24.1.2 垂直于弦的直径(练习)(解析版)
部编版人教初中数学九年级上册《24.1.2垂直于弦的直径 同步练习题(含答案)》最新精品优秀
前言:
该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步练习题)
基础导练
1.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()
A.3 B.4 C.5 D.
7
2.如图,AB为圆O的弦,圆O的半径为5,OC⊥AB于点D,交圆
O于点C,
且CD=2,则AB的长是 .
能力提升
3.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()
A.4m
B.5m
C.6m
D.8m
4.已知⊙O的半径为5cm,AB和CD是⊙O的弦,AB//CD, AB=6cm,CD=8cm,求AB与CD之间的距离是多少?
1。
垂直于弦的直径-九年级数学人教版(上)(原卷版+解析版)
第二十四章圆24.1.2垂直于弦的直径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.B.2C.2D.2.如图是⊙的直径,弦⊥于点则A.B.C.D.3.如图,在半径为5的圆O中,AB,C D是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为A.3 B.4C.D.4.如图,A、B是⊙O上两点,若四边形ACB O是菱形,⊙O的半径为r,则点A与点B之间的距离为A.B.C.r D.2r二、填空题:请将答案填在题中横线上.5.如图,AB为圆O的直径,CD为圆O的弦,AB⊥CD于M,若AB=10 cm,CD=8 cm,则AM=_________cm.6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.7.如图,AB是⊙O的直径,点D平分弧AC,AC=5,DE=1.5,则OE=_____.8.“圆材埋壁”是我国古代名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小。
以锯锯之,深一寸,锯道长一尺。
问:径几何?”大意是:如图,CD是⊙O的直径,弦A B⊥CD,垂足为E,CE=1寸,AB=10寸,则CD=________.9.如图是一个高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=8米,净高CD=8米,则此圆的半径OA为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.一条排水管的截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m,某天下雨后,水管水面上升了0.2 m,求此时排水管水面的宽CD.第二十四章圆24.1.2垂直于弦的直径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.B.2C.2D.【答案】D2.如图是⊙的直径,弦⊥于点则A.B.C.D.【答案】A3.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为A.3 B.4C.D.【答案】C【解析】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON=,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°,∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3.故选:C.4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为A.B.C.r D.2r【答案】B∴AD=OA sin60°=则AB=2AD=.故选:B.【名师点睛】考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.二、填空题:请将答案填在题中横线上.5.如图,AB为圆O的直径,CD为圆O的弦,AB⊥CD于M,若AB=10 cm,CD=8 cm,则AM=_________cm.【答案】2【解析】连接OD,如图,6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,AB=8,则OB的长为________.【答案】5【解析】∵⊙O的直径CD垂直弦AB于点E,AB=8,∴BE=4,∠OEB=90°,设OB=x,则OC=x,∵CE=2,∴OE=x-2,∵在Rt△OBE中,OB2=OE2+BE2,∴,解得:,∴OB=5.故答案为5.7.如图,AB是⊙O的直径,点D平分弧AC,AC=5,DE=1.5,则OE=_____.【答案】8.“圆材埋壁”是我国古代名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小。
24.1.2 垂直于弦的直径练习 教师版
课后巩固1.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是( )A.3B.6C.4D.8【分析】先根据垂径定理求出AM=AB,再根据勾股定理求出AD的值.【解答】解:连接OA,∵⊙O的直径为10,∴OA=5,∵圆心O到弦AB的距离OM的长为4,由垂径定理知,点M是AB的中点,AM=AB,由勾股定理可得,AM=3,所以AB=6.故选B.【点评】本题利用了垂径定理和勾股定理求解,解题的关键是正确的构造直角三角形.2.CD为⊙O的直径,弦AB⊥CD于M,若CM=12,DM=8,则AB等于( )A.4B.8C.8D.4【分析】根据题意画出图形,先由CM=12,DM=8求出⊙O的半径及OM的长,再由垂径定理得出AB=2AM,在Rt△AOM内利用勾股定理求出AM的长,进而可得出AB的长.【解答】解:如图所示:∵CM=12,DM=8,∴OA=OD=(CM+DM)=×20=10,∴OM=OD﹣DM=10﹣8=2,∵弦AB⊥CD于M,∴AB=2AM,在Rt△AOM中,∵AM2=OA2﹣OM2,即AM2=102﹣22,解得AM=4,∴AB=2AM=8.故选C.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,利用勾股定理求解是解答此题的关键.3.如图,BC为⊙O直径,交弦AD于点E,若B点为中点,则说法错误的是( )A.AD⊥BC B.=C.AE=DE D.OE=BE【分析】根据垂径定理对各选项进行逐一分析即可.【解答】解:∵BC为⊙O直径,交弦AD于点E,B点为中点∴AD⊥BC,故A选项正确;∵BC为⊙O直径,B点为中点,∴=,AE=DE,故B、C选项正确,D选项错误.故选D.【点评】本题考查的是垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的两条弧.4.已知如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,则OP长的取值范围为( )A.OP<5B.8<OP<10C.3<OP<5D.3≤OP≤5【分析】首先明确OP最长时,应该与A或B重合,OP最短时,应该是OP⊥AB时,然后根据垂径定理即可求出.【解答】解:OP最长时,应该与A或B重合,此时OP=5;OP最短时,应该是OP⊥AB时,此时OP==3.故选D.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.5.如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BAC等于( )A.15°B.20°C.30°D.45°【分析】连接OC,在直角△OCE中,即可求得∠COE的度数,根据等腰三角形的性质,即可求解.【解答】解:连接OC,∵OE=OB=OC,∴∠OCD=30°,∴∠COB=60°,∵OA=OC,∴∠BAC=30°.故选C.【点评】本题主要考查了等腰三角形的性质,正确解直角三角形,求得∠COE的度数是关键.6.如图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为10厘米,AB=16厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,则“图上”太阳升起的速度为( )A.0.4厘米/分B.0.6厘米/分C.1.0厘米/分D.1.6厘米/分【分析】首先过⊙O的圆心O作CD⊥AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.【解答】解:过⊙O的圆心O作CD⊥AB于C,交⊙O于D,连接OA,∴AC=AB=×16=8(厘米),在Rt△AOC中,OC===6(厘米),∴CD=OC+OD=16(厘米),∵从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,∴16÷10=1.6(厘米/分).∴“图上”太阳升起的速度为1.6厘米/分.故选D.【点评】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.7.已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm,则AB与CD的距离是( )A.1 cm B.7 cm C.1 cm或7 cm D.无法判断【分析】根据题意画出符合条件的两种情况,过O作OE⊥AB于E,交CD于F,连接OA、OC,根据垂径定理求出AE、CF、根据勾股定理求出OE、OF,结合图形求出EF即可.【解答】解:分为两种情况:①当AB和CD在O的同旁时,如图1,过O作OE⊥AB于E,交CD于F,连接OA、OC,∵AB∥CD,∴OF⊥CD,∴由垂径定理得:AE=AB=3cm,CF=CD=4cm,在Rt△OAE中,由勾股定理得:OE===4(cm)同理求出OF=3cm,EF=4cm﹣3cm=1cm;②当AB和CD在O的两侧时,如图2,同法求出OE=4cm,OF=3cm,则EF=4cm+3cm=7cm;即AB与CD的距离是1cm或7cm,故选C.【点评】本题考查了勾股定理,垂径定理得应用,关键是能正确求出符合条件的两种情况,题目比较典型,是一道比较好的题目.二.填空题(共7小题) 8.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为 5 .【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.9.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC= 5 cm.【分析】连接OA,根据垂径定理求出AD,根据勾股定理R2=42+(R﹣2)2,计算求出R即可.【解答】解:连接OA,∵OC⊥AB,∴AD=AB=4cm,设⊙O的半径为R,由勾股定理得,OA2=AD2+OD2,∴R2=42+(R﹣2)2,解得R=5∴OC=5cm.故答案为5.【点评】本题考查的是垂径定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.10.如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为 .【分析】过O作OD⊥AB于D,根据垂径定理求出BD,根据勾股定理求出OD,根据勾股定理求出OC即可.【解答】解:过O作OD⊥AB于D,∵OD⊥AB,OD过O,AB=,∴AD=BD=AB=,∵AB=,点C在弦AB上,AC=AB,∴AC=,CD=AD﹣AC=,在Rt△OBD中,由勾股定理得:OD==1,在Rt△OCD中,由勾股定理得:OC===,故答案为:.【点评】本题考查了初级定理和勾股定理的应用,关键是构造直角三角形,主要考查学生运用定理进行推理和计算的能力.11.如图,⊙O的半径为5,弦BC=8,点A在⊙O上,AO⊥BC,垂足为D、E为BC延长线上一点,AE=10,则CE的长为 2 .