九年级(上)数学质量检测卷及答案
河北省石家庄市第二十八中学2023-2024学年九年级上学期期末数学试题(含答案)
2023-2024学年度第一学期期末学业质量检测九年级数学试卷(ZX )注意事项:1.答卷前,考生务必将自己的姓名、班级等信息填写在答题卡相应位置上.2.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.答非选择题时,用黑色碳素笔在答题卡上各题的答题区域内作答,在试卷上作答无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(1-6每题3分,7-16每题2分,共16小题,满分38分)1.一元二次方程3x 2+1=6x 的一次项系数为6,二次项系数和常数项分别为( )A .3,1B .-3,-1C .3,-1D .-3x 2,-12.下列函数中不是二次函数的有( )A .y =(x -1)2B .yx 2-1C .y =3x 2+2x -1D .y =(x +1)2-x 23.在平面直角坐标系中,点P (3,2)关于原点的对称点的坐标是( )A .(2,-3)B .(3,-2)C .(-2,3)D .(-3,-2)4.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,∠BAC =38°,则∠BCD 的度数是( )A .38°B .76°C .52°D .60°5.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有40次摸到白球.请你估计这个口袋中有( )个红球.A .2B .3C .6D .86.反比例函数在同一坐标系中的图象如图所示,则的大小关系为( )P '312123,,k k k y y y x x x===123,,k k kA .B .C .D .7.如图,△AOB 和△COD 是位似图形,点O 是位似中心,CD =2AB .若点A 的坐标为(2,1),则点C 的坐标为( )A .(-6,-3)B .(-5,-3)C .(-4,-2)D .(-4,-3)8.如图,点A ,B ,C 都是正方形网格的格点,连接BA ,CA ,则∠BAC 的正弦值为( )A.BCD .29.课堂上丁老师带来一个立体图形的模型,嘉嘉同学从某一角度看到的形状为三角形,则这一立体图形一定不是( )A .圆柱B .圆锥C .棱柱D .棱锥10.一元二次方程2x (x +1)=3(x +1)的解是( )A .x =-1B .x =C .D .无实数解11.若点A (0,y 1),B (1,y 2),C (-2,y 3)是抛物线y =x 2-2x +1上的三点,则( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 212.如图,⊙C 过原点O ,且与两坐标轴分别交于点A 、B ,点A 的坐标为(0,5),点M 是第三象限内上312k k k >>132k k k >>321k k k >>213k k k >>12321231,2x x =-=)OB一点,∠BMO =120°,则⊙C 的半径为( )A .4B .5C .6D .13.如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB 和∠D 都是直角,点C 在AE 上,△ABC 绕着A 点经过逆时针旋转后能够与△ADE 重合,再将图(1)作为“基本图形”绕着A 点经过逆时针旋转得到图(2).两次旋转的角度分别为( )(1)(2)A .45°90°B .90°45°C .60°30°D .30°60°14.如图,一次函数y =ax +b 与反比例函数y=(k >0)的图象交于点A (1,2),B (-2,-1).则关于x 的不等式ax +b >的解集是( )A .x <-2或0<x <1B .x <-1或0<x <2C .-2<x <0或x >1D .-1<x <0或x >215.如图,在正六边形ABCDEF 中,M ,N 是对角线BE 上的两点.添加下列条件中的一个:①BM =EN ;②∠FAN =∠CDM ;③AM =DN ;④∠AMB =∠DNE .能使四边形AMDN 是平行四边形的是( )k x k xA .①②④B .①③④C .①②③④D .①④16.二次函数y =(a -1)x 2-(2a -3)x +a -4的图象与x 轴有两个公共点,a 取满足条件的最小整数,将图象在x 轴上方的部分沿x 轴翻折,其余部分保持不变,得到一个新图象,当直线y =kx -2与新图象恰有三个公共点时,则k 的值不可能是( )A .-1B .-2C .1D .2二、填空题(共3小题,满分10分)17.(2分)如图,抛物线y =ax 2+bx +3(a <0)交x 轴于点A ,B (4,0),交y 轴于点C ,以OC 为边的正方形OCDE 的顶点D 在抛物线上,则点A 的坐标是.18.(4分)如图,A 是⊙O 外一点,AB ,AC 分别与⊙O 相切于点B ,C ,P 是弧BC 上任意一点,过点P 作⊙O 的切线,交AB 于点M ,交AC 于点N .AO =8,BO =6,则△AMN 的周长是,若∠BAC =40°,则∠BPC =.19.(4分)如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 、C 恰好落在双曲线y 上,且点O 在AC 上,AD 交x 轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.三、解答题(共7小题,满分72分)20.(9分)已知m是方程2x2-7x+1=0的一个根,求代数式m(2m-7)+5的值.21.(9分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:∠CDB=∠A;(2)若∠DBC=120°,⊙O的直径AB=8,求BC、CD的长.22.(10分)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高BC=80m,点C、A与河岸E、F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.若在此处建桥,求河宽EF的长(结果精确到1m)[参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60]Y23.(10分)如图,ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H.①求证:AH·CH=DH·GH;②若AG=2,FG=6,求GH的长.24.(本小题满分10分)某学校为丰富课后服务内容,计划开设经典诵读、花样跳绳、电脑编程、国画赏析、民族舞蹈五门兴趣课程.为了解学生对这五门兴趣课程的喜爱情况,随机抽取了部分学生进行问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制成如下两幅不完整的统计图.学生对五门兴趣课程喜爱情况条形统计图学生对五门兴趣课程喜爱情况扇形统计图根据图中信息,完成下列问题:(1)本次调查共抽取了名学生;(2)补全条形统计图;(3)计算扇形统计图中“电脑编程”所对应扇形的圆心角度数;(4)若全校共有1200名学生,请估计选择“民族舞蹈”课程的学生人数;(5)在经典诵读课前展示中,甲同学从标有A《出师表》、B《观沧海》、C《行路难》的三个签中随机抽取一个后放回,乙同学再随机抽取一个,请用列表或画树状图的方法,求甲乙两人至少有一人抽到A《出师表》的概率.25.(本小题满分12分)某学校要修建一个占地面积为64平方米的矩形体育活动场地,四周要建上高为1米的围挡,学校准备了可以修建45米长的围挡材料(可以不用完).设距形地面的边长AB=x米,BC=y米.(1)求y关于x的函数关系式(不写自变量的取值范围);(2)能否建造AB=20米的活动场地?请说明理由;(3)若矩形地面的造价为1千元/平方米,侧面围挡的造价为0.5千元/平方米,建好距形场地的总费用为80.4千元,求出x的值.(总费用=地面费用+围挡费用)26.(12分)如图,抛物线y=ax2+bx-8与x轴交于A(2,0),B(4,0),D为抛物线的顶点.图1图2(1)求抛物线的解析式;(2)如图1,若H为射线DA与y轴的交点,N为射线AB上一点,设N点的横坐标为t,△DHN的面积为S,求S与t的函数关系式;(3)如图2,在(2)的条件下,若N与B重合,G为线段DH上一点,过G作y轴的平行线交抛物线于F,连接AF,且∠AGN=∠FAG,求F点的坐标.2023-2024学年度第一学期期末学业质量检测九年级数学试卷参考答案及评分标准(zx )一.选择题(共16小题,满分38分)1-5BDDCC 6-10CCBAC 11-16DBACAD二.填空题(共3小题,满分10分)17.(-1,0),110°19.(,-1),12三.解答题(共7小题,满分72分)20.解:根据题意得:2m 2-7m +1=0,………………2分∴2m 2-7m=-1, (6)分∴m (2m -7)+5=2m 2-7m +5=-1+5=4……………………9分21.(1)证明:∵AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,∴,∴∠BCD =∠CDB ,∵,∴∠A =∠BCD ,∴∠CDB =∠A ;……………4分(2)解:∵∠DBC =120°,∴∠BCD =∠CDB =(180°-∠DBC )=30°,∠A =∠CDB =30°,∵AB 是⊙O 的直径,且AB =8,∴∠ADB =90°,∴在Rt △ADB 中,BD =AB =4,又∵,∴.BC =BD =4;……………………6分∵AB ⊥CD ,∠BCD =∠CDB =30°,∴在Rt △BCE 中,BE =BC =2,∴CE 又∵AB 是⊙O 的直径,AB ⊥CD ,∴.CD =2CE =……………………9分22.解:在Rt △BCE 中,BC =80m ,∠BEC =∠DBE =45°,∴∠CBE =45°,……………2分∴∠BEC =∠CBE =45°,∴CE =BC =80m .………………4分在Rt △BCF 中,BC =80m ,∠BFC =∠DBF =31°,tan ∠BFC =,……………………6分∴≈0.60,∴CF =133.3∴EF =CF -CE =133.3-80=53.3≈53(m ).……………………9分»»BCBD =»»BDBD =1212»»BCBD =12==BC CF 80CF答:河宽EF 的长约为53m .……………………10分23.(1)证明:∵四边形ABCD 是平行四边形,∴AD //BC ,CD //AB .∴∠D =∠FAD ,∠DCE =∠F ,∵E 是AD 的中点,∴ DE =AE ,∴△CDE ≌△FME (AAS ).∴CE =EF ,∵AE ∥BC,∴,∴AF =AB ;……………………3分(2)①证明:∵AG =2,FG =6,∴AF =FG +AG =6+2=8,∴AB =AF =8,∵四边形ABCD 是平行四边形,∴CD =AB =8,∵∠DCE =∠F ,∠FCG =∠FCD .∴∠F =∠FCG ,∴CG =FG =6,∵CD //AF ,∴△DCH ∽△AGH .∴,∴AH ∙CH =DH ∙GH ;………………7分②解:由①得△DCH ∽△AGH ,∴,即,∴GH =1.2………………10分24.解:(1)300……………………2分(2)……………………4分(3)×360°=120°…………………………6分答:“电脑编程”的圆心角度数为120°.(4)×1200=200(名)……………………8分答:选择“民族舞蹈”课程学生约有200名.(5)列表法如下:AB C AAA BA CA BAB BB CB C AC BC CC1FA FE AB CE==AH GH DH CH=CD CH AG GH =862GH GH-=10030050300由表格可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,其中甲乙两人至少有一人抽到A 的情况有5种.∴P (甲乙两人至有一人抽到A )=…………………………10分25.解:(1)∵xy =64∴y =…………………2分(2)根据题意得x =20时,y ==3.2(20+3.2)×2=46.4(米)∵46.4>45∴不能建造AB =20的活动场地.………………6分(3)64×1+(x +)×2×1×0.5=80.4……………………8分解得x =10或6.4………………………10分当x =10时y =6.4(10+6.4)×2<45;当x =6.4时y =10(6.4+10)×2<45当x =10或6.4时总费用为80.4元………………12分26.解:(1)∵抛物线y =ax 2+bx -8与x 轴交于A (2,0),B (4,0),∴解得∵抛物线解析式为y =-x 2+6x -8;………………4分(2)如图1,连接OD .图1∵抛物线解析式为y =-x 2+6x -8=-(x -3)2+1,∴抛物线顶点D 坐标(3,1),∵A (2,0),设直线AD 的解析式为:y =kx +t ,∴,解得,5964x642064x428016480a b a b +-=⎧⎨+-=⎩16a b =-⎧⎨=⎩2031k t k t +=⎧⎨+=⎩12k t =⎧⎨=-⎩∴直线AD 的解析式为:y =x -2,∴H (0,-2)……………………6分∵,∴S 与t 的函数关系式为;……………………8分(3)如图2中,延长FG 交OB 于M .图2∵A (2,0),H (0,-2),∴OH =OA ,∴∠OAH =∠OHA =45°,∵FM //OH ,∴∠MGA =∠OHA =∠MAG =45°,∴MG =MA ,∵∠FAG =∠NGA ,∴∠MAF =∠MGN ,在△MAF 和△MGN 中,,∴△MAF ≌△MGB (ASA ),∴FM =BM .……………………10分设M (m ,0),则F (m ,-m 2+6m -8),∴-(-m 2+6m -8)=4-m ,解得m =1或4(舍去),∴F (1,-3). (12)分1113122332222OND ONH OHD S S S S t t t =+-=⨯⨯+⨯⨯-⨯⨯=-V V V 33(2)2S t t =->AMF GMB AM MGMAF MGB =⎧⎪=⎨⎪=⎩∠∠∠∠。
人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)
人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。
2023-2024学年天津市和平区九年级上册期末数学质量检测卷(含答案)
2023-2024学年天津市和平区九年级上册期末数学质量检测卷一、选一选:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只要一项是符合标题要求的.1.下列四个图形中,是对称图形的是()A .B .C .D .2.在下列二次函数中,其图象对称轴为x =-2的是()A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-3.如图,将△AOB 绕点O 逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =10°,则∠AOB ′的度数是()A .25°B .30°C .35°D .40°4.对于二次函数y =2(x +1)(x -3),下列说确的是()A .图象的开口向下B .当x >1时,y 随x 的增大而减小C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x =-15.将抛物线222y x x =-+先向右平移3个单位长度,再向上平移2个单位长度,则这两次平移后所得抛物线的顶点坐标是()A .(-2,3)B .(-1,4)C .(3,4)D .(4,3)6.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”,将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A .16B .13C .12D .237.若一个正六边形的周长为24,则该正六边形的边心距为()A .B .4C .D .8.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似,在象限内将线段AB 减少为原来的12后得到线段CD ,则点B 的对应点D 的坐标为()A .(3,3)B .(1,4)C .(3,1)D .(4,1)9.如图,△ABC 内接于⊙O ,AD 是∠BAC 的平分线,交BC 于点M ,交⊙O 于点D .则图中类似三角形共有()A .2对B .4对C .6对D .8对10.如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD AB ∥,若⊙O 的半径为52,CD =4,则弦AC 的长为()A .25B .32C .4D .2311.(3分)一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相反,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A .16B .29C .13D .2312.如图是抛物线2y ax bx c =++(a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a -b +c >0;②3a +b =0;③()24b a c n =-;④一元二次方程21ax bx c n ++=-有两个不相等的实数根.其中正确结论的个数是()A .1个B .2个C .3个D .4个二、填空题:本大题共4小题,每小题4分,共16分.13.如图,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB 、AC 上,将△ADE 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为______.14.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50°,则∠BAC =______.15.若圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面积为______.16.如图,圆内接四边形ABCD 两组对边的延伸线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =______.三、解答题:本大题共4小题,共36分,解答应写出文字阐明、演算步骤或推理过程.17、(8分)已知关于x 的一元二次方程()230x k x k +++=的一个根是1,求该方程的另一个根.18.(10分)如图,⊙O 的直径AB 与弦CD 相交于点E ,且DE =CE ,⊙O 的切线BF 与弦AD 的延伸线交于点F .(1)求证:CD BF ∥;(2)若⊙O 的半径为6,∠A =35°,求 DBC 的长.19.(8分)留意:为了使同窗们地解答本题,我们提供了一种解题思绪,你可以按照这个思绪按上面的要求填空,完成本题的解答,也可以选用其他的解题,此时不必填空,只需按解答题的普通要求进行解答.参加商品买卖会的每两家公司之间都签订了一份合同,一切公司共签订了45份合同,共有多少家公司参加商品买卖会?设共有x家公司参加商品买卖会.(Ⅰ)用含x的代数式表示:每家公司与其他______家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以一切公司共签订了______份合同;(Ⅱ)列出方程并完成本题解答.20.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为3 3,2⎛⎫ ⎪⎝⎭.(1)点P与水面的距离是______m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?参考答案与试题解析一、选一选:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只要一项是符合标题要求的.1.C2.【分析】根据二次函数的性质求出各个函数的对称轴,选出正确的选项.【解答】解:()22y x =+的对称轴为x =-2,A 正确;222y x =-的对称轴为x =0,B 错误;222y x =--的对称轴为x =0,C 错误;()222y x =-的对称轴为x =2,D 错误.故选:A .【点评】本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.3.