2015届高考理科数学解答题的八个大题模板

合集下载

2015年广东高考理科数学_Word版含标准答案

2015年广东高考理科数学_Word版含标准答案

2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =A .∅B .{}1,4--C .{}0D .{}1,4 2.若复数z=i ( 3 – 2 i ) ( i 是虚数单位 ),则z =A .3-2iB .3+2iC .2+3iD .2-3i 3.下列函数中,既不是奇函数,也不是偶函数的是A .xe x y += B .x x y 1+= C .x xy 212+= D .21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。

从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为 A .1 B.2111 C. 2110 D. 215 5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x6.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为A .531 B. 6 C. 523 D. 4 7.已知双曲线C :12222=-by a x 的离心率e =45,且其右焦点F 2( 5 , 0 ),则双曲线C 的方程为A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.在4)1(-x 的展开式中,x 的系数为 。

2015年山东高考数学(理科)试题详细解答

2015年山东高考数学(理科)试题详细解答

2015年山东高考数学(理科)试题详细解答一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一项是符合题目要求的. (1) 已知集合A=2{|430},{|24}x x x B x x -+<=<<,则AB =(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)解析:2{|430}{|13},(2,3)A x x x x x AB =-+<=<<=,答案选(C)(2) 若复数z 满足1zi i=-,其中i 是虚数单位,则z = (A)1i - (B) 1i + (C) 1i -- (D) 1i -+解析:2(1)1,1z i i i i i z i =-=-+=+=-,答案选(A) (3)要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像(A)向左平移12π个单位 (B) 向右平移12π个单位(C)向左平移3π个单位 (D) 向右平移3π个单位解析:sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位答案选(B)(4)已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=(A)232a - (B) 234a - (C)234a (D) 232a 解析:由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+=,答案选(D)(5)不等式|1||5|2x x ---<的解集是(A)(,4)-∞ (B) (,1)-∞ (C) (1,4) (D) (1,5)解析:当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,答案选(A)(6)已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =(A)3 (B) 2 (C) 2- (D) 3-解析:由z ax y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >;答案选(B) 7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)23π (B) 43π (C) 53π (D) 2π 解析:2215121133V πππ=⋅⋅-⋅⋅=,答案选(C)8.已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=.)(A)4.56% (B) 13.59% (C) 27.18% (D) 31.74%解析:1(36)(95.44%68.26%)13.59%2P ξ<<=-=,答案选(B) (9)一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为(A)53-或35- (B) 32-或32- (C) 54-或45- (D) 43-或34- 解析:(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则1,|55|d k ==+=解得43k =-或34-,答案选(D)(10)设函数31,1,()2, 1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是 (A)2[,1]3(B) [0,1] (C) 2[,)3+∞ (D) [1,)+∞解析:由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,答案选(C)二、填空题:本大题共5小题,每小题5分,共25分. (11)观察下列各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++= 照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .解析:14n -.具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n nn n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .解析:“[0,],tan 4x x m π∀∈≤”是真命题,则tan14m π≥=,于是实数m 的最小值为1.(13)执行右边的程序框图,输出的T解析:11200111123T xdx x dx =++=++=⎰⎰(14)已知函数()xf x a b =+(0,a a >≠和值域都是[1,0]-,则a b += .解析:当1a >时101a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2,b =-则13222a b +=-=-. (15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 . 解析:22122:1(0,0)x y C a b a b -=>>的渐近线为by x a =±,则22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2p F ,则22222AF pb pa a k pb b a-==,即2222222593,,.442b c a b c e a a a a +===== 三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,.a b c 若()0,1,2Af a ==求ABC ∆面积的最大值. 解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=- 由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈. (Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1,a =由余弦定理可得2212cos2(26b c bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即2bc ≤=+1112sin sin 22644ABC S bc A bc bc π∆+===≤,故ABC ∆. (17)(本小题满分12分)如图,在三棱台DEF-2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,AB BC CF DE ⊥=∠求平面FGH 与平面ACFD 所成角(锐角)的大小. 解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T. 在三棱台DEF ABC -中,2,AB DE =则2AC DF =而G 是AC 的中点,DF//AC ,则//DF GC ,所以四边形DGCF是平行四边形,T是DC的中点,DG//FC. 又在BDC∆,H是BC的中点,则TH//DB,又BD⊄平面FGH,TH⊂平面FGH,故//BD(Ⅱ)由CF⊥平面ABC,可得DG⊥平面ABC而则GB AC⊥,于是,,GB GA GC两两垂直,以点G为坐标原点,,,GA GB GC所在的直线分别为,,x y z轴建立空间直角坐标系,设2AB=,则1,DE CF AC AG====((B C F H则平面ACFD的一个法向量为1(0,1,0)n=,设平面FGH的法向量为2222(,,)n x y z=,则22n GHn GF⎧⋅=⎪⎨⋅=⎪⎩,即222222x yz-=⎪⎨⎪+=⎩,取21x=,则221,y z==2(1,1n=,121cos,2n n<>==,故平面FGH与平面ACFD所成角(锐角)的大小为60.(18)(本小题满分12分)设数列{}na的前n项和为nS,已知23 3.nnS=+(Ⅰ)求数列{}na的通项公式;(Ⅱ)若数列{}nb满足3logn n na b a=,求数列{}nb的前n项和nT.解:(Ⅰ)由233nnS=+可得111(33)32a S==+=,11111(33)(33)3(2)22n n nn n na S S n---=-=+-+=≥而11133a-=≠,则13,1,3, 1.n nnan-=⎧=⎨>⎩(Ⅱ)由3logn n na b a=及13,1,3, 1.n nnan-=⎧=⎨>⎩可得311,1,log31, 1.3nnnnnabnan-⎧=⎪⎪==⎨-⎪>⎪⎩2311123133333n n n T --=+++++. 2234111123213333333n n n n n T ---=++++++ 2231223121111111333333331111111()33333331121213133193922331313211823n n n n n n n nnn n T n n n n ---=+-++++--=-+++++----=+-=+--⋅-+=-⋅ 113211243n n n T -+=-⋅19(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX. 解:(Ⅰ)125,135,145,235,245,345; (Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-===== 甲得分X 的分布列为:0(1)13144221EX =⨯+⨯-+⨯=(20)(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值. 解析:(Ⅰ)由椭圆2222:1(0)x y C a b a b +=>>的离心率为可知c e a ==,而222a b c =+则2,a b c ==,左、右焦点分别是12(,0),,0)F F ,圆1F:22()9,x y +=圆2F:22()1,x y +=由两圆相交可得24<<,即12<<,交点,在椭圆C 上,则224134b b =⋅, 整理得424510b b -+=,解得21,b =214b =(舍去) 故21,b =24,a =椭圆C 的方程为2214x y +=. (Ⅱ)(ⅰ)椭圆E 的方程为221164x y +=, 设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. (ⅱ)点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-= 2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->||AB =2211||||||36221414m m S AB d k k∆==⋅⋅⋅=++ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立. 而直线y kx m =+与椭圆C :2214x y +=有交点P ,则 2244y kx m x y =+⎧⎨+=⎩有解,即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解, 其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥,则上述2282m k =+不成立,等号不成立,设(0,1]t =,则2||614m S k ∆==+(0,1]为增函数,于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12. (21)(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点. 若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <, 且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减; 当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增. 因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<, 所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増; 当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减. 所以函数只有一个极值点。

2015年高考广东理科数学试题及答案(word解析版)

2015年高考广东理科数学试题及答案(word解析版)

2015年普通高等学校招生全国统一考试〔XX 卷〕数学〔理科〕一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.〔1〕[2015年XX ,理1,5分]若集合{}|(4)(1)0M x x x =++=,}{|(4)(1)0N x x x =--=,则M N =〔〕〔A 〕{}1,4〔B 〕{}1,4--〔C 〕{}0〔D 〕∅[答案]D[解析]{}{}(4)(1)04,1M x x x =++==--,{}{}(4)(1)01,4N x x x =--==,M N ∴⋂=∅故选D . 〔2〕[2015年XX ,理2,5分]若复数i(32i)z =-〔i 是虚数单位〕,则z =〔〕〔A 〕23i -〔B 〕23i +〔C 〕32i +〔D 〕32i - [答案]A[解析]i(32i)3i 2z =-=+,23i z ∴=-,故选A .〔3〕[2015年XX ,理3,5分]下列函数中,既不是奇函数,也不是偶函数的是〔〕〔A 〕21y x =+〔B 〕1y x x=+〔C 〕122x x y =+〔D 〕x y x e =+[答案]D[解析]A 和C 选项为偶函数,B 选项为奇函数,D 选项为非奇非偶函数,故选B .〔4〕[2015年XX ,理4,5分]袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰好有1个白球,1个红球的概率为〔〕 〔A 〕521〔B 〕1021〔C 〕1121〔D 〕1 [答案]B[解析]111052151021C C P C ==,故选B . 〔5〕[2015年XX ,理5,5分]平行于直线2++1=0x y 且与圆225x y +=相切的直线的方程是〔〕〔A 〕250250x y x y ++=+-=或〔B 〕250250x y x y ++=+-=或 〔C 〕250250x y x y -+=--=或〔D 〕250250x y x y -+=--=或[答案]A[解析]设所求直线为02=++c y x ,因为圆心坐标为()0,0,则由直线与圆相切可得25521c cd ===+,解得5c =±,所求直线方程为250250x y x y ++=+-=或,故选A .〔6〕[2015年XX ,理6,5分]若变量,x y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为〔〕〔A 〕4〔B 〕235〔C 〕6〔D 〕315[答案]B[解析]如图所示,阴影部分为可行域,虚线表示目标函数32z x y =+,则当目标函数过点81,5⎛⎫⎪⎝⎭,32z x y =+取最小值为235,故选B .〔7〕[2015年XX ,理7,5分]已知双曲线2222:1x y C a b-=的离心率54e =,且其右焦点为2(5,0)F ,则双曲线C 的方程为〔〕〔A 〕22143x y -=〔B 〕221916x y -=〔C 〕221169x y -=〔D 〕22134x y -= [答案]C[解析]由双曲线右焦点为2(5,0)F ,则5c =,544c e a a ==∴=.2229b c a ∴=-=,所以双曲线方程为221169x y -=,故选C .〔8〕[2015年XX ,理8,5分]若空间中n 个不同的点两两距离都相等,则正整数n 的取值〔〕〔A 〕至多等于3〔B 〕至多等于4〔C 〕等于5〔D 〕大于5 [答案]B[解析]当3=n 时,正三角形的三个顶点符合条件;当4=n 时,正四面体的四个顶点符合条件,故可排除A ,C ,D 四个选项,故选B .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. 〔一〕必做题〔9~13〕〔9〕[2015年XX ,理9,5分]在4x (-1)的展开式中,x 的系数为. [答案]6[解析]()()()4424411r rr rr r Cx C x ---=-,则当2r =时,x 的系数为()22416C -=. 〔10〕[2015年XX ,理10,5分]在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a +=. [答案]10[解析]由等差数列性质得,345675525a a a a a a ++++==,解得55a =,所以285210a a a +==.〔11〕[2015年XX ,理11,5分]设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,1sin 2B =,6C π=,则b =.[答案]1[解析]15sin ,266B B ππ=∴=或,又6C π=,故6B π=,所以,23A π=由正弦定理得,sin sin a bA B =,所以1b =. 〔12〕[2015年XX ,理12,5分]某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言〔用数字作答〕. [答案]1560[解析]40391560⨯=.〔13〕[2015年XX ,理13,5分]已知随机变量X 服从二项分布(,)B n p ,()30E X =,()20D X =,则p =.[答案]13[解析]()30E X np ==,()(1)20D X np p =-=,解得13p =.〔二〕选做题〔14-15题,考生只能从中选做一题〕〔14〕[2015年XX ,理14,5分]〔坐标系与参数方程选做题〕已知直线l 的极坐标方程为2sin()24πρθ-=,点A 的极坐标为7(22,)4A π,则点A 到直线l 的距离为.[答案]522[解析]222sin()2(sin cos )2422πρθρθθ-=-=sin cos 1ρθρθ∴-=.即直线l 的直角坐标方程为110y x x y -=-+=,即,点A 的直角坐标为()2,2-,A 到直线的距离为2215222d ++==. 〔15〕[2015年XX ,理15,5分]〔几何证明选讲选做题〕如图1,已知AB 是圆O 的直径,4AB =,EC 是圆O的切线,切点为C ,1BC =,过圆心O 作BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD =. [答案]8[解析]如图所示,连结O ,C 两点,则OC CD ⊥,OD AC ⊥90CDO ACD ∴∠+∠=︒90ACD CBA CBA CAB ∠=∠∠+∠=︒,,CDO CAB ∴∠=∠,所以OD OCAB BC=, 所以8OD =.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.〔16〕[2015年XX ,理16,12分]在平面直角坐标系xOy 中,已知向量22,22m ⎛⎫=- ⎪ ⎪⎝⎭,()sin ,cos n x x =,0,2x π⎛⎫∈ ⎪⎝⎭. 〔1〕若m n ⊥,求tan x 的值; 〔2〕若m 与n 的夹角为3π,求x 的值. 解:〔1〕()2222,sin ,cos sin cos sin 22224m n x x x x x π⎛⎫⎛⎫⋅=-⋅=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,m n ⊥,0m n ∴⋅=,即sin 04x π⎛⎫-= ⎪⎝⎭, sin 04x π⎛⎫-= ⎪⎝⎭,又0,2x π⎛⎫∈ ⎪⎝⎭,444x πππ∴-<-<,04x π∴-=.即4x π=,tan tan 14x π∴==.〔2〕依题意2222sin 4cossin 3422sin cos 22x m n m nx xπππ⎛⎫- ⎪⋅⎛⎫⎝⎭==- ⎪⎝⎭⋅⎛⎫⎛⎫+-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 1sin 42x π⎛⎫-= ⎪⎝⎭,又,444x πππ⎛⎫-∈- ⎪⎝⎭,46x ππ∴-=,即56412x πππ=+=. 〔17〕[2015年XX ,理17,12分]某工厂36名工人的年龄数据如下表:工人编号年龄 工人编号年龄 工人编号年龄 工人编号年龄 1 40 2 44 3 40 4 41 5 33 6 40 7 45 8 42 9 43 10 36 11 31 12 38 13 39 14 43 15 45 16 39 17 38 18 36 19 27 20 43 21 41 22 37 23 34 24 42 25 37 26 44 27 42 28 34 29 39 30 43 31 38 32 42 33 53 34 37 35 49 36 39〔1〕用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里采用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;〔2〕计算〔1〕中样本的均值x 和方差2s ;〔3〕36名工人中年龄在x s 与x s 之间有着多少人?所占的百分比是多少〔精确到0.01%〕? 解:〔1〕由题意得,通过系统抽样分别抽取编号为2,6,10,14,18,22,26,30,34的年龄数据为样本.则样本的年龄数据为:44,40,36,43,36,37,44,43,37.〔2〕由〔1〕中的样本年龄数据可得,()1444036433637444337409x =++++++++=,则()()()()()()()()1222222222444040403640434036403740444043409s ⎡=-+-+-+-+-+-+-+-⎢⎣()23740⎤+-⎥⎦= 9100.〔3〕由题意知年龄在100100404099⎡⎤-+⎢⎥⎣⎦,之间,即年龄在[]3743,之间, 由〔1〕中容量为9的样本中年龄、在[]3743,之间的有5人, 所以在36人中年龄在[]3743,之间的有536209⨯=〔人〕,则所占百分比为20100%55.56%36⨯≈.〔18〕[2015年XX ,理18,14分]如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =,点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且2AF FB ==,2CG GB =. 〔1〕证明:PE FG ⊥;〔2〕求二面角P AD C --的正切值;〔3〕求直线PA 与直线FG 所成角的余弦值. 解:〔1〕PD PC =PDC ∴∆为等腰三角形,E 为CD 边的中点,所以PE DC ⊥, PDC ABCD ⊥平面平面,PDC ABCD DC ⋂=平面平面,且PE PDC ⊂平面,∴PE ABCD ⊥平面FG ABCD ⊂平面,PE FG ∴⊥.〔2〕由长方形ABCD 知,AD DC ⊥,PDC ABCD ⊥平面平面,PDC ABCD DC ⋂=平面平面,且AD ABCD ⊂平面AD PDC ∴⊥平面PD PDC ⊂平面,PD AD ∴⊥DC AD PD AD PC PDA DC CAD ⊥⊥⊂⊂由,,且平面,平面.PDC P AD C ∴∠--即为二面角,由长方形ABCD 得6DC AB ==,E 为CD 边的中点,则132DE DC ==,2243437PD DE PE DC PE ==⊥∴=-=,,,7tan 3PE PDC DE ∴∠==即二面角P AD C --的正切值为73.〔3〕如图,连结A ,C ,22AF FB CG GB ==,BF BGAB BC∴=,//FG AC ,PAC ∴∠为直线PA 与直线FG 所成角. 由长方形ABCD 中63AB BC ==,得:226335AC =+= 由〔2〕知AD PD ⊥,34AD BC PD ===,22345AP ∴=+=,由题意知4PC =,22295cos 225AP AC PC PAC AP AC +-∴∠==⋅⋅,所以,直线PA 与直线FG 所成角的余弦值为9525. 〔19〕[2015年XX ,理19,14分]设1a ,函数2()(1)x f x x e a .〔1〕求()f x 的单调区间;〔2〕证明:()f x 在()+∞∞-,上仅有一个零点; 〔3〕若曲线()y f x 在点P 处的切线与x 轴平行,且在点(,)M m a 的切线与直线OP 平行〔O 是坐标原点〕,证明:321m a e≤--. 解:〔1〕2()(1)x f x x e a =+-,22()=2(1)(1)x x x f x xe x e x e '∴++=+,x R ∈时,()0f x '≥恒成立.()f x ∴的单调递增区间为R .〔2〕由〔1〕可知()f x 在R 上为单调递增函数,当x a =,()=(+)(1)aaaf a a e a ea e-=+-1,1a >,()0f a ∴>,()f x ∴在(,)-∞+∞仅有一个零点.〔3〕令点P 为00(,)x y ,曲线()y f x =在点P 处的切线与x 轴平行,0200()=(1)0x f x x e '∴+=,0=1x ∴-,2(1,)P a e--,∴直线OP 斜率为221op ae k a e -==--, 在点(),M m n 处的切线与直线OP 平行,22()(1)m f m m e a e'∴=+=-.要证明321m a e ≤--,即证32(1)m a e+≤-.要证明32(1)(1)m m +≤+,需证明1m m e +≤,设()1m g m e m =--,()1m g m e '∴=-,令()0,0g m m '==,()g m ∴在∞(-,0)上单调递减,在+∞(0,)上单调递增,()(0)0g m g ∴≥=, 10m e m ∴--≥,1m e m ∴≥-,命题得证.〔20〕[2015年XX ,理20,14分]已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B .〔1〕求圆1C 的圆心坐标;〔2〕求线段AB 的中点M 的轨迹C 的方程;〔3〕是否存在实数k ,使得直线:(4)L y k x 与曲线C 只有一个交点?若存在,求出k 的取值X 围;若不存在,说明理由.解:〔1〕由题意知:圆1C 方程为:22(3)4x y -+=,∴圆1C 的圆心坐标为()3,0. 〔2〕由图可知,令()11,M x y,1|||OM C M =22211||||||OC OM C M =+,2222211113(3)x y x y ∴=++-+,221139()24x y ∴-+=,∵直线L 与圆1C 交于A 、B 两点,∴直线L 与圆1C 的距离:02d ≤< 22110(3)4x y ∴≤-+<,2211930(3)()442x x ∴≤-+--<,1533x ∴<≤ ∴轨迹C 的方程为:22395()(,3]243x y x -+=∈.〔3〕∵直线L :(4)y k x =-与曲线2239()24x y -+=仅有1个交点,联立方程:22(4)5(,3]393()24y k x x x y =-⎧⎪∈⎨-+=⎪⎩, 得:2222(1)(83)160k x k x k +-++=,在区间5(,3]3有且仅有1个解.当2222=(83)64+1=k k k ∆+-()0时,43k =±,此时,125(,3]53x =∈,仅有一个交点,符合题意.当0∆≠时,令2222()(1)(83)16g x k x k x k =+-++,则有:5()(3)0g g ≤解得:[k ∈,∴k 的取值X 围为:[k ∈或43k =±.〔21〕[2015年XX ,理21,14分]数列n a 满足:*121224,2n n n a a na n N . 〔1〕求3a 的值;〔2〕设求数列{}n a 的前n 项和n T ; 〔3〕令111111,(1)(2)23n nn T b a b a n n n,证明:数列{}n a 的前n 项和n S 满足22ln n S n .解:〔1〕由题意知:1212242n n n a a na -++++=-,当=2n 时,121222=42a a ++-;当=3n 时,1232322+3=42a a a ++-,321322233=4(4)224a ++---=,31=4a . 〔2〕1212242n n n a a na -++++=-,12132+(+1)42n n n n a a na n a ++∴+++=-,, 111123243111(+1)()()222222n n n n nn n n n n n n n n n a a a -++-+++--+=-==∴=∴=∴{}n a 是首相为1,公比为12的等边数列,∴1111()1122()212212nn n n T ---==-=--.〔3〕由〔2〕得:1122n n T -=-1111(2)(1)22n n S n -∴=-++,已知不等式:111ln(1)23n n+<+设()ln(1),01xf x x x x =+->+2()01x f x x'∴=>+,()f x 在()∞0,+单调递增, ()ln(1)(0)01x f x x f x ∴=+->=+,ln(1)1xx x∴+>+在()∞0,+上恒成立. 令1=x n,1ln(1)ln(1)ln ln ln(1)ln 2ln1ln n n n n n n +=+-+--++-=,1111ln(1)231n n +>++++111ln 231n n ∴>++++, 111111(2)(1)2(1)2(1ln 2)22ln 2222n n S n n-∴=-++<++<+=+.。