【分析】连接OC,根据垂径定理得到BD=DC=BC=4,根据勾股定理求出OD,根据勾股定理求出DE,计算即可.【解答】解:连接OC,∵AO⊥BC,∴BD=DC=BC=4,∴OD==3,则AD=AO+OD=8,∴DE==6,∴CE=DE﹣DC=2,故答案为:2.【点评】本题考查的是垂径定理、勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.三.解答题(共8小题)12.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l,求⊙O的半径.【分析】根据垂径定理得到直角三角形,然后在直角三角形中运用勾股定理计算出半径的长.【解答】解:如图:连接OA,由OC⊥AB于D,得:AD=DB=AB=4.设⊙O的半径为r,在Rt△OAD中,OA2=AD2+OD2∴r2=(r﹣1)2+42整理得:2r=17∴r=.所以圆的半径是.【点评】本题考查的是垂径定理,根据垂径定理求出AD的长,连接OA,得到直角三角形,然后在直角三角形中计算出半径的长.13.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.【分析】连接OB,根据垂径定理求出BE,根据勾股定理得出方程,求出方程的解即可.【解答】解:连接OB,设OB=OA=R,则OE=16﹣R,∵AD⊥BC,BC=16,∴∠OEB=90°,BE=BC=8,由勾股定理得:OB2=OE2+BE2,R2=(16﹣R)2+82,解得:R=10,即⊙O的直径为20.【点评】本题考查了垂径定理,勾股定理的应用,能根据垂径定理求出BE的长是解此题的关键,注意:垂直于弦的直径平分弦.14.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【点评】此题考查了垂径定理,勾股定理,以及含30°直角三角形的性质,利用了转化的思想,熟练掌握定理是解本题的关键.15.如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB 和CD间的距离.【分析】过点O作弦AB的垂线,垂足为E,延长AE交CD于点F,连接OA,OC;由于AB∥CD,则OF⊥CD,EF即为AB、CD间的距离;由垂径定理,易求得AE、CF的长,在构建的直角三角形中,根据勾股定理即可求出OE、OF的长,也就求出了EF的长,即弦AB、CD间的距离.【解答】解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×16=8cm,CF=CD=×12=6cm,在Rt△AOE中,OE===6cm,在Rt△OCF中,OF===8cm,∴EF=OF﹣OE=8﹣6=2cm.答:AB和CD的距离为2cm.【点评】本题考查的是勾股定理及垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.课堂测试一.选择题(共2小题)1.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是( )A.4B.6C.8D.10【分析】连接OC,根据题意得出OC=5,再由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE 中,由勾股定理得出CE,从而得出CD的长.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD,在Rt△OCE中,OC2=OE2+CE2,∵AE=2,AB=10,∴OC=5,OE=3,∴CE=4,∴CD=8,【点评】本题考查了垂径定理,掌握垂径定理的内容是解题的关键.2.如图,AB是⊙O的直径,点C在⊙O上,OD∥AC交BC于点E.若BC=8,ED=2,则AC的长为( )A.5B.5.5C.6D.6.5【分析】根据垂径定理得出OB,进而利用比例关系解答即可.【解答】解:∵AB是⊙O的直径,∴AC⊥BC,∵OD∥AC,∴OD⊥BC,∵BC=8,ED=2,∴OB2=BE2+OE2,即OB2=42+(OB﹣2)2,解得:OB=5,∴,即,解得;AC=6,【点评】此题考查垂径定理,关键是根据垂径定理得出OB .二.填空题(共2小题)3.已知⊙O 的弦AB=8cm ,圆心O 到弦AB 的距离为3cm ,则⊙O 的直径为 10 cm .【分析】连结OA ,先根据垂径定理得到AC=4,然后根据勾股定理计算出OA ,从而得到圆的直径.【解答】解:连结OA ,∵OC ⊥AB ,∴AC=BC=AB=×8=4,在Rt △AOC 中,OC=3,OA==5,∴⊙O 的直径为10cm .故答案为10.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.如图,⊙O 的半径为5,弦AB=8,动点M 在弦AB 上运动(可运动至A 和B ),设OM=x ,则x 的取值范围是 3≤x≤5 .【分析】当M与A或B重合时,OM最长,当OM垂直于AB时,OM最短,即可求出x的范围.【解答】解:当M与A(B)重合时,OM=x=5;当OM垂直于AB时,可得出M为AB的中点,连接OA,在Rt△AOM中,OA=5,AM=AB=4,根据勾股定理得:OM=x==3,则x的范围为3≤x≤5.故答案为:3≤x≤5【点评】此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.三.解答题(共1小题)5.如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.(1)求OA的长度;(2)求CE的长度.【分析】(1)根据垂径定理得出AC=BC=AB,根据勾股定理得出方程,求出即可;(2)连接BE,求出OC∥BE且OC=BE,求出BE的长度,根据勾股定理求出CE的长度即可.【解答】(1)解:∵在⊙O中,OD⊥弦AB,∴AC=BC==4,设OA为x,则OD=OA=x,∵CD=2,∴OC=x﹣2在Rt△ACO中,AC2+OC2=AO2∴42+(x﹣2)2=x2,解得x=5,∴OA=5;(2)解:连接BE,∵OA=OE,AC=BC,∴OC∥BE且OC=,∴∠EBA=∠OCA=90°,∵OC=OD﹣CD=5﹣2=3,∴BE=6,在Rt△ECB中,BC2+EB2=EC2∴42+62=EC2,∴CE=2.【点评】本题考查了勾股定理,垂径定理,圆周角定理,三角形中位线的应用,用了方程思想,题目比较典型,难度适中.。
遵义市人教版九年级数学上名师测控练习24.1.2垂直于弦的直径(含答案)
CA P ODCE OA D B24.1.2 垂直于弦的直径1. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?2. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
6003. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。
你认为图中有哪些相等的线段?为什么?B4. 如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,则弦CD=____________________。
5. 如图所示,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。
6. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________。
(4)题图(5)题图(6)题图7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。
8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。
9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM 的长的取值范围是()A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<5(7)题图(8)题图(9)题图10.下列说法中,正确的是()A. 到圆心的距离大于半径的点在圆内B. 圆的半径垂直于圆的切线C. 圆周角等于圆心角的一半D. 等弧所对的圆心角相等11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 135°D. 270°12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;A B16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
24.1.2_垂直于弦的直径精选练习题及答案
A.3v2 241.2垂直于弦的直径一、课前预习(5分神训练)1 .如图24-1-2-1, AB是。
的弦,CD是。
的直径,CD1AB,垂足为E,则可推出的相等关系是2. 圆中一条弦把和它垂直的直径分「成3 cm和4 cm两部分,则这条弦弦长为・3. 判断正误.(】)直径是圆的对称轴;(2)平分弦的直径垂直于弦.4. 圆O的半径OA=6QA的垂直平分线交圆。
于B、C,那么弦BC的长等于•二、课中强化(1。
分仲训练)1 .圆是轴对称图形,它的对称轴是 _____________ .2. 如图24-1-2-2,在。
中,直径MN垂直于弦AB,垂足为C,图中相等的线段有,相等的劣弧有______________3. 在图24-1-2-3中,弦AB的长为24 cm,弦心距O05 cm,则。
的半径区cm.4. 如图24-1-2-4所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长.图24-1-2-4三、课后巩固(30分钟训练)1 .如图24-1-2-5,00的半径OA=3,以点A为圆心QA的长为半径画弧交。
于B、C,则BC等于()C图 24-1-2-5 2. 如图24-1-2-6, AB 是。
的弦,半径OC1AB 于点D,旦AB=8 cm, OC=5 cm,则OD 的长是()A.3 cmB.2.5 cmC.2 cmD.l cm3.00半径为10,弦AB=12, CD=16,旦AB II CD.求AB 与CD 之间的距离.4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两 边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60。
,则秋千踏板与地面的最大距离约为 多少?5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5 月】2日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高.的圆拱的跨度为110米, 拱高为22米,如图(2),那么这个圆拱所在圆的直径为 米.⑴ ⑵图 24-1-2-8图 24-1-2-6图 24-1-2-76. 如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A、B、C.(1)用尺规作图法,找出弧BAC所在圆的圆心。
24.1.2-垂直于弦的直径(第二课时)
B · O E D A
EA=EB,请些出三个正确的结论
_____________________. C
双基训练 半径 圆心 1.确定一个圆的条件是————和————
2.已知AB=10cm,以AB为直径作圆,那么在此 圆上到AB的距离等于5的点共有( C )
A.无数个 B.1个 C.2个 D.4个 3.下列说法中正确的个数是( B) ①.直径是弦 ②.半圆是弧 ③.平分弦的直径垂直于弦 ④.圆是轴对称图形,对称轴是直径 A.1个 B.2个 C.3个 D.4个
1 1 AD AB 7.2 3.6, 2 2 OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
2
M C H
A
N
OA2 AD2 OD 2 , 即R 2 3.62 ( R 2.4) 2 .