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,∴∠A ′OA =45°,∠AOB =∠A ′OB ′=10°,∴∠AOB ′=∠A ′OA -∠A ′OB ′=45°-10°=35°,故选:C .【点评】此题次要考查了旋转的性质,根据旋转的性质得出∠A ′OA =45°,∠AOB =∠A ′OB ′=10°是解题关键.4.【分析】先把二次函数化为顶点式的方式,再根据二次函数的性质进行解答.【解答】解:二次函数y =2(x +1)(x -3)可化为()2218y x =--的方式,A 、∵此二次函数中a =2>0,∴抛物线开口向上,故本选项错误;B 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x =1,∴当x >1时,y 随x 的增大而增大,故本选项错误;C 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x =1,∴当x <1时,y 随x 的增大而减小,故本选项正确;D 、由二次函数的解析式可知抛物线对称轴为x =1,故本选项错误.故选:C .【点评】本题考查的是二次函数的性质,根据题意把二次函数化为顶点式的方式是解答此题的关键.5.【分析】利用平移可求得平移后的抛物线的解析式,可求得其顶点坐标.【解答】解:∵()222211y x x x =-+=-+,∴先向右平移3个单位长度,再向上平移2个单位长度后抛物线解析式为()243y x =-+,∴顶点坐标为(4,3),故选:D .【点评】本题次要考查函数图象的平移,求得平移后抛物线的解析式是解题的关键.6.A7.【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA ,作OM ⊥AB ,得到∠AOM =30°,∵圆内接正六边形ABCDEF 的周长为24,∴AB =4,则AM =2,因此cos30OM OA =⋅︒=A .【点评】此题次要考查了正多边形和圆,正确掌握正六边形的性质是解题关键.8.【分析】利用位似图形的性质,两图形的位似比,进而得出D 点坐标.【解答】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似,在象限内将线段AB 减少为原来的12后得到线段CD ,∴点D 的横坐标和纵坐标都变为B 点的一半,∴点D 的坐标为:(4,1).故选:D .【点评】此题次要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似,类似比为k ,那么位似图形对应点的坐标的比等于k 或-k .9.【分析】类似三角形的判定成绩,只需两个对应角相等,两个三角形就是类似三角形.【解答】解:∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD ,BD =CD ,∴∠BAD =∠CAD =∠DBC =∠DCB ,又∵∠BDA =∠MDB ,∠CDA =∠MDC ,∴△ABD ∽△BDM ;△ADC ∽△CDM ;∵∠CAD =∠CBD ,∠AMC =∠BMD ,∴△AMC ∽△BMD ,∵∠BAD =∠MCD ,∠AMB =∠CMD ,∴△ABM ∽△CDM ,∵∠ABC =∠ADC ,∠BAD =∠DAC ,∴△ABM ∽△ADC ,∵∠ACB =∠ADB ,∠BAD =∠CAD ,∴△ACM ∽△ADB ,∴共有六对类似三角形,故选:C .【点评】此题次要考查了类似三角形的判定定理:(1)两角对应相等的两个三角形类似;(2)两边对应成比例且夹角相等的两个三角形类似;(3)三边对应成比例的两个三角形类似.10.【分析】首先连接AO 并延伸,交CD 于点E ,连接OC ,由直线AB 与⊙O 相切于点A ,根据切线的性质,可得AE ⊥AB ,又由CD AB ∥,可得AE ⊥CD ,然后由垂径定理与勾股定理,求得OE 的长,继而求得AC 的长.【解答】解:连接AO 并延伸,交CD 于点E ,连接OC ,∵直线AB 与⊙O 相切于点A ,∴EA ⊥AB ,∵CD AB ∥,∠CEA =90°,∴AE ⊥CD ,∴114222CE CD ==⨯=,∵在Rt △OCE 中,32OE ==,∴AE =OA +OE =4,∴在Rt △ACE 中,AC ==A .【点评】此题考查了切线的性质、垂径定理、勾股定理以及平行线的性质.此题难度适中,正确的添加辅助线是解题的关键.11.【分析】首先根据题意画出树状图,然后由树状图求得一切等可能的结果与两次摸出的球所标数字之和为6的情况,然后利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:(1,5),(3,3),(5,1),∴两次摸出的球所标数字之和为6的概率是:3193=.故选:C .【点评】此题考查的是用列表法或树状图法求概率.留意树状图法与列表法可以不反复不遗漏的列出一切可能的结果,列表法合适于两步完成的;树状图法合适两步或两步以上完成的;解题时要留意此题是放回实验.12.【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x =-1时,y >0,于是可对①进行判断;利用抛物线的对称轴为直线12b x a=-=,即b =-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b n a-=,则可对③进行判断;由于抛物线与直线y =n 有一个公共点,则抛物线与直线y =n -1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x =-1时,y >0,即a -b +c >0,所以①正确;∵抛物线的对称轴为直线12b x a=-=,即b =-2a ,∴3a +b =3a -2a =a ,所以②错误;∵抛物线的顶点坐标为(1,n ),∴244ac b n a-=,∴()2444b ac an a c n =-=-,所以③正确;∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n -1有2个公共点,∴一元二次方程21ax bx c n ++=-有两个不相等的实数根,所以④正确.故选:C .【点评】本题考查了二次函数图象与系数的关系:对于二次函数2y ax bx c =++(a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;项系数b 和二次项系数a 共同决定对称轴的地位:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点地位:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:240b ac ∆=->时,抛物线与x 轴有2个交点;240b ac ∆=-=时,抛物线与x 轴有1个交点;240b ac ∆=-<时,抛物线与x 轴没有交点.二、填空题:本大题共4小题,每小题4分,共16分.13.2【分析】△ABC 沿DE 折叠,使点A 落在点A ′处,可得∠DEA =∠DEA ′=90°,AE =A ′E ,所以,△ACB ∽△AED ,A ′为CE 的中点,所以,可运用类似三角形的性质求得.【解答】解:∵△ABC 沿DE 折叠,使点A 落在点A ′处,∴∠DEA =∠DEA ′=90°,AE =A ′E ,∴△ACB ∽△AED ,又A ′为CE 的中点,∴ED AE BC AC =,即163ED =,∴ED =2.故答案为:2.【点评】本题考查了翻折变换和类似三角形的判定与性质,翻折变换后的图形全等及两三角形类似,各边之比就是类似比.14.25°【分析】连接OB ,根据切线的性质定理以及四边形的内角和定理得到∠AOB =180°-∠P =130°,再根据等边对等角以及三角形的内角和定理求得∠BAC 的度数.【解答】解:连接OB ,∵PA 、PB 是⊙O 的切线,A 、B 为切点,∴∠PAO =∠PBO =90°,∴∠AOB =360°-∠P -∠PAO -∠PBO =130°,∵OA =OB ,∴∠BAC =25°.【点评】此题综合运用了切线的性质定理、四边形的内角和定理、等边对等角以及三角形的内角和定理的运用,次要考查先生的推理和计算能力,留意:圆的切线垂直于过切点的半径.15.6∏16.40°【分析】先根据三角形外角性质计算出∠EBF=∠A+∠E=85°,再根据圆内接四边形的性质计算出∠BCD=180°-∠A=125°,然后再根据三角形外角性质求∠F.【解答】解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°-55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°-85°=40°.故答案为40°.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.也考查了三角形外角性质.三、解答题:本大题共4小题,共36分,解答应写出文字阐明、演算步骤或推理过程.17.【分析】将x=1代入原方程可求出k值,设方程的另一个根为1x,根据两根之和等于b a-即可得出关于1x的一元方程,解之即可得出结论.【解答】解:将x=1代入原方程,得:1+k+3+k=0,解得:k=-2.设方程的另一个根为1x,根据题意得:1+1x=-(-2+3),∴1x=-2,∴该方程的另一个根为-2.18.【分析】(1)根据垂径定理、切线的性质定理证明;(2)根据圆周角定理求出∠COD,根据弧长公式计算即可.【解答】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD BF∥;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴DBC的长1406141803ππ⨯==.19.(x -1)()112x x -【分析】(Ⅰ)用x 表示出每家公司与其他公司签订的合同数,则用x 表示出一切公司共签订的合同数;(Ⅱ)利用一切公司共签订的合同数列方程得到()11452x x -=,然后解方程、检验、作答.【解答】解:(Ⅰ)每家公司与其他(x -1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以一切公司共签订了()112x x -份合同;(Ⅱ)根据题意列方程得:()11452x x -=,解得110x =,29x =-(舍去),检验:x =-9不合题意舍去,所以x =10.答:共有10家公司参加商品买卖会.故答案为:(x -1);()112x x -.【点评】本题考查了一元二次方程的运用:列方程处理实践成绩的普通步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.20.【分析】(1)根据点P 的横纵坐标的实践意义即可得;(2)利用待定系数法求解可得;(3)在所求函数解析式中求出y =1时x 的值即可得.【解答】解:(1)由点P 的坐标为33,2⎛⎫ ⎪⎝⎭知点P 与水面的距离为32m ,故答案为:32;(2)设抛物线的解析式为2y ax bx =+,将点A (4,0)、P 33,2⎛⎫ ⎪⎝⎭代入,得:16403932a b a b +=⎧⎪⎨+=⎪⎩,解得:122a b ⎧=-⎪⎨⎪=⎩,所以抛物线的解析式为2122y x x =-+;(3)当y =1时,21212x x =-+,即2420x x -+=,解得:2x =±,则水面的宽为()22m +-=.。
福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】
福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若分式21x x -无意义,则x 的值为()A .1x =±B .1x >C .1x =D .1x =-2、(4分)如图,一油桶高0.8m ,桶内有油,一根木棒长1m ,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,拍出木棒,量得棒上没油部分长0.8m ,则桶内油的高度为()A .0.28m B .0.64m C .0.58m D .0.32m 3、(4分)如图是甲、乙两个探测气球所在位置的海拔高度y (单位:m )关于上升时间x (单位:min )的函数图像.有下列结论:①当10x =时,两个探测气球位于同一高度②当10x >时,乙气球位置高;③当010x ≤<时,甲气球位置高;其中,正确结论的个数是()A .0个B .1个C .2个D .3个4、(4分)已知()A 3,m -,()B 2,n 是一次函数y 2x 1=-的图象上的两个点,则m ,n 的大小关系是()A .m n <B .m n =C .m n >D .不能确定5、(4分)向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()A .B .C .D .6、(4分)在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,则ADE ∆与ABC ∆的面积之比为()A .12B .13C .14D .167、(4分)如图,在矩形ABCD 中,AB=3,AD=4,点P 在AB 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于()A .75B .125C .135D .1458、(4分)当0b <时,一次函数y x b =+的图象大致是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)菱形的两条对角线长分别为10cm 和24cm ,则该菱形的面积是_________;10、(4分)如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为米.11、(4分)若关于x 的不等式组2()102153x m x +->⎧⎨+<⎩的解集为﹣172<x <﹣6,则m 的值是_____.12、(4分)如图,直线l 1∶y =ax 与直线l 2∶y =kx+b 交于点P ,则不等式ax >kx+b 的解集为_________.13、(4分)一种运算:规则是x ※y =1x -1y ,根据此规则化简(m+1)※(m -1)的结果为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连结DE 并延长交射线AB 于点F ,连结BE .(1)求证:∠AFD=∠EBC ;(2)若∠DAB=90°,当△BEF 为等腰三角形时,求∠EFB 的度数.15、(8分)如图,四边形ABCD 中,//AD BC ,AD BC ≠,AC DB =.(1)求证:AB DC =;(2)若E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,求证:线段EF 与线段GH 互相平分.16、(8分)如图,四边形ABCD 是平行四边形,E 、F 是对角线AC 上的两点,且AE =CF ,顺次连接B 、E 、D ,F .求证:四边形BEDF 是平行四边形.17、(10分)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)连接BF ,求证:CF =EF .(2)若将图①中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF =DE .(3)若将图①中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF 、EF 与DE 之间的数量关系.18、(10分)已知:如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为A (2,0),B (0,﹣2),P 为y 轴上B 点下方一点,以AP 为边作等腰直角三角形APM ,其中PM =PA ,点M 落在第四象限,过M 作MN ⊥y 轴于N .(1)求直线AB 的解析式;(2)求证:△PAO ≌△MPN ;(3)若PB =m (m >0),用含m 的代数式表示点M 的坐标;(4)求直线MB 的解析式.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =CE 的长为_______20、(4分)如图,将△ABC 向右平移到△DEF 位置,如果AE =8cm ,BD =2cm ,则△ABC 移动的距离是___.21、(4分)如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2;以此下去…,则正方形A 4B 4C 4D 4的面积为_____.22、(4分)已知一次函数24y x =+的图象经过点(m,6),则m=____________23、(4分)如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A 顺时针旋转得到△ADE (其中点B 恰好落在AC 延长线上点D 处,点C 落在点E 处),连接BD ,则四边形AEDB 的面积为______.二、解答题(本大题共3个小题,共30分)24、(8分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.25、(10分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?26、(12分)解不等式组:()3242+113x xx x⎧--≥⎪⎨-⎪⎩>,并把它的解集在数轴上表示出来参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据分式无意义的条件即可求出答案.【详解】由题意可知:x-1=0,即x=1,分式无意义,故选:C.此题考查分式无意义的条件,解题的关键是熟练运用分式无意义的条件,本题属于基础题型.2、B【解析】根据题意,画出图形,因为油面和桶底是平行的,所以可构成相似三角形,根据对应边成比例列方程即可解答.【详解】如图:AB表示木棒长,BC表示油桶高,DE表示油面高度,AD表示棒上浸油部分长,∴DE∥BC∴△ADE∽△ABC∴AD:AB=DE:BC∵AD=0.8m,AB=1m,BC=0.8m∴DE=0.64m∴桶内油面的高度为0.64m.故选B.本题考查勾股定理的运用,熟练掌握计算法则是解题关键.【解析】根据图象进行解答即可.【详解】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:D.本题考查了一次函数的应用、解题的关键是根据图象进行解答.4、A【解析】根据一次函数中k的值确定函数的增减性,然后比较m、n的大小即可.【详解】解:∵一次函数y=2x-1中的k=2>0,∴y随x的增大而增大,∵图象经过A(-3,m),B(2,n)两点,且-3<2,∴m<n,故选A.本题考查了一次函数的性质,熟练掌握一次函数的性质是解决此类问题的关键.一次函数y=kx+b(k≠0),当k>0时,y随着x的增大而增大,当k<0时,y随着x的增大而减小.5、D【解析】注水需要60÷10=6分钟,注水2分钟后停止注水1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注水4分钟,排除C.故选D.6、C【解析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE ∽△ABC ,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【详解】如图所示,∵点D 、E 分别为边AB 、AC 的中点,∴DE 为△ABC 的中位线,∴DE ∥BC ,DE =12BC ,∴△ADE ∽△ABC ,∴214ADE ABC S DE S BC ⎛⎫== ⎪⎝⎭.故选C .本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE ∥BC 是解题的关键.7、B 【解析】试题解析:因为AB =3,AD =4,所以AC =5,1522AO AC ==,由图可知1122AOB S AO PE BO PF =⋅+⋅,AO =BO ,则()12AOB S AO PE PF =+,因此223122.55AOB S PE PF AO ⨯+===,故本题应选B.8、A 【解析】根据k=1>0可得图象的斜率,根据b <0可得直线与y 轴的交点在x 轴的下方.【详解】解:∵k=1>0,∴y 随x 的增大而增大,又∵b <0,∴函数图象与y 轴交于负半轴.故选A.