服从圆域x2 y2 r 2上的均匀分布,证明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D(Y )[1 2 ]
1 2 0
1
(2) 1时, D(Y bX ) 0
根据方差性质5, D( X ) 0 P{ X a} 1
P{Y bX a} P{Y a bX } 1
例 设(X, Y)的分布律为:
X\Y -1 -1 0 0¼ 10 P{Y=j ¼
01 ¼0 0¼ ¼0 ½¼
P{X=i} ¼ ½ ¼ 1
E(X
)
1*
1 4
0
*
1 2
1*
1 4
0
E (Y
)
1*
1 4
0*
1 2
1*
1 4
0
E
(
XY
)
(1)
*
(1)
*
0
(1)
*
0
*
1 4
(1)
*1*0Βιβλιοθήκη ...1*1*
0
0
从而COV(X,Y)=0, 不相关
Cov(X, Y)=E(XY)-E(X)E(Y) P{X=-1}P{Y=0}= 1/8 P{X=-1, Y=0}
X,Y不独立。
感谢您的聆听!
证1: (1) 依照方差的性质,关于任意实数t
0≤D(Y-tX)= t2D(X )-2t Cov(X,Y))+D(Y)
令 t Cov( X ,Y ) ,则上式为
D(X )
D(Y- tX)=
D(Y ) [Cov( X ,Y )]2
Cov2( X ,Y )
D(Y )[1
]
D(X )
D( X )D(Y )
则称
XY
Cov( X ,Y ) D( X ) D(Y )
为X 与Y的(线性)相关系数.
讲明:
(1)
XY 为X
,Y的标准化变量
X
E(X D(X )
)
与Y
E(Y D(Y )
)
间的协方差.
(2) 相关系数无量纲,消除了量纲不同对相关程度的影响。
(3) 与Cov(X,Y)同号。>0, 正相关;<0, 负相关; =0,不相关
3、协方差的主要性质 ⑴ Cov(X, Y)=E(XY)-E(X)E(Y) (最常用计算方法) (2) 对称性: Cov(X, Y)= Cov(Y, X) (3) Cov(aX, bY) = ab Cov(X, Y) a,b是常数
(4) Cov(X1+X2, Y)= Cov(X1, Y) + Cov(X2, Y)
2、相关系数的性质
(1) XY 1.
(2) XY 1 存在实数a,b( 0), 使P{Y a bX} 1
结论:
1) XY 1, Y 与X 存在严格线性关系. 2) XY 0, Y 与X 不存在线性关系. 3) XY 越接近1, Y 与X 线性相关程度越高;
XY 越接近0, Y与X 线性相关程度越低.
讲明: ⑴ 协方差为X,Y偏差[ X-E(X)] 与[Y-E(Y) ] 乘积的数学期望
(2) Cov(X,Y)>0,正相关;Cov(X,Y)<0, 负相关。=0,不相关
(3) 当X,Y相同时,Cov(X, X) = D(X)=Var(X)、 (4) 由定义可知,Cov(X, Y) = Cov(Y, X) 、
证: (1) Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]} =E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y) =E(XY)-E(X)E(Y)
(3) Cov(aX, bY) =E{[aX-E(aX)][bY-bE(Y) ]} =E{ab [X-E(X)][Y-E(Y) ]} = ab cov(X, Y)
协方差与相关系数
一、协方差
1、引入背景
二维随机变量(X,Y)的相互关系如何描述?n维变量间的关系
举例:
(1)不同地区气温间的关系; (2)人的身高、体重间的关系; (3)不同股票收益率间的关系; (4)公司经营业绩与资本结构间的关系。
2、协方差的定义 (X, Y)为二维随机变量,则称下式为X、Y的协方差。 Cov(X,Y) =E{[ X-E(X)][Y-E(Y) ]}
(4) Cov(X1+X2, Y)=E{[X1+X2 -E(X1+X2)][Y-E(Y) ]} =E{[X1 -E(X1)][Y-E(Y) ]}+E{[ X2 -E(X2)] [Y-E(Y) ]}} =Cov(X1, Y) + Cov(X2, Y)
二、相关系数
1、相关系数的定义
D( X ), D(Y )分别为随机变量X ,Y的方差,且D( X ), D(Y ) 0.