E
D
F
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得
M C H
A
N
E
D
F
B
r
O
解:如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm, 经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根 据垂径定理,D是AB的中点,C是 AB 的中点,CD就是拱高. 由题设得 AB 7.2, CD 2.4, HN 1 MN 1.5.
随堂训练
8.已知P为⊙o内一点,且OP=2cm,如果⊙o 的半径是3cm ,则过P点的最长的弦等于 最短的弦等于_________。
M
.
O
A
P B N
9.P为⊙O内一点,且OP=2cm,若⊙O的半径为3cm, 则过P点的最短弦长等于( D ) A.1cm B.2cm C. 5 cm D. 2 5cm
2020-2021学年人教版数学九年级上学期《24.1.2 垂直于弦的直径》测试卷及答案解析
2020-2021学年人教版数学九年级上学期《24.1.2 垂直于弦的直径》测试卷一.填空题(共1小题)1.如图,AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.若AB=10,CD=6,则DE的长为二.解答题(共48小题)2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.3.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?4.往水平放置的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB和油的最大深度都为80cm.(1)求油槽的半径OA;(2)从油槽中放出一部分油,当剩下的油面宽度为60cm时,求油面下降的高度.5.已知:如图⊙O中,弦AB⊥CD,垂足为H,OG⊥BC,垂足为G,求证:弦AD=2OG.6.如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.7.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.8.如图,⊙O的半径为5,弦AB⊥CD于E,AB=CD=8.(1)求证:AC=BD;(2)若OF⊥CD于F,OG⊥AB于G,试说明四边形OFEG是正方形.9.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.10.如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,P A=6.求:(1)⊙O的半径;(2)求弦CD的长.11.如图所示,射线AM交一圆于点B,C,射线AN交该圆于点D,F,且BC=DE,求证:AC=AE.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.13.如图,AB为圆O的直径,CD为弦,AM⊥CD于M,BN⊥CD于N.(1)求证:CM=DN.(2)若AB=10,CD=8,求BN﹣AM的值.14.如图,在半径为5的四分之一圆中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)连接AB,求DE的长.15.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,求BD的长.16.如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,AE=BF,请找出线段OE 与OF的数量关系,并给予证明.17.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.18.已知:如图,OA=OB,AB交⊙O于C、D两点,求证:AC=BD.19.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.20.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AE=,ON=1,求⊙O的半径.21.如图,AB为⊙O上,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.22.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O 交△ABC于D、E、F、G.(1)求证:CD=EF;(2)若⊙O的半径为4,AE=2,求AB的长.23.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?为什么?②若AD=EC,求的值.24.如图,⊙O的两条弦AB∥CD(AB不是直径),点E为AB中点,连结EC,ED (1)直线EO与AB垂直吗?请说明理由;(2)求证:EC=ED.25.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE.(1)求证:AP=AO;(2)若弦AB=24,求OP的长.26.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.27.如图,某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道,污水水面宽度为30cm,污水深度为50cm,则修理人员应准备的新管道内径为多大?28.如图,矩形ABCD的四个顶点在⊙O上,过O作OE⊥AD于F,交⊙O于E点,连AE、DE(1)求证:AE=DE;(2)若AB=AE=2,求⊙O的半径.29.已知⊙O中ABC为等边三角形,点O在AB上,点A在弦CD上;(1)如图(1)连接OD,OC,在BC上取一点M,使MB=OB,连接OM,求证:OB+BC =CD;(2)如图(2),在(1)的条件下,过O作OE⊥AC于E,若CD=4OB,OE=2,求⊙O半径.30.如图,在⊙O中,直径AB交弦CD于点E,OF⊥CD,垂足为F,AE=1,OE=2,OF =1.求ED,EC的长.31.如图,已知⊙O的半径长为4,弦AB垂直平分半径OC,弦DE∥AB,过点B作AD的平行线交直线DE于点F.(1)当点E,F不重合时,试说明△BEF是等腰三角形.(2)填空:当AD=时,四边形ABFD是菱形.32.如图所示,要把残破的轮片复制完整,已知弧上的三点A,B,C.(1)用尺规作图法找出所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.33.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.34.如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CE⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长35.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.36.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣3,O),C(,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.37.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE 的长.38.如图,AB是⊙O的直径,延长BA到D,使DA=AO,AE垂直于弦AC,垂足为点A,点E在DC上,求S△AEC:S△AOC.39.如图,△ABC内接于⊙O,弦AD⊥BC于E,CF⊥AB于F,交AD于G,BE=3,CE =2,且tan∠OBC=1,求四边ABDC的面积.40.如图,⊙O的半径为10cm,G是直径AB上一点,弦CD经过点G,CD=16cm,AE⊥CD于E,BF⊥CD于F,求AE﹣BF的值.41.如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,求AB的长.42.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.试探究∠OBA与∠OCD的关系,并说明理由.43.如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.44.如图,AB是圆O的直径,作半径OA的垂直平分线,交圆O于C、D两点,垂足为H,连接BC、BD.(1)求证:BC=BD;(2)已知CD=6,求圆O的半径长.45.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD、BC,AB=5,AC =4,求:BD的长.46.如图,AB,CD是⊙O的两条弦,AB=CD,OE⊥AB于E,OF⊥CD于F,求证:OE =OF.47.如图,点A,B是⊙O上两点,点P是⊙O0上的动点(P与A,B不重合),连接AP,BP,过点O分别作OE⊥AP,OF⊥BP,点E、F分别是垂足.(1)求证:∠OEF+∠OFE=∠P;(2)EF=5,点O到AB的距离为2,求⊙O的半径的长.48.如图,在Rt△A0B中,∠O=90°,OA=6,OB=8,以点O为圆心,OA为半径作圆交AB于点C,求BC的长.49.如图,AB为⊙O的直径,点C在⊙O上,∠BAC的平分线交BC于D,交⊙O于E,且AC=6,AB=8,求CE的长.2020-2021学年人教版数学九年级上学期《24.1.2 垂直于弦的直径》测试卷参考答案与试题解析一.填空题(共1小题)1.如图,AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.若AB=10,CD=6,则DE的长为【分析】设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,根据垂径定理得出CH=DH,DM=EM,BN=CN,利用勾股定理求得OH,即可求得BH,进而求得BC,求得ON,根据三角形函数求得DG,因为MN=DG,即可求得OM,根据勾股定理求得DM,得出DE.【解答】解:设AB与CD交于H,连接OD,作OM⊥DE,交BC于N,作DG⊥BC,∵DE∥BC,∴MN⊥BC,DG⊥DE,∴DG=MN,∵OM⊥DE,ON⊥BC,∴DM=EM=DE,BN=CN,∵AB是⊙O的直径,弦CD⊥AB,弦DE∥CB.∴CH=DH=CD=3,∴OH===4,∴BH=9,∴BC==3,∴BN=BC=,∴ON==,∵sin∠BCH==,即=,∴DG=,∴MN=DG=,∴OM=MN﹣ON=,∴DM==,∴DE=2DM=.故答案为.【点评】本题考查了垂径定理和勾股定理的应用,作出辅助线构建直角三角形是解题的关键.二.解答题(共48小题)2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【点评】此题考查了垂径定理,勾股定理,以及含30°直角三角形的性质,利用了转化的思想,熟练掌握定理是解本题的关键.3.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4.往水平放置的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB和油的最大深度都为80cm.(1)求油槽的半径OA;(2)从油槽中放出一部分油,当剩下的油面宽度为60cm时,求油面下降的高度.【分析】(1)根据垂径定理和勾股定理进行解答即可;(2)利用垂径定理和勾股定理进行解答即可.