本题主要考查一次函数的图象性质,当=kx+b (k ,b 为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限;当k>0,b<0,这时此函数的图象经过一,三,四象限;当k<0,b>0,这时此函数的图象经过一,二,四象限;当k<0,b<0,这时此函数的图象经过二,三,四象限.二、填空题(本大题共5个小题,每小题4分,共20分)9、110cm 1.【解析】试题解析:S=12×10×14=110cm 1.考点:菱形的性质.10、1.【解析】试题分析:设小道进出口的宽度为x 米,依题意得(32-2x )(22-x )=532,整理,得x 2-35x+3=2.解得,x 1=1,x 2=3.∵3>32(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.11、1【解析】先解不等式组得出其解集为1262m x -<<﹣,结合1762x -<<﹣可得关于m 的方程,解之可得答案.【详解】解不等式()210x m +->,得:122mx ->,解不等式2153x +<,得:6x <-,∵不等式组的解集为1762x -<<﹣,∴121722m -=-,解得9m =,故答案为:1.本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12、x >1;【解析】观察图象,找出直线l 1∶y=ax 在直线l 2∶y=kx+b 上方部分的x 的取值范围即可.【详解】∵直线l 1∶y=ax 与直线l 2∶y=kx+b 交于点P 的横坐标为1,∴不等式ax >kx+b 的解集为x>1,故答案为x>1.本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.13、221m --【解析】根据题目中的运算法则把(m+1)※(m -1)化为1111m m -+-,再利用异分母分式的加减运算法则计算即可.【详解】∵x ※y =1x -1y ,∴(m+1)※(m -1)=1111m m -+-=11(1)(1)(1)(1)m m m m m m -+-+-+-=11(1)(1)m m m m ---+-=221m --故答案为:221m --.本题考查了新定义运算,根据题目中的运算法则把(m+1)※(m -1)化为1111m m -+-是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)∠EFB=30°或120°.【解析】(1)直接利用全等三角形的判定方法得出△DCE ≌△BCE (SAS ),即可得出答案;(2)利用正方形的性质结合等腰三角形的性质得出:①当F 在AB 延长线上时;②当F 在线段AB 上时;分别求出即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴CD=AB ,∠ACD=∠ACB ,在△DCE 和△BCE 中,∴△DCE ≌△BCE (SAS ),∴∠CDE=∠CBE ,∵CD ∥AB ,∴∠CDE=∠AFD ,∴∠EBC=∠AFD.(2)分两种情况,①如图1,当F 在AB 延长线上时,∵∠EBF 为钝角,∴只能是BE=BF ,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°.②如图2,当F 在线段AB 上时,∵∠EFB 为钝角,∴只能是FE=FB ,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE ,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠EFB=30°或120°.此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.15、(1)见解析;(2)见解析【解析】(1)过点D 作DM ∥AC 交BC 的延长线于点M ,由平行四边形的性质易得AC=DM=DB ,∠DBC=∠M=∠ACB ,由全等三角形判定定理及性质得出结论;(2)连接EH ,FH ,FG ,EG ,E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,易得四边形HFGE 为平行四边形,由平行四边形的性质及(1)结论得□HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】解:(1)证明:(1)过点D 作DM ∥AC 交BC 的延长线于点M ,如图1,∵AD ∥CB ,∴四边形ADMC 为平行四边形,∴AC=DM=DB ,∠DBC=∠M=∠ACB ,在△ACB 和△DBC 中,AC DB ACB DBC CB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACB ≌△DBC (SAS ),∴AB=DC ;(2)连接EH ,FH ,FG ,EG ,如图2,∵E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,∴GE ∥AB ,且GE=12AB ,HF ∥AB ,且HF=12AB ,∴GE ∥HF ,GE=HF ,∴四边形HFGE 为平行四边形,由(1)知,AB=DC ,∴GE=HE ,∴□HFGE 为菱形,∴EF 与GH 互相垂直平分.本题主要考查了平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解答此题的关键.16、见解析【解析】首先连接BD ,交AC 于点O ,由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分,即可求得OA =OC ,OB =OD ,又由AE =CF ,可得OE =OF ,然后根据对角线互相平分的四边形是平行四边形得出结论.【详解】解:证明:连接BD ,交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵AE =CF ,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形DEBF 是平行四边形.本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.17、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质即可证得CF =EF ;(2)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质可得CF =EF ,由此即可证得结论;(3)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质可得CF =EF ,由此即可证得结论.【详解】(1)证明:如图1,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,∵∠ACB =∠DEB =90°,在Rt △BCF 和Rt △BEF 中,BC BE BF BF =⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴CF =EF ;(2)如图2,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,AC =DE,∵∠ACB =∠DEB =90°,在Rt △BCF 和Rt △BEF 中,BC BE BF BF=⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴EF =CF ,∴AF +EF =AF +CF =AC =DE ;(3)如图3,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,AC =DE ,∵∠ACB =∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,BC BE BF BF =⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴CF =EF ,∵AC =DE ,∴AF =AC +FC =DE +EF .本题考查了全等三角形的性质与判定,证明Rt △BCF ≌Rt △BEF 是解决问题的关键.18、(3)y =x ﹣3.(3)详见解析;(3)(3+m ,﹣4﹣m );(4)y =﹣x ﹣3.【解析】(3)直线AB 的解析式为y =kx +b (k ≠2),利用待定系数法求函数的解析式即可;(3)先证∠APO =∠PMN ,用AAS 证△PAO ≌△MPN ;(3)由(3)中全等三角形的性质得到OP =NM ,OA =NP .根据PB =m ,用m 表示出NM 和ON =OP +NP ,根据点M 在第四象限,表示出点M 的坐标即可.(4)设直线MB 的解析式为y =nx ﹣3,根据点M (m +3,﹣m ﹣4).然后求得直线MB 的解析式.【详解】(3)解:设直线AB :y =kx +b (k ≠2)代入A (3,2),B (2,﹣3),得202k b b +=⎧⎨=-⎩,解得k 1b 2=⎧⎨=-⎩,∴直线AB 的解析式为:y =x ﹣3.(3)证明:作MN ⊥y 轴于点N .∵△APM 为等腰直角三角形,PM =PA ,∴∠APM =92°.∴∠OPA +∠NPM =92°.∵∠NMP +∠NPM =92°,∴∠OPA =∠NMP .在△PAO 与△MPN 中90AOP PNM OPA NMP PA MP ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△PAO ≌△MPN (AAS ).(3)由(3)知,△PAO ≌△MPN ,则OP =NM ,OA =NP .∵PB =m (m >2),∴ON =3+m +3=4+m MN =OP =3+m .∵点M 在第四象限,∴点M 的坐标为(3+m ,﹣4﹣m ).(4)设直线MB 的解析式为y =nx ﹣3(n ≠2).∵点M (3+m ,﹣4﹣m ).在直线MB 上,∴﹣4﹣m =n (3+m )﹣3.整理,得(m +3)n =﹣m ﹣3.∵m >2,∴m +3≠2.解得n =﹣3.∴直线MB 的解析式为y =﹣x ﹣3.本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】分析:由菱形的性质证出△ABD 是等边三角形,得出BD =AB =6,132OB BD ==,由勾股定理得出OC OA ===,即可得出答案.详解:∵四边形ABCD 是菱形,∴AB =AD =6,AC ⊥BD ,OB =OD ,OA =OC ,∵60BAD ∠=︒,∴△ABD 是等边三角形,∴BD =AB =6,∴132OB BD ==,∴OC OA ===∴2AC OA ==∵点E 在AC 上,OE =∴当E 在点O 左边时CE OC =+=当点E 在点O 右边时CE OC =-=∴CE =故答案为.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.20、3cm.【解析】根据平移的性质,对应点间的距离等于平移距离求出AD 、BE ,然后求解即可.【详解】∵将△ABC 向右平移到△DEF 位置,∴BE =AD ,又∵AE =8cm ,BD =2cm ,∴AD =82322AE DB --==cm .∴△ABC 移动的距离是3cm ,故答案为:3cm.本题考查了平移的性质,熟记对应点间的距离等于平移距离是解题的关键.21、1【解析】先求出每次延长后的面积,再发现规律即可求解.【详解】解:最初边长为1,面积1,5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N =4时,正方形A 4B 4C 4D 4的面积为:54=1.故答案为:1.此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.22、1【解析】把(m,6)代入y=2x+4中,得到关于m的方程,解方程即可.【详解】解:把(m,6)代入y=2x+4中,得6=2m+4,解得m=1.故答案为1.本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.23、27 2【解析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【详解】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为1127 24313222⨯⨯⨯+⨯⨯=,故答案为27 2.本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.二、解答题(本大题共3个小题,共30分)24、(1)40;(2)详见解析,72°;(3)420人.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用1200乘以样本中最想去B景点的人数所占的百分比即可.【详解】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D ”的扇形圆心角的度数为840×360°=72°;(3)1200×1440=420,所以估计“最想去景点B “的学生人数为420人.故答案为(1)40;(2)图形见解析,72°;(3)420人.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.25、甲将被录取【解析】试题分析:根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.试题解析:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.考点:加权平均数.26、14x ≤<.【解析】分析:按照解一元一次不等式组的一般步骤进行解答,并把解集规范的表示在数轴上即可.详解:解不等式3(2)4x x --≥得:1x ≥;解不等式2113x x +>-得:4x <;∴原不等式组的解集为:14x ≤<,将解集表示在数轴上如下图所示:点睛:熟记“一元一次不等式组的解法和不等式组的解集在数轴上的表示方法”是解答本题的关键.。
湖北省孝感市2024-2025学年上学期10月质量检测九年级数学试题(解析版)
2024——2025学年上学期九年级十月质量检测数学A 卷(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并交回.一、选择题(共10题,每题3分,共30分)1. 将方程2235x x =−+化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别是( )A. 2,3,5−B. 2−,3,5C. 2,3−,5D. 2,3,5 【答案】A【解析】【分析】本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键. 将其化成一元二次方程的一般形式,即可求解.【详解】解:2235x x =−+, 22350x x ∴+−=,∴二次项系数、一次项系数和常数项分别是2、3和5−,故选:A .2. 用配方法解方程22103x x −−=时,应将其变形为( ) A. 218()39x −= B. 2110()39x += C 2110()39x −= D. 22()13x -= 【答案】C.【解析】【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,当二次项系数为1时,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】∵ 22103x x −−=, ∴ 2213x x −=, ∴ 2211+1+399x x −=, ∴ 211039x −=, 故选:C.【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3. 对于抛物线()225y x =−−,下列说法错误的是( )A. 抛物线开口向上B. 当2x >时,0y >C. 抛物线与x 轴有两个交点D. 当2x =时,y 有最小值5− 【答案】B【解析】【分析】本题考查了二次函数的性质,根据顶点式2()y a x h k =−+的顶点坐标为(),h k ,对称轴是直线x h =,结合解析式分析,即可求解.【详解】解:抛物线()225y x =−−的顶点坐标是(2,5)−,对称轴为直线2x =,A. 10a =>,抛物线开口向上,故该选项正确,不符合题意;B. 当2x >时,5y >−,故该选项不正确,符合题意;C. ∵顶点(2,5)−,开口向上,∴抛物线与x 轴有两个交点,故该选项正确,不符合题意;D. 当2x =时,y 有最小值5−,故该选项正确,不符合题意;故选:B .4. 在平面直角坐标系中,若直线23y kx =+不经过第四象限,则关于x 的一元二次方程20x x k +−=的实数根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定【答案】A【解析】 【分析】本题考查了一次函数的性质,根的判别式:一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.由直线解析式求得0k ≥,然后确定 的符号即可.【详解】解: 直线23y kx =+不经过第四象限, ∴0k ≥, 关于x 的方程x 2+x k −0=,2140k ∴∆=+>,∴关于x 的方程20x x k +−=有两个不相等的实数根.故选:A .5. 二次函数24y ax x a =++与一次函数y ax a =+在同一平面直角坐标系中的图象可能是( )A. B.C. D.【答案】D【解析】【分析】本题主要考查二次函数图象,一次函数图象的性质,分0a >和0a <两种情况根据二次函数与一次函数图象分析判断即可得解. 【详解】解:对称轴为直线422x a a=−=−, 0a >时,抛物线开口向上,对称轴在y 轴左侧,与y 轴正半轴的交于点(0,)a ,一次函数y ax a =+经过第一、二、三象限,与y 轴正半轴的交于点(0,)a ,0a <时,抛物线开口向下,对称轴在y 轴右侧,与y 轴负半轴的交于点(0,)a ,一次函数y ax a =+经过第二、三、四象限,与y 轴正半轴的交于点(0,)a .故选:D .6. 将抛物线223y x x =−+向下平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A. ()24y x =−B. ()22y x =+C. ()224y x =++D. ()224y x =−+ 【答案】A【解析】 【分析】本题考查了二次函数图象的平移,先化为顶点式,然后根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:()222312y x x x =−+=−+向下平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()24yx =−, 故选:A .7. 设()12,A y −,()23,B y ,()34,C y −是抛物线()231y x k =−+图象上的三点,则1y ,23,y y 的大小关系为( )A 321y y y >>B. 132y y y >>C. 213y y y >>D. 312y y y >>【答案】D【解析】【分析】本题考查了二次函数图象上点的坐标特征和二次函数的性质.先求出抛物线的对称轴和开口方向,根据二次函数的性质比较即可.【详解】解:∵抛物线()231y x k =−+的开口向上,对称轴是直线1x =,∴当1x <时,y 随x 的增大而减小,∴()23,B y 关于直线1x =的对称点是()21,y −,∵421−<−<−, .∴312y y y >>.故选:D .8. 等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k −+=的两个根,则k 的值为( )A. 3B. 4C. 3或4D. 7【答案】C【解析】【分析】分类讨论:当3为等腰三角形的底边,则方程有等根,所以△=0,求解即可,于是根据根与系数的关系得两腰的和=4,满足三角形三边的关系;当3为等腰三角形的腰,则x =3为方程的解,把x =3代入方程可计算出k 的值即可.【详解】解:①当3为等腰三角形的底边,根据题意得△=(-4)2−4k =0,解得k =4,此时,两腰的和=x 1+x 2=4>3,满足三角形三边的关系,所以k =4;②当3为等腰三角形的腰,则x =3为方程的解,把x =3代入方程得9−12+k =0,解得k =3; 综上,k 的值为3或4,故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的解以及根与系数的关系等腰三角形的性质和三角形的三边关系,注意解得k 的值之后要看三边能否组成三角形.9. 