数形结合的思想方法
数形结合数学思想方法
数形结合数学思想方法小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。
为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。
下面小编给大家整理了关于数形结合数学思想方法,希望对你有帮助!1数形结合数学思想方法“数”与“形”是数学的基本研究对象,他们之间存在着对立统一的辨证关系。
数形结合是一种重要的数学思想,是人们认识、理解、掌握数学的意识,它是我们解题的重要手段,是根据数理与图形之间的关系,认识研究对象的数学特征,寻求解决问题的方法的一种数学思想。
它是在一定的数学知识、数学方法的基础上形成的。
它对理解、掌握、运用数学知识和数学方法,觖决数学问题能起到促进和深化的作用。
2数形结合数学思想方法用图形的直观,帮助学生理解数量关系,提高教学效率用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。
“数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
它是小学数学教材的一个重要特点,更是解决问题时常用的方法。
众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。
以数解形:有关图形中往往蕴含着数量关系,特别是复杂的几何形体可以用简单的数量关系来表示。
而我们也可以借助代数的运算,常常可以将几何图形化难为易,表示为简单的数量关系(如算式等),以获得更多的知识面,简单地说就是“以数解形”。
它往往借助于数的精确性来阐明形的某些属性,表示形的特征、形的求积计算等等,而有的老师在出示图形时太过简单,学生直接来观察却看不出个所以然,这时我们就需要给图形赋予一定价值的问题。
助表象,发展学生的空间观念,培养学生初步的逻辑思维能力。
儿童的认识规律,一般来说是从直接感知到表象,再到形成科学概念的过程。
表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,发展学生的空间观念,培养初步的逻辑思维能力,具有十分重要意义。
数形结合思想方法在高中数学教学中的运用
数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。
这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。
二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。
教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。
对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。
2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。
通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。
教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。
3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。
教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。
教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。
2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。
数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。
3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。
通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。
2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。
数形结合思想方法(新课标)
数形结合思想方法一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.2230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。
分析:2()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需,(3)0f >,()()02bf f k a-=-<同时成立. 10(10)k k -<<∈-解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
小学数学中常用的数学思想方法有数形结合思想方法对应思
小学数学中常用的数学思想方法有数形结合思想方法、对应思想方法、符号化思想方法、化归思想方法等。
下面我就如何向学生渗透这些数学思想方法分别举例说明。
1数形结合的数学思想方法。
数和形是数学研究的两个主要对象,两者既有区别,又有联系,互相促进。
所谓数形结合的思想方法就是通过具体事实的形象思维过渡到抽象思维的方法。
数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。
用图解法分析问题就是运用这种方法。
我从二年级开始就教学生画线段图分析应用题的数量关系。
例如滩沟小学秋季种树53棵,比春季多种8棵。
春季种树多少棵?”先让学生找到关健句,弄清谁与谁比,谁多谁少,画出线段图:这样做学生比较容易找到数量关系,列出正确版式,同时有克服见“多”就“加”,见“少”就“减”的思维定势。
2对应的思想方法。
对应是人们对两上集合元素之间的联系的一种思想方法。
为此在教学中,我充分发挥教材优势,结合教学内容逐步渗透“对应”的数学思想方法。
数学素质教育的目的,就是要通过数学学习,使学生具有一定的数学意识,会合乎逻辑地思考、推理和判断,从而使分析问题和解决问题的能力得以提高,创新意识,创新能力得到培养,创新思维品质得到优化,严谨求实,知难而进的精神品质得到发展。
为此,教师在分析教材时,不仅要弄清重点,难点,而且还要深入挖掘章节知识及例题,习题中蕴含的数学思想方法。