【解答】解:(1)设OA为xcm,根据勾股定理可得:x2=402+(80﹣x)2,解得:x=50,答:油槽的半径OA为50cm,(2)设油面下降的高度为y,根据勾股定理可得:502=302+(80﹣50﹣y)2,解得:y=70或y=﹣10(舍去),答:油面下降的高度为70cm.【点评】此题考查了垂径定理的应用.此题难度不大,解题的关键是注意数形结合思想的应用.5.已知:如图⊙O中,弦AB⊥CD,垂足为H,OG⊥BC,垂足为G,求证:弦AD=2OG.【分析】作直径CM,连接BM,DM,AM,根据垂径定理求出CG=BG,根据三角形中位线的性质求出BM=2OG,求出AB∥DM,求出∠BAM=∠AMD即可.【解答】证明:作直径CM,连接BM,DM,AM,∵OG⊥BC,OG过O,∴CG=BG,∵CO=OM,∴BM=2OG,∵CM为⊙O直径,∴∠CDM=90°,∵AB⊥CD,∴∠CHB=90°,∴∠CHB=∠CDM,∴AB∥DM,∴∠BAM=∠AMD,∴AD=BM,∴AD=2OG.【点评】本题考查了圆周角定理,垂径定理,三角形的中位线的性质,平行线的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.6.如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.【分析】(1)作OH⊥AB于H,连接OB、OA.在Rt△BOH中,解直角三角形即可解决问题;(2)作OM⊥EC于M,连接OC.在Rt△OMC中,解直角三角形即可;【解答】解:(1)作OH⊥AB于H,连接OB、OA.∵的度数为120°,AO=BO,∴∠BOH=×120°=60°,∴AH=BH=,在Rt△BOH中,sin∠BOH=,∴OB=2,即圆洞门⊙O的半径为2;(2)作OM⊥EC于M,连接OC.∵Rt△BOH中,OH=1,∵EH=,易证四边形OMEH是矩形,∴OM=EH=,ME=OH=1,在Rt△OMC中,CM==,∴CE=ME+CM=1+=,∴立柱CE的长度为.【点评】本题考查垂径定理的应用、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.7.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.【分析】(1)连接OA,根据AB=8cm,CD=2cm,C为AB的中点,设半径为r,由勾股定理列式即可求出r,进而求出面积.(2)在Rt△ACE中,已知AC、EC的长度,可求得AE的长,根据垂径定理可知:OF ⊥AE,FE=F A,利用勾股定理求出OF的长.【解答】解:(1)连接OA,如图1所示∵C为AB的中点,AB=8cm,∴AC=4cm又∵CD=2cm设⊙O的半径为r,则(r﹣2)2+42=r2解得:r=5∴S=πr2=π×25=25π(2)OC=OD﹣CD=5﹣2=3EC=EO+OC=5+3=8∴EA===4∴EF===2∴OF===【点评】本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.8.如图,⊙O的半径为5,弦AB⊥CD于E,AB=CD=8.(1)求证:AC=BD;(2)若OF⊥CD于F,OG⊥AB于G,试说明四边形OFEG是正方形.【分析】(1)根据圆心角、弧、弦的关系先由AB=CD判断=,再得到=,从而判断AC=BD;(2)先证明四边形OFEG为矩形,连结OA、OD,如图,再根据垂径定理得到CF=DF,AG=BG,则利用CD=AB得到AG=DF,然后根据正方形的判定方法可判断四边形OFEG 是正方形;【解答】(1)证明:∵AB=CD,∴=,∴﹣=﹣,即=,∴AC=BD(2)四边形OFEG是正方形理由如下:如图,连接OA、OD.∵AB⊥CD,OF⊥CD,OG⊥AB,∴∠GEF=∠OFE=∠OGE=90°∴四边形OFEG是矩形,,.∵AB=CD,∴DF=AG.∵OD=OA,∴在Rt△OFD与Rt△OGA中,∴Rt△OFD≌Rt△OGA(HL),∴OF=OG.∴矩形OFEG是正方形.【点评】本题考查了圆的综合题:熟练掌握垂径定理和圆心角、弧、弦的关系;掌握正方形的判定方法.9.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.【分析】过点O作OM⊥CD于点M,联结OD,根据垂径定理解答即可.【解答】解:过点O作OM⊥CD于点M,联结OD,∵∠CEA=30°,∴∠OEM=∠CEA=30°,在Rt△OEM中,∵OE=4,∴,,∵,∴,∵OM过圆心,OM⊥CD,∴CD=2DM,∴,∵,∴在Rt△DOM中,,∴弦CD的长为,⊙O的半径长为.【点评】此题考查了垂径定理和直角三角形.有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法.10.如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,P A=6.求:(1)⊙O的半径;(2)求弦CD的长.【分析】(1)设OC=x,证明△CEO∽△PCO,得,代入x可得结论;(2)由勾股定理得CE的长,根据垂径定理可得CD的长.【解答】解:(1)设OC=x,∵弦CD垂直平分半径AO,∴OE=OA=x,∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=90°,∴∠P+∠COP=90°,∠ECO+∠COP=90°,∴∠P=∠ECO,∴△CEO∽△PCO,∴,∴=,x=6则⊙O的半径为6;(2)由(1)得:OC=6,OE=3,由勾股定理得:CE==3,∵CD⊥OA,∴CD=2CE=6.【点评】本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.11.如图所示,射线AM交一圆于点B,C,射线AN交该圆于点D,F,且BC=DE,求证:AC=AE.【分析】作OP⊥AC于P,OQ⊥AE于Q,连接OB、OD、OA,根据垂径定理得出PB =DQ,PC=QE,根据HL证得RT△OPB≌RT△OQD,RT△OP A≌RT△OQA,得出AP =AQ,进而即可证得结论.【解答】证明:作OP⊥AC于P,OQ⊥AE于Q,连接OB、OD、OA,则PB=BC,DQ=DE,∵BC=DE,∴PB=DQ,PC=QE,在RT△OPB和RT△OQD中,,∴RT△OPB≌RT△OQD(HL),∴OP=OQ,在RT△OP A和RT△OQA中,,∴RT△OP A≌RT△OQA(HL),∴AP=AQ,∴AP+PC=AQ+QE,即AC=AE.【点评】本题考查了垂径定理和三角形全等的判定和性质,作出辅助线构建直角三角形是解题的关键.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到=,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴=,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r2=(r﹣8)2+122,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.13.如图,AB为圆O的直径,CD为弦,AM⊥CD于M,BN⊥CD于N.(1)求证:CM=DN.(2)若AB=10,CD=8,求BN﹣AM的值.【分析】(1)过O作OF⊥CD于F,根据平行线分线段成比例定理得到MF=NF,根据垂径定理得到CF=FD,结合图形计算即可;(2)连结OD,根据勾股定理求出OF,设OE=x,根据相似三角形的性质列式计算即可.【解答】(1)证明:过O作OF⊥CD于F,∵AM⊥CD于M,BN⊥CD于N,∴AM∥FO∥NB,∵OA=OB,∴MF=NF,∵OF⊥CD,O为圆心,∴CF=FD,∴CF﹣MF=FD﹣FN,即MC=ND;(2)解:连结OD,∵AB=10,CD=8,∴OD=5,FD=4,∴OF=3,设OE=x,则EB=x+5,AE=5﹣x,∵NB∥FO,∴△EBN∽△EOF,∴=,即BN:3=(5+x):x,∴BN=,①∵MA∥FO,∴△AME∽△OFE,∴AM:3=(5﹣x):x,∴AM=②两式相减即可得到,BN﹣AM=6.【点评】本题考查的是垂径定理、勾股定理、相似三角形的判定和性质,掌握垂径定理是解题的关键.14.如图,在半径为5的四分之一圆中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)连接AB,求DE的长.【分析】(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD的长;(2)如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC 和AC的中点,根据三角形中位线定理就可得到DE=AB,可得DE的长.【解答】解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==4,即线段OD的长为4.(2)如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=.【点评】本题考查了垂径定理、三角形中位线定理、等腰三角形的性质、三角函数、勾股定理等知识,运用垂径定理及三角形中位线定理是解决第(2)小题的关键.15.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,求BD的长.【分析】连接DC,过点C作CE⊥BD交BD于点E,根据三角形内角和定理求出∠B,根据直角三角形的性质求出CE,根据勾股定理求出BE,根据垂径定理计算.【解答】解:连接DC,过点C作CE⊥BD交BD于点E,则DE=EB,∠B=180°﹣∠ACB﹣∠BAC=180°﹣130°﹣20°=30°,∴CE=BC=1,由勾股定理得,BE==,∴BD=2BE=2.【点评】本题考查的是垂径定理,勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.16.如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,AE=BF,请找出线段OE 与OF的数量关系,并给予证明.【分析】过点O作OH⊥AB于点H,根据垂径定理得到OE=OF即可.【解答】解:OE=OF理由如下:过点O作OH⊥AB于点H,∵OH过圆心,OH⊥AB∴AH=BH,又∵AE=BF∴AH﹣AE=BH﹣BE即EH=FH,∵EH=FH,OH⊥EF∴OH垂直平分EF,∴OE=OF.【点评】本题主要考查了垂径定理,关键是根据圆的性质,垂径定理等知识的综合应用及推理论证能力.17.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.【分析】先根据等腰三角形的性质由OA=OB得到∠A=∠B,再利用“SAS”证明△OAC ≌△OBD,然后根据全等三角形的性质得到结论.【解答】证明:∵OA=OB,∴∠A=∠B,在△OAC和△OBD中,,∴△OAC≌△OBD(SAS),∴∠AOC=∠DOB【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了全等三角形的判定与性质.18.已知:如图,OA=OB,AB交⊙O于C、D两点,求证:AC=BD.【分析】过点O作OE⊥AB,由等腰三角形的性质可知AE=BE,再由垂径定理可知CE =DE,故可得出结论.【解答】证明:过点O作OE⊥AB,∵OA=OB,∴AE=BE,又∵在⊙O中,∴CE=DE,∴AC=BD.【点评】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键.19.