一座拱桥的轮廓是抛物线型(如图所示),桥高为8米,拱高6米,跨度20米.相邻两支柱间的距离均为5米,则支柱MN 的高度为( )米.A. 2.5米B. 3米C. 3.5米D. 4米【答案】C【解析】 【分析】设拱桥两端分别为点A 、B ,拱桥顶端为点C ,以AB 所在的直线为x 轴,以AB 的中点O 为坐标原点,OC 所在的直线为y 轴建立平面直角坐标系,则点()()()10,0,10,0,0,6A B C −,点M ,N 的横坐标为5,再求出抛物线的解析式,即可求解.【详解】解:如图,设拱桥两端分别为点A 、B ,拱桥顶端为点C ,以AB 所在的直线为x 轴,以AB 的中点O 为坐标原点,OC 所在的直线为y 轴建立平面直角坐标系,则点()()()10,0,10,0,0,6A B C −,点M ,N 的横坐标为5,设抛物线的解析式为2y ax c =+,把点()()10,0,0,6A C −代入得:10006a c c += = ,解得:3506a c =− = , ∴抛物线的解析式为23650y x =−+, 当5x =时,2356 4.550y =−×+=, ∴支柱MN 的高度为8 4.5 3.5−=米. 故选:C【点睛】本题考查二次函数的实际应用,借助二次函数解决实际问题是解题根本,求出二次函数关系式是关键.10. 对于一元二次方程20ax bx c ++=(a ≠0),下列说法: ①若a c b +=,则240b ac −≥;②若方程20ax c +=有两个不相等的实数根,则方程20ax bx c ++=必有两个不相等的实数根; ③若x c =是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立; ④若0x x =是一元二次方程20ax bx c ++=的根,则2204(2)b ac ax b −=+其中正确的个数为( )A. 4B. 3C. 2D. 1【答案】B【解析】【分析】本题主要考查一元二次方程的实数根与判别式的关系,以及根的定义和等式性质,牢固掌握相应关系并灵活应用是解题关键.根据一元二次方程实数根与判别式的关系,其中240b ac −≥有两个实数根、240b ac −>有两个不相等的实数根、240b ac −<无解,以及求根公式x =和等式的性质逐个排除即可. 【详解】解:①若a c b +=,即0a b c −+=, 则1x =−是原方程的解,即方程至少有一个根,∴由一元二次方程的实数根与判别式的关系系可知:240b ac −≥,故①正确;②∵方程20ax c +=有两个不相等的实根,∴24040b ac ac Δ=−=−>,∴40ac −>,又∵方程20ax bx c ++=的判别式为24b ac ∆=−, ∴240b ac −>,∴方程20ax bx c ++=有两个不相等的实数根,故②正确;③x c =是方程20ax bx c ++=的一个根,∴20ac bc c ++=,∴()10c ac b ++=, ∴0c =或10ac b ++=,即有两种可能性,故③错误;④若0x x =是一元二次方程20ax bx c ++=的根,∴根据求根公式得:0x =0x =,∴02ax b +=或02ax b +, ∴()22042b ac ax b −=+,故④正确.故选:B . 二、填空题(共5题,每题3分,共15分)11. 若关于x 的方程()()2224320mm x mx m −−−++=是一元二次方程,则m 的值为______.【答案】2−【解析】【分析】本题考查一元二次方程的定义、解一元二次方程.根据一元二次方程中未知数的最高次数为2,可得222m −=,根据二次项的系数不能为0,可得20m −≠,由此可解. 【详解】解:由题意知22220m m −= −≠ ,解222m −=,得2m =±,解20m −≠,得2m ≠,因此m 的值为2m =−,故答案为:2−.12. 若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____. 【答案】43【解析】 【分析】先根据题意可以把a 、b 看做是一元二次方程2430x x −+=的两个实数根,利用根与系数的关系得到a +b =4,ab =3,再根据11a b a b ab++=进行求解即可. 【详解】解:∵a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,∴可以把a 、b 看做是一元二次方程2430x x −+=的两个实数根,∴a +b =4,ab =3, ∴1143a b a b ab++==, 故答案为:43. 【点睛】本题主要考查了分式的求值,一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+相交于()()3,10,2A B −−,两点,则关于x 的不等式2ax bx c kx m ++<+的解集是______.【答案】3x <−或xx >0【解析】【分析】本题考查了二次函数与不等式的关系,旨在考查学生的数形结合能力.不等式2ax bx c kx m ++<+的解集是抛物线位于直线下方,自变量的取值范围,确定抛物线2y ax bx c ++与直线y kx m =+的交点坐标即可解答.【详解】解:由图象可知,当3x <−或xx >0时,抛物线位于直线下方,∴不等式2ax bx c kx m ++<+的解集是:3x <−或xx >030x −<<,故答案为:3x <−或xx >0.14. 如图,已知顶点为(3,6)−−的抛物线2y ax bx c ++过()1,4−−,下列结论:①0abc <;②对于任意的实数m ,均有260am bm c +++>;③54a c −+=−:④若24ax bx c ++≥−,则1x ≥−;⑤23<a ,其中结论正确的为______.(填序号)【答案】①③⑤【解析】【分析】本题考查二次函数图象与系数的关系,二次函数的图像及性质,熟练掌握二次函数的性质是解题的关键.根据开口方向,对称轴,与y 轴的交点,即可判断,,a b c 的符号,即可判断①,根据顶点坐标求得最值,即可判断②,把()1,4−−代入2y ax bx c ++,得654a b c a a c a c −+=−+=−+=−,故③正确,由()1,4−−关于直线3x =−对称的点为(5,4)−−,进而得若24ax bx c ++≥−,则1x ≥−或5x ≤−,故④错误;由抛物线2y ax bx c ++的顶点为()3,6−−,6b a =,得96c a =−,再由54a c −+=−,得2312a =<,故⑤正确. 【详解】解: 抛物线开口向上,∴0a >, ∵对称轴为直线302b x a=−=−<, ∴0b >,6b a =, ∵抛物线与y 轴交于负半轴,∴0c <,∴0abc <,故①正确;抛物线的顶点坐标为(3,6)−−,即3x =−时,函数有最小值,∴26ax bx c ++−≥, ∴对于任意的m ,均有260am bm c +++≥,故②错误; 抛物线2y ax bx c ++过()1,4−−, ∴654a b c a a c a c −+=−+=−+=−,故③正确; ∵抛物线2y ax bx c ++过()1,4−−,()1,4−−关于直线3x =−对称的点为(5,4)−−, ∴若24ax bx c ++≥−,则1x ≥−或5x ≤−,故④错误; 抛物线2y ax bx c ++的顶点为()3,6−−,6b a =, ∴2244369644ac b ac a c a a a −−==−=−, ∴96c a =−, ∵54a c −+=−, ∴5496a a +−−=−, 解得2312a =<,故⑤正确. ∴结论正确的为①③⑤, 故答案为:①③⑤. 15. 如图,已知正方形ABCD 1,点E 、F 分别在边AD BC 、上,将正方形沿着EF 翻折,点B 恰好落在CD 边上的点B ′处,如果四边形ABFE 与四边形EFCD 的面积比为3∶5,那么线段FC 的长为________.【答案】38【解析】【分析】连接BB ′,过点F 作FH AD ⊥于点H ,设CF x =,则DH x =,则1BF x =−,根据已知条件,分别表示出,,AE EH HD ,证明EHF B CB′ ≌()ASA ,得出524EH B C x ′==−,在Rt B FC ′ 中,222B F B C CF ′′=+,勾股定理建立方程,解方程即可求解. 【详解】解:如图所示,连接BB ′,过点F 作FHAD ⊥于点H ,∵正方形ABCD 的边长为1,四边形ABFE 与四边形EFCD 的面积比为3∶5, ∴33=1=88ABFE S ×四边形, 设CF x =,则DH x =,则1BF x =−∴()13==28ABFE AE BF AB S +×四边形 即()131128AE x +−×= ∴14AE x =−∴514DE AE x =−=−, ∴55244EH ED HD x x x =−=−−=−,∵折叠, ∴BB EF ′⊥,∴1290BGF ∠+∠=∠=°, ∵2390=+°∠∠, ∴13∠=∠,又1FH BC ==EHF C ∠=∠ ∴EHF B CB′ ≌()ASA ,∴524EH B Cx ′==− 在Rt B FC ′ 中,222B F B C CF ′′=+,即()2225124x x x −=+−解得:38x =, 故答案为:38.【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.三、解答题(共9题,共75分)16. 解下列方程: (1)2310x x −+=;(2)()()421321x x x −=−.【答案】(1)1x =,2x = (2)112x =,234x =【解析】【分析】本题考查了解一元二次方程,掌握解一元二次方程的步骤是解题的关键. (1 (2)先移项,利用因式分解法求解即可. 【小问1详解】 解:2310x x −+=, ∵1a =,3b =−,1c =, ∴()2341150∆=−−××=>,∴x,解得:1x =2x =【小问2详解】解:()()421321x x x −=−, 整理得()()4213210x x x −−−=,∴()()21430x x −−=, ∴210x −=,430x −=, 解得:112x =,234x =.17. 已知抛物线2y x bx c =−+经过()1,0A −,()3,0B 两点,求抛物线的解析式和顶点坐标. 【答案】2=23y x x −−;()1,4− 【解析】【分析】本题考查了待定系数法求二次函数解析式,二次函数一般式化为顶点式,待定系数法求函数解析式是常用的方法,需熟练掌握并灵活运用.由题意抛物线2y x bx c =++经过()1,0A −,()3,0B 两点,代入函数解析式,根据待定系数法求出函数的解析式;把求得的解析式化为顶点式,从而求出其顶点坐标. 【详解】解:将()1,0A −,()3,0B 代入2y x bx c =−+,得01093b cb c =++ =−+,解得23b c ==− ,∴抛物线的解析式为223y x x =−−,()222314y x x x =−−=−− ,∴顶点坐标为()1,4−.18. 已知关于x 的一元二次方程220x ax a ++−=.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根; (2)若该方程的一个根为2,求a 的值. 【答案】(1)见解析 (2)23− 【解析】【分析】此题考查了一元二次方程的判别式,一元二次方程的解, (1)计算判别式即可证明;(2)将2x =代入一元二次方程求解即可 【小问1详解】的解: ()2Δ42a a =−− 248a a =−+2444a a −++()2240a =−+>,∴不论a 取何实数,该方程都有两个不相等的实数根.【小问2详解】将2x =代入一元二次方程220x ax a ++−=, 得4220a a ++−=,解得23a =−. 19. 如图,在Rt △ABC 中,∠B=90°,AB =9㎝,BC =2㎝,点M ,N 分别从A ,B 同时出发,M 在AB 边上沿AB 方向以每秒2㎝的速度匀速运动,N 在BC 边上沿BC 方向以每秒1㎝的速度匀速运动(当点N 运动到点C 时,两点同时停止运动).设运动时间为x 秒,△MBN 的面积为y 2cm .(1)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围; (2)求△MBN 的面积的最大值.【答案】(1)29(02)2y x x x =−+<≤;(2)5cm 2 【解析】【分析】(1)根据三角形的面积公式求得. (2)由二次函数的最大值可得.【详解】解:(1)设运动时间为x 秒,MBN ∆的面积为2ycm , 则2AM x =,92BM x =−,BN x =, 根据题意得:11(92)22y BM BN x x ==− , 292y x x ∴=−+,(02)x < ; (2)由(1)可知,292y x x =−+, 对称轴为;924x=>, 当94x <,y随x 的增大而增大, 又02x < ,∴当2x =时,5y =最大,MBN ∴∆的面积的最大值是5.【点睛】本题考查了二次函数的性质和二次函数的最大值,能正确的列出函数关系式是解题的关键. 20. 掷实心球是中考体育考试项目之一.如图1是一名男生投实心球情境,实心球行进路线是条抛物线,行进高度()y m 与水平距离()x m 之间的函数关系如图2所示.掷出时,起点处高度为95m .当水平距离为4m 时,实心球行进至最高点5m 处.(1)求y 关于x 的函数表达式;(2)根据中考体育考试评分标准(男生版),投据过程中,实心球从起点到落地点的水平距离大于等于9.7m 时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.【答案】(1)2891555y x x =−++ (2)该男生在此项考试不能得满分,理由见详解 【解析】【分析】(1)由图2可知95c =,顶点坐标为(45),,设二次函数表达式为()245y a x =−+,由此即可求解;(2)令(1)中抛物线的解析式0y =,且0x >,解方程,即可求解. 【小问1详解】解:根据题意设y 关于x 的函数表达式为()245y a x =−+, 把9(0,)5代入解析式得,()290455a =−+,解得,15a =−, ∴y 关于x 的函数表达式为()21455y x =−−+,即:2891555y x x =−++. 【小问2详解】解:不能得满分,理由如下, 根据题意,令0y =,且0x >, ∴28905551x x −++=,解方程得,19x =,21x =−(舍去), ∵99.7<,∴不能得满分.【点睛】本题主要考查二次函数的实际运用,掌握二次函数的性质及求解是解题的关键.21. 某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为28米. (1)这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽度是多少米?【答案】(1)这个车棚的长为10米,宽为8米.(2)小路的宽度是1米. 【解析】【分析】(1)设平行于墙的边长为x 米,则垂直于墙的边长为282x−米,依据题意列方程求解即可; (2)设小路的宽度是m 米,则停放自行车的区域可合成长为(10﹣m )米,宽为(8﹣2m )米的长方形,依据题意列方程求解即可.【详解】解:(1)设平行于墙的边长为x 米,则垂直于墙的边长为282x−米, 依题意得:x •282x−=80, 整理得:x 2﹣28x +160=0, 解得:x 1=8,x 2=20. 又∵这堵墙的长度为12米, ∴x =8, ∴282x−=10. 答:这个车棚的长为10米,宽为8米.(2)设小路的宽度是m 米,则停放自行车的区域可合成长为(10﹣m )米,宽为(8﹣2m )米的长方形, 依题意得:(10﹣m )(8﹣2m )=54, 整理得:m 2﹣14m +13=0, 解得:m 1=1,m 2=13.当m =1时,10﹣m =9,8﹣2m =6,符合题意; 当m =13时,10﹣m =﹣3,不合题意,舍去. 答:小路的宽度是1米.的【点睛】此题考查了一元二次方程与几何图形面积的应用,理解题意找到题中的等量关系是解题的关键. 22. 网络直播已经成为一种热门的销售方式,某销售商在一销售平台上进行直播销售板栗.已知板栗的成本价为6元/kg ,每日销售量()kg y 与销售单价x (元/kg )满足一次函数关系,下表记录的是有关数据,经调查发现销售单价不低于成本价且不高于30元/kg .设销售板栗的日获利为w (元). x (元/kg ) 789()kg y4300 4200 4100(1)求日销售量y 与销售单价x 之间的函数解析式;(不用写自变量的取值范围) (2)当销售单价定为多少时,销售这种板栗日获利w 最大?最大利润为多少元? 【答案】(1)1005000y x =−+(2)当销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元 【解析】【分析】本题考查的是一次函数与二次函数的实际应用,理解题意是解本题的关键; (1)设y 与x 之间的函数解析式为()+0y kx b k ≠,把7x =,4300y =和8x =,4200y =代入即可得到答案;(2)由每千克利润乘以销售数量建立二次函数的解析式,再利用二次函数的性质解答即可. 【小问1详解】解:设y 与x 之间的函数解析式为()+0ykx b k ≠,把7x =,4300y =和8x =,4200y =代入,得7430084200k b k b +=+=, 解得1005000k b =−=, ∴日销售量y 与销售单价x 之间的函数解析式为1005000y x =−+. 【小问2详解】 解:由题意得:()()()22610050001005600300001002848400w x x x x x =−−+=−+−=−−+, ∵1000a =−<,对称轴为直线28x =, ∴当28x =时,w 有最大值为48400元.∴当销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元.23. 在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点()()1100,,,,1133−−,,……都是和谐点. (1)判断二次函数22y x =−的图象上是否存在和谐点,若存在,求出其和谐点的坐标; (2)若二次函数()220y ax x c a =++≠的图象上有且只有一个和谐点()1,1.①求这个二次函数的表达式;②若0x m ≤≤时,函数()23202y ax x c a =+++≠的最小值为1,最大值为3,求实数m 的取值范围.(可通过画出函数图象草图来求解)【答案】(1)存在和谐点,和谐点的坐标为()()1122,−−,, (2)①211222y x x =−+−;②24m ≤≤ 【解析】【分析】(1)设函数22y x =−的和谐点为(,)x x ,代入求解即可;(2)①将点(1,1)代入2y ax 2x c =++,再由22ax x c x ++=有且只有一个根,140ac ∆=−=,两个方程联立即可求a 、c 的值;②由①可知221121(2)322y x x x =−++=−−+,当2x =时,3y =,当0x =时,1y =,当 4x =时,1y =,则24m ≤≤时满足题意;【小问1详解】存在和谐点,和谐点的坐标为(1,1),(2,2)−−; 设函数22y x =−的和谐点为(,)x x ,可得22x x =−, 解得1x =−或2x =, ∴和谐点为(1,1),(2,2)−−;【小问2详解】①∵点(1,1)−−是二次函数2()20y ax x c a =++≠的和谐点,12, a c ∴=++ 1, c a ∴=−−∵二次函数2()20y ax x c a =++≠的图象上有且只有一个和谐点, ∴22ax x c x ++=有且只有一个根, ∴140ac ∆=−=,∴11,22a c =−=−, ∴该二次函数的表达式为:211222y x x =−+−; ②由①可知, 221121(2)322y x x x =−++=−−+, ∴抛物线的对称轴为直线2x =, 当2x =时,3y =, 当0x =时,1y =, 当4x =时,1y =,∵函数的最小值为1 ,最大值为3 ,当24m ≤≤时,函数的最小值为1 ,最大值为3 .【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,并与二次函数的性质结合是解题的关键.24. 