使学生初步接触一一对应的思想,初步感知两个集合的各元素之间能一一对应,它们的数量就是“同样多”。
3符号化数学思想方法。
数学的一个突出特点是符号加逻辑。
而符号化思想是数学信息的载体,能大大简化运算或推理过程,加快思维的速度,提高学习效率。
因此在教学中,要尽量把实际问题用数学符号来表达,还要充分把握每个数学符号所蕴含的丰富内涵和实际意义。
例如“=”右边开口张大;左边积木数减少,“=”左边的开口缩小,边说边用左手的食指、中指摆成一个小于号,使学生认识小于号。
数形结合思想方法论文
数形结合的思想方法数形结合思想是高考必考的七大数学思想之一,是数学研究对象的数量关系和空间形式,即数与形两个方面,把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。
数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。
在使用的过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。
在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。
特别是在集合、函数、不等式、数列、向量、解析几何、导数与积分等能够用图形表述的知识点,就要用数形结合形象化,高考在选择题、填空题侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。
1.集合问题中的数形结合例1.已知全集u=r,集合a=x|-2≤x≤3,b=x|x4,那么集合ai(c∪b)等于()a.x|-2≤x0)时f’(x0),函数y=f(x)的图象过原点,所以顶点在第一象限评注:要熟悉导函数与原函数之间的关系,对一次、二次函数关系及其图象的特点要很熟悉。
4.利用不等式表示的平面区域解答问题例4.若m为不等式组x≤0y≥0y-x≤2表示的平面区域,则当 a 从-2连续变化到1时,动直线x+y=a扫过m中的那部分区域的面积为分析:作出不等式表示的平面区域,然后再作平行线x+y=-2 和x+y=1 则夹在两平行线之间的部分即为所求。
解:如图知δaob是直角边为2 的等腰直角三角形,δbcd是斜边为1等腰直角三角形,则所求区域的面积为s=sδaob-sδbcd=■×2×2-■×1×■=■评注:涉及到不等式表示的平面区域问题时常常要画出图形数形结合解答问题。
小学数学数形结合的思想方法浅谈
1.以形助数的思想方法
“以形助数”就是借助题目中已经给出的图形或者是自己画图,借助图形找出图中蕴含的数量关系,反映几何图形内在的属性。在教学中学生都是从直观、形象的图形入门学习数学的。从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子,贝壳记事,慢慢的发展成为用形象的符号记事,最后才有了数字。和我们学习数学的过程有着很大的相似之处。都是从具体的物体逐步向抽象逻辑思维过渡。如讲解《长方体的认识》,利用多媒体课件动态演示“点动成线,线动成面,面动成体”让学生通过演示直观的体会到几何基本要素之间的联系,并感受到它们的产生过程,在知识的传授中,教师有效地利用了长方体的图形,从体由面组成,面面相交形成线,线线相交形成点,借助图形让学生形成逻辑思维,让学生在不知不觉中构建几何知识体系。
小学数学数形结合的思想方法浅谈
数形结合是小学数学中最常用的一种数学思想方法。数形结合思想的实质就是通过数与形之间的相互转化,相互渗透,把复杂难懂的的数量关系,通过图形展示的方法,降低解题难度,通过图形的结构发现数量之间存在的联系,解决数量关系的数学问题,这是数形结合思想在小学数学中最主要的呈现方式。
三、数形结合思想意义和作用
在小学数学中,形在教学中体现主要在两方面,一方面是画或课件辅助,另一方面是生活中的实物,例如小棒,小方块等,借助于这些实物,帮助学生化抽象为形象,理解抽象的概念,解题方法等。运用数形结合的思想,通过“形”把题目中的数量关系形象、简单、直观的表示出来。例如可以通过画线段图、点子图、长方体、圆柱体、数轴等,帮助学生理解抽象或难懂的数量关系,使问题简明直观,更好的解决。
一、数学教材中蕴涵的主要数学思想方法
数学思想:符号思想,集合思想,对应思想,化归思想。数学方法:
数形结合的思想方法二
专题概览
来,并促使数学科学迅速发展成近代的数学.著名数学家拉格 朗日指出:“只要代数与几何分道扬镳,它们的进展就缓慢,
它们的应用就狭窄,但是当这两门学科结合成伴侣时,它们互
相吸取新鲜的活力,从此以后,就以快速的步伐走向完善.” 一般意义下,将数与形结合在一起的背景是坐标系,就是 对于某些数学问题,通过引进坐标系,把问题的条件和结论, 用点的坐标表示为某些数量的关系式,然后用代数知识解决的 方法,这种方法称为坐标法,也叫解析法.解析几何学的内容 本身是坐标方法和数形结合思想的载体,数形结合思想和坐标 法相辅相成. 数形结合思想在高考中占有非常重要的地位,近几年的高 返回目录
程看,属于代数问题,如果能把内容赋予几何意义,作出相 关的解释,“以形助数”,就可从形的角度进行思考,这种
意识需要在解题时有目的地训练.
[答案] D 返回目录
模拟训练
2.已知x1 是方程x+lgx=3的一个根,x2 是方程x+10x=3的 一个根,那么x1+x2= [分析] .
通过等号连接的代数式与超越式构成的方
所以,应选B. [点评] f(x)在y轴左边的图象可由奇函数图象关于原 点对称画出,也用了对称的思想方法. [答案] B 返回目录
模拟训练
5.两个实数x,y满足关系式 x 36 y 2 0,求: (Ⅰ) y 12 的取值范围;
x6
(Ⅱ) 2x+y的取值范围; (Ⅲ) (x-4)2+(y+3)2的取值范围. [解析] 由 x 36 y 2 0得 36 y 2 2+y2=36(x≤0), ,平方得x x
3.数形结合思想常可以构造的几何模型有:①构造单位
圆、韦恩图、利用数轴等解题;②构造坐标平面,利用椭圆、 双曲线、抛物线的定义解题;③构造向量模型;④构造三 返回目录
数形结合的思想
{
6
4
气
2 1
0y ; 0y0四种情况讨论. ,≥0 < , <
解: 由绝 对值 的 定 义 , 方程 可 原
1x 当 ≥0y -, ,≥0时 ,
一
致有以下三种 :1 ()利用数学式或数 学概念的几何意义.() 2 函数 图象 的
应 用 . 3 高 中 阶段 将 要 学 习 的 解 析 ()
() 当 3 ≥5时 ,= 5 + 2 : , (一 ) (+ ) ,
一
解 : 函数 J 考虑 =
+ 与 3J =
易, 化繁为简. 化生为熟 , 从而解决问
题 的 目的.