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.【解答】(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AE=,ON=1,求⊙O的半径.【分析】(1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE =∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;(2)先根据AE的长,设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1,连结AO,则AO=OD=2x﹣1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论;【解答】(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,,∴△ANE≌△ADE,∴AD=AN;(2)∵AE=2,AE⊥CD,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3;【点评】本题考查的是垂径定理,勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.如图,AB为⊙O上,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【分析】(1)根据全等三角形的判定和性质以及垂径定理证明即可;(2)根据平行四边形的判定和勾股定理解答即可.【解答】证明:(1)在⊙O中,OD⊥BC于E,∴CE=BE,∵CD∥AB,∴∠DCE=∠B,在△DCE与△OBE中,∴△DCE≌△OBE(ASA),∴DE=OE,∴E是OD的中点;(2)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD⊥BC,∴∠CED═90°=∠ACB,∴AC∥OD,∵CD∥AB,∴四边形CAOD是平行四边形,∵E是OD的中点,CE⊥OD,∴OC=CD,∵OC=OD,∴OC=OD=CD,∴△OCD是等边三角形,∴∠D=60°,∴∠DCE=90°﹣∠D=30°,∴在Rt△CDE中,CD=2DE,∵BC=6,∴CE=BE=3,∵CE2+DE2=CD2=4DE2,∴DE=,CD=2,∴OD=CD=2,∴四边形CAOD的面积=OD•CE=6.【点评】本题考查了垂径定理,关键是根据全等三角形的判定和性质以及垂径定理解答.22.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O 交△ABC于D、E、F、G.(1)求证:CD=EF;(2)若⊙O的半径为4,AE=2,求AB的长.【分析】(1)作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,根据角的平分线的性质得出OE=OD=OC,进而根据HL证得RT△OME≌RT△OND得出ME =ND,然后根据垂径定理即可证得结论;(2)根据角平分线的性质,得出OM=ON=OH,进一步证得四边形ONCH是正方形,证得OM=ON=OH=CD=EF=CG,进而证得OH=CD=2,EF=CD=CG=4,AC=6,设BM=BH=x,则BC=x+2,AB=x+4,然后根据勾股定理列出方程,求得即可.【解答】(1)证明:作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,∵点O为△ABC的角平分线交点,∴OM=ON,∵OE=OD=OC,∴RT△OME≌RT△OND(HL),∴ME=ND,∵EF=2ME,CD=2ND,∴CD=EF;(2)解:由(1)可知CD=EF=CG,∵点O为△ABC的角平分线交点,∴OM=ON=OH,∵∠ACB=90°,∴四边形ONCH是正方形,∴OM=ON=OH=CD=EF=CG,∵OC=4,∴OH=OC=4,∴EF=CD=CG=8,易证得AM=AN=6,BM=BH,∴AC=10,设BM=BH=x,则BC=x+4,AB=x+6,∵∠ACB=90°,∴AB2=AC2+BC2,即(6+x)2=102+(4+x)2,解得x=20,∴BM=20,∴AB=AM+BM=20+6=26.【点评】本题考查了角平分线的性质和垂径定理,熟练掌握垂径定理和角平分线的性质是解题的关键.23.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?为什么?②若AD=EC,求的值.【分析】(1)根据三角形内角和定理求出∠B,根据等腰三角形的性质求出∠BCD,计算即可;(2)①根据勾股定理求出AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【解答】解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB=,∴,解方程x2+2ax﹣b2=0得,x=,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=,整理得,.【点评】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.24.如图,⊙O的两条弦AB∥CD(AB不是直径),点E为AB中点,连结EC,ED (1)直线EO与AB垂直吗?请说明理由;(2)求证:EC=ED.【分析】(1)连接EO,根据垂径定理得出即可;(2)根据垂径定理求出CF=DF,根据线段垂直平分线性质得出即可.))【解答】(1)解:直线EO与AB垂直,理由是:连接OE,并延长交CD于F,∵EO过O,E为AB的中点,∴EO⊥AB;(2)证明:∵EO⊥AB,AB∥CD,∴EF⊥CD,∵EF过O,∴CF=DF,∴EC=ED.【点评】本题考查了垂径定理和线段垂直平分线的性质,能灵活运用定理进行推理是解此题的关键.25.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE.(1)求证:AP=AO;(2)若弦AB=24,求OP的长.【分析】(1)由PG平分∠EPF可得∠CPO=∠APO,由AO∥PD可得∠CPO=∠AOP,从而有∠APO=∠AOP,则有AP=AO.(2)过点O作OH⊥AB于H,如图.根据垂径定理可得AH=BH=12,从而可求出PH,在Rt△AHO中,运用勾股定理可求出OH的长,从而进一步可得OP的长.【解答】(1)证明:如图,∵PG平分∠EPF,∴∠CPO=∠APO.∵AO∥PE,∴∠CPO=∠AOP,∴∠APO=∠AOP,∴AP=AO.(2)解:过点O作OH⊥AB于H,如图.根据垂径定理可得AH=BH=AB=12,∴PH=P A+AH=AO+AH=13+12=25.在Rt△AHO中,OH===5,由勾股定理得:OP====5.则OP的长为5.【点评】本题考查了垂径定理、等腰三角形的判定与性质、勾股定理、平行线的性质、角平分线的定义等知识,综合性比较强.26.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.【分析】(1)想办法证明∠A=∠G即可解决问题.(2)设⊙O的半径为r.则AG=OA+OG=r+10,在Rt△OEC中,利用勾股定理构建方程即可解决问题.【解答】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG.(2)解:设⊙O的半径为r.则AG=OA+OG=r+10,∵CA=CG,CD⊥AB,∴AE=EG=,EC=ED=4,∴OE=AE﹣OA=,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=()2+42,解得r=或(舍弃),∴⊙O的半径为.【点评】本题考查垂径定理,勾股定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.27.如图,某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道,污水水面宽度为30cm,污水深度为50cm,则修理人员应准备的新管道内径为多大?【分析】连接OC,OA,根据C为AB中点可知OC⊥AB,AC=AB,设圆形管道的半径为r,则OC=50﹣r,再根据勾股定理求出r的值即可.【解答】解:连接OC,OA,∵污水面宽AB=30m,C为AB中点,∴OC⊥AB,AC=AB=15cm.∵C点距管道底部的距离为50cm,∴OC=50﹣r,在Rt△OAC中,∵AC2+OC2=OA2,即152+(50﹣r)2=r2,解得r=27.25(cm),∴圆形管道的直径=2r=54.5cm.答:圆形管道的直径为54.5cm.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.28.如图,矩形ABCD的四个顶点在⊙O上,过O作OE⊥AD于F,交⊙O于E点,连AE、DE(1)求证:AE=DE;(2)若AB=AE=2,求⊙O的半径.【分析】(1)根据垂径定理即可证得;(2)延长EO交⊙O于H,连接BH,从而证得四边形ABHE是等腰梯形,根据直径所对的圆周角是直角证得∠EAH=90°,然后通过等腰三角形和平行线的性质即可证得∠AHE=30°,根据30°所对的直角边等于斜边的一半即可求得直径,于是得到结论.【解答】(1)证明:∵OE是⊙O的半径,OE⊥AD,∴OE平分AD,∴AE=DE;(2)解:如图,延长EO交⊙O于H,连接BH∵AB⊥AD,OE⊥AD,∴AB∥EH,∴BH=AE,∠BAH=∠AHE,∵AB=AE=2,∴AB=AE=BH=2,∴四边形ABHE是等腰梯形,∴∠AEH=∠BHE,连接AH,∵EH是直径,∴∠EAH=90°,∵AB=BH,∴∠BAH=∠AHE,∴∠BHA=∠AHE,设∠BHA=∠AHE=∠BAH=x,∴∠AEH=2x,∵∠EAB+∠AEH=180°,∴x+90°+2x=180°,解得x=30°,∴∠AHE=30°,∴EH=2AE=2×2=4,∴⊙O的半径=2.【点评】本题考查了垂径定理、直径所对的圆周角的性质,等腰梯形的判定和性质,平行线的性质以及30°所对的直角边等于斜边的一半的性质等,作出辅助线构建等腰梯形以及直角三角形是关键.29.已知⊙O中ABC为等边三角形,点O在AB上,点A在弦CD上;。
人教版九年级数学上册24.1.2垂直于弦的直径同步测试及答案