如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点()3,4A ,C 在x 轴的负半轴,抛物线2y ax bx c ++的对称轴2x =,且过点O ,A .(1)求抛物线2y ax bx c ++的解析式;(2)若在线段OA 上方的抛物线上有一点P ,求PAO 面积的最大值,并求出此时P 点的坐标; (3)若把抛物线2y ax bx c ++沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点B .直接写出平移后的抛物线解析式.【答案】(1)241633y x x =−+ (2)92,点3,52P(3)248433y x x =−−+或2420833y x x =−−− 【解析】【分析】(1)用待定系数法即可求解;(2)过点P 作PH y ∥轴交AO 于点H ,设点P 、H 的坐标分别为2416,33m m m−+ 、4,3m m,由PAO 面积12PHA PHO A S S PH x =+=⋅ ,根据二次函数的性质即可求解; (3)结合勾股定理以及菱形的性质求出点B 的坐标,设得到的抛物线的解析式为()2416233y x m =−−++,再把点B 的坐标代入,即可求得m 的值,即可求解. 【小问1详解】解:由题意得:函数图像的对称轴为直线2x =,点()3,4A ,点()0,0O ,将上述条件代入抛物线表达式得:224930ba abc c −==++ =,解得431630a b c =− = =, 故抛物线的表达式为241633y x x =−+; 【小问2详解】解:如图:过点P 作PH y ∥轴交AO 于点H ,由点A 的坐标得:直线OA 的表达式为43y x =, 设点P 、H 的坐标分别为2416,33m m m −+ 、4,3m m, 则PAO 的面积为: PHA PHO S S +12A PH x ⋅ 214164()32333m m m =−+−× 226m m =−+,20−< ,PAO ∴ 面积有最大值, 当32m =时,PAO 面积有最大值,最大值为92, 此时,点3,52P; 【小问3详解】解:设AB 与y 轴交于点D ,点()3,4A ,5OA ∴,3AD =,四边形OABC 是菱形,5AB OA ∴==,532BD AB AD =−=−=∴,∴点()2,4B −, 抛物线()2241641623333y x x x =−+=−−+沿x 轴向左平移m 个单位长度, 得到的抛物线的解析式为()2416233y x m =−−++, 使得平移后的抛物线经过菱形OABC 的顶点B ,∴把点B 的坐标代入解析式,得()241622433m −−−++=, 整理得:()241m −=,解得5m =或3m =, 当5m =时,224420(3)8333y x x x =−++=−−−, 当3m =时,2241648(1)43333y x x x =−++=−−+, 综上,平移后的抛物线解析式为248433y x x =−−+或2420833y x x =−−−. 【点睛】本题考查了利用待定系数法求二次函数的解析式,二次函数的图象与性质,菱形的性质,解题的关键是求出平移的m 的值.。
最新人教版九年级上学期期末考试数学质量检测题及答案解析.docx
第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。
2、考试时间100分钟,满分120分。
一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A、B、C、D、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、πB、2πC、4πD、6π5、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C 为OB 上的一点,且OC=6,以点C 为圆心、半径为3的圆与OA的位置关系是( ) A 、相离 B 、相交C 、相切D 、以上三种情况均有可能8、如图,在⊙O 中直径垂直于弦AB ,若∠C=25°则∠BOD 的度数是( ) A 、25° B 、30° C 、40° D 、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x 米,则可列出的方程为( )A 、x (x -11)=180B 、2x+2(x -11)=180C 、x (x+11)=180D 、2x+2(x+11)=180 10、二次函数y=ax 2+bx+c (a ≠0)的大致图像见如图, 关于该函数的说法错误的是( ) A 、函数有最小值 B 、对称轴是直线x=1/2 C 、当x ﹤1/2,y 随x 增大而减小 D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE,则∠BAD= 度。
人教版九年级数学第一学期期末质量检测试题含答案
人教版九年级数学第一学期期末质量检测试题第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.反比例函数y=−3在平面直角坐标系中的图象可能是( )xA. B.C. D.2.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( )A. 9:4B. 3:2C. 2:3D. 81:163.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分( )A. 等于91分B. 大于91分C. 小于91分D. 约为91分4.用配方法解方程x2−2x−3=0时,可变形为( )A. (x−1)2=2B. (x−1)2=4C. (x−2)2=2D. (x−2)2=45.某商品经过两次连续降价,每件售价由原来的60元降到了48.6元,设平均每次降价的百分率为x,则下列方程正确的是( )A. 60(1+x)2=48.6B. 48.6(1+x)2=60C. 60(1−x)2=48.6D. 48.6(1−x)2=606.若关于x的一元二次方程kx2−2x−1=0有两个实数根,则k的取值范围是( )A. k≠0B. k≥−1C. k≥−1且k≠0D. k>−1且k≠07.已知点A(m,1)和B(n,3)在反比例函数y=k(k>0)的图象上,则( )xA. m<nB. m>nC. m=nD. m与n大小关系无法确8.在△ABC中,若|tanA−1|+(2cosB−√2)2=0,则△ABC是( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 一般锐角三角形9.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与如图的三角形相似的是( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.10. 如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x的图象交于A(−1,2)、B(1,−2)两点,若y 1<y 2,则x 的取值范围是( )A. x <−1或x >1B. x <−1或0<x <1C. −1<x <0或0<x <1D. −1<x <0或x >111. 如图,在矩形ABCD 中,AB =2,AD =3,点E 是CD 的中点,点F 在BC 上,且FC =2BF ,连接AE ,EF ,则cos ∠AEF 的值是( )A. 12B. 1C. √22D. √3212. 如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交CD 于点E 、F ,连接AC 、CP ,AC 与BF 相交于点H.有下列结论: ①AE =2DE ; ②tan∠CPE =1; ③△CFP ∽△APH ; ④CP 2=PH ⋅PB . 其中正确的有( )A. ①②③B. ①②④C. ①③④D. ①②③④第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 某人沿着坡度i =1:√3的山坡走了50米,则他离地面的高度上升了______米.14. 甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽测100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但S 甲2=0.288,S 乙2=0.024,则______机床生产这种滚珠的质量更稳定.15. 如图,在△ABC 中点D 、E 分别在边AB 、AC 上,请添加一个条件:______ ,使△ABC∽△AED .16. 若m ,n 是一元二次方程x 2−4x −7=0的两个实数根,则1m +1n =______.17. 如图,在△ABC 中,sinB =13,tanC =√22,AB =3,则AC 的长为______.18. 如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =______.三、解答题(本大题共8小题,共66.0分。
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷一.选择题(共8小题)1.下列方程中,是一元二次方程的是( )A.2x2=5x﹣1B.x+=2C.(x﹣3)(x+1)=x2﹣5D.3x﹣y=52.已知⊙O的半径为5cm,当线段OA=5cm时,则点A在( )A.⊙O内B.⊙O上C.⊙O外D.无法确定3.方程x(x﹣1)=0的根是( )A.x=0B.x=1C.x1=0,x2=1D.x1=1,x2=﹣1 4.若关于x的一元二次方程kx2﹣6x+9=0有实数根,则k的取值范围是( )A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 5.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.135°6.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=327.如图,AB是⊙O的直径,AB=8,△BCD内接于⊙O,若∠BCD=60°,则圆心O到弦BD的距离是( )A.5B.3C.2 D.18.如图,B为线段AC的中点,过C点的直线l与线段AC成60°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是( )A.1个B.2个C.3个D.4个二.填空题(共8小题)9.若a是方程x2﹣2x﹣5=0的一个根,则2a2﹣4a= .10.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 .11.用配方法解一元二次方程x2﹣6x+5=0,将它化成(x+p)2=q的形式,则p+q的平方根为 .12.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA.若∠AOC=120°,则∠D的度数是 .13.某商场今年1月盈利3000万,3月盈利3630万,若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是 .14.如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O 于点D,则CD长的最大值为 .15.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠A=55°,∠F=30°,则∠E= °.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .三.解答题(共10小题)17.解方程(1)x2+4x=0 (2)x2+6x=518.4x(2x﹣1)2=36.解:(2x﹣1)2=9;2x﹣1=3……第一步;2x=4……第二步;x=2……第三步;(1)以上解方程的过程中从第 步开始出现错误,错误的原因是 .(2)请写出正确的解方程过程.19.已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)若方程有两个不相等的实数根,请求出k的范围;(2)请判断x=﹣1是否可为此方程的根,说明理由.20.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.21.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 .23.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,请你根据图中的数据求出该球的半径.24.某商场以每件30元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于55元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数y=﹣2x+140的关系.(1)当每件售价35元时,每天的利润是多少元?(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)该商场销售这种商品每天是否能获得900元的利润?请说明理由.25.如图,AB为⊙O的直径,点C,D为直径AB同侧圆上的点,且点D为的中点,过点D作DE⊥AB于点E,延长DE,交⊙O于点F,AC与DF交于点G.(Ⅰ)如图①,若点C为的中点,求∠AGF的度数;(Ⅱ)如图②,若AC=12,AE=3,求⊙O的半径.26.代数推理:例题:求x2+8x+21的最小值解:x2+8x+21=x2+2x⋅4+42﹣42+21=(x+4)2+5无论x取何值,(x+4)2总是非负数,即(x+4)2≥0所以(x+4)2+5≥5所以:当x=﹣4时,x2+8x+21有最小值,最小值为5阅读材料:利用完全平方式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可以求出多项式x2+bx+c的最小值.根据上述材料,解答下列问题:(1)填空:x2﹣12x+ =(x﹣ )2;(2)将多项式x2+16x﹣1变形为(x+m)2+n的形式,并求出x2+16x﹣1的最小值;(3)若一个长方形的长和宽分别为(2a+3)和(3a+5),面积记为S1,另一个长方形的长和宽分别为5a和(a+3),面积记为S2,试比较S1和S2的大小,并说明理由.。
2024-2025学年上学期期中质量检测九年级数学试卷
2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在一元二次方程2x2+x-1=0中,二次项系数、一次项系数、常数项分别是(A)2,1,-1. (B)2,-1,1. (C)2,1,1. (D)2,-1,-1.2.下列APP图标中,是中心对称图形的是3.一元二次方程x2-2x-1=0的根的情况是(A)有两个相等的实数根. (B)有两个不相等的实数根.(C)只有一个实数根. (D)没有实数根.4.关于抛物线y=-2(x+5)2-4,下列说法正确的是(A)开口向上. (B)对称轴是直线x=-5. (C)函数有最小值-4.(D)可由抛物线y=-2x2向右平移5个单位再向下平移4个单位而得.5.如图,△ABC内接于⊙O,连OA,OB,若∠BOA-∠C=35°,则∠OAB的度数是(A)70°. (B)65°. (C)55°. (D)50°.6.如图,将△ABC绕点C逆时针旋转,点A的对应点为D,点B的对应点为E,若B恰好是线段CD与AE的交点,且∠DCE=34°,则∠A的度数是(A)34°. (B)39°. (C)42°. (D)45°.7.在平面直角坐标系中,点P坐标(3,-4),以P为圆心,4个单位长度为半径作圆,下列的是(A)原点O在⊙P内. (B)原点O在⊙P上.(C)⊙P与x轴相切,与y轴相交. (D)⊙P与y轴相切,与x轴相交.8.已知抛物线y =x 2-x+c 上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若-2<x 1<-1, 0<x 2<1,1<x 3<2,则y 1,y 2,y 3的大小关系是(A )y 1<y 2<y 2. (B )y 2<y 1<y 3 (C )y 2<y 2<y 1 (D )y 2<y 3<y 1.9.如图,四边形ABCD 内接于⊙O ,AB =BC ,∠ABC =90°,⊙O 的直径为10,四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是(A )y =√2x 2+10√2.(B )y =√2x +10√2.(C )y =√22x 2+10√2.(D )y =√22x +10√2. 10.在平面直角坐标系中,将函数y =x 2-2x+t 的图象记为C 1,将C ,绕原点旋转180°得到图象C 2,把C 1和C 2合起来的图形记为图形C.则当-1≤t ≤1时,直线y =x+1与图形C 的交点的个数是(A )2. (B )4. (C )2或3. (D )3或4.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.点A (2,-1)关于原点对称的点的坐标是____________________.12.某航空公司有若干个飞机场,每两个飞机场之间都开辟了一条航线,一共开辟了6条航线,这个航空公司共有__________________个飞机场.13.若关于x 的方程x 2+(k -2)x+1-k =0的两个实数根互为相反数,则k 的值是 _____________.14.中国传统数学重要的著作《九章算术》中记载了一个“圆材理壁”的问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?“用几何语言表达为:如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,EB =1寸,CD =10寸,则直径AB 长是__________________________寸.15.已知抛物线y =ax 2+bx+c (a ,b ,c 为常数,a <0)经过点(m ,0),m >0,且4a -2b+c =0,则下列四个结论:① c >0;② b -3a >0;③ 若方程ax 2+bx+c =b 有两个不相等的实数根x 1,x 2 (且x 1<x 2),则x 2<m;④ 若0<m <2,抛物线过点(0,1),且s =a+b+c ,则s <34.其中正确的结论是____________(填序号). 16.如图,已知△ABC ,△DEF 均为等腰直角三角形,∠BAC =∠DEF =90°,A 为DF 的中点,BF 的延长线交线段EC 于点G ,连接GD.若GD =10,GE =4,则GF =_____.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题8分)解方程:x 2-x -5=0.18.(本小题8分)如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 从点C 开始沿边CA 运动,速度为1cm/s.与此同时,点E 从点B 开始沿边BC 运动,速度为2cm/s.当点E 到达点C 时,点D ,E 同时停止运动.连接AE ,DE ,设运动时间为ts ,△ADE 的面积为Scm 2.(1)用含t 的代数式表示:CD =______cm ,CE =______cm;(2)当CD 为何值时S =58S △ABC ?19.(本小题8分)二次函数y =ax 2+bx -3中的x ,y 的部分取值如下表:根据表中数据填空:(1)该函数图象的对称轴是_________;(2)该函数图象与x 轴的交点的坐标是_________;(3)当0<x <3时,y 的取值范围是__________;(4)不等式ax 2+bx -3>x -3的解集是__________.x *** - I 0 1 2 3 *** y … m -3 n -3 0 ***如图,已知直线MA交⊙O于A,B两点,BD为⊙O的直径,E为⊙O上一点,BE平分∠DBM,过点E作EF⊥AB于点F.小求证:EF为⊙O的切线;2.若已知⊙O的半径为5,且EF-BF=2,求AB的长.21.(本小题8分)如图是由小正方形组成的5×5的网格,小正方形的顶点称为格点,A,B,C,D,E五个点均为格点,F是线段CD与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,每个画图任务的画线不得超过三条.(1)在图(1)中,若点A和B关于点O中心对称,画点O;2)在图(1)中,若点F绕点E逆时针旋转90°后得到点G,画点G;(3)在图(2)中,在线段BC上画点M,使∠AMB=∠BAC;(4)在图(2)中,画满足条件的格点N,使∠ANC=2∠ABC.(2)(第21题)在2024年巴黎奥运会上,全红鲜凭借总分425.60分的成绩蝉联奥运会女子10米跳台的冠军,成为中国奥运史上最年轻的三金王.在进行跳水训练时,运动员身体(视作一点)在空中的运动路线可视作一条抛物线,如图所示,建立平面直角坐标系xOy.已知AB为3米,OB为10米,跳水曲线在离起跳点A水平距离为0.5米时达到距水面最大垂直高度k米.(1)当k=11.25时,①求这条抛物线的解析式;②求运动员落水点与点A的距离;(2)图中OE=4.5米,OF=5.5米,若跳水运动员在区域EF内(含点E,F)人水时才能达到训练要求,请直接写出k的取值范围.23.(本小题10分)如图,在△ABC中,AC=BC,∠ACB=120°,点P为△ABC内一点.(1)如图(1),CP=CQ,∠QCP=120°,连接BP,AQ,求证:BP=AQ;(2)如图(2),D为AB的中点,若PC=2,PA=5,∠CPD=150°,求线段PD的长;(3)如图(3),在(2)的条件下,若点M为平面内一点,PM=PC,连BM,将线段BM绕点B顺时针旋转120°至BN,连PN,请直接写出PN的最大值.(第23题)已知抛物线y=ax2+bx+3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图(1),Q为抛物线上第一象限内一点,若∠AQC=2∠BAQ,求点Q 的坐标;(3)如图(2),P为x轴上方一动点,直线PM,PN与抛物线均只有唯一公共点M,N, OH⊥MN于点H,且△PAB的面积是10,求线段OH长度的最大值.(1)(2)(第24题)。