3 此 时 y ̄ 2 5 3 7 . .= x — = .
k 分 别 作 此 两函数 的 图象如 图 3由 . 。
学 素养 和数 学思 维能 力. 运 用 数形 结 合 思 想 解 题 包 括 三 个方面 , 以形助 数 , 以数 助形 , 形 互 数 助. 涉及 数形 结 合思 想 的常见 题 型大
{, 2x5时, 7 当一<<
1
\ /
V
、
l一, 5 . 23I 时 x >
y l
数形结合是数学解 题中常用的 思想方法 , 利用数形结合思想 , 有助
于把握 数 学 问题 的本质 . 如华 罗庚 诚 先 生所 说 :数 缺形 时 少直 观 , 少 数 “ 形
x3 l 2 , ≤一 3 — " - 2时 ,
时难人微. 数形结合百般好 ,隔裂分 家万事休. ”因此 , 我们在解题中要充 分地利用数形结合思想 , 这样做既能 使许多数学问题迎刃而解 , 又能使我 们加深对数学 的理解 , 培养我们的数
高考数学“数形结合”解题思想方法、知识点及题型整理
高考数学总复习第三讲:数形结合一、专题概述 ---什么是数形结合的思想数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.二、例题分析1.善于观察图形,以揭示图形中蕴含的数量关系.观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.例1.函数的图象的一条对称轴方程是:(A)(B)(C)(D)分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:,其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.例2.问:圆上到直线的距离为的点共有几个?分析由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.将圆方程变形为:,知其圆心是C(-1,-2),半径,而圆心到定直线L的距离为,由此判定平行于直线L且距离为的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.3.切实把握“数”与“形”的对应关系,以图识性以性识图.数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相成,相互转化.例3.判定下列图中,哪个是表示函数图象.分析由=,可知函数是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().分析由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).例5.若复数z满足,且,则在复平面上对应点的图形面积是多少?分析满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)因此所求图形的面积为:4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.例6.已知C<0,试比较的大小.分析这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:例7 解不等式解法一(用代数方法求解),此不等式等价于:解得故原不等式的解集是解法二 (采用图象法) 设即对应的曲线是以为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象是一直线.(如图) 解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.例8 讨论方程的实数解的个数.分析:作出函数的图象,保留其位于x 轴上方的部分,将位于x 轴下方的部分沿x 轴翻折到x 轴上方,便可得到函数的图象.(如图)再讨论它与直线y=a 的交点个数即可. ∴当a <0时,解的个数是0;当a=0时或a >4时,解的个数是2;当0<a <4时,解的个数是4;当a=4时,解的个数是3.9.已知直线和双曲线有且仅有一个公共点,则k 的不同取值有()(A )1个(B )2个(C )3个 (D )4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()(A)1个(B)2个(C)3个(D)4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例10.设点P(x,y)在曲线上移动,求的最大值和最小值.解曲线是中心在(3,3),长轴为,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)消去y得解得:故的最大值为,最小值为例11.求函数(其中a,b,c是正常数)的最小值.分析采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则其中的等号在P为线段AB与x轴的交点外,即时成立.故y的最小值为例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.分析在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决.解,设R点对应的复数为:,P点对应的复数为则故即由点在椭圆上可知有:整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.三解题训练1.求下列方程实根的个数:(1)(2)(3)2.无论m取任何实数值,方程的实根个数都是()(A)1个(B)2个(C)3个(D)不确定3.已知函数的图象如右图则()(A)b∈(-∞,0)(B)b∈(0,1)(C)b∈(1,2) (D)b∈(2,+ ∞)4.不等式的解集是()(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式一定有解,则a的取值范围是()(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1]6.解下列不等式:(1)(2)7.复平面内点A、B分别对应复数2,2+i,向量绕点A逆时针方向旋转至向量,则点C对应的复数是_______.8.若复数z满足|z|<2,则arg(z-4)的最大值为___________9.若复数z满足10.函数的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两定点的坐标是( )(A)(–,–)(,)(B)(–,)(,–)(C)(–2,2)(2,2)(D)(2,–2)(–2,2)11.曲线与直线的交点个数是().(A)0(B)1 (C)2(D)312.曲线与直线有两个交点,则实数k的取值是()(A)(B)(C)(D)13.已知集合,满足,求实数b的取值范围.14.函数的值域是()(A)(B)(C)(D)四、练习答案1.(1)2个(2)63个(3)2个提示:分别作出两个函数的图象,看交点的个数.2.B、提示:注意到方程右式,是过定点(,0)的直线系.3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形学习好资料欢迎下载f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而可知b=-3a<0,故选(A)4.A5.A6.(可以利用图象法求解)(1)x≤-1或0<x≤3(2)x≤-17.18.210°9.10.A11.D 提示:在曲线方程中,分x≥0或x<0两种情形讨论,作出图形即可.12.C13.14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=k AB,而A点为圆x2+y2=1上的动点。