24.1.2 垂直于弦的直径1.下列命题错误的是( B )A .平分弧的直径平分这条弧所对的弦B .平分弦的弦垂直于这条弦C .垂直于弦的直径平分这条弦D .弦的中垂线经过圆心2.如图24-1-13,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若CD =8,OP =3,则⊙O 的半径为( C )图24-1-13A .10B .8C .5D .33.如图24-1-14,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( D )图24-1-14 A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MD【解析】∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,选项A 成立;B 为CD ︵的中点,即CB ︵=DB ︵,选项B 成立;在△ACM 和△ADM 中,∵⎩⎪⎨⎪⎧AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM (SAS),∴∠ACD =∠ADC ,选项C 成立;而OM 与MD 不一定相等,选项D 不成立. -1-15,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =23,OC =1,则半径OB 的长为__2__.15【解析】 ∵AB 是⊙O 的弦,OC ⊥AB 于C ,AB =23,∴BC =12AB = 3.∵OC =1,∴在Rt △OBC 中,OB =OC 2+BC 2=12+(3)2=2.5.如图24-1-16,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24__.【解析】 如图,连接OD ,∵AM =18,BM =8,∴OD =AM +BM 2=18+82=13,∴OM =13-8=5. 在Rt △ODM 中,DM =OD 2-OM 2=132-52=12,∵直径AB 丄弦CD ,∴CD =2DM =2×12=24.第56.如图24-1-17,在半径为13的⊙O 中,OC 垂直弦AB 于点D ,交⊙O 于点C ,AB =24,则.图24-17第6题答图【解析】 如图,连接OA ,∵OC ⊥AB ,AB =24,∴AD =12AB =12. 在Rt △AOD 中,∵OA =13,AD =12,∴OD =OA 2-AD 2=132-122=5,∴CD =OC -OD =13-5=8.7.如图24-1-18,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O ,OD ⊥PB 于点D ,则CD 的长为__4__.【解析】 ∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得AC =PC ,PD =BD ,∴CD 是△APB 的中位线,∴CD =12AB =12×8=4. 8.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm ,测得钢珠顶端离零件,如图24-1-19所示,则这个小圆孔的宽口AB 的长度为__8__mm.第8题答图【解析】如图,连接OA,过点O作OD⊥AB于点D,则AB=2AD.∵钢珠的直径是10 mm,∴钢珠的半径是5 mm.∵钢珠顶端离零件表面的距离为8 mm,∴OD=3 mm.在Rt△AOD中,∵AD=OA2-OD2=52-32=4(mm),∴AB=2AD=2×4=8(mm).9.如图24-1-20所示,AB是⊙O的弦(非直径),C,D是AB上的两点,并且AC=BD.求证:OC=OD.图24-1-20第9题答图证明:如图,过O作OE⊥AB于E,则AE=BE,又∵AC=BD,∴CE=DE,∴OE是CD的中垂线,∴OC=OD.10.绍兴是著名的桥乡,如图24-1-21,圆拱桥的拱顶到水面的距离CD为8 m,桥拱半径OC 为5 m,则水面宽AB为(D)图24-1-21A.4 m B.5 mC.6 m D.8 m11.如图24-1-22,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为(B)图24-1-22A.2 B.3C.4 D.5【解析】连接OD.∵直径AB⊥CD于H,∴DH=12CD=12×22= 2.在Rt△BDH中,BH=BD2-DH2=(3)2-(2)2=1.设⊙O的半径为R,则在Rt△ODH中,OH2+DH2=OD2,∴(R -1)2+(2)2=R 2,∴2R =3,故选B.12.[2013·吉林]如图24-1-23,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,OB .点P 是半径OB 上任意一点,连接AP .若OA =5 cm ,OC =3 cm ,则AP 的长度可能是__答案不唯一,5≤AP ≤8__cm(写出一个符合条件的数值即可).图24-1-2313.如图24-1-24,两个圆都以点O 为圆心.求证:AC =BD .图24-1-24第13题答图证明:过点O 作OE ⊥AB 于E ,在小⊙O 中,∵OE ⊥AB ,∴EC =ED ,在大⊙O 中,∵OE ⊥AB ,∴EA =EB ,∴AC =BD .14.某居民小区一处圆柱形的输水管道破裂,维修人员为了更换管道,需要确定管道圆形截面的半径,图24-1-25是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16 cm ,水面最深地方的高度为4 cm ,求这个圆形截面的半径.图24-1-25第14题答图解:(1)作出图形,如图所示;(2)如图,过O 作OC ⊥AB 于D ,交弧AB 于C ,连接OB ,∵OC ⊥AB ,∴BD =12AB =12×16=8(cm). 由题意可知CD =4 cm.设这个圆形截面的半径为x cm,则OD=(x-4)cm.在Rt△BOD中,由勾股定理得OD2+BD2=OB2,即(x-4)2+82=x2,解得x=10,∴这个圆形截面的半径为10 cm.15.如图24-1-26,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A,B和C,D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若弦AB=102,求点O到直线PF的距离;(3)若以图中已标明的点(即P,A,B,C,D,O)构造四边形,则能构成菱形的四个点为第15题答图解:(1)∵PG平分∠EPF,∴∠DPO=∠BPO.∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴AP=AO.(2)如图,过点O作OH⊥AB于点H,则AH=HB,∵AB=102,∴AH=52∵OA=10,∴OH=OA2-AH2=102-(52)2=5 2.(3)P,A,O,C A,B,D,C或P,A,O,D或P,C,O,B。
人教版九年级数学上24.1.2垂直于弦的直径同步练习卷含答案
24.1.2 垂直于弦的直径一、选择题(共13小题)1.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.32.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm3.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 B.6 C.2 D.84.如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A.CE=DE B.AE=OE C. =D.△OCE≌△ODE5.在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°6.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD7.如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?()A.6 B.12C.15 D.308.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2 C. D.39.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.210.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A. cm B. cm C. cm或cm D. cm或cm11.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C.D.12.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A.B.3 C.2 D.413.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.8二、填空题(共16小题)14.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为______.15.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于______度.16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.17.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为______ cm.18.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=______cm.19.如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC=______.20.如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为______.21.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP 的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为______.22.如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD 的面积最大时,的长为______.23.如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为______度.24.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=______.25.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O 的半径为______.26.(2020•庆阳)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB=______cm.27.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是______.28.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为______.29.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为______cm.三、解答题(共1小题)30.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.24.1.2 垂直于弦的直径答案一、选择题(共13小题)1.B;2.B;3.A;4.B;5.D;6.B;7.A;8.C;9.B;10.C;11.C;12.C;13.C;二、填空题(共16小题)14.;15.60;16.4;17.4;18.8;19.4;20.;21.8,或;22.;23.30;24.4-;25.;26.8;27.6;28.8;29.4;三、解答题(共1小题)30.。
人教版九年级数学下垂直于弦的直径同步练习含答案