2015年浙江高考理科数学精彩试题及解析汇报

2015年浙江高考理科数学精彩试题及解析汇报

实用标准文档文案大全2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分1.(5分)(2015?浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(Q) B.(0,2] C.(1,2) D. [1,2]2.(5分)(2015?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A. 8cm3 B. 12cm3 C. D.3.(5分)(2015?浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A. a1d>0,dS4>0 B. a1d<0,dS4<0 C. a1d>0,dS4<0 D. a1d<0,dS4>04.(5分)(2015?浙江)命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是() A. ?n∈N*,f(n)?N*且f(n)>nB. ?n∈N*,f(n)?N*或f(n)>n C. ?n0∈N*,f(n0)?N*且f(n0)>n0D. ?n0∈N*,f(n0)?N*或f(n0)>n05.(5分)(2015?浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF 的面积之比是()实用标准文档文案大全A. B.C. D.6.(5分)(2015?浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card (A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立7.(5分)(2015?浙江)存在函数f(x)满足,对任意x∈R都有()A. f(sin2x)=sinx B. f(sin2x)=x2+x C. f(x2+1)=|x+1| D. f(x2+2x)=|x+1|8.(5分)(2015?浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥α C.∠A′CB≤α D.∠A′CB≥α非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015?浙江)双曲线=1的焦距是,渐近线方程是10.(6分)(2015?浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是实用标准文档文案大全11.(6分)(2015?浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是12.(4分)(2015?浙江)若a=log43,则2a+2﹣a=13.(4分)(2015?浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是14.(4分)(2015?浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是15.(6分)(2015?浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015?浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015?浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.实用标准文档文案大全18.(15分)(2015?浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015?浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015?浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).实用标准文档文案大全2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015?浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(?R P)∩Q=()A. [0,1) B.(0,2] C.(1,2) D. [1,2]考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴?R P=(0,2),∵Q=(1,2],∴(?R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)(2015?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A. 8cm3 B. 12cm3 C. D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,实用标准文档文案大全所求几何体的体积为故选点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015?浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A. a1d>0,dS4>0 B. a1d<0,dS4<0 C. a1d>0,dS4<0 D. a1d<0,dS4>0考差数列与等比数列的综合专差数列与等比数列分析成等比数列,得到首项和公差的关系,即可判d的符号解答:设等差数{的首项,=+2=+3=+7成等比数列,,整理∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)(2015?浙江)命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是() A. ?n∈N*,f(n)?N*且f(n)>nB. ?n∈N*,f(n)?N*或f(n)>n C. ?n0∈N*,f(n0)?N*且f(n0)>n0D. ?n0∈N*,f(n0)?N*或f(n0)>n0考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:?n0∈N*,f(n0)?N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)(2015?浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF 的面积之比是()实用标准文档文案大全A. B.C. D.考线与圆锥曲线的关系专锥曲线的定义、性质与方程分析根据抛物线的定义,将三角形的面积关系转化的关系进行求解即可解答:如图所示,抛物线的准D的方程x分别AD,轴BD,轴由抛物线的定义BF=BAF=A|BM|=|BD1=|BF|AN|=|AE1=|AF则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)(2015?浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card (A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A 命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.实用标准文档文案大全解答命对任意有限carcar,)成立),car)car,,成立故命成立命=car)car),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A 点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)(2015?浙江)存在函数f(x)满足,对任意x∈R都有()A. f(sin2x)=sinx B. f(sin2x)=x2+x C. f(x2+1)=|x+1|D. f(x2+2x)=|x+1|考数解析式的求解及常用方法专数的性质及应用分析取特殊值,通过函数的定义判断正误即可解答.x=,sin2x=,=取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)(2015?浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()实用标准文档文案大全A.∠A′DB≤α B.∠A′DB≥α C.∠A′CB≤α D.∠A′CB≥α考面角的平面角及求法专新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015?浙江)双曲线=1的焦距是2,渐近线方程是y=±x考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.实用标准文档文案大全10.(6分)(2015?浙江)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是考数的值专计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)(2015?浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z)考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1 =(1﹣cos2x)+sin2x+1 =sin (2x﹣)+,∴原函数的最小正周期为T==π,实用标准文档文案大全222可≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)(2015?浙江)若a=log43,则2a+2﹣a=考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)(2015?浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM 所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,实用标准文档文案大全coEM故答案点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)(2015?浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3考数的最值及其几何意义专等式的解法及应用;直线与圆分析据所的范围可|3y|=3再讨论直2x+2=将+=分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值解答:+,可3,|3y|=3如图直2x+2=将+=分成两部分在直线的上方(含直线,即2x+,|2+2|=2x+此|2x+2|+|3y|2x+3=2y+利用线性规划可得)处取得最小在直线的下方(含直线,即2x+|2+2|﹣2x+此|2x+2|+|3y|﹣2x+3=34利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.实用标准文档文案大全15.(6分)(2015?浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=1,y0=2,|=2考间向量的数量积运算;平面向量数量积的运算专新题型;空间向量及应用分析由题意和数量积的运算可得,不妨,由已知可,可﹣x+,由题意可得x==y==时x+取最小由模长公式解答解:=||co=co∴,不妨则由题意可mn==m解mn﹣∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.实用标准文档文案大全16.(14分)(2015?浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.考弦定理专三角形分析由余弦定理可得已可a.利用余弦定理可cos.可sinC,即可得tan)=,可,即可解答解)A,∴由余弦定理可得,b.b.b.可=,cossintanC=(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2015?浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.实用标准文档文案大全考面角的平面角及求法;直线与平面垂直的判定专间位置关系与距离;空间角分析)B中为坐标原点,OOO所在直线分别轴建系通=及线面垂直的判定定理即得结论)所求值即为平B的法向量与平B的法向量的夹角的余弦值的绝值的相反数,计算即可解答)证明:如图,B中为坐标原点,OOO所在直线分别轴建系BCAC=O易(,,,(,((=,O又=,B又OBC=,⊥平B)解:设平B的法向量由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,实用标准文档文案大全z=,co又∵该二面角为钝角∴二面B的平面角的余弦值点评题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)(2015?浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥|a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是实用标准文档文案大全|f(x)|在区间[﹣1,1上的最大值,以及利用三角不等式变形.19.(15分)(2015?浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).考线与圆锥曲线的关系专新题型;圆锥曲线中的最值与范围问题分析)由题意,可设直A的方程xmy+,代入椭圆方程可得+2mny+2=,.可,设线A的中利用中点坐标公式及其根与系数的可代入直y=mx可代,即可解出)直A轴交点横坐标,可OA,再利用均不等式即可得出解答解)由题意,可设直A的方程xmy+,代入椭圆方,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点横坐标为n,∴S△OAB==|n|?=实用标准文档文案大全由均值不等式可得+∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)(2015?浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,实用标准文档文案大全又n+,n+,)由已知=n+==累加,=n+n+易知n=时,要证式子显然成立下面证易知n=时成立,假设n=时也成立,k+由二次函数单调性知n+n+,即n=k+时仍然成立故,均点评题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

2015年高考山东理科数学试题及答案解析(K12教育文档)

2015年高考山东理科数学试题及答案解析(K12教育文档)

(直打版)2015年高考山东理科数学试题及答案解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015年高考山东理科数学试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015年高考山东理科数学试题及答案解析(word版可编辑修改)的全部内容。