数形结合思想方法
浅谈数形结合思想方法摘要:中学数学教学中,教师往往特别强调数学知识的教授,数学技能、技巧的训练,忽略数学思想方法的教学,而中学数学教学大纲中明确指出中学的数学基础知识是指:“数学概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想方法。
”新课标也特别强调教学中数学思想方法的渗透。
数形结合是高中数学中一种重要的思想方法,能够清楚地认识它,灵活地运用它,不管是教还是学都显得尤为重要。
本文从对数形结合思想方法的认识入手,分析其在中学数学中的应用,尽显其重要性。
关键词:数学思想方法、数形结合一、对数形结合思想方法的简单认识法国数学家笛卡尔创立了坐标系,使点与有序实数对建立了联系,进而使曲线与方程建立了联系,于是创立了《解析几何》学科,标志着代数与几何的第一次完美结合。
数形结合是高中数学中一种重要的思想方法,它指出了解决某些数学问题时应从“数”与“形”两者联系来考虑问题。
“数”指数量关系,“形”指空间图形,当我们解决某些数学问题时,常把问题中的代数形式转化为几何图形,借助于几何图形的直观寻找解决问题的思路;相反,当我研究几何图形时,常用代数的方法来研究。
数形结合的基本思想是:在研究数学问题的过程中,注意把数与形结合起来考察。
或者把几何图形问题转化为数量关系问题,运用代数、三角知识进行讨论;或者把数量关系问题转化为图形问题,借助于几何知识加以解决]1[。
简单的说,即“以形助数”和“以数辅形”两个方面,比如应用函数的图像来直观地说明函数的性质;或是应用曲线的方程来精确地阐明曲线的几何性质。
二、数形结合思想方法的具体应用华罗庚先生曾经说过:“数缺形时少直观,形缺数时难入微。
”这充分说明了数形结合思想的重要性。
数形结合思想贯穿于高中数学的全部,数轴、向量法、解析法、图解法等都是这一思想的具体应用。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,x y z AB CD 做好数形转化;第三是正确确定参数的取值范围。
数形结合思想
数形结合思想数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学.”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.“数”与“形”是一对矛盾,华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系和单位圆来定义的.数形结合在解决集合运算、函数方程、不等式、解析几何、三角、向量等问题中均有广泛运用.应用数形结合的思想,应注意以下数与形的转化:数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围;(2)构建函数模型并结合其图象研究方程根的范围;(3)构建函数模型并结合其图象研究量与量之间的大小关系;(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;(5)构建立体几何模型研究代数问题;(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;(7)构建方程模型,求根的个数;(8)研究图形的形状、位置关系、性质等.数形结合的途径(1)通过坐标系形题数解借助于建立直角坐标系、复平面可以将图形问题代数化.这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考察的);值得强调的是,形题数解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大简化代数推理)实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义,如等式22(2)(1)4xy .常见方法有:(1)解析法:建立适当的坐标系(直角坐标系,极坐标系),引进坐标将几何图形变换为坐标间的代数关系.(2)三角法:将几何问题与三角形沟通,运用三角代数知识获得探求结合的途径. (3)向量法:将几何图形向量化,运用向量运算解决几何中的平行、垂直、夹角、距离等问题.把抽象的几何推理化为代数运算.特别是空间向量法使解决立体几何中平行、垂直、夹角、距离等问题变得有章可循.(2)通过转化构造数题形解许多代数结构都有着对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将|a |与距离互化,将a 2与面积互化,将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通,将有序实数对(或复数)和点沟通,将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常借助于相伴而充分地发挥作用.常见的转换途径为:1°方程或不等式问题常可以转化为两个图象的交点位置关系的问题,并借助函数的图象和性质解决相关的问题.2°利用平面向量的数量关系及模AB 的性质来寻求代数式性质.3°构造几何模型.通过代数式的结构分析,构造出符合代数式的几何图形,如将2a与正方形的面积互化,将abc 与勾股定理沟通等等.4°利用解析几何中的曲线与方程的关系,重要的公式(如两点间的距离,点到直线的距离002dA B,直线的斜率,直线的截距)、定义等来寻求代数式的图形背景及有关性质.2.数形结合的原则 (1)等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导.(2)双向性原则在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化.(3)简单性原则就是找到解题思路之后,至于用几何方法还是用代数方法、或者兼用两种方法来叙述解题过程,则取决于那种方法更为简单.而不是去刻意追求一种固定的模式——代数问题运用几何方法,几何问题寻找代数方法.一、引入1.函数()|log |(0a f x x a ,1)a 的单调递增区间是 A .(0]a , B .(0),C .(01],D .[1),2.方程2243xx x 的实数解的个数是A .1B .2C .3D .以上都不对3.已知不等式2log 0m xx在1(0)2x,时恒成立,则m 的取值范围是( )A .01mB .1116mC .1mD .1016m4.如果实数x y 、满足22(2)3x y ,则y x的最大值为A .12B .3C .2D .5.