福建省宁德市福鼎市2024届九年级上学期期中质量检测数学试卷(含答案)
2023—2024学年第一学期九年级期中质量检测数学试题(考试时间:120分钟满分:150分)第Ⅰ卷一、选择题:每小题4分,共40分.每小题只有一个正确的选项,请用2B铅笔在答题卡的相应位置填涂.1.下列方程中,是一元二次方程的是( )A.B.C.D.2.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为450次,凸面向下的次数为550次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为( )A.0.45B.0.50C.0.55D.0.753.已知,则下列比例式成立的是( )A.B.C.D.4.如图,要使平行四边形成为矩形,需要添加的条件是()A.B.C.D.5.下列各组图形中一定是相似图形的是()A.两个等边三角形B.两个矩形C.两个直角三角形D.两个等腰三角形6.下列各组图形中的两个三角形均满足,这两个三角形不是位似图形的是()A.B.C.D.7.一元二次方程的根的情况是( )A.有两个相等的实数根B.只有一个实数根C.有两个不相等的实数根D.没有实数根8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.D.9.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示以线段为边作正方形,取的中点,连接,延长至,使得,以为边作正方形,则点即是线段的黄金分割点.若记正方形的面积为,矩形的面积为,则与的比值是()A.B.C.D.10.如图,在矩形中,,E,G分别是边的五等分点,F,H分别是边的三等分点,若四边形的面积为1,则矩形的面积是()A.B...第注意事项:.用毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效..如图,两条公路,互相垂直,公路的中点与点被湖隔开,若测得的长为,则,两点间的距离为.12.两个相似三角形面积比为,则对应高的比为13.如图,,,则14.一个不透明的箱子里装有三个完全相同的小球,分别标有数字放回,再从中随机摸出一个,则两次摸出的小球数字和为奇数的概率为15.已知a,b是方程的两根,则的值为16.如图,在矩形中,,,M为对角线上一点(不与,连接,过作交边于点N,连接.若,则三、解答题:本题共17.解方程:18.如图,已知四边形ABCD小丽同学准备测量学校教学楼的高度.镜,镜子与教学楼的距离为24米,然后在射线上调整自己与镜子的距离,直到刚好能从镜子中看,此时她与镜子的距离为米,若小丽的眼睛距离地面高度为米,请你帮小丽利用这些数据求出教学楼的高度.(1)如图1,在正方形中,点F是上的一点,将绕点旋转,使与重合,此时点的对应点E在的延长线上,则四边形“直等补”四边形;不是”)(2)如图2,已知四边形是“直等补”四边形,,,作于点作于点F.试探究线段,和的数量关系,并说明理由;22.第19届亚运会于2023年9月23日至10月8日在杭州举行,杭州亚运会的三个吉祥物分别取名月份起,商场决定降价促销回馈顾客,经调查发现,该吉祥物挂坠每降价元,月销售量就会增加为圆心,大于的长为半径在两侧画弧,四段弧分别交于点连接,作射线;为圆心,的长为半径画弧,交射线于点连接,交于点即为的三等分点(即)求证:四边形是菱形;为的三等分点;(3)尺规作图:如图2,请利用尺规再设计一种方法,作线段的三等分点.(保留作图痕迹)24.已知关于x的方程有两个实数根,其中.(1)若,求的值;(2)一次函数的图像上有两点,若,求m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为和,求该直角三角形的面积.25.在中,,,,如图1,将绕点A顺时针旋转某个角度得到,其中D是点B的对应点,E是点C的对应点,连接,.(1)求证:;(2)如图2,当点D在线段上时,求线段的长;(3)连接,,在旋转过程中,是否为定值?若是,求出这个定值,若不是,请说明理由.参考答案与解析1.B2.A3.C4.B5.A6.B7.C8.D9.D10.C11.12.13.614.15.716.##17.,.解:∵,∴,则,即,∴,∴,.18.见解析证明:∵四边形ABCD是菱形,,∴△ABE≌△ADF(∴BE=DF..教学大楼的高度是米由题意得,,,∴,∴,即,解得:,答:教学大楼的高度是米.(1)(2)1)解:从北校区随机抽取一人是女生的概率;2)解:列表如下:由表可知,共有9种等可能结果,其中抽取的两位反诈知识宣传负责人恰好是一男一女的有5种结果,所以抽取的两位反诈知识宣传负责人恰好是一男一女的概率为.21.(1)是(2),理由见解析(1)∵将绕B点旋转,使与重合,此时点F的对应点E在的延长线上,∴,,∵四边形是正方形,∴,∴,∴,即,∴,∵,,∴四边形是“直等补”四边形.故答案为:是(2)∵四边形是“直等补”四边形,,,∴,,∴,∵,,∴,∴四边形是矩形,∴,,∵,,∴,∵,,∴,∴,∵,∴.22.(1)该款吉祥物4月份到6月份销售量的月平均增长率为;(2)应将每件的售价定为12元,(1)解:设该款吉祥物4月份到6月份销售量的月平均增长率为a,由题意得,,解得:,(舍),答:该款吉祥物4月份到6月份销售量的月平均增长率为;(2)解:设每件吉祥物挂坠降价x元,则每件的销售利润为元,由题意得,,整理得:,解得:,(舍),元,答:应将每件的售价定为12元.23.(1)见解析(2)见解析(3)见解析(1)证明:由作图可得,∴四边形是菱形;(2)由(1)得,.由作图可知:,∴,.∴,,,∴,,即,(3)如图,任意作一条射线,截取,连接,分别作,即可得出线段的三等分点、,∴点N点G是所求作的.24.(1)(2)(3)该直角三角形的面积为30或24(1)当时,方程为,,,即;(2)将代入可得,又,故,,即,,,,,;(3)∵直角三角形两直角边为整数,为平方数,不妨令(为正整数),,,,当①∴,解得(不合题意舍去);当②,解得,∴方程,,则斜边为13,即;当③,解得,∴方程,,则斜边为10,即,综上所述:该直角三角形的面积为30或24.25.(1)见解析(2)(3)是定值,定值为50(1)证明:∵将绕点A顺时针旋转得到,∴,,,∴,,即,,∴;(2)解:法一:如图,过点A作于F,∵,,,∴,∵将绕点A顺时针旋转得到,∴,,,∵,∴,∴,∵∴,∵,∴,即∴;法二:如图,过点A作于F,∵,∴,∵,∴,∴即∴;∵,∴.(3)解:如图,设和相交于点G,和相交于点H,∵,∴,∵,∴,∴,∴,∵,∴∵,∴∴是定值,定值为50.。
2023-2024学年浙江省温州市九年级上学期数学检测试题及答案
温州市2023学年第一学期学业水平检测九年级数学模拟试卷学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每题3分,共30分)的半径为2.已知OA.P点5.如图,已知圆心角A.156°A .B .C .D .7.已知抛物线21y x x −−,与x 轴的一个交点为()0m ,,则代数式22023m m −+的值为( ) A .2021 B .2022 C .2023 D .20248.如图,将ABD △绕顶点B 顺时针旋转36°得到CBE △,且点C 刚好落在线段AD 上,若30CBD ∠=°,则E∠的度数是( )A .42°B .44°C .46°D .48°9.如图,Rt ABC △中,90BAC ∠=°,AD BC ⊥,垂足为D ,点E ,F 分别是AB ,AC 边上的动点,DE DF ⊥,若5BC =, 3.2CD =,那么DE 与DF 的比值是( )A .0.6B .0.75C .0.8D .不确定的值10.已知抛物线()20y ax bx c a ++≠与x 轴的交点为()0A 1,和()30B ,,点()111P x y ,,()222P x y ,是抛物线上不同于A B ,的两个点,记1P AB △的面积为1S ,2P AB △的面积为2S ,则下列结论正确的是( )二、填空题(每题分,共分)11.如图,ABC 中,40A ∠=°,60C ∠=°,O 与边AB ,AC 的另一个交点分别为D , E .则AED ∠的大小为 °.12.下表记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数 100 200 500 1000 2000 成活的棵数 81 156 395 800 1600 成活的频率 0.81 0.78 0.79 0.8 0.8 由此估计这种苹果树苗的移植成活的概率为 . 13.已知二次函数235y x =−,当14x −≤≤时,y 的最小值为 .14.如图(1)是一座石拱桥,它是一个横断面为抛物线形状的拱桥,当水面在图示位置时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的关系式是 .15.如图,已知D 、E 、F 分别是ABC 的边AB AC BC 、、上的点,DE BC EF AB ∥,∥,ADE EFC △、△的面积分别为1、4,四边形BFED 的面积为 .16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,3BC =,则⊙O 的半径为 .17.如图1,筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且O 被水面截得的弦AB 长为4m ,O 的半径长为3m ,若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是 m .18.如图,在Rt ABC △中,90ACB ∠=°,点D 在AB 上,点E 为BC 上的动点,将BDE △沿DE 翻折得到FDE ,EF 与AC 相交于点G ,若3AB AD =,3AC =,6BC =,0.8CG =,则CE 的值为 .三、解答题(46分)19.(6分)如图,点D 是△ABC 的边AB 上一点,∠ABC =∠ACD .(1)求证:△ABC ∽△ACD ;(2)当AD =2,AB =3时,求AC 的长.20.(6分)已知二次函数2y x bx c ++=-经过点30A (,)与03B (,). (1)求b ,c 的值.(2)求该二次函数图象的顶点坐标.21.如图所示,已知AB 为O 的直径,CD 是弦,且AB CD ⊥于点E .连接AC 、OC BC 、.(1)求证:ACO BCD ∠=∠;(2)若96AE BE CD ==,,求O 的直径.(1)请用画树状图或列表的方法,求抽出的两张卡片上的图案都是片分别记为1A 、2A ,图案为“黑脸”的卡片记为(2)若第一次抽出后不放回,请直接写出求抽出的两张卡片上的图案都是y24.(8分)如图,ABC 内接于⊙O ,过点O 作OH BC ⊥于点H ,延长OH 交⊙O 于点D ,连接AD 、BD ,AD 与BC 交于点E ,9AD =(1)求证:BAD CAD ∠=∠. (2)若OH DH =.①求BAC ∠的度数.②若⊙O 的半径为6,求DE 的长.(3)设BD x =,AB CE y ⋅=,求y 关于x 的函数表达式.参考答案:。
人教版数学九年级上册质量监测试题及答案
人教版数学九年级上册质量监测试题(考试时间120分钟 满分120分)一、选择题(本题共10小题,每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )。
2.关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )。
A .m ≥94B .m <94C .m =94D .m <-943.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )。
A .B .C .D .4.抛物线y =x 2+4x +4的对称轴是( )。
A .直线x =4B .直线x =-4C .直线x =2D .直线x =-25、如图,A,B,C 是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是( )。
A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6.如图,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽为xm,则可列方程为()。
A.100×80-100x-80x=7644B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644D.100x+80x-x2=76447.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()。
A.B.C.D.8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()。
A.45° B.30° C.75° D.60°9.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()。
10.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是( )。
深圳市龙岗区2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】
深圳市龙岗区2024-2025学年九年级数学第一学期开学教学质量检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在矩形ABCD 中,点E 是AD 中点,且AE 2=,BE 的垂直平分线MN 恰好过点C ,则矩形的一边AB 的长度为()A .2B C D .42、(4分)下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .3、(4分)计算()69⨯-的结果等于()A .15-B .15C .54D .54-4、(4分)的整数部分为x ,小数部分为y y -的值是()A .3-BC .1D .35、(4分)计算(﹣2)的结果是()A .1B .0C .﹣1D .﹣76、(4分)如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A .19B .20C .21D .227、(4分)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s ,方差如下表:选手甲乙丙丁方差(s 2)0.0200.0190.0210.022则这四人中发挥最稳定的是()A .甲B .乙C .丙D .丁8、(4分)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积y 与总人口x 成正比例C .若该村人均耕地面积为2公顷,则总人口有100人D .当该村总人口为50人时,人均耕地面积为1公顷二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平行四边形ABCD 中,已知∠A﹣∠B=60°,则∠C=_____.10、(4分)如图,正方形OABC 的边OA ,OC 在坐标轴上,矩形CDEF 的边CD 在CB上,且5CD=3CB ,边CF 在轴上,且CF=2OC-3,反比例函数y=k x (k>0)的图象经过点B,E ,则点E 的坐标是____11、(4分)写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____.12、(4分)如图,OC 平分∠AOB ,P 在OC 上,PD ⊥OA 于D ,PE ⊥OB 于E .若PD =3cm ,则PE =_____cm .13、(4分)一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE=DC ,连接BE.(1)求证:四边形ABCD 是菱形.(2)填空:①当∠ADC=°时,四边形ACEB 为菱形;②当∠ADC=90°,BE=4时,则DE=15、(8分)如图,已知:EG ∥AD ,∠1=∠G ,试说明AD 平分∠BAC .16、(8分)已知:如图,在△ABC 中,∠A=120°,AB=4,AC=2.求BC 边的长.17、(10分)如图,在Rt ACB 中,90C =∠,BE 平分ABC ∠,ED 垂直平分AB 于点D ,若9AC =,求AE 的长.18、(10分)如图1,E 为正方形ABCD 的边BC 上一点,F 为边BA 延长线上一点,且CE =AF .(1)求证:DE ⊥DF ;(2)如图2,若点G 为边AB 上一点,且∠BGE =2∠BFE ,△BGE 的周长为16,求四边形DEBF 的面积;(3)如图3,在(2)的条件下,DG 与EF 交于点H ,连接CH 且CH =5,求AG 的长.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在菱形ABCD 中,6AC =,8BD =,则菱形ABCD 的周长是_______.20、(4分)如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图中信息可得二元一次方程组0y ax b kx y =+⎧⎨-=⎩的解是_____.21、(4分)如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.22、(4分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,且抛物线的解析式为223y x x =--,则半圆圆心M 的坐标为______.23、(4分)如图,a ∥b ,∠1=110°,∠3=50°,则∠2的度数是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在ABC △中,AD BC ⊥,12AD =,16BD =,5CD =.()1求ABC △的周长;()2判断ABC △是否是直角三角形,并说明理由.25、(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000酒店豪华间有多少间?旺季每间价格为多少元?26、(12分)分解因式(1)20a 3-30a 2(2)25(x+y)2-9(x-y)2参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】连接CE ,根据线段中点的定义求出DE 、AD ,根据矩形的对边相等可得BC=AD ,根据线段垂直平分线上的点到两端点的距离相等可得CE=BC ,再利用勾股定理列式求出CD ,然后根据矩形的对边相等可得AB=CD .【详解】如图,连接CE ,∵点E 是AD 中点,∴DE=AE=2,AD=2AE=2×2=4,∴BC=AD=4,∵BE 的垂直平分线MN 恰好过点C ,∴CE=BC=4,在Rt △CDE 中,由勾股定理得,∴故选C .