2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B =( )(A )()1,3 (B )()1,4 (C)()2,3 (D )()2,4 (2)【2015年山东,理2】若复数z 满足i 1iz=-,其中i 是虚数单位,则z =( ) (A)1i - (B )1i + (C )1i -- (D )1i -+(3)【2015年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像( )(A )向左平移12π个单位(B )向右平移12π个单位(C)向左平移3π个单位(D)向右平移3π个单位 (4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则=( )(A )232a - (B )234a - (C )234a (D )232a(5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是( )(A )(,4)-∞(B )(,1)-∞ (C )(1,4) (D )(1,5)(6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =( )(A )3 (B)2 (C )—2 (D )-3 (7)【2015年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B)43π (C )53π(D )2π (8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为( )(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)(A )4.56% (B )13.59% (C )27.18% (D )31.74% (9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或23- (C )54-或45- (D )43-或34- (10)【2015年山东,理10】设函数31,1,()2,1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是( ) (A )2[,1]3(B)[0,1] (C)2[,)3+∞ (D)[1,)+∞第II 卷(共100分)二、填空题:本大题共5小题,每小题5分 (11)【2015年山东,理11】观察下列各式:010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .(12)【2015年山东,理12】若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为 .(14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,则a b += .(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()0,12A f a ==,求ABC ∆面积.(17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角(锐角)的大小.(18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233n n S =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .(19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数"中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得—1分;若能被10整除,得1分. (Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ ∆面积最大值.(21)【2015年山东,理21】(本题满分14分)设函数2∈.=++-,其中a Rf x x a x x()ln(1)()(Ⅰ)讨论函数()f x极值点的个数,并说明理由;(Ⅱ)若0∀>,()0xf x≥成立,求a的取值范围.2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B =( )(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,4 【答案】C【解析】2{|430}{|13}A x x x x x =-+<=<<,(2,3)A B =,故选C . (2)【2015年山东,理2】若复数z 满足i 1iz=-,其中i 是虚数单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+ 【答案】A【解析】2(1i)i i i 1i z =-=-+=+,1i z =-,故选A .(3)【2015年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像( )(A )向左平移12π个单位(B )向右平移12π个单位(C )向左平移3π个单位(D )向右平移3π个单位【答案】B【解析】sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位,故选B .(4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则=( )(A )232a - (B )234a - (C)234a (D )232a【答案】D【解析】由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+=,故选D .(5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是( )(A )(,4)-∞ (B )(,1)-∞ (C)(1,4) (D )(1,5) 【答案】A【解析】当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,故选A . (6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =( )(A )3 (B)2 (C )—2 (D )-3【答案】B【解析】由z ax y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >,故选B .(7)【2015年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π(D )2π 【答案】C【解析】2215121133V πππ=⋅⋅-⋅⋅=,故选C .(8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为( )(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)(A)4.56% (B )13.59% (C )27.18% (D )31.74% 【答案】D【解析】1(36)(95.44%68.26%)13.59%2P ξ<<=-=,故选D .(9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或23- (C)54-或45- (D )43-或34- 【答案】D【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则221,|55|11d k k k ==+=++,解得43k =-或34-,故选D .(10)【2015年山东,理10】设函数31,1,()2,1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是( ) (A)2[,1]3(B )[0,1] (C )2[,)3+∞ (D)[1,)+∞【答案】C【解析】由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,故选C . 第II 卷(共100分)二、填空题:本大题共5小题,每小题5分 (11)【2015年山东,理11】观察下列各式:010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【解析】0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)【2015年山东,理12】若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .【答案】1【解析】“[0,],tan 4x x m π∀∈≤”是真命题,则tan 14m π≥=,于是实数m 的最小值为1.(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为 . 【答案】116【解析】11200111111236T xdx x dx =++=++=⎰⎰. (14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,则a b += . 【答案】32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得12,2b a =-=,则13222a b +=-=-.(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .【答案】32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为by x a=±,则22222222(,),(,)pb pb pb pb A B a a a a -22:2(0)C x py p =>的焦点(0,)2p F ,则22222AF pb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()0,12A f a ==,求ABC ∆面积. 解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=-,由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈.(Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1a =,由余弦定理可得2212cos 23(23)6b c bc bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即2323bc ≤=+-,11123sin sin 2264ABC S bc A bc bc π∆+===≤故ABC ∆面积的最大值为23+. (17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC-中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角(锐角)的大小.解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T ,在三棱台DEF ABC -中,2AB DE =,则2AC DF =, 而G 是AC 的中点,DF AC ,则//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG FC . 又在BDC ∆,是BC 的中点,则TH DB ,又BD ⊄平面FGH ,TH ⊂平面FGH ,故//BD 平面FGH .(Ⅱ)由CF ⊥平面ABC ,可得DG ⊥平面ABC 而,AB BC ⊥,45BAC ∠=,则GB AC ⊥,于是,,GB GA GC 两两垂直,以点G 为坐标原点, ,,GA GB GC 所在的直线,分别为,,x y z 轴建立空间直角坐标系, 设2AB =,则1,22,2DE CF AC AG ====,22(0,2,0),(2,0,0),(2,0,1),(,,0)22B C F H ---, 则平面ACFD 的一个法向量为1(0,1,0)n =,设平面FGH 的法向量为2222(,,)n x y z =,则2200n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩,即222222020x y x z ⎧-=⎪⎨⎪-+=⎩, 取21x =,则221,2y z ==,2(1,1,2)n =,121cos ,2112n n <>==++,故平面FGH 与平面ACFD 所成角(锐角)的大小为60.(18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233n n S =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .解:(Ⅰ)由233n n S =+可得111(33)32a S ==+=,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥,而11133a -=≠,则13,13,1n n n a n -=⎧=⎨>⎩.(Ⅱ)由3log n n n a b a =及13,13,1n n n a n -=⎧=⎨>⎩,可得3111log 3113n n n n n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩ 2311123133333n n n T --=+++++,2234111123213333333n n n n n T ---=++++++,22312231211111111111111()3333333333333331121213113213319392233182313n n n n n n n n n nn n T n n n ----=+-++++-=-+++++----+=+-=+--=-⋅⋅- 113211243n n n T -+=-⋅ (19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数"的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数";(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX . 解:(Ⅰ)125,135,145,235,245,345;(Ⅱ)X 的所有取值为—1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-=====0(1)13144221EX =⨯+⨯-+⨯=.(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ ∆面积最大值.解:(Ⅰ)由椭圆2222:1(0)x y C a b a b+=>>可知ce a =而222a b c =+则2,a b c ==,左、右焦点分别是12(,0),,0)F F ,圆1F:22()9,x y ++=圆2F:22()1,x y +=由两圆相交可得24<<,即12<,交点在椭圆C 上,则224134b b +=⋅,整理得424510b b -+=,解得21b =,214b =(舍去), 故21b =,24a =,椭圆C 的方程为2214x y +=.(Ⅱ)(i)椭圆E 的方程为221164x y +=,设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<,代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP =.(ii )点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d =221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=, 整理得222(14)84160k x kmx m +++-=.2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->,||AB =211||||32214m S AB d k ∆==⋅⋅⋅=+ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k =+等号成立.而直线y kx m =+与椭圆22:14x C y +=有交点P ,则2244y kx m x y =+⎧⎨+=⎩有解, 即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解,其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥, 则上述2282m k =+不成立,等号不成立,设(0,1]t =,则S ∆==(0,1]为增函数, 于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12.(21)【2015年山东,理21】(本题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞,21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点.当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点.若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <,且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减;当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增.因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<,所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调 递増;当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减,所以函数只有一个极值点.综上可知当809a ≤≤时()f x 的无极值点;当0a <时()f x 有一个极值点;当89a >时,()f x 的有两个极值点.(Ⅱ)由(Ⅰ)可知当809a ≤≤时()f x 在(0,)+∞单调递增,而(0)0f =,则当(0,)x ∈+∞时,()0f x >,符合题意; 当819a <≤时,2(0)0,0g x ≥≤,()f x 在(0,)+∞单调递增,而(0)0f =, 则当(0,)x ∈+∞时,()0f x >,符合题意;当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.另解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++, 当0a =时,1()01f x x '=>+,函数()f x 在(1,)-+∞为增函数,无极值点. 设222()21,(1)1,8(1)98g x ax ax a g a a a a a =++--=∆=--=-,当0a ≠时,根据二次函数的图像和性质可知()0g x =的根的个数就是函数()f x 极值点的个数.若(98)0a a ∆=-≤,即809a <≤时,()0g x ≥,()0f x '≥函数在(1,)-+∞为增函数,无极值点.若(98)0a a ∆=->,即89a >或0a <,而当0a <时(1)0g -≥此时方程()0g x =在(1,)-+∞只有一个实数根,此时函数()f x 只有一个极值点;当89a >时方程()0g x =在(1,)-+∞都有两个不相等的实数根,此时函数()f x 有两个极值点;综上可知当809a ≤≤时()f x 的极值点个数为0;当0a <时()f x 的极值点个数为1;当89a >时, ()f x 的极值点个数为2.(Ⅱ)设函数2()ln(1)()f x x a x x =++-,0x ∀>,都有()0f x ≥成立,即2ln(1)()0x a x x ++-≥当1x =时,ln20≥恒成立;当1x >时,20x x ->,2ln(1)0x a x x++≥-;当01x <<时,20x x -<,2ln(1)0x a x x++≤-;由0x ∀>均有ln(1)x x +<成立.故当1x >时,,2ln(1)11x x x x +<--(0,)∈+∞,则只需0a ≥; 当01x <<时,2ln(1)1(,1)1x x x x +>∈-∞---,则需10a -+≤,即1a ≤.综上可知对于0x ∀>,都有()0f x ≥成立,只需01a ≤≤即可,故所求a 的取值范围是01a ≤≤.另解:(Ⅱ)设函数2()ln(1)()f x x a x x =++-,(0)0f =,要使0x ∀>,都有()0f x ≥成立,只需函数函数()f x 在(0,)+∞上单调递增即可,于是只需0x ∀>,1()(21)01f x a x x '=+-≥+成立, 当12x >时1(1)(21)a x x ≥-+-,令210x t -=>,2()(,0)(3)g t t t =-∈-∞+,则0a ≥;当12x =时12()023f '=>;当102x <<,1(1)(21)a x x ≤-+-,令21(1,0)x t -=∈-,2()(3)g t t t =-+关于(1,0)t ∈-单调递增,则2()(1)11(13)g t g >-=-=--+,则1a ≤,于是01a ≤≤. 又当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.【评析】求解此类问题往往从三个角度求解:一是直接求解,通过对参数a 的讨论来研究函数的单调性,进一步确定参数的取值范围;二是分离参数法,求相应函数的最值或取值范围以达到解决问题的目的;三是凭借函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即可确定所求.。

2015年全国高考数学试卷理科含答案

2015年全国高考数学试卷理科含答案

2015年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数Z 满足=则=-Z ZZ,i 11+ (A)1 (B ) (C) (D )2 (2)=-010sin 160cos 10cos 20sin (A )23-(B )23 (C )21- (D ) 21 (3)设命题为则P n N n P n⌝>∈∃,2,:2(A )n n N n 2,2>∈∀ (B )n n N n 2,2≤∈∃ (C )n n N n 2,2≤∈∀ (D )nn N n 2,2=∈∃ (4)投篮测试中,每人投3次,至少2次命中才能通过测试,已知某同学每次投篮命中的概率为0.6,且各次投篮是否命中相互独立,则该同学通过测试的概率为(A)0。

648 (B)0。

432 (C)0。

36 (D)0.312(5)已知),(00y x M 是双曲线C :1222=-y x 上的一点,的是双曲线C F F 21,两个焦点,若021<⋅MF MF ,则的取值范围是 (A ))33,33(-(B ))63,63(- (C))322,322(- (D ))332,332(- (6)《九章算术》是我国古代极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?",其意为:“在屋内角处堆放米(如图,米堆是一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的的体积和米堆放的米各为多少?”已知一斛米的体积约为1.62立方尺,圆周率约为3,估算出米堆的米约为(A )14斛 (B)22斛 (C )36斛 (D )66斛 (7)设D 为所在平面内一点ABC ∆,CD BC 3=,则(A )AC AB AD 3431+-= (B )AC AB AD 3431-= (C )AC AB AD 3134+= (D)AC AB AD 3134-=(8)函数)cos()(ϕω+=x x f 的部分图像如图所示,则)(x f 的单调减区间为(A )Z k k k ∈+-,43,41)(ππ (B )Z k k k ∈+-,432,412)(ππ(C )Z k k k ∈+-,43,41)((D)Z k k k ∈+-,432,412)((9)执行右边的程序框图,如果输入的t=0。

2015年高考数学答题模板(高分秘籍--绝密)

2015年高考数学答题模板(高分秘籍--绝密)

2015年高考数学答题策略技巧及答题模板一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。

如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。

当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。

一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。

当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。

一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。

切记不要“小题大做”。

注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。

虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。

多写不会扣分,写了就可能得分。

三、答题思想方法1.函数或方程或不等式的题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15不等式题目注意绝对值的几何意义;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

2015年高考陕西省理科数学真题含答案解析(超完美版)

2015年高考陕西省理科数学真题含答案解析(超完美版)