在平面直角坐标系中,点O (0,0),P (6,8),将向量OP 绕点O 按逆时针方向旋转34π后得向量OQ ,则点Q 的坐标是 A .(722), B .(722), C .(462), D .(462),6.若2()f x x bx c 对任意实数t ,都有(2)(2)f t f t ,则(1)f 、(3)f 、f ()4由小到大依次为___________.7.对a b R ,,记max{}.a ab a b b ab ,,,, 函数()max{|1||2|}f x x x ,的最小值是_________.8.若方程22320xax a 的一个根小于1,而另一根大于1,则实数a 的取值范围是______.9.已知奇函数()f x 在(0),上是增函数,且(3)0f ,不等式()0xf x 的解集为_________.10.已知定义在[11],上的函数()f x 为增函数,则不等式11()()21f x f x 的解集为 . 11.若关于x 的方程223320x xa 在[02],上只有一个根,则实数a 的取值范围是______. 12.讨论关于x 的方程|31|xk (k R )根的个数.二、例题:1.方程2221xx x 的实数解的个数是A .1B .2C .3D .以上都不对2.已知不等式2log 0xm x在1(0)2x,时恒成立,则m 的取值范围是 .3.点A (2,1)在圆225x y 上,将点A 绕原点O 顺时针旋转到点B ,求B 的坐标.4.当[1)x ,时,不等式222x ax a 恒成立,求a 的取值范围.5.设关于θsin 0θθa 在区间(02)π,内有相异的两个实根α,β,求实数a 的取值范围,并求α+β的值.三、练习:1.方程sin lg x x 的根的个数有 .2.设方程 22xx的实根为a ,2log 2xx的实根为b ,则ab.3.方程2||10xx a 有四个根,则a 的取值范围是 .4.设a b c ,,均为正数,且122log aa ,121()log 2b b ,21()log 2c c ,则A .ab c B .c b a C .c a b D .b a c5.设函数2log (1)2()1()1 2.2xx xf x x ,,,若0()1f x ,则0x 的取值范围是 A .(0)(2),, B .(02), C .(1)(3),, D .(13), 6.若log a 2<log b 2<0,则a ,b 的取值范围是A . 0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 7.已知0x 是函数1()21xf x x的一个零点,若10(1)x x ,,20()x x ,,则A .12()0()0f x f x ,B .12()0()0f x f x ,C .12()0()0f x f x , D .12()0()0f x f x ,8.已知01a ,则方程|||log |x a a x 的根的个数为A .1个B .2个C .3个D .1个或2个或3个 9.方程1sin()44πxx 的实数解的个数是( ) A . 2 B .3 C .4 D .以上均不对 10.函数||y a x 与y x a 的图象恰有两个公共点,则实数a 的取值范围是A .(1),B .(11),C .(1][1),,D .(1)(1),,11.若(12)x ,时,不等式2(1)log a x x 恒成立,则a 的取值范围为( )A .(0,1)B .(1,2)C .(1,2]D . [1,2]12.定义在R 上的函数()y f x 在(2),上为增函数,且(2)y f x 是偶函数,则( )A .(1)(3)f fB .(0)(3)f f C .(1)(3)f f D .(2)(3)f f13.已知51260xy 的最小值是A . 6013B .135C .1312D .1 14.已知()22ππx ,,则sin x ,tan x 与x 的关系是 A .tan sin xx x B .tan sin x x x C .|tan ||||sin |x x x D .不确定15.已知函数2()11([01])f x x x ,,对于满足121x x 的任意12x x ,,给出下列结论:①1212()[()()]0x x f x f x -;②2121()()()f x f x x x -;③2121()()()22f x f x x x f .其中正确的结论的序号是A .①B .②C .③D .①③ 16.若关于x 的方程24||5x x m 有四个互不相等的实根,则实数m 的取值范围是 . 17.函数2222613y x x x x 的最小值为___________.18.若直线yx m 与曲线21yx 有两个不同的交点,则实数m 的取值范围是 .19.若不等式|1||1|m x x 的解集是非空数集,那么实数m 的取值范围是_________. 20.对a bR ,,记min{}.b a b a b a ab ,,,, 函数1()min{|1|2}2f x x x ,的最大值是_________. 21.求函数sin 2cos 2x y x 的值域.22.关于x 的方程2230x kx k 的两根都在1和3之间,求k 的取值范围.23.已知向量(34)OA ,,(63)OB ,,(53)OC m m ,. (1)若点A B C ,,能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A 为直角,求实数m 的值.。
运用数形结合的思想方法解题1
运用数形结合的思想方法解题1【方法技巧与总结】1、以形助数(数题形解):借助形的生动性和直观性来阐述数与形之间的关系,把抽象问题具体化,把数转化为形,即以形作为手段,数作为目的解决数学问题的数学思想.2、以数辅形(形题数解):借助于数的精确性、规范性、严密性来阐明形的某些属性,把直观图形数量化,即以数作为手段,形作为目的解决问题的数学思想.【核心考点】核心考点一:研究函数的零点、方程的根、图象的交点【典型例题】例1.(2023·河北衡水·高三周测)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,则在区间(]2,6-内关于x 的方程()()2log 20f x x -+=的根的个数为()A .1B .2C .3D .4【答案】D【解析】因为()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,所以(2)(2)(2)f x f x f x -=+=-,即()(4)f x f x =+,所以函数()f x 的周期为4,当[0,2]x ∈时,则[2,0]x -∈-,此时()()112xf x f x -⎛⎫-=-= ⎪⎝⎭,即()21,[0,2]xf x x =-∈,由()2log (2)0f x x -+=,(]2,6x ∈-,得()2log (2)f x x =+,分别作出函数()y f x =和2log (2)y x =+,(]2,6x ∈-的图象,如图所示,则由图象可知两个函数的图象的交点个数为4个,即方程()()2log 20f x x -+=的零点个数为4个.故选:D .例2.