24.1.2 垂直于弦的直径;;知识点 1 圆的对称性;1.下列说法中,不正确的是( ); A .圆既是轴对称图形,又是中心对称图形; B .圆绕着它的圆心旋转任意角度,都会与自身重合 C .圆的对称轴有无数条,对称中心只有一个 D .圆的每一条直径都是它的对称轴 知识点 2 垂径定理2.如图24-1-14,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )图24-1-14A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB3.如图24-1-15所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON 的长度为( )图24-1-15A.5 B.7 C.9 D.114.2017·泸州如图24-1-16,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE =1,则弦CD的长是()图24-1-16A.7B.27C.6 D.85.2017·金华如图24-1-17,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弓形弦AB的长为()图24-1-17A.10 cm B.16 cm C.24 cm D.26 cm6.2017·长沙如图24-1-18,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.图24-1-187.2016·宿迁如图24-1-19,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC =2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________.图24-1-198.如图24-1-20,两个圆都以点O为圆心,大圆的弦AB交小圆于C,D两点.求证:AC=BD.图24-1-209.如图24-1-21,已知AB,CD是⊙O的两条弦,OE⊥AB于点E,OF⊥CD于点F,OE=OF.求证:AB=CD.图24-1-21知识点3垂径定理的推论10.下列说法正确的是()A.垂直于弦的直线平分弦所对的两条弧B.平分弦的直径垂直于弦C.垂直于直径的弦平分这条直径D.弦的垂直平分线经过圆心11.如图24-1-22所示,⊙O的直径CD=10 cm,AB是⊙O的弦,AM=BM,OM∶OC=3∶5,则AB的长为()图24-1-22A.8 cm B.91cmC.6 cm D.2 cm12.如图24-1-23所示,AB是⊙O的直径,∠BAC=42°,D是弦AC的中点,则∠DOC=________°.图24-1-2313.2017·西宁如图24-1-24,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP =6,∠APC=30°,则CD的长为()图24-1-24A.15B.2 5C.2 15D.814.已知⊙O的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,则AB与CD之间的距离为()A.17 cm B.7 cmC.12 cm D.17 cm或7 cm15.如图24-1-25,AB是⊙O的弦,AB的长为8,P是⊙O上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.图24-1-2516.如图24-1-26,⊙O的直径为10 cm,弦AB=8 cm,P是弦AB上的一个动点,则OP长的取值范围是________________.图24-1-2617.如图24-1-27,点A,B,C,D在⊙O上,AB是⊙O的直径,BE=CE.(1)请写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE的长.图24-1-2718.如图24-1-28,一条公路的转弯处是一段圆弧AB ︵.(1)用直尺和圆规作出AB ︵所在圆的圆心O (要求保留作图痕迹,不写作法); (2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.图24-1-2819.有一石拱桥的桥拱是圆弧形,如图24-1-29所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥,水面到拱顶距离为3.5 m时需要采取紧急措施,当水面宽MN=32 m时,是否需要采取紧急措施?请说明理由.图24-1-29教师详解详析1.D2.D [解析]∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,选项A 成立.由已知得B 为CD ︵的中点,即CB ︵=DB ︵,选项B 成立.在△ACM 和△ADM 中,∵AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM ,∴∠ACD =∠ADC ,选项C 成立.而OM 与MB 不一定相等,选项D 不成立.故选D .3.A [解析] 因为ON ⊥AB ,所以AN =12AB =12×24=12,∠ANO =90°.在Rt △AON中,由勾股定理,得ON =OA 2-AN 2=132-122=5.故选A .4.B [解析] 连接OC ,则OC =4,OE =3,在Rt △OCE 中,CE =OC 2-OE 2=42-32=7.因为CD ⊥AB ,所以CD =2CE =2 7.5.C [解析] 如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D. ∵CD =8 cm ,OD =13 cm , ∴OC =5 cm . 又∵OB =13 cm , 在Rt △BCO 中,根据勾股定理,得BC =OB 2-OC 2=132-52=12(cm ) .∵OC ⊥AB , ∴AB =2BC =24 cm .6.5 [解析] 如图,连接OC , ∵AB 为⊙O 的直径,CD ⊥AB ,∴CE =DE =12CD =12×6=3.设⊙O 的半径为x ,则OC =x ,OE =OB -BE =x -1. 在Rt △OCE 中,OC 2=OE 2+CE 2, 即x 2=(x -1)2+32, 解得x =5, ∴⊙O 的半径为5.7.2 3 [解析] 如图,作CE ⊥AB 于点E.∠B =180°-∠BAC -∠ACB =180°-20°-130°=30°.在Rt △BCE 中,∵∠CEB =90°,∠B =30°,BC =2, ∴CE =12BC =1,BE =BC 2-CE 2= 3.∵CE ⊥BD ,∴BD =2BE =2 3.8.证明:过点O 作OH ⊥AB 于点H ,如图,则AH =BH ,CH =DH ,∴AH -CH =BH -DH ,即AC =BD.9.证明:∵OE ⊥AB ,OF ⊥CD , ∴AE =BE ,CF =DF.在Rt △OBE 与Rt △ODF 中,∵⎩⎨⎧OB =OD ,OE =OF ,∴Rt △OBE ≌Rt △ODF(HL ),∴BE =DF ,∴2BE =2DF ,即AB =CD. 10.D11.A [解析] 如图所示,连接OA. ∵⊙O 的直径CD =10 cm ,∴⊙O 的半径为5 cm ,即OA =OC =5 cm . ∵OM ∶OC =3∶5,∴OM =3 cm . ∵AM =BM ,∴AB ⊥CD.在Rt △AOM 中,AM =52-32=4(cm ), ∴AB =2AM =2×4=8(cm ).故选A .12.48 [解析]∵AD =CD ,∴OD ⊥AC. ∴∠CDO =90°,∴∠DOC +∠ACO =90°. ∵OA =OC ,∴∠ACO =∠A =42°, ∴∠DOC =90°-∠ACO =48°.13.C [解析] 作OH ⊥CD 于点H ,连接OC ,如图, ∵OH ⊥CD ,∴HC =HD.∵AP =2,BP =6,∴AB =8,∴OA =4, ∴OP =OA -AP =2.在Rt △OPH 中,∵∠OPH =30°, ∴OH =12OP =1.在Rt △OHC 中,∵OC =OA =4,OH =1, ∴CH =OC 2-OH 2=15, ∴CD =2CH =2 15.14.D [解析]①当弦AB 和CD 的位置如图①所示时,过点O 作OE ⊥AB 于点E ,延长OE 交CD 于点F ,则OF ⊥CD. ∵AB =24 cm ,CD =10 cm , ∴AE =12 cm ,CF =5 cm . ∵OA =OC =13 cm , ∴OE =5 cm ,OF =12 cm , ∴EF =12-5=7(cm ).②当弦AB 和CD 的位置如图②所示时,过点O 作OE ⊥AB 于点E ,延长EO 交CD 于点F ,则OF ⊥CD.∵AB =24 cm ,CD =10 cm , ∴AE =12 cm ,CF =5 cm . ∵OA =OC =13 cm , ∴OE =5 cm ,OF =12 cm , ∴EF =OF +OE =17(cm ).∴AB 与CD 之间的距离为7 cm 或17 cm . 15. 4 [解析]∵OC ⊥AP ,OD ⊥PB , ∴AC =PC ,PD =BD , ∴CD 是△ABP 的中位线. ∵AB 的长为8, ∴CD =12AB =4.16.3 cm ≤OP ≤5 cm [解析] 作直径MN ⊥弦AB ,垂足为D.由垂径定理,得AD =DB =12AB =4 cm .由⊙O 的直径为10 cm ,连接OA ,可得OA =5 cm . 由勾股定理,得OD =OA 2-AD 2=3 cm . ∵垂线段最短,半径最长,∴OP 长的取值范围是3 cm ≤OP ≤5 cm .17.解:(1)不同类型的正确结论有:BE =12BC ,BD ︵=CD ︵,BD =CD ,OD ⊥BC ,△BOD是等腰三角形,△BDE ≌△CDE ,OB 2=OE 2+BE 2等(答案不唯一,合理即可).(2)∵AB 是⊙O 的直径,∴OA =OB.∵BE =CE ,∴OD ⊥BC ,OE 为△ABC 的中位线, ∴OE =12AC =12×6=3.在Rt △OBE 中,由勾股定理,得 OB =OE 2+BE 2=32+42=5, ∴OD =OB =5,∴DE =OD -OE =5-3=2.18.解:(1)如图①,连接AC ,BC ,作线段AC ,BC 的垂直平分线交于点O ,点O 即为所求.(2)如图②,连接OA ,AB ,OC ,OC 交AB 于点D.∵C 为AB ︵的中点,∴OC ⊥AB , ∴AD =BD =12AB =40 m .设⊙O 的半径为r m ,则OA =r m ,OD =OC -CD =(r -20)m . 在Rt △OAD 中,∵OA 2=OD 2+AD 2, ∴r 2=(r -20)2+402,解得r =50. 即AB ︵所在圆的半径是50 m .19.解:不需要采取紧急措施.理由:∵CD 为弓形的高,∴AB ︵所在圆的圆心在直线CD 上.设圆心为O ,连接OA ,OC ,OM.设OA =R m ,在Rt △AOC 中,AC =12AB =30 m ,OC =OD -CD =(R -18)m ,∴R 2=302+(R -18)2,解得R =34.设CD 交MN 于点E ,DE =x m ,在Rt △MOE 中,ME =12MN =16 m ,OE =OD -DE=(34-x)m ,∴342=162+(34-x)2,即x 2-68x +256=0, 解得x 1=4,x 2=64(不合题意,舍去), ∴DE =4 m .∵4 m >3.5 m , ∴不需要采取紧急措施.。
24.1.2垂直于弦的直径(2)
O
M
B
O
M
B C
N
D
E
例2:如图,圆O的弦AB=8 ㎝ , DC=2㎝,直径CE⊥AB于D,求半 径OC的长。
O D A
C
B
C
O
反思:在⊙ O中,若⊙ O的半径r、 A 圆心到弦的距离d、弦长a中, D 任意知道两个量,可根据 垂径定理和勾股 定理求出第三个量.
B
E
练习2:在圆O中,直径CE⊥AB于 D,OD=4 ㎝,弦AC= 10 ㎝ , 求圆O的半径。
D
E O
C
B
2.已知:如图,⊙O 中,弦AB∥CD, AB<CD,直径MN⊥AB,垂足为E,
驶向胜利 的彼岸
交弦CD于点F.
图中相等的线段有 :
B M
E A O
.
D
图中相等的劣弧有:
.