本题考查了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,难点在于作辅助线构造出直角三角形.2、C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、是轴对称图形,也是中心对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误,故选C .本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.3、D 【解析】利用乘法法则计算即可求出值【详解】解:原式=-54,故选D .此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.4、C 【解析】因为12<<11-,即x =1,1y =-,所1)1y -=--=.5、C 【解析】分析:根据二次根式的乘法法则结合平方差公式进行计算即可.详解:原式=222)2341+-=-=-=-.故选C.点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.6、D【解析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.7、B【解析】分析:根据方差的意义解答.详解:从方差看,乙的方差最小,发挥最稳定.故选B.点睛:考查方差的意义,方差越小,成绩越稳定.8、D【解析】人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A,D错误,再根据函数解析式求出自变量的值与函数值,有可判定C,B.【详解】如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,∴y随x的增大而减小,∴A,B错误,设y=kx(k>0,x>0),把x=50时,y=1代入得:k=50,∴y=50 x,把y=2代入上式得:x=25,把x=50代入上式得:y=1,∴D正确,故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、120【解析】根据平行四边形的性质可得到答案.【详解】∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.10、2715 204⎛⎫ ⎪⎝⎭,【解析】设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a2,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为(231aa-,3a-3),根据5CD=3CB,可求出点E的坐标【详解】由题意可设:正方形OABC的边OA=a ∴OA=OC=AB=CB∴点B的坐标为(a,a),即k=a2CF=2OC-3∴CF=2a-3∵OF=OC+CF=a+2a-3=3a-3∴点E的纵坐标为3a-3将3a-3代入反比例函数解析式y=2ax中,可得点E的横坐标为231aa-∵四边形CDEF为矩形,∴CD=EF=2 31 a a-2531a a -=3a,可求得:a=94将a=94,代入点E 的坐标为(231a a -,3a-3),可得:E 的坐标为2715204⎛⎫ ⎪⎝⎭,故答案为:2715204⎛⎫ ⎪⎝⎭,本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键11、(x+2)(x-1)=0【解析】根据因式分解法解一元二次方程的方法,可得方程为(x+2)(x-1)=0.12、3【解析】根据角平分线上的点到角的两边的距离相等求解即可.【详解】解:∵OC 平分∠AOB ,PD ⊥OA ,PE ⊥OB ,∴PE =PD =3cm .故答案为;3本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.13、1x <-【解析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)①60;②.【解析】(1)由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABCD 为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABCD 是菱形.(2)①由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC 为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABEC 是菱形,则CA=AD=DC ,此时三角形ADC 为等边三角形,∠ADC=60°;②当∠ADC=90°时,四边形ABCD 为正方形,三角形BCE 为等腰直角三角形,因为BE=4,所以由勾股定理得CE=,DE 2CE ==.【详解】解:(1)证明:∵AC 垂直平分BD ,∴AB=AD ,BF=DF ,∵AB ∥CD,∴∠ABD=∠CDB.∵∠AFB=∠CFD,∴△AFB ≌△CFD (ASA ),∴AB=CD.又∵AB ∥CD ,∴四边形ABCD 是平行四边形.∵AB=AD ,∴平行四边形ABCD 是菱形.(2)①∵由(1)得:四边形ABCD 是菱形,∴AB=CD,AB//CD,∵CE 是CD 的延长线,且CE=CD ,∴由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC 为平行四边形∵假设四边形ACEB 为菱形,∴AC=CE ∵已知AD=DC ,∴AC=DC=AD,即三角形ADC 为等边三角形,∴060ADC ∠=②∵由(1)得:四边形ABCD 是菱形,且∠ADC=90°∴四边形ABCD 为正方形,三角形BCE 为直角三角形,∵CE=CD ,∴由勾股定理得CE=,DE 2CE ==.本题主要考察特殊四边形的性质,掌握特殊四边形的相关性质是解题的关键.15、见解析学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………【解析】先根据已知条件推出AD ∥EF ,再由平行线的性质得出∠1=∠2,∠3=∠G ,结合已知通过等量代换即可得到∠2=∠3,根据角平分线的定义可知AD 是∠BAC 的平分线.【详解】∵EG ∥AD ,∴∠1=∠2,∠3=∠G ,∵∠G=∠1,∴∠2=∠3.∴AD 平分∠BAC.此题考查平行线的性质,解题关键在于掌握其性质定义.16、27.【解析】过点C 作CD⊥BA,垂足为D.根据平角的定义可得∠DAC=60°,在Rt △ACD 中,根据三角函数可求AD,BD 的长;在Rt △BCD 中,根据勾股定理可求BC 的长.【详解】解:过点C 作CD BA ⊥,垂足为D ∵120A ∠=︒∴60DAC ∠=︒在Rt ACD ∆中cos 2cos601AD AC DAC =⋅∠=⨯︒=sin 2sin60CD AC DAC =⋅∠=⨯︒=∴415BD AB AD =+=+=在Rt BCD ∆中2BC ====本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理.17、AE 的长为6.【解析】根据角平分线的性质可得DE=CE ,根据垂直平分线可得AE=BE ,进而得到30A ABE CBE ∠=∠=∠=,设AE x =,则9DE CE x ==-,根据直角三角形30°角所对直角边为斜边的一半得到关于x 的方程,然后求解方程即可.【详解】解:设AE x =,则9CE x =-,BE 平分ABC ∠,CE CB ⊥,ED AB ⊥,9DE CE x ∴==-,又ED 垂直平分AB ,AE BE ∴=,A ABE CBE ∴∠=∠=∠,在Rt ACB 中,90A ABC ∠+∠=,30A ABE CBE ∴∠=∠=∠=,12DE AE ∴=,即192x x -=,解得6x =.即AE 的长为6.本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.18、(1)见解析;(2)64;(3)【解析】(1)证明,根据全等三角形的性质得到,根据垂直的定义证明;(2)根据三角形的外角的性质、等腰三角形的判定定理得到,根据三角形的周长公式求出,根据正方形的面积公式计算;(3)作交的延长线于点,证明,得到,,根据勾股定理列方程求出,计算即可.【详解】(1)证明:四边形是正方形,,,在和中,,,,,即,;(2)解:,,,,的周长为16,,,;(3)过点作交的延长线于点,,,垂直平分,,,,,即,在四边形中,,,,在和中,,,,在中,,,,,在中,设,则,由勾股定理得,解得:,.本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、20【解析】根据菱形的性质,得到AO=3,BO=4,AC ⊥BD ,由勾股定理求出AB ,即可求出周长.【详解】解:∵四边形ABCD 是菱形,∴116322AO AC ==⨯=,118422BO BD ==⨯=,AC ⊥BD ,∴△ABO 是直角三角形,由勾股定理,得AB ,∴菱形ABCD 的周长是:45=20⨯;故答案为:20.本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质进行求解.20、42x y =-⎧⎨=-⎩【解析】直接利用已知图形结合一次函数与二元一次方程组的关系得出答案.【详解】如图所示:根据图中信息可得二元一次方程组{0y ax b kx y +-==的解是:4{2x y --==.故答案为:4{2x y --==.此题主要考查了一次函数与二元一次方程组的关系,正确利用图形获取正确信息是解题关键.21、1【解析】根据平行四边形的性质,可得出AD ∥BC ,则∠AEB =∠CBE ,再由∠ABE =∠CBE ,则∠AEB =∠ABE ,则AE =AB ,从而求出DE .【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠CBE ,∵∠B 的平分线BE 交AD 于点E ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=1.故答案为1.本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.22、(1,0).【解析】当y =0时,2230x x --=,解得:x 1=﹣1,x 2=3,故A (﹣1,0),B (3,0),则AB 的中点为:(1,0).故答案为(1,0).23、60【解析】根据平行线的性质:两直线平行内错角相等,可得∠BOD=50°,再根据对顶角相等可求出∠2.【详解】解:如图所示:∵直线a ∥b ,∠3=50°,∴∠BOD=50°,又∵∠1=∠BOD+∠2,∠2=∠1-∠BOD=110°-50°=60°.故本题答案为:60.平行线的性质及对顶角相等是本题的考点,熟练掌握平行线的性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)54;(2)ABC △不是直角三角形,理由见解析.【解析】(1)在Rt ABD △和Rt ACD 中,利用勾股定理分别求得AB 与AC 的长即可;(2)利用勾股定理的逆定理进行判断即可.【详解】解:()1AD BC ⊥,90ADB ADC ∴∠=∠=.在Rt ABD △和Rt ACD 中,根据勾股定理得222AB AD BD =+,222AC AD CD =+,又12AD =,16BD =,5CD =,20,13AB AC ∴==,ABC C AB AC BC AB AC BD DC ∴=++=+++201316554=+++=;()2ABC △不是直角三角形.理由:20,13,21AB AC BC ===,222AB AC BC ∴+≠,ABC ∴不是直角三角形.本题主要考查勾股定理及其逆定理,解此题的关键在于熟练掌握其知识点.25、该酒店豪华间有50间,旺季每间价格为800元.【解析】根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;【详解】设淡季每间的价格为x 元,酒店豪华间有y 间,()102400011400003x y x y ⎧⎪⎨⎛⎫ ⎪⎪⎝=⎭=+⎩-,解得,60050x y ==⎧⎨⎩,∴x+13x=600+13×600=800,答:该酒店豪华间有50间,旺季每间价格为800元;此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.26、(1)10a 2(2a ﹣3)(2)4(4x+y)(x+4y)【解析】分析:(1)利用提公因式法,找到并提取公因式10a 2即可;(2)利用平方差公式进行因式分解,然后整理化简即可.详解:(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y).点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).。
辽宁省大连市金州区2024-2025学年九年级上学期11月期中数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷九年级数学2024.11(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中,是关于的一元二次方程的是( )A .B .C .D .2.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .3.下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线4.已知的半径为5,点在外,则的长可能是( )A .3B .4C .5D .65.若关于的一元二次方程有两个不相等的实数根,则的值可以是( )A .B .1C .2D .36.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为,则可列方程为()A .B .C .D .7.如图,为的直径,弦,垂足为点,若的半径为13,,则的长为()x 310x -=23x y +=2210x x +-=410x -=()1,3()1,3--()1,3-()1,3-()3,1O P O OP x 220x x k -+=k 1-x ()21001121x +=()21001%121x +=()10012121x +=()()210010011001121x x ++++=AB O CD AB ⊥E O 24CD =AE(第7题)A .5B .6C .7D .88.抛物线的对称轴是直线,且经过点,则的值为( )A .3B .C .6D .9.如图,在中,,将绕点按逆时针方向旋转得到,点恰好在边上,连接,则的长为( )(第9题)A .8B .C .D .610.如图,在矩形中,,点从点出发以的速度沿向点运动,同时点从点出发以的速度沿向点运动,设经过的时间为的面积为,则下列图象中能大致反映与之间的函数关系的是()(第10题)A .B .C .D .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.一天中,钟表时针从上午6时至上午9时旋转的度数为______.12.若是方程的一个实数根,则代数式的值为______.13.如图,是的切线,为切点,如果,则的长为______.221y x bx =++32x =()1,k k 3-6-Rt ABC △90,60,4ACB A AC ︒︒∠=∠==CAB △C CDE △D AB BEBEABCD 4cm,8cm AB BC ==P A 1cm /s AB B Q B 2cm /s BC C ,x s PBQ △2cm y y x x t =210x x --=22024t t -+,,AB AC BD O ,,P C D 8,5AB AC ==BD(第13题)14.如图是二次函数的部分图象,由图象可知,当时,自变量的取值范围是______.(第14题)15.如图,抛物线:与轴交于两点,点在第四象限的抛物线上,连接,将线段绕点逆时针旋转,得到线段,当点恰好落在轴上时,点的坐标为______.(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明,演算步骤或推理过程)16.(10分)(1)用配方法解方程:;(2)用公式法解方程:.17.(8分)如图所示,在正方形网格中,的顶点均在格点上,请在所给平面直角坐标系中按要求作图.2y ax bx c =++0y >x 223y x x =--x ,A B C BC CB C 90︒CD D y C 269x x -=-22340x x +-=ABC △(第17题)(1)以点为旋转中心,将绕点顺时针旋转得,画出,并写出的坐标;(2)直接写出线段与的关系:______.18.(8分)如图,四边形是的内接四边形,延长相交于点,且.求证:是等腰三角形.(第18题)19.(8分)如图,矩形画框由边框和内衬组成,其中画框的边框宽度相等,画框外框长为,宽为,且边框的面积为整个画框面积的,求这个矩形画框的边框宽度是多少厘米?(第19题)20.(8分)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量(件)与每件售价(元)之间符合一次函数关系,如图所示.(第20题)(1)求与之间的函数关系式,并直接写出自变量的取值范围;(2)设商场销售这种商品每天获利(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?A ABC △A 90︒11ABC △11AB C △11,B C BC 11B C ABCD O ,DC ABE 2ABC E ∠=∠ADE △32cm 20cm 310y x y x x w21.(8分)如图1,是的直径,是弦,是的中点,与交于点,点在延长线上,且.(第21题图1)(1)求证:为的切线;(2)如图2,连接,若,求的长.(第21题图2)22.(12分)如图1,在中,,点是线段上一点(不与点重合),,以为旋转中心,将线段顺时针旋转得到线段,连接.(第22题图1)(1)求(用含的式子表示);(2)求证;;(3)如图2,当时,求的面积.(第22题图2)23.(13分)已知是自变量的函数,当时,称函数为函数的“相关函数”.AB O AC DAB CD AB E F AB CF EF =CF O BD 8,4CF BF ==BD ABC △,90AC BC ACB =∠=︒D AB ,A B ()045ACD αα︒∠=<<︒D DC 90︒DE EB EDB ∠αBE CB⊥2,AD CD ==BCD △1y x 213y xy =+2y 1y例如:函数,当时,则函数是函数的“相关函数”.(1)点在函数的图象上,判断点是否在函数的“相关函数”的图象上,并说明理由;(2)函数的“相关函数”为与的图象交于两点,点在点的左侧,的图象与轴交于点,点在的图象上,其横坐标为.①当点在第一象限时,过点作,垂足为点,当为何值时,线段的长度最大?最大值是多少?②当时,在的图象上,点与点之间部分(含点和点)的最大值与最小值之差为,求关于的函数解析式,并直接写出自变量的取值范围;③在②的条件下,函数图象上的点到直线的距离为时,直接写出自变量的值.(备用图)12y x =22132323y xy x x x =+=⋅+=+2223y x =+12y x =(),A m n 13y x =(),3B m mn +1y 2y 12y x =-+21,y y 2y ,A B A B 2y y C P 2y t P P PQ AB ⊥Q t PQ 0t >2y C P C P h h t t h 4h =72t金普新区2024-2025学年度第一学期期中质量检测九年级数学评分参考(※其他正确解法或证法请参照赋分)一,选择题(本题共10小题,每小题3分,共30分)1.C 2.A 3.C 4.D 5.A 6.A 7.D 8.B 9.C 10.B二、填空题(本题共5小题,每小题3分,共15分)11.;12.2025;13.3;14.;15..三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)解:(2)解:∴方程有两个不相等的实数根∴17.(8分)90︒15x -<<269x x -=-26999x x -+=-+()230x -=30x -=123x x ==22340x x +-=2,3,4a b c ===-()22Δ43424410b ac =-=-⨯⨯-=>x ==12x x ==(1)如图即为所求作.;(2)且18.(8分)证明:∵,,∴,又∵四边形是的内接四边形,∴,又∵,∴,∴,∴,∴是等腰三角形.19.(8分)解:设这个矩形画框的边框宽度是厘米.由题意得,解得,(不符题意,舍去)答:这个矩形画框的边框宽度是2厘米.20.(8分)解:(1)设:与之间的函数关系式为.