(2023·全国·高三专题练习)已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩ 的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-【答案】C【解析】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ',则00,12y y x x +==-,所以02y y =--,而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =,所以ln122AC k k =-=-=-;(2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得=1x -,所以2(1)31AB k k =-=-+=,故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-.故选:C .例3.(2023·上海·高三专题练习)已知函数f (x )=x 2+ex -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是()A .(-∞B .(-∞C .)+∞D .)+∞【答案】B【解析】()()2102xx e f x x =+-<关于y 轴对称得到的函数为()()2102x h x x e x -=+->,依题意可知()h x 与()g x 在()0,∞+上有公共点,由()()h x g x =得()221ln 2xx e x x a -+-=++,()11ln 2x x a e =++.对于函数1x y e=,在()0,∞+上单调递减,且()0,1y ∈.对于函数()1ln 2y x a =++,在()0,∞+上单调递增.当0a ≤时,1ln 2x +的图像向右平移a 个单位得到()1ln 2y x a =++,与1x y e=图像在()0,∞+上必有1个交点.当0a >时,1ln 2x +的图像向左平移a 个单位得到()1ln 2y x a =++,要使()1ln 2y x a =++与1x y e =图像在()0,∞+上有交点,则需当0x =时(也即y 轴上),()1ln 2y x a =++的函数值小于1x y e =的函数值,即0111ln ,ln 22a a e +<<,解得0a <<综上所述,a 的取值范围是(-∞.故选:B .例4.(2023·全国·高三专题练习)设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有()()22f x f x -=+,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(01)a f x x a -+=<<恰有三个不同的实数根,则实数a 的取值范围是()A .2142⎛⎫ ⎪ ⎪⎝⎭B .20,4⎛⎫⎪ ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】 对于任意的x R ∈,都有(2)(2)f x f x -=+,∴函数()f x 关于直线2x =对称,又 当[2x ∈-,0]时,1()2()2xf x =-,且函数()f x 是定义在R 上的偶函数,故函数()f x 在区间(2-,6]上的图象如下图所示:若在区间(2-,6]内关于x 的方程()log (2)0a f x x -+=恰有3个不同的实数解则log 42a >-,log 82a <-,解得:21(,)42a ∈故选:A核心考点二:解不等式、求参数范围、最值问题【典型例题】例5.(2023春·山东枣庄·高三枣庄市第三中学校考阶段练习)设函数()()()222ln 2f x x a x a =-+-,其中0x >,a R ∈,若存在0x R ∈,使得()045f x ≤成立,则实数a 的值是A .15B .25C .35D .45【答案】A【解析】函数()f x 可以看作是动点2(,)M x lnx 与动点(,2)N a a 之间距离的平方,动点M 在函数2y lnx =的图象上,N 在直线2y x =的图象上,问题转化为求直线上的动点到曲线的最小距离,由2y lnx =得,22y x'==,解得1x =,∴曲线上点(1,0)M 到直线2y x =的距离最小,最小距离d ==则4()5f x ,根据题意,要使04()5f x ,则04()5f x =,此时N 恰好为垂足,由2021112MN a a k a a -===---,解得15a =.故选A .例6.(2023·全国·高三专题练习)m ≥对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是()A .1,2⎛⎤-∞⎥⎝⎦B .2⎛-∞⎝⎦C .(-∞D .(],2-∞【答案】B【解析】设T =T 的几何意义是直线y x =上的点(,)P a a 与曲线()ln f x x =上的点(,ln )Q b b 的距离,将直线y x =平移到与面线()ln f x x =相切时,切点Q 到直线y x =的距离最小.而()1f x x'=,令()0011f x x ='=,则01x =,可得(1,0)Q ,此时,Q到直线y x ==min ||PQ =所以2m ≤.故选:B例7.(2023春·黑龙江黑河·高三嫩江市高级中学校考期中)设函数()2x f x xe a =+,()x g x e ax =+,其中1a <,若存在唯一的整数0x 使得00()()f x g x <,则a 的取值范围是()A .3[2e-,1)B .3[2e,1)C .3[2e -,3)4D .3[2e ,3)4【答案】B【解析】由题意可知,存在唯一的整数x ,使得(21)x x e ax a -<-,构造函数()(21)x h x x e =-,则()(21)x h x x e '=+.当12x <-时,()0h x '<;当12x >-时,()0h x '>.所以,函数()(21)x h x x e =-的单调递减区间为1(,)2-∞-,单调递增区间为1(,)2-+∞.函数()y h x =在12x =-处取得极小值1()2h -=如下图所示,由于(0)1h =-,3(1)h e-=-,所以,(1)(0)h h -<,结合图象可知,(0)0(1)(1)h a a h a a<⨯-⎧⎨-⨯--⎩ ,解得312a e <.故选:B核心考点三:解决以几何图形为背景的代数问题【典型例题】例8.(2023·全国·高三专题练习)已知3,||,||AB AC AB t AC t ⊥==,若点P 是ABC 所在平面内的一点,且3||||AB ACAP AB AC =-,则PB PC ⋅ 的最大值等于()A .8B .10C .12D .13【答案】C【解析】∵AB AC ⊥,∴可以A 为原点,,AB AC 所在直线为坐标轴建立平面直角坐标系;不妨设()30,,(,0)B t C t ,则(0,1)3(1,0)(3,1)AP =-=- ,故点P 坐标为(3,1)-则()33,1,(3,1)PB t PC t =--=-- ,∴()333(3)1310PB PC t t t t ⋅=---+-=-++ 令3()310,0f t t t t =-++>,则2()333(1)(1),0f t t t t t =-+=-+-≥',则当(0,1)t ∈时,()0f t '>,当(1,)t ∈+∞时,()0f t '<,则函数()f t 在[0,1)递增,在(1,)+∞上递减,则max ()(1)12f t f ==,即PB PC ⋅的最大值为12.