2015年高考陕西省理科数学真题一、选择题1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .933.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( ) A .5B .6C .8D .104.二项式(1)()nx n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .75.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+ 6. “sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要 7.对任意向量,a b ,下列关系式中不恒成立的是( ) A .|?|||||a b a b ≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22(a b)(a b)a b +-=-8.根据下边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .29.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>10.某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B .1142π- C .112π- D .112π+ 12.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值D .点(2,8)在曲线()y f x =上二、填空题13.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p=15.设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为三、解答题17.C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c . 向量(),3m a b =与()cos ,sin n =A B 平行.()I 求A ; ()II 若7a =,2b =求C ∆AB 的面积.18.如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.()I 证明:CD⊥平面1CA O;()II若平面1A BE⊥平面CDB E,求平面1CA B与平面1CDA夹角的余弦值.19.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:()I求T的分布列与数学期望ET;()II刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.已知椭圆:E22221x ya b+=(0a b>>)的半焦距为c,原点O到经过两点(),0c,()0,b的直线的距离为12c.()I求椭圆E的离心率;()II如图,AB是圆:M()()225212x y++-=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.21.设()nf x是等比数列1,x,2x,⋅⋅⋅,n x的各项和,其中0x>,n∈N,2n≥.()I证明:函数()()F2n nx f x=-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为nx),且11122nn nx x+=+;()II设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()ng x,比较()nf x与()ng x的大小,并加以证明.22.如图,AB切O于点B,直线DA交O于D,E两点,C DB⊥E,垂足为C.()I证明:C D D∠B=∠BA;()II若D3DCA=,C2B=,求O的直径.23.在直角坐标系x yO中,直线l的参数方程为13232x ty t⎧=+⎪⎪⎨⎪=⎪⎩(t为参数).以原点为极点,x轴正半轴为极轴C ()I 写出C 的直角坐标方程;()II P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.2015年高考陕西省理科数学真题答案一、选择题 1.答案:A 解析过程: 由==⇒=2{x }{0,1},M xx M=≤⇒=<≤N {x lg 0}N {x 0x 1}x所以0,1MN ⎡⎤=⎣⎦,选A2.答案:B解析过程:由图可知该校女教师的人数为,选B3.答案:C 解析过程:试题分析:由图像得, 当时,求得, 当时,,选C4.答案:B 解析过程:二项式(1)nx +的展开式的通项是1r rr n T C x +=,令2r =得2x 的系数是2n C ,因为2x 的系数为15,所以215n C =,即2300n n --=,解得:6n =或5n =-,11070%150(160%)7760137⨯+⨯-=+=sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=因为n N +∈,所以6n =,选C 5.答案:D 解析过程:试题分析:由几何体的三视图可知该几何体为圆柱的截去一半, 所以该几何体的表面积为,选 6. 答案:A 解析过程:ααα=⇒-=22cos 20cos sin 0αααα⇒-+=(cos sin )(cos sin )0所以sin cos 或sin =-cos αααα=,选A 7.答案:B 解析过程:因为cos ,a b a b a b a b ⋅=<>≤,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误; 向量的平方等于向量的模的平方,所以选项C 正确;22(a b)(a b)a b +-=-所以选项D 正确,选B8.答案:C 解析过程:初始条件:;第1次运行:;第2次运行:; 第3次运行:;;第1003次运行:; 第1004次运行:.不满足条件,停止运行, 所以输出的,故选 B .9.答案:B 解析过程:()ln p f ab ab ==,()ln22a b a bq f ++==, 11(()())ln ln 22r f a f b ab ab =+==函数()ln f x x =在()0,+∞上单调递增,21121222342πππ⨯⨯+⨯⨯⨯+⨯=+D 2006x =2004x =2002x =2000x =⋅⋅⋅⋅⋅⋅0x =2x =-0?x ≥23110y =+=因为2a b ab +>,所以()()2a bf f ab +>, 所以q p r >=,故选C10.答案:D 解析过程:设该企业每天生产甲、乙两种产品分别为、吨,则利润由题意可列,其表示如图阴影部分区域:当直线过点时,取得最大值, 所以,故选D 11.答案:D解析过程:如图可求得,,阴影面积等于 若,则的概率是,故选B . 12.答案:A 解析过程:假设选项A 错误,则选项B 、C 、D 正确,()2f x ax b '=+, 因为1是()f x 的极值点,3是()f x 的极值,所以(1)0(1)3f f '=⎧⎨=⎩,203a b a b c +=⎧⎨++=⎩,解得23b ac a=-⎧⎨=+⎩,因为点(2,8)在曲线()y f x =上,所以428a b c ++=, 解得:5a =,所以10b =-,8c =, 所以2()5108f x x x =-+x y 34z x y =+32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩340x y z +-=(2,3)A z max 324318z =⨯+⨯=2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤(1,1)A (1,0)B 21111114242ππ⨯-⨯⨯=-||1z ≤y x ≥211142142πππ-=-⨯因为()215(1)10(1)8230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以假设成立,选A 二、填空题 13.答案:5 解析过程:设数列的首项为,则, 所以,故该数列的首项为 14.答案:解析过程:抛物线22(0)y px p =>的准线方程是2px =-, 双曲线221x y-=的一个焦点1(F , 因为抛物线22(0)y px p =>的准线 经过双曲线221x y -=的一个焦点, 所以2p-=p =15.答案:(1,1) 解析过程:因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则, 因为,所以, 所以曲线在点处的切线的斜率, 因为,所以,即,解得, 因为,所以,所以,即的坐标是1a 12015210102020a +=⨯=15a =5xy e =xy e '=xy e =()0,10101x k y e ='===P ()00,x y 00x >001y x =1y x =21y x'=-1y x=P 02201x x k y x ='==-121k k ⋅=-211x -=-201x =01x =±00x >01x =01y =P ()1,116.答案:1.2 解析过程:建立空间直角坐标系,如图所示:原始的最大流量是, 设抛物线的方程为(), 因为该抛物线过点,所以,解得,所以,即, 所以当前最大流量是,故原始的最大流量与当前最大流量的比值是三、解答题 17.答案:(I );(II ).解析过程:(I )因为,所以,由正弦定理,得 又,从而,由于,所以(II)解法一:由余弦定理,得而得,即因为,所以.故ABC 的面积为()11010222162⨯+-⨯⨯=22x py =0p >()5,22225p ⨯=254p =2252x y =2225y x =()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰161.2403=3π332//m n sin 3cos 0a B b A sinAsinB 3sinBcos A 0sin 0B ≠tan 3A 0A π<<3A π=2222cos a b c bc A 7b 2,a 3πA =2742c c 2230c c 0c3c ∆133bcsinA 22解法二:由正弦定理得72sin sin3Bπ=,从而21sin 7B =,又由a b >,知A B >,所以27cos 7B = 故sin sin()C A B =+sin()3B π=+sin coscos sin33B B ππ=+32114=所以ABC ∆的面积为133sin 22bc A = 18.答案:(I )证明见解析;(II )解析过程:(I )在图1中,因为AB=BC=1,AD=2,E 是AD 的中点,BAD=,所以BE AC 即在图2中,BE ,BE OC 从而BE 平面又CD BE ,所以CD 平面. (II)由已知,平面平面BCDE , 又由(1)知,BE ,BE OC所以为二面角的平面角,所以.如图,以O 为原点,建立空间直角坐标系,因为, 所以 63∠2π⊥⊥1OA ⊥⊥1A OC ⊥1A OC 1A BE ⊥⊥1OA ⊥1A OC ∠1--C A BE 1OC 2A π∠=11B=E=BC=ED=1A A BC ED 12222(,0,0),E(,0,0),A (0,0,),C(0,,0),2222B得 ,.设平面的法向量, 平面的法向量,平面与平面夹角为,则,得,取,,得,取, 从而, 即平面与平面夹角的余弦值为 19.答案:()I T 的分布列为:ET=32(分钟)()II解析过程:从而 (分钟) (II)设分别表示往、返所需时间,的取值相互独立,且与T 的分布列相同.22BC(,,0),22122A C(0,)22CD BE (2,0,0)1BC A 1111(,,)n x y z 1CD A 2222(,,)n x y z 1BC A 1CD A θ11100n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩111100x y yz -+=⎧⎨-=⎩1(1,1,1)n 2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩22200xy z =⎧⎨-=⎩2(0,1,1)n =12cos |cos ,|3n n θ=〈〉==1BC A 1CD A 30.910.4400.132⨯+⨯=12,T T 12,T T设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟, 所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:.解法二:故.20.答案:()I 2()II 22x y +=1123解析过程:(I )过点(c,0),(0,b)的直线方程为,则原点O 到直线的距离,由, 得,解得离心率. (II)解法一:由(I )知,椭圆E 的方程为. (1) 依题意,圆心M(-2,1)是线段AB 的中点,且.易知,AB 不与x 轴垂直, 设其直线方程为,代入(1)得设 则 由,得解得. 从而.121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=121212(A)P(70)P(35,40)P(40,35)P T T T T T T 12P(40,40)T T 0.40.10.10.40.10.10.09=⨯+⨯+⨯=(A)1P(A)0.91P 0bx cy bc bcd a ==12d c 2222ab ac 32c a22244x y b |AB |10(2)1yk x 2222(14)8(21)4(21)40k x k k x k b 1122(,y ),B(,y ),A x x 221212228(21)4(21)4,.1414k k k b x x x x k k 124x x 28(21)4,14k k k 12k21282x x b于是. 由,得,解得.故椭圆E 的方程为.解法二:由(I )知,椭圆E 的方程为. (2) 依题意,点A ,B 关于圆心M(-2,1)对称,且.设 则,,两式相减并结合得.易知,AB 不与x 轴垂直,则, 所以AB 的斜率 因此AB 直线方程为, 代入(2)得 所以,.于是. 由,得,解得.故椭圆E 的方程为.21.答案:(I )证明见解析;(II )当时, ,12|AB ||x x =-==|AB |1022)1023b 221123x y 22244x y b |AB |101122(,y ),B(,y ),A x x 2221144x y b 2222244x y b 12124,y 2,x x y 1212-4()80x x y y 12x x ≠12121k .2AB y y x x 1(2)12yx 224820.xx b 124x x 21282x x b 12|AB ||x x =-==|AB |1022)1023b 221123x y 1x ()()n n f x g x当时,,证明见解析.解析过程: (I )则所以在内至少存在一个零点. 又,故在内单调递增,所以在内有且仅有一个零点. 因为是的零点,所以,即,故.(II)解法一:由题设,设当时,当时,若,1x ≠()()n n f x g x 2()()212,n n n F x f x x x x (1)10,n F n 1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-()n F x 1,12⎛⎫⎪⎝⎭n x 1()120n n F x x nx -'=++>1,12⎛⎫⎪⎝⎭()n F x 1,12⎛⎫⎪⎝⎭n x n x ()n F x ()=0n n F x 11201n n nx x 111=+22n n n x x 11().2nn n x g x 211()()()1,0.2nnn n n x h x f x g x x x x x 1x ()()n n f x g x 1x ≠()111()12.2n n n n x h x x nx--+'=++-01x ()11111()22n n n n n n h x x x nx x ----+'>++-11110.22nnn n n n x x若,所以在上递增,在上递减, 所以,即.综上所述,当时, ;当时解法二 由题设,当时,当时, 用数学归纳法可以证明.当时, 所以成立.假设时,不等式成立,即.那么,当时,.又令,则所以当,,在上递减;当,,在上递增. 1x ()11111()22n n n n n n h x xx nx x ----+'<++-11110.22nnn n n n x x ()h x (0,1)(1,)+∞()(1)0h x h ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x 211()1,(),0.2nn n n n x f x x x x g x x 1x ()()n n f x g x 1x ≠()()n n f x g x 2n2221()()(1)0,2f xg x x 22()()f x g x (2)n k k =≥()()k k f x g x +1nk 111k+1k 11()()()2kk kk k k x f x f x x g x x x 12112kk x k x k 11k+121111()22kk kk x k x k kx k x g x 1()11(x 0)kk k h x kx k x ()()11()(k 1)11(x 1)kk k k h x k x k k x k k x --'=+-+=+-01x ()0k h x '<()k h x (0,1)1x ()0kh x '>()k h x (1,)+∞所以,从而故.即,不等式也成立.所以,对于一切的整数,都有.解法三:由已知,记等差数列为,等比数列为,则,,所以, 令当时, ,所以.当时, 而,所以,.若, ,,当,,, 从而在上递减,在上递增.所以,所以当又,,故综上所述,当时, ;当时22.答案:()I 见解析()II 直径为3 解析过程:(Ⅰ)因为是的直径,则,又,所以, 又切于点,得,所以;(Ⅱ)由(Ⅰ)知平分,则, ()(1)0k k h x h 1k+1211()2kk x k x k g x 11()()k k f x g x +1n k 2n ≥()()n n f x g x k a k b k 1,2,, 1.n 111a b 11n n na b x ()11+1(2n)n k x a k k n-=-⋅≤≤1(2),k k b x k n -=≤≤()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤1x =k k a b ()()n n f x g x 1x ≠()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--2k n ≤≤10k 11n k -+≥01x 11nk x ()0k m x '<1x 11nk x()0km x '>()k m x (0,1)()k m x (1,)+∞()(1)0k k m x m 01(2),k k x x a b k n >≠>≤≤且时,11a b 11n n a b ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x DE O 90BED EDB ∠+∠=︒BC DE ⊥90CBD EDB ∠+∠=︒AB O B DBA BED ∠=∠CBD DBA ∠=∠BD CBA ∠3BA ADBC CD==又,从而,由,解得,所以,由切割线定理得,解得, 故,即的直径为3.23.答案:()I 22(-3x y +=()II (3,0)解析过程:(1)由,得,从而有,所以(2)设,又, 则24.已知关于x 的不等式x a b +<的解集为{}24x x <<.()I 求实数a ,b 的值;()II答案:()I a=-3,b=1()II 4 解析过程:(Ⅰ)由,得,由题意得,解得;,时等号成立, 故BC=AB =222AB BC AC =+4AC =3AD =2AB AD AE =⋅6AE =3DE AE AD =-=O ρθ=2sin ρθ=22x y +=(223x y +-=132P t ⎛⎫+⎪⎝⎭C PC ==x a b +<b a x b a --<<-24b a b a --=⎧⎨-=⎩3,1a b =-==+≤4===1t =min4=。

2015高考数学解答题理科及其答案

2015高考数学解答题理科及其答案

2015年普通高等学校招生全国统一考试(上海卷)理19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AB =AD =2,E 、F 分别是棱AB 、BC 的中点.证明A 1、C 1、F 、E 四点共面,并求直线CD 1与平面A 1C 1FE 所成的角的大小.20. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A 、B 、C 三地有直道相通,AB =5千米,AC =3千米,BC =4千米,现甲乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时. 乙到达B 地后在原地等待. 设t =t 1时,乙到达C 地.(1)求t 1与()t f 的值;(2)已知警员的对讲机的有效通话距离是3千米. 当11≤≤t t 时,求()t f 的表达式,并判断()t f 在[t 1,1]上的最大值是否超过3?说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知椭圆1222=+y x ,过原点的两条直线l 1和l 2分别与椭圆交于点A 、B 和C 、D 记得到的平行四边形ACBD 的面积为S .(1)设A (x 1,y 1),C (x 2,y 2). 用A 、C 的坐标表示C 到直线l 1的距离,并证明12212y x y x S -=;(2)设l 1与l 2的斜率之积为21-,求面积S 的值.22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分, 第3小题满分6分.已知数列{}n a 与{}n b 满足112(),*n n n n a a b b n N ++-=-∈.(1)若35,n b n =+且11a =,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0(*)n n a a n N ≥∈,求证:{}n b 的第0n 项是最大项;(3)设10a λ=<,(*)n n b n N λ=∈,求λ的取值范围,使得{}n a 有最大值M 和最小值m ,且使得(2,2).M m∈-23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分, 第3小题满分8分.对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期,已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0,()4.f f T π==(1)验证()sin 3x h x x =+是以6π为余弦周期的余弦周期函数; (2)设a b <,证明对任意[(),()]c f a f b ∈,存在0[,]x a b ∈,使得0()f x c =;(3)证明:“0u 为方程cos ()1f x =在[0,]T 上的解”的充要条件是“0+u T 为方程cos ()1f x =在[,2]T T 上的解”,并证明对任意[0,]x T ∈都有()()()f x T f x f T +=+。