由图象,把代入得,解得,∴与之间的函数关系式为.(2)∵,∴∵,开口向下,对称轴为直线,∴当随的增大而增大,∴当时,答:当每件商品的售价定为36元时,每天销售利润最大,最大利润是768元.21.(8分)(1)证明:如图1,连接.∵,∴,∵,∴,∵是中点,∴,∴,又∵,∴,()()113,1,2,3B C --11BC B C =11BC B C ⊥2ABC E ∠=∠ABC E BCE ∠=∠+∠E BCE ∠=∠ABCD O 180A DCB ∠+∠=︒180DCB BCE ∠+∠=︒A BCE ∠=∠A E ∠=∠AD ED =ADE △x ()()33222023220110x x ⎛⎫--=⨯⨯- ⎪⎝⎭122,24x x ==y x ()0y kx b k =+≠()()25,70,35,50y kx b =+70255035k b k b =+⎧⎨=+⎩2120k b =-⎧⎨=⎩y x 2120,2036y x x =-+≦≦2x 120y =-+()20w x y=-()()202120x x =--+()2240800x =--+20a =-<40x =2036,x w ≤≤x 36x =()223640800768w =-⨯-+=最大值,OD OC CF EF =ECF CEF ∠=∠OC OD =OCD ODC ∠=∠DAB AD BD =AOD BOD ∠=∠180AOD BOD ∠+∠=︒90BOD ∠=︒∴在中,,又∵,∴,∴,即,∴,又∵是半径,∴是切线.(2)证明:如图2,连接.设,∵,∴,∴,∵由(1)得,,∴在中,根据勾股定理,即,解得,∴,∴在中,根据勾股定理,∴22.(12分)(1)解:∵线段顺时针旋转得到线段,∴,∵,∴,∴,∴,∴,.(2)证明:如图,过点作,交延长线于点.∴,由(1)得,,∴,∴,∴,∵线段顺时针旋转得到线段,Rt EOD △90ODE OED ∠+∠=︒OED CEF ∠=∠90ODE CEF ∠+∠=︒90OCD ECF ∠+∠=︒90OCF ∠=︒OC CF ⊥OC O CF O ,OD OC OE x =8,4CF EF BF ===844EB EF BF =-=-=4,8OC OB OE EB x OF OE EF x ==+=+=+=+90OCF BOD ∠=∠=︒Rt OCF △222OC CF OF +=()()222488x x ++=+2x =46OB OD x ==+=Rt OBD △222OB OD BD +=BD ===DC 90︒DE 90CDE ∠=︒,90AC BC ACB =∠=︒,90A CBA A CBA ∠=∠∠+∠=︒45A CBA ∠=∠=︒45CDB A ACD α∠=∠+∠=+︒()909045EDB CDB α∠=-∠=-︒︒+︒45α=︒-D MD DB ⊥BC M 90MDB ∠=︒45CBA ∠=︒18045M MDB CBA ∠=-∠-=︒∠︒M CBA ∠=∠MD BD =DC 90︒DE∴,∵,∴,即,∴,∴,∴,即.(3)证明:过点作,且使,连接.过点作,垂足为点.∴,∴,即,又∵由(1)得,∴,∴,∴,∵在中,根据勾股定理,∴,∵在中,根据勾股定理,∴,∵,∴是中点,又∵,∴,∴.23.(13分)(1)解:点是在函数的“相关函数”的图象上.∵点在函数的图象上,∴,∵,∴,∴当时,,,90DC DE CDE =∠=︒90MDB CDE ∠=∠=︒MDB CDB CDE CDB ∠-∠=∠-∠MDC BDE ∠=∠()SAS MCD BDE ≌△△45M DBE ∠=∠=︒90CBE CBA DBE ∠=∠+∠=︒BE CB ⊥C CN CD ⊥CN CD =,BN DN C CP AB ⊥P 90DCN ACB ︒∠==∠DCN DCB ACB DCB ∠-∠=∠-∠ACD BCN ∠=∠,AC BC CD CN ===∠45A CBA ∠=∠=︒()SAS ACD BCN ≌△△2,45AD BN A CBN ==∠=∠=︒454590DBN CBA CBN ∠=∠+∠=︒+=︒︒Rt DCN △222CD CN DN +=22220DN =+=Rt DBN △222DB BN DN +=4DB ===,AC BC CP AB =⊥P AB 90ACB ∠=︒()()111243222CP AB AD DB ==+=⨯+=1143622BCD S DB CP =⋅=⨯⨯=△(),3B m mn +1y 2y (),A m n 13y x =3n m =213y xy =+233y x x =⋅+,3x m n m ==2333y m m mn =⋅+=+∴点是在函数的“相关函数”的图象上.(2)解:①∵函数的“相关函数”为,∴,如图,过点作轴,垂足为点,交直线于点.∴,∵把代入得,,把代入得,,∴,∴又∵由题意得,∴,∴,∴,∴,∵,∴,∴,∴,∴,∴在中,根据勾股定理,∴,∴,∵点在的图象上,其横坐标为.∴,∴,∴,∴,∵,开口向下,对称轴为直线,∴当时,(),3B m mn +1y 2y 12y x =-+2y ()21323y xy x x =+=-++223x x =-++()214x =--+P PN x ⊥N AB M 90PNF ∠=︒0x =1y 12y =10y =1y 2x =()()0,2,2,0E F 2OE OF ==90EOF ∠=︒,90OEF OFE OEF OFE ∠=∠∠+∠=︒45OEF OFE ∠=∠=︒18045NMF PNF OFE ∠=-∠-=︒∠︒45PMQ NMF ∠=∠=︒PQ AB ⊥90PQM ∠=︒18045QPM PQM PMQ ∠=-∠-=︒∠︒PMQ QPM ∠=∠PQ QM =Rt DBN △222PQ QM PM +=PM ===PQ PM =P 2y t ()2,23P t t t -++(),2M t t -+231PM t t =-++)223312PQ t t t ⎫=-++=-⎪⎭0a =<3,032t t -<<32t =PQ =最大值②令,∴,∵,抛物线顶点坐标,∴(ⅰ)当时,,∴,(ⅱ)当时,,∴(ⅲ)当时,,∴,综上,.③或.20,3x y ==()0,3C ()2,23P t t t -++()1,401t ≤<22223,3y t t y =-++=最大最小222332h t t t t =-++-=-+12t ≤<224,3y y ==最大最小431h =-=2t ≥2224,23y y t t ==-++最大最小()2242321h t t t t =--++=-+222,011,1221,2t t t h t t t t ⎧-+≤<⎪=≤<⎨⎪-+≥⎩1t =1+。
九年级(上)数学质量检测卷及答案
九年级(上)数学质量检测卷说明:1.本试题卷分第Ⅰ卷和第Ⅱ卷两部分.满分120分,考试时间120分钟.请同学们按规定用笔将所有试题 的答案写在第Ⅱ卷上. 2. 不能使用计算器。
第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分.) 1.如果反比例函数xky =(k ≠0)的图象经过点(-2,1),那么k 的值为()A. -21 B. 21C. 2D. -2 2. 抛物线()212y x =-+的对称轴为( ). A .直线1x = B .直线1x =- C .直线2x = D .直线2x =-3. 如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠C=15°,则∠BOC =( ). A .60° B .45° C .30° D .4. 如图,在8×4的矩形网格中,每格小正方形的边长都 是1,若△ABC 的三个顶点在图中相应的格点上,则 tan ∠ACB 的值为( ).A .1B .13 C .12 D .5.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为( )A .12B .13C .14D .16 6. 如图,在⊙O 中,CD 是直径,AB 是弦,CD AB ⊥于M ,8=AB , 5=OC ,则MD 的长为( ) A. 4 B. 2 C. 1 D. 27. 如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )8. 下列所给二次函数的解析式中,其图象不与x 轴相交的是( )第4题图 D第6题图 ▲▲▲ ▲ ▲ ▲ ▲▲ C B A B D CA. 542+=x yB. 2x y -=C. x x y 52--=D. 3)1(22-+=x y 9.已知:ABC △中,︒=∠90C ,52cos =B ,15=AB ,则AC 的长是( ) A . 213B .293C .6D . 3210.定义[,,a b c ]为函数2y ax bx c =++的特征数,下面给出特征数为 [2m ,1 – m ,–1– m]的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ②当m < 0时,函数在x >41时,y 随x 的增大而减小; ③ 当m ≠ 0时,函数图象经(1,0)点. 其中正确的结论有( ) A .①②③ B . ①② C .②③ D .①③二、填空题 (本题有6小题,每小题4分,共24分) 11.已知两个相似三角形的周长比是1:3,则它们的 面积比是 .12.如图,在△ABC 中,点D 、E 分别在AC 、BC 边上,DE ∥AB ,若 AD:DC=1:2,BE=2,则BC= .13. 李红同学为了在新年晚会上表演节目,她利用半径为40cm 的扇形纸片制作一个圆锥形纸帽 (如图,接缝处不重叠),如果圆锥底面半径 为10cm ,那么这个圆锥的侧面积是______2cm 14.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是 .15. 如图,已知∠AOB=45°,A 1是OA 上的一点,OA 1=1,过A 1作OA 的垂线交OB 于点B 1,过点B 1作OB 的垂线交OA 于点A 2;过A 2作OA 的垂线交OB 于点B 2……如此继续,依次记△A 1B 1A 2,△A 2B 2A 3,A 3B 3A 4……的面积为S 1,S 2,S 3……,则S n = 16.如图,在直角坐标系中,抛物线y=x 2-x -2过 A 、B 、C 三点,在对称轴上存在点P ,以第13题图第12题图▲ ▲ ▲ ▲ ▲ ▲ODABC 第14题图▲P 、A 、C 为顶点三角形为直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)数学质量检测卷(2012. 1)命题责任人:陈洪远说明:1 .本试题卷分第I卷和第n卷两部分.满分120分,考试时间120分钟.请同学们按规定用笔将所有试题的答案写在第n卷上.2. 不能使用计算器。
第I卷一、选择题:(本题共10小题,每小题3分,共30分.)k1. 如果反比例函数y (k工0)的图象经过点(一2, 1),那么x值为()1 1A. —B.C. 2D. -22 222. 抛物线y=(x—1)+2的对称轴为(▲).A .直线x=1B .直线x - -1 C.直线x=2 D .直线X--23. 如图,AB为O O的直径,点C在O O上,若/ C=15°则/ BO^=()4.A. 60 °B. 45 °C. 30°D.如图,在8X 4的矩形网格中,每格小正方形的边长都是1,若△ ABC的三个顶点在图中相应的格点上,贝Utan/ ACB的值为(▲).1A . 1 B.-C.1D. J322将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为5.A .丄B .1C1 D .-2346如图,在O O中, CD是直径,AB是弦,AB — CD于OC =5, 则MD的长为(▲)A. 4B.2C. 1D.26.M,7.如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与厶ABC相似的第6题图是()B C A B C▲D 8.下列所给二次函数的解析式中,其图象不与x轴相交的是(▲)第3题图c. y - -x2- 5x D. y 二2(x 1)2- 3 A. y 二4x2 5 B. y = -X229.已知:△ ABC 中,.C = 90 , cosB , AB =15,则 AC 的长是(▲) 5 A . 3.. 21 B . 3J29 C . 6 10.定义[a,b,c ]为函数y -ax 2 bx - c 的特征数,下面给出特征数为 [2m , 1 -m ,--m ]的函数的一些结论: ①当m = -3时,函数图象的顶点坐标是 1 8(3,3); 1当m < 0时,函数在x > -时,y 随x 的增大而减小;4 经(1, 0)点.▲其中正确的结论有A .①②③B . ①② )C .②③③当m 丰0时,函数图象 D .①③二、填空题(本题有6小题,每小题 4分,共24分) 11•已知两个相似三角形的周长比是 面积比是 ▲ 1:3,则它们的 12.如图,在△ ABC 中,点D 、E 分别在 AC 、BC 边 上,DE // AB ,若 AD:DC=1 : 2 , BE=2,则 BC= ▲ .13.李红同学为了在新年晚会上表演节目,她利用 半径为40cm 的扇形纸片制作一个圆锥形纸帽 (如图,接缝处不重叠),如果圆锥底面半径 为10cm ,那么这个圆锥的侧面积是 ▲ cm 2第13题图B E第12题图40cm14.如图,O O 是厶ABC 的外接圆,CD 是直径,/ B = 40 则/ ACD 的度数是 ▲. A15.如图,已知/ AOB=45° , A 1 是OA 上的一点,OA 1=1 , 过A 1作OA 的垂线交OB 于点B 1,过点B 1作 OB 的垂线交 OA 于点A 2;过A ?作OA 的垂线交OB 于点B 2……如此继 续,依次记 △ A 1B 1A 2, △ A 2B 2A 3, A 3B 3A 4 的面积 ▲ 第14题图为S 1, S 2, S 3……,则S n = 16.如图,在直角坐标系中,抛物线 y=x 2- x — 2过 A 、B 、C 三点,在对称轴上存在点 P ,以 P 、A 、C 为顶点三角形为直角三角形。
▲则点P 的坐标是第口卷(答题卷)14. ____________ . 15. ___________ . 16 . ____________________________三、解答题(共8小题,共66分.解答应写出文字说明,证明过程或演算步骤)17. (6 分)计算:6tan 2 30 - 3sin 60 -cos60 .18. (6分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部 B 的仰角为 密 45 °看这栋高楼底部 C 的俯角为60 °热气球与高楼的水平距离AD 为50m ,求这栋楼的高度•( •. 2取1.414, •. 3取1.732)封 扌名校线内\1 C九年级(上)数学质量检测答题卷(2012. 1)请勿、选择题:(本大题共10小题,每小题3分,共30分)答、填空题:(本大题共6小题,每小题4分,共24分)11 . .12. .13.k19. (6分)如图,已知:双曲线y (x . 0)经过直角三角形OAB斜边OA的中点xD,且与直角边AB相交于点C.若点A的坐标为(8,-4),求点C的坐标.20. ( 8分)正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1) 请用树状图或列表的方法表示可能出现的所有结果;(2) 求两个正多面体朝下面上的数字之和是3的倍数的概率.21. (8分)对于抛物线y =x2 -4x 3.(1) ____________________________________ 它与x轴交点的坐标为_y轴交点的坐标为___________________________________(3) 利用以上信息解答下列问题:若关于x的一元二次方程x2-4x,3-t=0 (t为实数)在-1 v xv -2x顶点坐标为__________xy(2)在坐标系中利用描点法画出此抛物线;的范围内有解,则t的取值范围是 _______________22. (10分)如图,在平行四边形ABCD中,过点A作AE± BC,垂足为E,连接DE F为线段DE上一点,且/ AFE=Z B.⑴求证:△ ADD A DEC(2) 若AB= 4,AD= 3,3 ,AE = 3,求AF 的长.23. (10分)已知:如图,UBC错误!未找到引用源。
内接于O O, AB错误!未找到引用源。
为直径,/ CBA的平分线交AC于点F,交O O于点D , DE丄AB 于点E,且交AC于点P,连结AD.(1) 求证:/ DAC =Z DBA ;(2) 求证:错误!未找到引用源。
;15(3) 若O O的半径为5, AF = ,求tan/ ABF的值.2DB24. (12分)在平面直角坐标系xOy中,已知抛物线y = ax2• bx • c经过(0, 3)(-2,—5)和(5, - 12)三点.(1 )求此抛物线的解析式;(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点, D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△ BAC相似,求点D的坐标;(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.1-6 -5 -4 -3 -2 -1 O-1-2-3 --4-5-6、选择题题号 1 2 3 4 5 6 7 8 9 10 答案D A C B C B B A A Do2n-31 7、/1 311.1912. 6 13. 400 n 14.5015. 2 16.( —,一一)、( 一,一一)、 — 一— — 2 4 2 2(1, 3)(填对1个得2分,填对2个得3分,填对3个得4分)2 4三、解答题 17. 解:原式=工1…… …3分3 2 23 1=2......... 5 分— 2 2 =0…6分18. 解:在 Rt △ ABD 中,/ BDA=90°,/ BAD=45° ,••• BD=AD=50(m) . .............. 2 分在 Rt △ ACD 中,/ ADC=90°,/ CAD=60° ,CD = . 3AD =50 3 (m) . ................ 4 分BC= BD+CD= 50 50.3 =50( '一 3 1) : 136.6 (m).……6 分12 3 4 5 6 1 2 3 4 5 6 7 234567820.解:(1)解法一:用列表法(5分) 答:这栋楼约高136.6 m .19 .解:由题意得:D (4, -2) .......... k•••双曲线经过点D ,• -2二仝48• y,设点 C (8, n )x•••点 C (8, —1)....1分• k y............. 2 分........ 3分5分6分3 4 5 6 7 8 9 45678910画树状图正确(3)t 的取值范围是一仁t ::8 .22. (1)证明:•••四边形 ABCD 是平行四边形••• AD// BC AB // CD•••/ ADF 玄 CED / B+Z C=180° ……2 分•••/ AFE+Z AFD=180 Z AFE=Z B• Z AFD=Z C ……4分• △ ADF^A DEC ••…5 分⑵ 解:•••四边形 ABCD 是平行四边形• AD// BC CD=AB=4••…7 分解法 (2)P 和为3的倍数)_8 1 24 一 321. 解:(1)它与x 轴交点的坐标为(1,0),(3,0),与y 轴交点的坐标为坐标为(2, -1); x0 1 2 3 4y313图象如图3所示. ......... 6分 六面体 四面体:画树状图23 4 54 5 6 7 6 7 8 93分(2)列表:(0,3),顶点图3又••• AE± BC ••• AE 丄 AD在 Rt △ ADE 中,DE= . AD 2 AE 2 = . (3. 3) 2 32 = 6 ……8 分•/△ ADF^A DECAD _ AF DE - CD 23. (1 )证明: •/ BD 平分/ CBA CBD=Z DBA ……1 分•••/ DAC 与/ CBD 都是弧 CD 所对的圆周角,• / DAC=Z CBD ……2分 • / DAC = Z DBA ……3 分(2 )证明:T AB 为直径,•/ ADB= 90°又••• DE 丄AB 于点 DEB= 90° ADE +/ EDB=Z ABD +/ EDB= 90° •••/ ADE=Z ABD=Z DAP• PD = PA ……5分又•••/ DFA +Z DAC=Z ADE +Z PD F = 90° 且/ ADE=Z DAC•••/ PDF=Z PFD• PD = PF • PA = PF 。