故选:C .例9.(2023春·浙江杭州·高二学军中学阶段练习)222410282x x x x -+-+≤的解集为[],a b ,则ab 的值是()A .5B .42C .6D .7【答案】D【解析】设23y =,则3y =()()2222152x y x y -+-+≤.()()2222152x y x y -+-+=.()()2222152x y x y -+-+=±()()2222152x y x y -+=-+,两边平方可得,()()()22222215454x y x y x y -+=-+±-+,整理可得,()22527x y x ±-+=-,两边平方整理可得()22313y x --=.()()2222152x y x y -+-+=表示的点(),x y 在双曲线()22313y x --=上.()()2222152x y x y -+-+≤表示的点(),x y 在双曲线()22313y x --=上及其内部.222410282x x x x -+-+≤与不等式组()2223133y x y ⎧--≤⎪⎨⎪=⎩同解,整理可得2670x x -+≤.由已知可得,不等式2670x x -+≤的解集是[],a b ,所以2670x x -+=的两个解为a 、b ,根据韦达定理有7ab =.故选:D .例10.(2023春·安徽六安·(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =()AB C D .2【答案】C【解析】如图所示:因为y =4为半径位于x 轴上方(含和x 轴交点)的半圆,(0)y kx k =>表示过坐标原点及第一三象限内的直线,(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,即半圆位于直线下方的区间长度为2,所以2,4a b ==,所以直线与半圆的交点(2,,所以k ==故选:C .。
浅谈初中函数教学中的 “数形结合”思想方法
(追问)T: ⑸你能从解析式出发给出证明吗?
在上面的教学设计中,教师借助几何画板课件,帮助学生形象直观的理解了反比例函数图象的变化规律,发现变化过程中的特殊点的,自然的归纳出反比例函数增减性的性质及自变量的取值范围,并且通过结合符号语言和解析式全方位诠释增减性的意义。学生不但理解而且记忆,而且途径全面,更好的感受到函数的三种表示方法的整体一致性。
浅谈初中函数教学中的“数形结合”思想方法
函数是初中数学教学中的重要内容,学生初次接触函数,感觉难度大,不容易理解。那么怎样进行函数教学,学生会学的轻松一点呢?我在函数的教学过程中,针对学生的知识结构与年龄特点,结合自己的一点教学经验,谈谈函数教学中的“数形结合”思想方法。
一、数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。
(2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的“最优化”,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。
(1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合的思想方法每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
一、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。
②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
2.运用数形结合思想解题的三种类型及思维方法:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
二、数形结合的思想方法的应用(一)解析几何中的数形结合解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.1. 与斜率有关的问题【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围.解:直线l的方程x+my+m=0可化为点斜式:y+1=-(x-0),易知直线l过定点M(0,-1),且斜率为-.∵l与PQ的延长线相交,由数形结合可得:当过M且与PQ平行时,直线l的斜率趋近于最小;当过点M、Q时,直线l的斜率趋近于最大.【点评】含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程.本题是化为点斜式方程后,可看出交点M(0,-1)和斜率-.此类题目一般结合图形可判断出斜率的取值范围.2. 与距离有关的问题【例2】求:y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最大(小)值.【分析】可看成求两动点P(cosθ,sinθ)与Q(cosα-3,sinα+2)之间距离的最值问题. 解:两动点的轨迹方程为:x2+y2=1和(x+3)2+(y-2)2=1,转化为求两曲线上两点之间距离的最值问题.如图:3. 与截距有关的问题【例3】若直线y=x+k与曲线x=恰有一个公共点,求k的取值范围.解:曲线x=是单位圆x2+y2=1的右半圆(x≥0),k是直线y=x+k在y轴上的截距.由数形结合知:直线与曲线相切时,k=-,由图形:可得k=-,或-1<k≤1.4. 与定义有关的问题【例4】求抛物线y2=4x上到焦点F的距离与到点A(3,2)的距离之和为最小的点P 的坐标,并求这个最小值.【分析】要求PA+PF的最小值,可利用抛物线的定义,把PF转化为点P到准线的距离,化曲为直从而借助数形结合解决相关问题.解:P′是抛物线y2=4x上的任意一点,过P′作抛物线的准线l的垂线,垂足为D,连P′F(F为抛物线的焦点),由抛物线的定义可知:.过A作准线l的垂线,交抛物线于P,垂足为Q,显然,直线AQ之长小于折线AP′D 之长,因而所求的点P即为AQ与抛物线交点.∵AQ直线平行于x轴,且过A(3,2),所以方程为y=2,代入y2=4x得x=1.∴P(1,2)与F、A的距离之和最小,最小距离为4.【点评】(1)化曲线为直线是求距离之和最有效的方法,在椭圆,双曲线中也有类似问题.(2)若点A在抛物线外,则点P即为AF与抛物线交点(内分AF).(二) 数形结合在函数中的应用1. 利用数形结合解决与方程的根有关的问题方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.【例5】已知方程x2-4x+3=m有4个根,则实数m的取值范围.【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.解:方程x2-4x+3=m根的个数问题就是函数y=x2-4x+3与函数y=m图象的交点的个数. 