2015届高考理科数学解答题的八个大题模板

2015届高考理科数学解答题的八个大题模板

方达教育学科教师辅导教案学员姓名年 级高三辅导科目数 学授课老师翟 嘉 课时数 2h 第 次课授课日期及时段 2015年 月 日 : — :数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.模板1 三角变换与三角函数的性质问题已知函数f (x )=2cos x ·sin ⎝⎛⎭⎪⎫x +π3-3sin 2x +sinx cos x +1.(1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值及最小值;(3)写出函数f (x )的单调递增区间. 审题路线图 不同角化同角→降幂扩角→化f (x )=A sin(ωx +φ)+h →结合性质求解.解答题的八个答题模板(1)证明 因为a cos 2C2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b , 所以a +c +(a cos C +c cos A )=3b , 故a +c +⎝⎛⎭⎪⎫a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =3b ,整理,得a +c =2b ,故a ,b ,c 成等差数列.(2)解 cos B =a 2+c 2-b 22ac =a 2+c 2-⎝⎛⎭⎪⎫a +c 222ac=3a 2+c 2-2ac 8ac ≥6ac -2ac 8ac =12,因为0<B <π,所以0<B ≤π3.(2014·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.解 (1)由BA →·BC →=2得c ·a cos B =2.又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B .又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-132=223, 由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C = 1-4292=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. 模板3 数列的通项、求和问题已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{a n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .审题路线图 (1)a n b n +1-a n +1b n +2b n +1b n =0→a n +1b n +1-a nb n=2→c n +1-c n =2→c n =2n -1 (2)c n =2n -1→a n =2n -1·3n -1――→错位相减法得S n规 范 解 答 示 例构 建 答 题 模 板解 (1)因为a n b n +1-a n +1b n +2b n +1b n =0(b n ≠0,n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n-1)·3n,相减得-2S n =1+2·(31+32+…+3n -1)-(2n-1)·3n=-2-(2n -2)3n,所以S n =(n -1)3n+1.第一步 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式.第二步 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式.第三步 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等).第四步 写步骤:规范写出求和步骤.第五步 再反思:反思回顾,查看关键点、易错点及解题规范.=11×3+13×5+15×7+…+12n -1×2n +1=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+12×⎝ ⎛⎭⎪⎫12n -1-12n +1=12×⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n =n 2n +1>1 0012 012,得n >1 00110,∴满足T n >1 0012 012的最小正整数n 的值为101.模板4 利用空间向量求角问题(2014·山东)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值. 审题路线图 (1)M 是AB 中点,四边形ABCD 是等腰梯形――→AB =2CDCD ∥AM CD =AM ⇒▱AMC 1D 1→C 1M ∥平面A 1ADD 1(2)CA ,CB ,CD 1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD 的法向量→将所求两个平面所成的角转化为两个向量的夹角规 范 解 答 示 例构 建 答 题 模 板一、选择题(30小题,共60分)(1)证明 因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA .连接AD 1,如图(1). 在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因为C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1. (2)解 方法一 如图(2),连接AC ,MC .由(1)知CD ∥AM 且CD =AM ,所以四边形AMCD 为平行四边形,可得BC =AD =MC ,由题意得∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB .以C 为坐标原点,建立如图(2)所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),D 1(0,0,3),因此M ⎝⎛⎭⎪⎫32,12,0,所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=⎝ ⎛⎭⎪⎫-32,12,0. 设平面C 1D 1M 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -23z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1).又CD 1→=(0,0,3)为平面ABCD 的一个法向量,因此cos 〈CD 1→,n 〉=CD 1→·n|CD 1→||n |=55.所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二 由(1)知平面D 1C 1M ∩平面ABCD =AB , 过点C 向AB 引垂线交AB 于点N , 连接D 1N ,如图(3).由CD 1⊥平面ABCD , 可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1-AB -C 的平面角. 在Rt△BNC 中,BC =1, ∠NBC =60°,可得CN =32.所以ND 1=CD 21+CN 2=152. 第一步 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线.第二步 写坐标:建立空间直角坐标系,写出特征点坐标.第三步 求向量:求直线的方向向量或平面的法向量.第四步 求夹角:计算向量的夹角.第五步 得结论:得到所求两个平面所成的角或直线和平面所成的角.一、选择题(30小题,共60分)。

2015年全国高考理科数学试题及答案-新课标

2015年全国高考理科数学试题及答案-新课标

绝密★启用前2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()(A)-1 (B)0 (C)1 (D)2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B)2007年我国治理二氧化硫排放显现(C)2006年以来我国二氧化硫年排放量呈减少趋势(D)2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

2015年度高考理科数学解答题的八个大题材料模板

2015年度高考理科数学解答题的八个大题材料模板

方达教育学科教师辅导教案学员姓名年级高三辅导科目数学授课老师翟嘉课时数2h 第次课授课日期及时段2015年月日:—:解答题的八个答题模板数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.模板1 三角变换与三角函数的性质问题(1)证明 因为a cos 2C2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b , 所以a +c +(a cos C +c cos A )=3b ,故a +c +⎝ ⎛⎭⎪⎫a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =3b ,整理,得a +c =2b ,故a ,b ,c 成等差数列. (2)解 cos B =a 2+c 2-b 22ac=a 2+c 2-⎝ ⎛⎭⎪⎫a +c 222ac=3a 2+c 2-2ac 8ac ≥6ac -2ac 8ac =12,因为0<B <π,所以0<B ≤π3.(2014·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.解 (1)由BA →·BC →=2得c ·a cos B =2.又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B .又b=3,所以a 2+c 2=9+2×6×13=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧ a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2B =1-132=223,由正弦定理,得sin C =cb sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C = 1-4292=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. 模板3 数列的通项、求和问题已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a nb n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{a n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .审题路线图 (1)a n b n +1-a n +1b n +2b n +1b n =0→a n +1b n +1-a nb n=2→c n +1-c n =2→c n =2n -1(2)c n =2n -1→a n =2n -1·3n -1――→错位相减法得S n规 范 解 答 示 例构 建 答 题 模 板解 (1)因为a n b n +1-a n +1b n +2b n +1b n =0(b n ≠0,n ∈N *), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1, 于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,第一步 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式.第二步 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式.第三步 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等).又数列{a n }是等比数列,∴a 1=a 22a 3=481-227=-23=13-c ,∴c =1.又公比q =a 2a 1=13, ∴a n =-23·⎝ ⎛⎭⎪⎫13n -1=-2·⎝ ⎛⎭⎪⎫13n (n ∈N *). ∵S n -S n -1=(S n -S n -1)(S n +S n -1)=S n +S n -1 (n ≥2).又b n >0,S n >0,∴S n -S n -1=1.∴数列{S n }构成一个首项为1、公差为1的等差数列,S n =1+(n -1)×1=n ,即S n =n 2.当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时,b 1=1也适合此通项公式. ∴b n =2n -1 (n ∈N *). (2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+12n -1×2n +1=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+12×⎝ ⎛⎭⎪⎫12n -1-12n +1=12×⎝⎛⎭⎪⎫1-12n +1=n2n +1.由T n =n 2n +1>1 0012 012,得n >1 00110,∴满足T n >1 0012 012的最小正整数n 的值为101.模板4 利用空间向量求角问题(2014·山东)如图,在四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点. (1)求证:C 1M ∥平面A 1ADD 1; (2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.审题路线图 (1)M 是AB 中点,四边形ABCD 是等腰梯形――→AB =2CDCD ∥AM CD =AM ⇒▱AMC 1D 1→C 1M ∥平面A 1ADD 1(2)CA ,CB ,CD 1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD 的法向量→将所求两个平面所成的角转化为两个向量的夹角规 范 解 答 示 例构 建 答 题 模 板(1)证明 因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA . 连接AD 1,如图(1).在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因为C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1.第一步 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线. 第二步 写坐标:建立空间直角坐标系,写出特征点坐标.第三步 求向量:求直线(2)解 方法一 如图(2),连接AC ,MC .由(1)知CD ∥AM 且CD =AM ,所以四边形AMCD 为平行四边形,可得BC =AD =MC ,由题意得∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB .以C 为坐标原点,建立如图(2)所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),D 1(0,0,3),因此M ⎝ ⎛⎭⎪⎪⎫32,12,0,所以MD 1→=⎝ ⎛⎭⎪⎪⎫-32,-12,3,D 1C 1→=MB→=⎝ ⎛⎭⎪⎪⎫-32,12,0. 设平面C 1D 1M 的一个法向量为n =(x ,y ,z ),由⎩⎨⎧n ·D 1C 1→=0,n ·MD1→=0,得⎩⎪⎨⎪⎧3x -y =0,3x +y -23z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1).又CD 1→=(0,0,3)为平面ABCD 的一个法向量,因此cos 〈CD 1→,n 〉=CD 1→·n|CD 1→||n |=55.所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55.方法二 由(1)知平面D 1C 1M ∩平面ABCD =AB , 过点C 向AB 引垂线交AB 于点N , 连接D 1N ,如图(3).由CD 1⊥平面ABCD , 可得D 1N ⊥AB ,的方向向量或平面的法向量.第四步 求夹角:计算向量的夹角.第五步 得结论:得到所求两个平面所成的角或直线和平面所成的角.已知双曲线x 2a2-y 2b 2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线的离心率e 的取值范围.解 设直线l 的方程为x a +yb=1,即bx +ay -ab =0.由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离d 1=b a -1a 2+b 2,同理可得点(-1,0)到直线l 的距离为d 2=b a +1a 2+b 2,于是s =d 1+d 2=2aba 2+b 2=2ab c.由s ≥45c ,得2ab c ≥45c ,即5ac 2-a 2≥2c 2,可得5e 2-1≥2e 2,即4e 4-25e 2+25≤0,解得54≤e 2≤5. 由于e >1,故所求e 的取值范围是⎣⎢⎢⎡⎦⎥⎥⎤52,5.模板6 解析几何中的探索性问题解(1)依题意,直线AB 的斜率存在,设直线AB 的方程为y =k (x +1),将y =k (x +1)代入x 2+3y 2=5,消去y 整理得(3k 2+1)x 2+6k 2x +3k 2-5=0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧Δ=36k 4-43k 2+13k 2-5>0, ①x 1+x 2=-6k 23k 2+1. ②由线段AB 中点的横坐标是-12,得x 1+x 22=-3k 23k 2+1=-12,解得k =±33,适合①. 所以直线AB 的方程为x -3y +1=0或x +3y +1=0.(2)假设在x 轴上存在点M (m,0),使MA →·MB →为常数.(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1.③所以MA →·MB →=(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2(x 1+1)(x 2+1)=(k 2+1)x 1x 2+(k 2-m )(x 1+x 2)+k 2+m 2. 将③代入,整理得MA →·MB →=6m -1k 2-53k 2+1+m 2=⎝⎛⎭⎪⎫2m -133k 2+1-2m -1433k 2+1+m 2=m 2+2m -13-6m +1433k 2+1.注意到MA →·MB →是与k 无关的常数,从而有6m +14=0,m =-73,此时MA →·MB →=49.(ⅱ)当直线AB 与x 轴垂直时,此时点A 、B 的坐标分别为⎝ ⎛⎭⎪⎪⎫-1,23、⎝ ⎛⎭⎪⎪⎫-1,-23,当m =-73时,也有MA→·MB →=49. 综上,在x 轴上存在定点M ⎝ ⎛⎭⎪⎫-73,0,使MA →·MB →为常数.(2014·福建)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x . (1)求双曲线E 的离心率.(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解 (1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a=2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca=5.(2)方法一 由(1)知,双曲线E 的方程为x 2a2-y 24a 2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a . 又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.解 (1)当a =1时,f (x )=2xx 2+1,f (2)=45,又f ′(x )=2x 2+1-2x ·2x x 2+12=2-2x 2x 2+12,f ′(2)=-625.所以,曲线y =f (x )在点(2,f (2))处的切线方程为y -45=-625(x -2),即6x +25y -32=0.(2)f ′(x )=2a x 2+1-2x 2ax -a 2+1x 2+12=-2x -a ax +1x 2+12.由于a ≠0,以下分两种情况讨论.①当a >0时,令f ′(x )=0,得到x 1=-1a,x 2=a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1a)-1a(-1a,a )a(a ,+∞)f ′(x ) - 0 +0 - f (x )极小值极大值所以f (x )在区间⎝ ⎛⎭⎪⎫-∞,-1a ,(a ,+∞)内为减函数,在区间⎝ ⎛⎭⎪⎫-1a ,a 内为增函数.函数f (x )在x 1=-1a处取得极小值f ⎝ ⎛⎭⎪⎫-1a ,且f ⎝ ⎛⎭⎪⎫-1a =-a 2.函数f (x )在x 2=a 处取得极大值f (a ),且f (a )=1.②当a <0时,令f ′(x )=0,得到x 1=a ,x 2=-1a,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,a ) a(a ,-1a)-1a(-1a,+∞)f ′(x ) +0 - 0 + f (x )极大值极小值所以f (x )在区间(-∞,a ),⎝ ⎛⎭⎪⎫-1a ,+∞内为增函数,在区间⎝ ⎛⎭⎪⎫a ,-1a 内为减函数.函。

2015年全国高考理科数学试题及答案

2015年全国高考理科数学试题及答案

绝密★启用前2015年普通高等学校招生全国统一考试(全国卷2)理科数学注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()(A)-1 (B)0 (C)1 (D)2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