作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0<m<1时,两函数图象有4交点,故m的取值范围是(0,1).数形结合可用于解决方程的解的问题,准确合理地作出满足题意的图象是解决这类问题的前提.2. 利用数形结合解决函数的单调性问题函数的单调性是函数的一条重要性质,也是高考中的热点问题之一.在解决有关问题时,我们常需要先确定函数的单调性及单调区间,数形结合是确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数的图象中.【例6】确定函数y=的单调区间.画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].3. 利用数形结合解决比较数值大小的问题【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图象关于y轴对称.则f(4.5),f(6.5),f(7)的大小关系是.解:由①:T=4;由②:f(x)在[0,2]上是增函数;由③:f(-x-2)=f(x+2),所以f(x)的图象关于直线x=2对称.由此,画出示意图便可比较大小.显然,f(4.5)<f(7)<f(6.5).4. 利用数形结合解决抽象函数问题抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](a<b<0)上,f′(x)g(x)+f(x)g′(x)>0,且f(x)·g(x)有最小值-5.则函数y=f(x)·g(x)在区间[-b,-a]上().A. 是增函数且有最小值-5B. 是减函数且有最小值-5C. 是增函数且有最大值5D. 是减函数且有最大值5【解析】f′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′>0.∴y=f(x)·g(x)在区间[a,b](a<b<0)上是增函数,又∵f(x),g(x)分别是定义在R上的奇函数和偶函数.∴y=f(x)·g(x)是奇函数.因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.(三)运用数形结合思想解不等式1. 求参数的取值范围【例9】若不等式>ax的解集是{x|0<x≤4},则实数a的取值范围是().A. [0,+∞)B. (-∞,4]C. (-∞,0)D. (-∞,0]解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直线,由已知>ax的解集是{x|0<x≤4},即要求半圆在直线的上方,由图可知a<0,所以选C.【点评】本题很好的体现了数形结合思想在解题中的妙用.【例10】若x∈(1,2)时,不等式(x-1)2<logax恒成立,则a的取值范围是().A. (0,1)B. (1,2)C. (1,2]D. [1,2]解:设y1=(x-1)2(1<x<2),y2=logax.由图可知若y1<y2(1<x<2),则a>1.y1=(x-1)2过(2,1)点,当y2=logax也过(2,1)点,即a=2时,恰有y1<y2(1<x<2)∴1<a≤2时(x-1)2<logax在x∈(1,2)上成立,故选C.【点评】例1、例2两题的求解实际上综合运用了函数与方程以及数形结合的思想方法.2. 解不等式【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是().A. {x|0<x<a}B. {x|-a<x<0或x>a}C. {x|-a<x<a}D. {x|x<-a或0<x<a}解:依题意得f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),可得到f(x)图象,又由已知xf(x)<0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,+∞)时满足题意,故选B.【例12】设函数f(x)=2,求使f(x)≥2的取值范围.【解法1】由f(x)≥2得2≥2=2.易求出g(x)和h(x)的图象的交点立时,x的取值范围为[,+∞).【解法3】由的几何意义可设F1(-1,0),F2(1,0),M(x,y),则,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为(,0),由双曲线的图象和x+1-x-1≥知x≥.【点评】本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境. (四)运用数形结合思想解三角函数题纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.【例13】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是.【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.解:函数f(x)=由图象可知:1<k<3.【例14】当0<x<时,函数f(x)=的最小值为().A. 2B. 2C. 4D. 4解:y=则y为点A(0,5)与点B(-sin2x,3cos2x)两点连线的斜率,又点B的轨迹方程(0<α<),即x2+=1(x<0),如图,当过点A的直线l∶y=kx+5与椭圆x2+=1(x<0)相切时,k有最小值4,故选C.【例15】若sinα+cosα=tanα(0<α<),则α∈().解:令f(x)=sinx+cosx=sin(x+ )(0<α<),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP>.再令α=,则sin+cos=≈1.366,tan =≈1.732>1.367,由图象知xP应小于.故选C.【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α>,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.【例16】已知函数f(x)是定义在(-3,3)上的奇函数,当0<x<3时f(x)图象如下图所示,那么不等式f(x)cosx<0的解集是().解:函数f(x)定义在(-3,3)上,且是奇函数,根据奇函数图象性质可知,f (x)在(-3,0)上的图象如图所示,若使f(x)cosx<0,只需f(x)与cosx异号,即图象须分别分布在x轴上下侧,由图可知,有三部分区间符合条件要求,即(-,-1)∪(0,1)∪(,3),故选B.【点评】已知函数的一部分图象,根据函数的性质可得到函数的另一部分图象,利用数形结合的思想,可以先画出完整的函数图象,再研究有关问题.【例17】△ABC中,A=,BC=3,则△ABC的周长为().解:本题是我们常用三角恒等变形和正弦定理通过一定量的计算来完成的,但是应用数形结合,可以很快解决问题.为此,延长CA到D,使AD=AB,则CD=AB+AC,∠CBD=∠B+,∠D=,由正弦定理即AB+AC=6sin(B+),故选C.(五)运用数形结合思想解复数题【例18】设|z1|=5,|z2|=2, |z1-z2|=13,求zz12的值。