2015届高考理科数学解答题的八个大题模板

2015届高考理科数学解答题的八个大题模板

方达教育个性化一对一辅导学海方舟,教以达人方达教育学科教师辅导教案学员姓名年级高三辅导科目数学授课老师翟嘉课时数2h 第次课授课日期及时段2015 年月日:—:解答题的八个答题模板数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.模板1三角变换与三角函数的性质问题已知函数 f (x)=2cos x·sin x+π2x+sin xcos x+1.-3sin3(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值及最小值;(3)写出函数f(x)的单调递增区间.审题路线图不同角化同角→降幂扩角→化f(x)=Asin(ωx+φ)+h→结合性质求解.规范解答示例构建答题模板13解f( x) 2cos x=sin x+2cosx3sin-2 2x)+1=sin 2x+3cos 2x+1第一步化简:三角函数式的化简,一般化成y=A sin( ωx+φ) +h 的形式,即化为“一角、一次、一函数”的形式.2=2sin xcos x+3(cosx-sinπ=2sin 2x++1.3第二步整体代换:将ωx+φ看作一(1)函数f(x)的最小正周期为2π=π.2个整体,利用y=sin x,y=cos x 的性质确定条件.π(2)∵-1≤sin 2x+≤1,∴-1≤2sin 2x+3 π+1≤ 3.3第三步求解:利用ωx+φ的范围求∴当2x+π=3ππ+2kπ,k∈Z,即x=+kπ,k∈Z时,f( x)取2 12条件解得函数y=A sin( ωx+φ) +h的性质,写出结果.得最大值3;π当2x+=-3 π+2kπ,k∈Z,即x=-25π+kπ,k∈Z时,f(x)12第四步反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性.方达教育辅导教案第 1 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人取得最小值- 1.(3)由-π+2kπ≤2x+2π≤3π+2kπ,k∈Z,得-25π+kπ≤x≤12π+12kπ,k∈Z.∴函数f (x)的单调递增区间为-5ππ+kπ,+kπ(k∈Z).12 12(2014福·建)已知函数f(x)=cos x(sin x+cos x)-1 2.π,且sin α=(1)若0<α<22,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.2π解方法一(1) 因为0<α< ,sin α=22,所以cos α=22.所以f(α)=22×(22+22)-21 1=.2 2(2)因为f(x)=sin xcos x+cos2x-12x-1=2 12sin 2x+1+cos 2x-21 1=2sin 2x+212cos 2x=2 π2 sin(2 x+4),2π所以T==π.2由2kπ-ππ3πππ≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.2 4 2 8 8所以f (x)的单调递增区间为[kπ-3ππ,kπ+],k∈Z.8 81 12x-方法二f(x)=sin xcos x+cos=sin 2x+2 2 1+cos 2x 1-=2 212sin 2x+12cos 2x=2sin(2 x+2π).4π,sin α=(1)因为0<α<22,所以α=2π,从而f(α)=422 sin(2α+π4)=2 3π2 sin4=12.2π(2)T==π.2由2kπ-πππ3ππ≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.2 4 2 8 8所以f (x)的单调递增区间为[kπ-3ππ,kπ+],k∈Z.8 8模板2解三角形问题2C 2A 在△ABC 中,若acos +ccos =2 23 2 b.(1)求证:a,b,c 成等差数列;(2) 求角B 的取值范围.审题路线图(1) 化简变形―→用余弦定理转化为边的关系―→变形证明(2) 用余弦定理表示角―→用基本不等式求范围―→确定角的取值范围方达教育辅导教案第 2 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人规范解答示例构建答题模板2C 2A 1+cos C(1) 证明因为acos ++ccos =a·2 2 2第一步定条件:即确定三角形中的已知和1+cos A c·=2 3b,2所求,在图形中标注出来,然后确定转化的方向.所以a+c+( a cos C+ccos A)=3b,2+b2-c2 2+c2-a2a b故a+c+a·+c·2ab 2bc =3b,第二步定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化.整理,得a+c=2b,故a,b,c 成等差数列.第三步求结果.(2) 解cos B=2+c2-a+ca2+c2-b2a 2=2ac 2ac2 第四步再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全2+c2 -2ac3 a6ac-2ac=8acπ.3=≥8ac因为0< B<π,所以0<B≤12,部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形.→→(2014辽·宁)在△ABC 中,内角A,B,C 的对边分别为a,b,c,且a>c,已知BA·BC =2,cos B=13,b=3.求:(1) a 和c 的值;(2)cos( B-C)的值.→→解(1)由BA =2 得c·acos B=2.又cos B=·BC 13,所以ac=6.由余弦定理,得a2+c2=b2+2accos B.又b=3,2+c2=b2+2accos B.又b=3,所以a =13.解2+c2=9+2×6×12+c2=9+2×6×13 ac=6,2+c2=13,a得a=2,c=3或a=3,c=2.因为a>c,所以a=3,c=2.(2)在△ABC 中,sin B=1-cos2B=1-2B=1-132=22,,3c由正弦定理,得sin C=bsin B=2 2 2×=3 34 29 .因为a=b> c,所以 C 为锐角,2因此cos C=1-sinC=1-4 292=79.于是cos(B-C)=cos Bcos C+sin Bsin C=17×+3 92 23×4 29=23.27模板3数列的通项、求和问题* )满足a n b n已知首项都是 1 的两个数列{ a n} ,{b n}( b n≠0,n∈N+1-a n+1b n+2b n+1b n=0.a n(1)令c n=,求数列{ a n} 的通项公式;b nn-1,求数列{ a (2)若b n=316 页)方达教育辅导教案第 3 页(共方达教育个性化一对一辅导学海方舟,教以达人审题路线图(1) a n b n+1-a n+1b n+2b n+1b n=0 →a n+1+1-b n+1a nb n=2 →c n+1-c n=2 →c n=2n-1错位相减法n-1 ――→(2) c n=2n-1 →a n=2n-1 ·3得S n规范解答示例构建答题模板解(1)因为a n b n+1-a n+1b n+2b n+1b n=0(b n≠0,n∈N*),第一步找递推:根据已知条件确定数列相所以a n+1-b n+1+1a n=2,即c n+1-c n=2,b n邻两项之间的关系,即找数列的递推公式.第二步求通项:根据数列递推公式转化为所以数列{c n} 是以首项c1=1,公差d=2 的等差数等差或等比数列求通项公式,或利用累加法列,故c n=2n-1.或累乘法求通项公式.n-1 知a n-1,(2)由b n=3 n=c n b n=(2n-1)3第三步定方法:根据数列表达式的结构特于是数列{a n} 的前n 项和S n=1·30+3·31+5·32+,0+3·31+5·32+,征确定求和方法(如公式法、裂项相消法、n-1,+(2n-1) ·3错位相减法、分组法等).1+3·32+, +(2n-3) ·3n-1+(2n-1) ·3n,3S n=1·3第四步写步骤:规范写出求和步骤.相减得-2S n=1+2·(31+32+,+3n-1)-(2n-1+32+, +3n-1)-(2n-第五步再反思:反思回顾,查看关键点、n=-2-(2n-2)3n,1) ·3所以S n=(n-1)3n+1.n+1.易错点及解题规范.已知点1,13是函数f( x)=a x (a>0,且a≠1)的图象上的一点.等比数列{a n} 的前n 项和为f(n)-c.数列{ b n} ( b n>0) 的首项为c,且前n 项和S n 满足S n-S n-1=S n+S n-1 (n≥2).(1)求数列{ a n} 和{b n} 的通项公式;(2)若数列1b n b n+11 001的前n 项和为T n,问满足T n> 的最小正整数n 是多少?2 012解(1)∵f(1)=a=1,∴f( x)=313x.1由题意知,a1=f(1)-c=-c,a2=[ f(2)-c]-[f(1) -c] =-3 29,a3=[f (3)-c]-[f(2)-c]=-23.422a 81又数列{ a n}是等比数列,∴a1===-a3 2-27 23=1a2 1-c,∴c=1.又公比q==,3 a1 3∴a n=-23·13n-1=-2·13n *(n∈N).∵S n-S n-1=( S n-S n-1)( S n+S n-1)=S n+S n-1 (n≥2).方达教育辅导教案第 4 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人又b n>0,S n>0,∴S n-S n-1=1.2. ∴数列{ S n} 构成一个首项为1、公差为 1 的等差数列,S n=1+(n-1)×1=n,即S n=n当n≥ 2 时,b n=S n-S n-1=n 1=1 也适合此通项公式.2-(n-1)2=2n-1,当n=1 时,b*∴b n=2n-1 (n∈N).(2)T n=1+b1b21+b2b31+, +b3b41b n b n+1=1 1++1×3 3×51+, +5×712n-1 ×2n+1=12×1-131+×21 1-3 5+12×1 1-5 7+, +12×1 1-2n-1 2n+112=×1-12n+1n=.2n+1 n 1 001 1 001由T n=,得n>2n+1 2 012 10> ,1 001∴满足T n>的最小正整数n 的值为101.2 012模板4利用空间向量求角问题(2014·山东)如图,在四棱柱ABCD-A1B1C1D1 中,底面ABCD 是等腰梯形,∠DAB=60°,AB=2CD=2,M 是线段A B 的中点.(1)求证:C1M∥平面A1ADD 1;(2)若CD1 垂直于平面ABCD 且CD 1=3,求平面C1D1M 和平面ABCD 所成的角(锐角)的余弦值.AB=2CD审题路线图(1) M是AB中点,四边形ABCD是等腰梯形――→CD∥AM CD=AM ? ?AMC 1D 1→C1M∥平面A1ADD1(2) CA,CB,CD1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD的法向量→将所求两个平面所成的角转化为两个向量的夹角规范解答示例构建答题模板第一步找垂直:找出(或(1)证明因为四边形ABCD 是等腰梯形,且AB=2CD,所以AB∥DC. 作出)具有公共交点的三又由M 是AB 的中点,因此CD∥MA 且CD=MA.条两两垂直的直线.连接A D1,如图(1).第二步写坐标:建立空在四棱柱ABCD-A1B1C1D1 中,间直角坐标系,写出特征因为CD∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D 1 点坐标.为平行四边形,因为C1M∥D1A. 第三步求向量:求直线方达教育辅导教案第 5 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人又C1M? 平面A1ADD 1,D1A? 平面A1ADD 1,所以C1M∥平面A1ADD 1. 的方向向量或平面的法(2)解方法一如图(2),连接AC,MC .由(1)知向量.CD∥AM 且CD=AM,第四步求夹角:计算向所以四边形AMCD 为平行四边形,可得BC=AD=量的夹角.MC,第五步得结论:得到所由题意得∠ABC=∠DAB=60°,所以△MBC 为正三求两个平面所成的角或角形,因此AB=2BC=2,CA=3,因此CA⊥CB.直线和平面所成的角.以C 为坐标原点,建立如图(2)所示的空间直角坐标系C-xyz,所以A( 3,0,0),B (0,1,0),D1(0,0,3),因此M3,212→,0 ,所以MD 1=-3,-212→→, 3 ,D1C1=MB=-3 1,,0 .2 2设平面C1D1M 的一个法向量为n=(x,y,z),由→=0,n·D1C1→=0,n·MD 1得3x-y=0,3x+y-2 3z=0,可得平面C1D1M 的一个法向量n →→=(1,3,1).又CD 1=(0,0,3)为平面ABCD 的一个法向量,因此cos〈CD1,→CD 1·n n〉==→|CD1||n|55 .所以平面C1D1M 和平面ABCD 所成的角(锐角)的余弦值为5.5方法二由(1)知平面D1C1M ∩平面ABCD=AB,过点 C 向AB 引垂线交AB 于点N,连接D1N,如图(3).由CD1⊥平面ABCD,可得D1N⊥AB,因此∠D1NC 为二面角C1-AB-C 的平面角.在Rt△BNC 中,BC=1,∠NBC=60°,可得CN= 3.所以ND1=2CD2=1521+CN.23所以Rt△D1CN 中,cos∠D1NC=CN=D1N2=1525,5方达教育辅导教案第 6 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人所以平面C1D1M 和平面ABCD 所成的角(锐角)的余弦值为5 . 5如图所示,在直三棱柱A1B1C1-ABC 中,AB⊥AC,AB=AC=2,A1A=4,点 D 是BC 的中点.(1)求异面直线A1B 与C1D 所成角的余弦值;(2)求平面ADC1 与平面ABA1 所成二面角的正弦值.→→→解(1)以A 为坐标原点,分别以AB,AC,AA1为x 轴,y 轴,z轴的正方向建立空间直角坐标系A-xyz,则A(0,0,0),B (2,0,0),C (0,2,0),A1(0,0,4),D (1,1,0),C1(0,2,4).→→所以A1B=(2,0,-4),C1D=(1,-1,-4).→→所以cos〈A1B,C1D〉=→→A1B·C1D=→→|A1B|×|C1D|18 3 10=.1020×18所以异面直线A1B 与C1D 所成角的余弦值为310.10→=(0,2,0)是平面ABA1 的一个法向量.(2)由题意,知AC→设平面ADC 1的法向量为m=(x,y,z),因为AD →=(1,1,0),AC1=(0,2,4),→由m⊥AD→,m⊥AC1,得x+y=0,2y+4z=0.取z=1,得y=-2,x=2,所以平面ADC1 的一个法向量为m=(2,-2,1).设平面ADC 1与平面ABA1 所成二面角为θ,→-4→AC·m 2所以|cos θ|=|cos〈AC,m〉|=| ,得sin θ=|=| |=→2× 3 3|AC |×|m|5 . 3所以平面ADC1 与平面ABA1 所成二面角的正弦值为 5.3模板5圆锥曲线中的范围问题方达教育辅导教案第7 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人椭圆 C 的中心为坐标原点O,焦点在y 轴上,短轴长为2,离心率为2,直线l 与y 轴交于点2→→=3PB P(0,m),与椭圆 C 交于相异两点A,B,且AP .(1)求椭圆 C 的方程;(2)求m 的取值范围.审题路线图(1) 设方程→解系数→得结论→→=3PB (2) 设l:y=kx+m →l,c相交Δ>0得m,k的不等式→AP →得m,k关系式→代入m,k的不等式消k →得m范围规范解答示例构建答题模板解(1) 设椭圆 C 的方程为2y2+a2x2=1(a>b>0),b设c>0,c2=a2-b2,由题意,知2b =2,c2=a2-b2,由题意,知2b=2,c=a2 ,2所以a=1,b=c=22 x2 2 2=1,即y +2x =1.2 .故椭圆 C 的方程为y +1第一步提关系:2 从题设条件中提取(2)设直线l 的方程为y=kx+m( k≠0),l 与椭圆 C 的交点坐标为A(x1,y1),不等关系式.B(x2,y2),由y=kx+m,2+y2=1,2x得(k2+2) x2+2kmx+(m2-1)=0,2+2) x2+2kmx+(m2-1)=0,第二步找函数:用一个变量表示目2-4( k2+2)(m2-1)=4(k2-2m2+2)>0,(*)Δ=(2 k m)标变量,代入不等x1+x2=-2km2- 1m→→2+2 ,x=3PB,所以-x1=3x2,1x2=2+2 .因为APk k关系式.第三步得范围:所以x1+x2=-2x2,x1x2=-3x22.所以3(x1+x2)2+4x1x2=0.2+4x1x2=0.通过求解含目标变所以3·-2km2+2k2- 1m2+4·2+2 =0.k量的不等式,得所求参数的范围.2m2+2m2-k2-2=0,即k2(4m2-1)+(2m2-2)=0.整理得4k第四步再回顾:当m2=12=1时,上式不成立;4注意目标变量的范2 当m≠142时,k=22-2m2-1,4m围所受题中其他因素的制约.22>2 m2-2,又k≠0,所以k2=2-2m由(*) 式,得k2-1>0.4m解得-1< m<-1 1或<m<1.即所求m 的取值范围为-1,-2 212∪12,1 .方达教育辅导教案第8 页(共16 页)方达教育个性化一对一辅导 学海方舟,教以达人已知双曲线 22x y2-2= 1(a>1,b>0)的焦距为 2c ,直线 l 过点 (a ,0)和 (0, b),且点 (1,0)到直线 l 的距 a b离与点 (- 1,0)到直线 l 的距离之和 s ≥ 45c ,求双曲线的离心率 e 的取值范围.解 设直线 l 的方程为 x y+=1,即 bx + ay -ab =0. a b由点到直线的距离公式,且 a>1,得到点 (1,0)到直线 l 的距离 d 1= b a -1 , 2+b 2 a同理可得点 (-1,0)到直线 l 的距离为 d 2= b a +1 ,于是 s =d 1+d 2= 2+b 2a2ab2ab = c .2+ b 2 a 由 s ≥ 4 5c ,得 2ab ≥ c4 2- a 2≥ 2c 2,可得5 e 2-1≥ 2e 2,即 4e 4-2 5e 2+25≤ 0,解得 5 ≤ e2≤ 5. 5c ,即 5a c4 由于 e>1,故所求 e 的取值范围是 5, 5 .2 模板 6 解析几何中的探索性问题已知定点 C(-1,0)及椭圆x2+3y 2=5,过点C 的动直线与椭圆相交于 A ,B 两点.(1)若线段A B 中点的横坐标是-12,求直线 AB 的方程; → →为常数?若存在,求出点 M 的坐标;若不存在,请说明理由.(2)在 x 轴上是否存在点 M ,使 MA ·MB→ →审题路线图设 AB 的方程 y =k(x +1)→待定系数法求 k → 写出方程;设 M 存在即为 (m,0)→求MA·MB →在→ → 为常数的条件下求 m.MA ·MB规范 解 答 示 例构 建 答 题 模 板解 (1)依题意,直线 AB 的斜率存在,设直线AB 的方程为 y = k(x +1),将第一步先假定:假2+3y 2=5,消去y 整理得 (3k 2+1)x 2+6k 2x +3k 2-5=0.y =k(x + 1)代入 x设结论成立. 4-4 3k 2+13k 2-5 >0,①Δ= 36k第二步 再推理:以设 A (x 1,y 1),B(x 2, y 2),则x 1+x 2=-26k2+ 1. ② 3k假设结论成立为条由线段A B 中点的横坐标是-1 2 ,得x 1+ x 2 =- 2 23k =- 2+1 3k1 3 ,解得 k =± ,23 件,进行推理求解. 第三步下结论:若适合 ①.推出合理结果,经验所以直线AB 的方程为x-3y+1=0 或x+3y+1=0.→→(2) 假设在x 轴上存在点M (m,0),使MA·MB为常数.(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x1+x2=-26k,x1x2=2+13k2-53k3k2+1.证成立则肯定假设;若推出矛盾则否定假设.第四步再回顾:查③方达教育辅导教案第9 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人→→所以MA =(x1-m)( x2-m)+y1y2=(x1-m)( x2-m)+k·MB2(x1+1)(x2+1)看关键点,易错点=(k 1x2+(k 1+x2)+k2+1)x 2-m)( x 2+m2.2+1)x 2-m)( x 2+m2.(特殊情况、隐含条→→将③代入,整理得MA·MB件等),审视解题规=2- 56m-1 k2=2+1 +m3k12+1 -2m-142m-3 3k32=m2+2m-12+1 + m-3k 3范性.6m+14→→是与k 无关的常数,从而有6m+14=0,m=-2+1 .注意到MA·MB3 3k 7 3 ,→→此时MA=·MB 4 . 9(ⅱ)当直线AB 与x 轴垂直时,此时点A、B 的坐标分别为-1,23、-1,-23,当m=-73→→时,也有MA=·MB44.综上,在x 轴上存在定点M -7→,0 ,使MA3→·MB 为常数.2x(2014福·建)已知双曲线E:2-2-a2y2=1(a>0,b>0)的两条渐近线分别为l1:y b=2x,l2:y=-2x.(1)求双曲线 E 的离心率.(2)如图,O 为坐标原点,动直线l 分别交直线l1,l2 于A,B 两点(A,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E?若存在,求出双曲线 E 的方程;若不存在,说明理由.解(1)因为双曲线 E 的渐近线分别为y=2x,y=-2x,所以ba=2,所以2-a2c=2,故c=5a,ac从而双曲线 E 的离心率e== 5.a(2)方法一由(1)知,双曲线 E 的方程为2 2x y2-2=1.设直线l 与x 轴相交于点 C.a 4a当l⊥x 轴时,若直线l 与双曲线 E 有且只有一个公共点,则|OC |=a,|AB|=4a.又因为△OAB 的面积为8,所以1|OC | |·AB|=8,因此2 12a·4a=8,解得a=2,此时双曲线 E 的方程为2 2x y-=1.若存在满足条件的双曲线E,则E 的方程只能为4 162x-42y=1.162 2x y以下证明:当直线l 不与x 轴垂直时,双曲线E:=1 也满足条件.4 16-方达教育辅导教案第10 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人m设直线l 的方程为y=kx+m,依题意,得k>2 或k<-2,则C(-,0).k记A(x1,y1),B( x2,y2).由y=kx+m,y=2x,得y1=2m 2m,同理,得y2=.2-k 2+k由S△OAB =12|OC| ·|y1-y2|,得12|-m2m| ·|-k 2-k2m|=8,2+ky=kx+m,即m2=4|4-k2|=4( k2-4).由2=4|4-k2|=4( k2-4).由2x-42y=1,162)x2-2kmx-m2-16=0.得(4-k2<0,所以Δ=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16).因为4-k又因为m2=4( k2-4),所以Δ=0,即l 与双曲线 E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E,且 E 的方程为2x-42y=1.16方法二由(1)知,双曲线 E 的方程为2x2-a2y2=1.设直线l 的方程为x=my+t,A( x1,y1),B(x2,y2).4a依题意得-1 12<m< 2.由x=my+t,y=2x,2t得y1=,同理,得y2=1-2m-2t.设直线l 与x 轴相交于点C,则C(t,0).1+2m由S△OAB =11-y2|=8,得2|OC| |·y12 |t| ·2t 2t+1-2m 1+2m=8.所以t2=4|1-4m2|=4(1-4m2).2=4|1-4m2|=4(1-4m2).x=my+t,由 2 2x y2-2=1,a 4a2 2 2 2得(4m -1)y +8mty+4(t -a)=0.2 2 因为4m -1<0,直线l 与双曲线 E 有且只有一个公共点当且仅当Δ=64mt 2 2 2 2-16(4m -1)(t -a)=0,2a2+t2-a2=0,即4m2a2+4(1-4m2)-a2=0,即(1-4m2)( a2-4)=0,所以a2=4,即4m因此,存在总与l 有且只有一个公共点的双曲线E,且 E 的方程为2x-42y=1.16方法三当直线l 不与x 轴垂直时,设直线l 的方程为y=kx+m,A( x1,y1),B(x2,y2).依题意,得k>2 或k<-2.由y=kx+m,2-y2=0,4x2)x2-2kmx-m2=0.得(4-k2<0,Δ>0,所以x1x2=因为4-k2-m2.又因为△OAB 的面积为8,所以4-k12|OA | ·|OB| ·s in∠AOB=8,又易知sin∠AOB=45,所以252x2-m2=4,得m2=4(k2-4).4-k由(1)得双曲线 E 的方程为2 2x y2-2=1,由a 4ay=kx+m,2 2x y2-2=1,a 4a2)x2-2 k mx-m2-4a2=0.得(4-k2<0,直线l 与双曲线 E 有且只有一个公共点当且仅当Δ=4k2m2+4(4-k2)( m2+4a2)=0,因为4-k方达教育辅导教案第11 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人22即(k=1.2-4)(a 2-4)=0,所以 a 2=4,所以双曲线 E 的方程为 x- y 4 16当 l ⊥x 轴时,由 △OAB 的面积等于 8 可得 l :x =2,又易知 l :x =2 与双曲线 E : 2 x- 4 2y =1 有且只有一个公共点. 16综上所述,存在总与 l 有且只有一个公共点的双曲线 E ,且 E 的方程为2 x - 4 2 y =1. 16模板 7 离散型随机变量的均值与方差甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6 道备选题中一次性抽取3 道题独立作答,然后由乙回答剩余3 题,每人答对其中 2 题就停止答题,即闯关成功.已知在6 道备选题中,甲能答对其中的 4 道题,乙答对每道题的概率都是 2 5.(1)求甲、乙至少有一人闯关成功的概率; (2)设甲答对题目的个数为 ξ,求 ξ的分布列及均值.审题路线图(1) 标记事件 → 对事件分解 → 计算概率(2) 确定 ξ取值 → 计算概率 → 得分布列 → 求数学期望规 范 解 答 示 例构 建 答 题 模 板解 (1)设甲、 乙闯关成功分别为事件A 、B ,则 P( A )= 1 2C 4·C2 3C6=4 1 = , 20 5第一步 定元: 根据已知条件确定离散型随机变量的取值.2222= 1 3+C 1 +P( B )=(1- ) (1- )3·3 3 3 27 2 9= 7 , 27第二步定性: 明确每个随机变量取值所对应的事件.则甲、乙至少有一人闯关成功的概率是1 5 1-P( A ·B )=1-P( A ) ·P ( B )=1- × 7 128= .27 135第三步 定型: 确定事件的概率模型和计算公式.(2)由题意知 ξ的可能取值是 1,2.第四步 计算: 计算随机变量1 2 2 132+C C 4C1 C 4C 24,P(ξ=2)=P(ξ=1)== = 33C5C6645,则 ξ的分布列为取每一个值的概率.第五步列表:列出分布列.ξ 1 2P 1545第六步求解:根据均值、方差公式求解其值.∴E(ξ)=1×15+2×45=93.方达教育辅导教案第12 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人已知一个袋中装有 3 个白球和 3 个红球,这些球除颜色外完全相同.(1)每次从袋中取一个球,取出后不放回,直到取到一个红球为止,求取球次数ξ的分布列和数学期望E(ξ);(2)每次从袋中取一个球,取出后放回接着再取一个球,这样取 3 次,求取出红球次数η的数学期望E(η).审题路线图取到红球为止→取球次数的所有可能1,2,3,4→求对应次数的概率→列分布列→求E(ξ).取出后放回,这是条件→每次取到红球的概率相同→三次独立重复试验→利用公式.规范解答示例构建答题模板1 解(1)ξ的可能取值为1,2,3,4.P(ξ=1)=3=1,P(ξ=2)=A3A26 2 A6 13=3×36×5第一步:确定离散型随机变量的所有可能值.=3,10第二步:求出每个可能2A 3AP(ξ=3)=3A6 133×2×3 3==,6×5×4 20值的概率.第三步:画出随机变量3A 3A P(ξ=4)=4A6 133×2×3==6×5×4×31.20的分布列.第四步:求期望和方差.故ξ的分布列为第五步:反思回顾.查ξ 1 2 3 4看关键点、易错点及解1 3 3 1P2 10 20 20 题规范.如本题可重点1 数学期望E(ξ)=1×+2×23 3 1+3×+4×=10 20 2076.查看随机变量的所有可能值是否正确;根据分(2) 取出后放回,取球 3 次,可看作 3 次独立重复试验,所以η~B(3,1 12),所以E(η)=3×2=34.布列性质检查概率是否正确.模板8函数的单调性、极值、最值问题已知函数 f (x)=2+12ax-a2+1 (x∈R).其中a∈R.x(1)当a=1 时,求曲线y=f(x)在点(2,f(2)) 处的切线方程;(2)当a≠0 时,求函数f(x)的单调区间与极值.审题路线图16 页)方达教育辅导教案第13 页(共规范解答示例构建答题模板方达教育辅导教案第14 页(共16 页)解(1)当a=1 时,f(x)=2+1 -2x·2x2+1 2 =2x 4 2 x2+1,f(2)=,又f′(x)=x 5 x22-2x2+1 2,f′(2)x=-6.所以,曲线y=f( x)在点(2,f(2))处的切线方程为y-2545=-6(x-2),即6x+2525y 320.-=2ax(2)f′(x)=f (x)的导数f′(x).注讨论.①当a>0 时,令f′(x)=0,得到x1=-1a,x2=a.意f( x)的定义域.第二步解方程:解当x 变化时,f′(x),f (x)的变化情况如下表:f′(x)=0,得方程的x (-∞,-1a) -1a1a,a) a (a,+∞)(-根.第三步列表格:利f′(x) -0 +0 -用f′(x)=0 的根将f(x) 极小值极大值所以f(x)在区间-∞,-1a,(a,+∞)内为减函数,在区间-1,a 内为增函数.函af (x)定义域分成若干个小开区间,并列出数f(x)在x1=-1a处取得极小值 f -1a1a,且f -2.函数f(x)在x2=a 处取得极大=-a表格.第四步得结论:从值f(a),且f(a)=1.②当a<0 时,令f′(x)=0,得到x1=a,x2=-1a,表格观察f(x)的单调性、极值、最值等.当x 变化时,f′(x),f (x)的变化情况如下表:第五步再回顾:对x (-∞,a) a (a,-1a) -1a (-1a,+∞)需讨论根的大小问题要特殊注意,另外f′(x) +0 -0 +观察f(x)的间断点及f(x) 极大值极小值1所以f(x)在区间(-∞,a),-,+∞内为增函数,在区间a,-a 1a内为减函数.函步骤规范性.数f(x)在x1=a 处取得极大值f(a),且f(a)=1.函数f( x)在x2=-1a处取得极小值f(-1a),且f -1a2.=-a2x-be-2x-cx( a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f (x) (2014重·庆)已知函数f(x)=ae在点(0,f(0))处的切线的斜率为4-c.方达教育辅导教案第15 页(共16 页)方达教育个性化一对一辅导学海方舟,教以达人(1)确定a,b 的值;(2)若c=3,判断f(x)的单调性;(3)若f(x)有极值,求 c 的取值范围.解(1)对f(x)求导,得f′(x)=2ae2x+2b e-2x-c,由f′(x)为偶函数,知f′(-x)=f′(x)恒成立,即2(a-b) ·(e)=0 恒成立,所以a=b.2x-e-2x又f′(0)=2a+2b-c=4-c,故a=1,b=1.2x-e-2x-3x,那么 (2)当c=3 时,f( x)=e2x+2e -2x-3=1>0,f′(x)=2e-2x-3≥ 2 2e2x·2e故f(x)在R上为增函数.2x+2e-2x-c,而2e2x+2e(3)由(1)知f′( x)=2e-2x≥ 2 2e2x·2e-2x=4,当x=0 时等号成立.下面分三种情况进行讨论.当c<4 时,对任意x∈R,f′( x)=2e2x+2e-2x-c>0,此时f(x)无极值;当c=4 时,对任意x≠0,f′(x)=2e2x+2e-2x-4>0,此时f(x)无极值;当c>4 时,令e-c=0 有两根t1,2=2x=t,注意到方程2t+22x=t,注意到方程2t+2t2-16c±c>0,即f′(0)=0 有两个根4x1=1 1ln t1,x2=ln t2.当x1<x<x2 时,f′(x)<0;2 2又当x>x2 时,f′(x)>0,从而f( x)在x=x2 处取得极小值.综上,若f(x)有极值,则c的取值范围为(4,+∞).16 页)方达教育辅导教案第16 页(共。

2015届高考理科数学解答题的八个大题模板

2015届高考理科数学解答题的八个大题模板

方达教育学科教师辅导教案学员姓名 年 级高三 辅导科目数 学授课老师翟 嘉课时数2h第 次课授课日期及时段 2015年 月 日 : — :数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.模板1 三角变换与三角函数的性质问题已知函数f (x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x +1. (1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值及最小值;(3)写出函数f (x )的单调递增区间. 审题路线图 不同角化同角→降幂扩角→化f (x )=A sin(ωx +φ)+h →结合性质求解.规 范 解 答 示 例构 建 答 题 模 板解答题的八个答题模板(2014·山东)如图,在四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点. (1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值. 审题路线图 (1)M 是AB 中点,四边形ABCD 是等腰梯形――→AB =2CDCD ∥AM CD =AM ⇒▱AMC 1D 1→C 1M ∥平面A 1ADD 1(2)CA ,CB ,CD 1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD 的法向量→将所求两个平面所成的角转化为两个向量的夹角规 范 解 答 示 例构 建 答 题 模 板(1)证明 因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA . 连接AD 1,如图(1).在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因为C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1.第一步 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线. 第二步 写坐标:建立空间直角坐标系,写出特征点坐标.第三步 求向量:求直线的方向向量或平面的法向量.(2)解 方法一 如图(2),连接AC ,MC .由(1)知CD ∥AM 且CD =AM ,所以四边形AMCD 为平行四边形,可得BC =AD =MC ,由题意得∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB .以C 为坐标原点,建立如图(2)所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),D 1(0,0,3), 因此M ⎝⎛⎭⎫32,12,0,所以MD 1→=⎝⎛⎭⎫-32,-12,3,D 1C 1→=MB →=⎝⎛⎭⎫-32,12,0.设平面C 1D 1M 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎪⎨⎪⎧3x -y =0,3x +y -23z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1).又CD 1→=(0,0,3)为平面ABCD 的一个法向量,因此cos 〈CD 1→,n 〉=CD 1→·n |CD 1→||n |=55.所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二 由(1)知平面D 1C 1M ∩平面ABCD =AB , 过点C 向AB 引垂线交AB 于点N , 连接D 1N ,如图(3).由CD 1⊥平面ABCD , 可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1-AB -C 的平面角. 在Rt △BNC 中,BC =1, ∠NBC =60°,可得CN =32.所以ND 1=CD 21+CN 2=152. 第四步 求夹角:计算向量的夹角.第五步 得结论:得到所求两个平面所成的角或直线和平面所成的角.③所以MA→·MB→=(x1-m)(x2-m)+y1y2=(x1-m)(x2-m)+k2(x1+1)(x2+1)=(k2+1)x1x2+(k2-m)(x1+x2)+k2+m2.将③代入,整理得MA→·MB→=(6m-1)k2-53k2+1+m2=⎝⎛⎭⎫2m-13(3k2+1)-2m-1433k2+1+m2=m2+2m-13-6m+143(3k2+1).注意到MA→·MB→是与k无关的常数,从而有6m+14=0,m=-73,此时MA→·MB→=49.(ⅱ)当直线AB与x轴垂直时,此时点A、B的坐标分别为⎝⎛⎭⎫-1,23、⎝⎛⎭⎫-1,-23,当m=-73时,也有MA→·MB→=49.综上,在x轴上存在定点M⎝⎛⎭⎫-73,0,使MA→·MB→为常数.第四步再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性.(2014·福建)已知双曲线E:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率.(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.解 (1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以ba =2,所以c 2-a 2a=2,故c =5a , 从而双曲线E 的离心率e =ca= 5.(2)方法一 由(1)知,双曲线E 的方程为x 2a 2-y 24a 2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a . 又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C (-mk,0).记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x ,得y 1=2m 2-k ,同理,得y 2=2m2+k .由S △OAB =12|OC |·|y 1-y 2|,得12|-m k |·|2m 2-k -2m2+k|=8,即m 2=4|4-k 2|=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1,得(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点. 因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二 由(1)知,双曲线E 的方程为x 2a 2-y 24a 2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2).依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x ,得y 1=2t1-2m ,同理,得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2). 由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a 2=1,得(4m 2-1)y 2+8mty +4(t 2-a 2)=0.。

2015年山东省高考数学试卷(理科)答案与解析-副本

2015年山东省高考数学试卷(理科)答案与解析-副本

2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)22.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()=i=i3.(5分)(2015•山东)要地到函数y=sin(4x﹣)地图象,只需将函数y=sin4x地图象向左平移向右平移单位向左平移向右平移单位﹣﹣地图象向右平移4.(5分)(2015•山东)已知菱形ABCD地边长为a,∠ABC=60°,则=()﹣a a2a2由已知可求,,根据==(==6.(5分)(2015•山东)已知x,y满足约束条件,若z=ax+y地最大值为4,则7.(5分)(2015•山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将B几何体地体积为:.8.(5分)(2015•山东)已知某批零件地长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内地概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ=((9.(5分)(2015•山东)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y 2﹣或﹣或﹣或﹣或﹣=1或﹣.10.(5分)(2015•山东)设函数f(x)=,则满足f(f(a))=2f(a)地a [,[.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•山东)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.=4+C=4+C+C+C+C+CC+C+C+C=412.(5分)(2015•山东)若“∀x∈[0,],tanx≤m”是真命题,则实数m地最小值为1.]13.(5分)(2015•山东)执行如图程序框图,输出地T地值为.地值为T=1+xdxT=1+xdx+x dx=1+,地值为故答案为:14.(5分)(2015•山东)已知函数f(x)=a x+b(a>0,a≠1)地定义域和值域都是[﹣1,0],则a+b=﹣.,解地=0解地a+b=15.(5分)(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)地渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB地垂心为C2地焦点,则C1地离心率为.地坐标,可地,利用×):﹣±x±,,则=×(﹣=.故答案为:.三、解答题16.(12分)(2015•山东)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)地单调区间;(Ⅱ)在锐角△ABC中,角A,B,C地对边分别为a,b,c,若f()=0,a=1,求△ABC 面积地最大值.,由,,(=0时等号成立,从而可求bcsinA﹣sin2x﹣≤2k≤,≤2k≤,[k,[k(=0,cosA=1+bcbcsinA面积地最大值为17.(12分)(2015•山东)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC地中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成地角(锐角)地大小.为平面即可求出法向量,设平面即可求出平面为平面,则:,则:|=18.(12分)(2015•山东)设数列{a n}地前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}地通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}地前n项和T n.,当===,;=+﹣﹣﹣19.(12分)(2015•山东)若n是一个三位正整数,且n地个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有地“三位递增数”中随机抽取1个数,且只能抽取一次,地分规则如下:若抽取地“三位递增数”地三个数字之积不能被5整除,参加者地0分,若能被5整除,但不能被10整除,地﹣1分,若能被10整除,地1分.(Ⅰ)写出所有个位数字是5地“三位递增数”;(Ⅱ)若甲参加活动,求甲地分X地分布列和数学期望EX.地个数为,个进行组合,即;;;第二种方案:首先选==,=,×+××=20.(13分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)地离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径地圆与以F2为圆心以1为半径地圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C地方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P地直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||地值;(ii)求△ABQ面积地最大值.|=地方程为+y地方程为+||=,由于,即(||m||m|,设S=2S=2在(,即,21.(14分)(2015•山东)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点地个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a地取值范围..当aa时,可地函数)当时,a时,=11a时,函数a0a)当>>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方达教育学科教师辅导教案学员姓名年 级高三辅导科目 数 学授课老师翟 嘉 课时数2h 第 次课授课日期及时段 2015年 月 日 : — :数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.模板1 三角变换与三角函数的性质问题已知函数f (x )=2cos x ·sin ⎝⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x +1.解答题的八个答题模板a ·1+cos C 2+c ·1+cos A 2=32b , 所以a +c +(a cos C +c cos A )=3b , 故a +c +⎝⎛⎭⎪⎫a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =3b ,整理,得a +c =2b ,故a ,b ,c 成等差数列.(2)解 cos B =a 2+c 2-b 22ac =a 2+c 2-⎝⎛⎭⎪⎫a +c 222ac=3a 2+c 2-2ac 8ac ≥6ac -2ac 8ac =12,因为0<B <π,所以0<B ≤π3.解 (1)由BA →·BC →=2得c ·a cos B =2.又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b2+2ac cos B .又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎨⎧ac =6,a 2+c 2=13,得⎩⎨⎧a =2,c =3或⎩⎨⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-132=223,由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C = 1-4292=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. 模板3 数列的通项、求和问题已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0. (1)令c n =a n b n,求数列{a n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .审题路线图 (1)a n b n +1-a n +1b n +2b n +1b n =0→a n +1b n +1-a nb n=2→c n +1-c n =2→c n =2n -1 (2)c n =2n -1→a n =2n -1·3n -1――→错位相减法得S n规 范 解 答 示 例构 建 答 题 模 板解 (1)因为a n b n +1-a n +1b n +2b n +1b n =0(b n ≠0,n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1, 于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.第一步 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式.第二步 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式. 第三步 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等). 第四步 写步骤:规范写出求和步骤. 第五步 再反思:反思回顾,查看关键点、易错点及解题规范.当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时,b 1=1也适合此通项公式. ∴b n =2n -1 (n ∈N *). (2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+12n -1×2n +1=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+12×⎝ ⎛⎭⎪⎫12n -1-12n +1=12×⎝⎛⎭⎪⎫1-12n +1=n2n +1.由T n =n 2n +1>1 0012 012,得n >1 00110,∴满足T n >1 0012 012的最小正整数n 的值为101.模板4 利用空间向量求角问题(2014·山东)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点. (1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.审题路线图 (1)M 是AB 中点,四边形ABCD 是等腰梯形――→AB =2CDCD ∥AM CD =AM ⇒▱AMC 1D 1→C 1M ∥平面A 1ADD 1(2)CA ,CB ,CD 1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD 的法向量→将所求两个平面所成的角转化为两个向量的夹角规 范 解 答 示 例构 建 答 题 模 板(1)证明 因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA . 连接AD 1,如图(1). 在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因为C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1. (2)解 方法一 如图(2),连接AC ,MC .由(1)知CD ∥AM 且CD =AM ,所以四边形AMCD 为平行四边形,可得BC =AD =MC ,由题意得∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB .以C 为坐标原点,建立如图(2)所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),D 1(0,0,3),因此M ⎝ ⎛⎭⎪⎫32,12,0,所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=⎝ ⎛⎭⎪⎫-32,12,0. 设平面C 1D 1M 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得第一步 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线.第二步 写坐标:建立空间直角坐标系,写出特征点坐标.第三步 求向量:求直线的方向向量或平面的法向量.第四步 求夹角:计算向量的夹角.第五步 得结论:得到所求两个平面所成的角或直线和平面所成的角.由(*)式,得k 2>2m 2-2,又k ≠0,所以k 2=2-2m 24m 2-1>0.解得-1<m <-12或12<m <1.即所求m 的取值范围为⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1.已知双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线的离心率e 的取值范围.解 设直线l 的方程为x a +y b=1,即bx +ay -ab =0.由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离d 1=b a -1a 2+b2, 同理可得点(-1,0)到直线l 的距离为d 2=b a +1a 2+b 2,于是s =d 1+d 2=2ab a 2+b 2=2abc. 由s ≥45c ,得2ab c ≥45c ,即5a c 2-a 2≥2c 2,可得5e 2-1≥2e 2,即4e 4-25e 2+25≤0,解得54≤e 2≤5.由于e >1,故所求e 的取值范围是⎣⎢⎡⎦⎥⎤52,5.模板6 解析几何中的探索性问题解(1)依题意,直线AB 的斜率存在,设直线AB 的方程为y =k (x +1),将y =k (x +1)代入x 2+3y 2=5,消去y 整理得(3k 2+1)x 2+6k 2x +3k 2-5=0.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧Δ=36k 4-43k 2+13k 2-5>0, ①x 1+x 2=-6k 23k 2+1. ②由线段AB 中点的横坐标是-12,得x 1+x 22=-3k 23k 2+1=-12,解得k =±33,适合①.所以直线AB 的方程为x -3y +1=0或x +3y +1=0. (2)假设在x 轴上存在点M (m,0),使MA →·MB →为常数.(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1. ③ 所以MA →·MB →=(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2(x 1+1)(x 2+1)=(k 2+1)x 1x 2+(k 2-m )(x 1+x 2)+k 2+m 2. 将③代入,整理得MA →·MB → =6m -1k 2-53k 2+1+m 2=⎝⎛⎭⎪⎫2m -133k 2+1-2m -1433k 2+1+m 2=m 2+2m -13-6m +1433k 2+1.注意到MA →·MB →是与k 无关的常数,从而有6m +14=0,m =-73,此时MA →·MB →=49.(ⅱ)当直线AB 与x 轴垂直时,此时点A 、B 的坐标分别为⎝⎛⎭⎪⎫-1,23、⎝ ⎛⎭⎪⎫-1,-23,当m =-73时,也有MA →·MB →=49.综上,在x 轴上存在定点M ⎝ ⎛⎭⎪⎫-73,0,使MA →·MB →为常数.(2014·福建)已知双曲线E :x 2a2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x . (1)求双曲线E 的离心率.(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解 (1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a =2,故c =5a ,从而双曲线E 的离心率e =ca= 5.(2)方法一 由(1)知,双曲线E 的方程为x 2a 2-y 24a 2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.解 (1)当a =1时,f (x )=2x x 2+1,f (2)=45,又f ′(x )=2x 2+1-2x ·2x x 2+12=2-2x 2x 2+12,f ′(2)=-625.所以,曲线y =f (x )在点(2,f (2))处的切线方程为y -45=-625(x -2),即6x +25y -32=0.(2)f ′(x )=2ax 2+1-2x 2ax -a 2+1x 2+12=-2x -a ax +1x 2+12.由于a ≠0,以下分两种情况讨论.①当a >0时,令f ′(x )=0,得到x 1=-1a,x 2=a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x(-∞,-1a)-1a(-1a,a )a(a ,+∞)f ′(x)-0 + 0 -f (x )极小值极大值所以f (x )在区间⎝ ⎛⎭⎪⎫-∞,-1a ,(a ,+∞)内为减函数,在区间⎝ ⎛⎭⎪⎫-1a ,a 内为增函数.函数f (x )在x 1=-1a 处取得极小值f ⎝ ⎛⎭⎪⎫-1a ,且f ⎝ ⎛⎭⎪⎫-1a =-a 2.函数f (x )在x 2=a 处取得极大值f (a ),且f (a )=1. ②当a <0时,令f ′(x )=0,得到x 1=a ,x 2=-1a,当x 变化时,f ′(x ),f (x )的变化情况如下表:x(-∞,a )a(a ,-1a)-1a(-1a,+∞)。

相关文档
最新文档