C
F
N
小 结
1、垂径定理 垂直于弦的直径平分弦,并且平分弦所 的两条弧.
2、垂径定理的逆定理:平分弦(不是直径)的直 径垂直于弦,并且平 分弦所对的两条弧. 3、垂径定理及其推论: 如果一条直线,满足下列 五个条件:①过圆心 ②垂直于弦 ③平分弦 ④平 分弦所对的优弧 ⑤平分弦所对的劣弧 中的任意两个,就能推出另外的三个结论. 4、重要结论:圆中两条平行弦所夹的弧相等.
∵ OE⊥AD =π(OA2-OB2) ∴由勾股定理得 =π(AE2-BE2 ) OA2=AE2+OE2,OB2=BE2+OE2 = π(32-22 )=5π ∴OA2-OB2=AE2-BE2 答:圆环面积为5πcm2.
已知:如图,在以 O为圆心的两个同心圆中,大圆的 弦AD交小圆于B,C两点. ⑴求证:AB=CD ⑵如果AD=6cm,BC=4cm,求圆 环的面积.
九年级数学上册 圆24.1圆的有关性质24.1.2垂直于弦的直径同步检测含解析
24.1.2 垂直于弦的直径测试时间:30分钟一、选择题1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A.①B.②C.③D.④2.(2017贵州黔西南州中考)如图,在☉O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是( )A.3B.2.5C.2D.13.在某岛A的正东方向有台风,且台风中心B距离该岛40 km,台风中心正以30 km/h的速度向西北方向移动,距离台风中心50 km以内(包括边界)都受影响,则该岛受到台风影响的时间为( )A.不受影响B.1 hC.2 hD.3 h二、填空题4.(2017湖南长沙中考)如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.5.(2017四川雅安中考)☉O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.三、解答题6.如图,AB为☉O的弦,☉O的半径为5,OC⊥AB于点D,交☉O于点C,且CD=1.(1)求线段OD的长;(2)求弦AB的长.7.(2018福建龙岩新罗期末)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.24.1.2 垂直于弦的直径一、选择题1.答案 B 第②块有一段完整的弧,可在这段弧上任作两条弦,作出这两条弦的垂直平分线,它们的交点即为圆心,进而可得半径.故选B.2.答案 C 连接OA,设CD=x,∵OA=OC=5,∴OD=5-x,∵OC⊥AB,AB=8,∴由垂径定理可知AD=AB=4,由勾股定理可知52=42+(5-x)2,∴x=2(x=8舍去),∴CD=2.故选C.3.答案 C 如图,假设D、E为刚好受影响的点,过A作AC⊥BE于点C,连接AE、AD,可得出AE=AD=50 km,∵∠ABE=45°,∠ACB=90°,AB=40km,∴AC=BC=40 km,在Rt△ADC中,AD=50km,AC=40 km,∴根据勾股定理得DC==30 km,∴ED=2DC=60 km,又台风速度为30km/h,∴该岛受到台风影响的时间为60÷30=2(h).故选C.二、填空题4.答案 5解析连接OC,∵AB为☉O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设☉O的半径为x,则OC=x,OE=OB-BE=x-1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x-1)2+32,解得x=5,∴☉O的半径为5.5.答案4≤OP≤5解析如图:连接OA,过O作OM⊥AB于M,∵☉O的直径为10,∴半径为5,∴OP的最大值为5.∵OM⊥AB,∴AM=BM,∵AB=6,∴AM=3.在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.三、解答题6.解析(1)∵☉O的半径是5,∴OC=5,∵CD=1,∴OD=OC-CD=5-1=4.(2)如图,连接AO,∵OC⊥AB,∴AB=2AD,在Rt△OAD中,根据勾股定理得AD===3,∴AB=6,因此弦AB的长是6.7.解析设直径CD的长为2x寸,则半径OC=x寸, ∵CD为☉O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5(寸),连接OB,则OB=x寸,根据勾股定理得x2=52+(x-1)2, 解得x=13,∴CD=2x=2×13=26(寸).答:CD的长为26寸.。
2019年人教版九年级上《24.1.2垂直于弦的直径》同步练习(含答案解析)
2018-2019学年度人教版数学九年级上册同步练习24.1.2 垂直于弦的直径一.选择题(共15小题)1.下列说法中正确的是()A.平分弦的直径一定垂直于弦B.长度相等的弧是等弧C.平行弦所夹的两条弧相等D.相等的圆心角所对的弦相等2.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6B.6C.3D.93.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD4.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.55.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A.6cm B.10cm C.8cm D.20cm6.在半径为25cm的⊙O中,弦AB=40cm,则弦AB所对的弧的中点到AB的距离是()A.10cm B.15cm C.40cm D.10cm或40cm7.下列说法中正确的个数有()①相等的圆心角所对的弧相等;②平分弦的直径一定垂直于弦;③圆是轴对称图形,每一条直径都是对称轴;④直径是弦;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个8.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=2,BC=8.则⊙O的半径为()A.B.5C.D.69.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.610.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸11.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm12.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm13.如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()A.6 m B.8 m C.10 m D.12 m14.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm15.“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为()A.寸B.13寸C.25寸D.26寸二.填空题(共10小题)16.如图,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2.则⊙O半径的长为.17.如图,AB是⊙O的弦,OC⊥AB于点C,且AB>OC,若OC和AB是方程x2﹣11x+24=0的两个根,则⊙O的半径OA=.18.半径等于16的圆中,垂直平分半径的弦长为.19.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是.21.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升cm.22.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.23.如图,小强为了帮助爸爸确定残破轮子的直径,先在轮子上画出一个弓形(如图中阴影部分),然后量得弦AB的长为4cm,这个弓形的高为1cm,则这个轮子的直径长为cm.24.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.25.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.三.解答题(共6小题)26.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O 的半径长.27.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.28.已知:如图,⊙O的直径AB与弦CD(不是直径)交于点F,若FB=2,CF=FD=4,求AC的长.29.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.30.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.31.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?参考答案与试题解析一.选择题(共15小题)1.【解答】解:A、当两条弦都是直径时不成立,故本选项错误;B、在同圆或等圆中,两个长度相等的弧是等弧,故本选项错误;C、如图所示,两弦平行,则圆周角相等,圆周角相等,则弧相等;故本选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误.故选:C.2.【解答】解:连接DF,∵直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×=6,故选:B.3.【解答】解:连接DA,∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB,∵2∠DAB=∠BOD,∴∠CAD=∠BOD,故选:D.4.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.5.【解答】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cm∴OE=6cm,AE=AB=8cm,在Rt△AOE中,根据勾股定理得,OA==10cm 故选:B.6.【解答】解:点C和D为弦AB所对弧的中点,连结CD交AB于E,连结OA,如图,∵点C和D为弦AB所对弧的中点,∴CD为直径,CD⊥AB,∴AE=BE=AB=20,在Rt△OAE中,∵OA=25,AE=20,∴OE==15,∴DE=OD+OE=40,CE=OC﹣OE=10,即弦AB和弦AB所对的劣弧的中点的距离为10cm,弦AB和弦AB所对的优弧的中点的距离为40cm.故选:D.7.【解答】解:①相等的圆心角所对的弧相等;错误.必须在同圆或等圆中;②平分弦的直径一定垂直于弦;错误,此弦不是直径;③圆是轴对称图形,每一条直径都是对称轴;错误,应该是每一条直径所在的直线都是对称轴;④直径是弦;正确;⑤长度相等的弧是等弧.错误.能够完全重合的两条弧是等弧;故选:A.8.【解答】解:延长AO交BC于点D,连接OB,由对称性及等腰Rt△ABC,得到AD⊥BC,∴D为BC的中点,即BD=CD=BC=4,AD=BC=4,∵OA=2,∴OD=AD﹣OA=4﹣2=2,在Rt△BOD中,根据勾股定理得:OB==2,则圆的半径为2.故选:C.9.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.11.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.12.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.13.【解答】解:如图,设OA=r,则OD=r﹣4,∵AB=16m,∴AD=8m.在Rt△AOD中,∵OD2+AD2=OA2,即(r﹣4)2+82=r2,解得r=10(m).故选:C.14.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=4,OD=10,∴OC=6,又∵OB=10,∴Rt△BCO中,BC=,∴AB=2BC=16.故选:C.15.【解答】解:连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x﹣1,∵OA2=OE2+AE2,则x2=(x﹣1)2+25,解得:x=13.则CD=2×13=26(cm).故选:D.二.填空题(共10小题)16.【解答】解:连接AO,∵半径OC⊥弦AB,∴AD=BD,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴OD=R﹣2,在Rt△AOD中,OA2=OD2+AD2,即:R2=(R﹣2)2+62,∴R=10,答:⊙O的半径长为10.17.【解答】解:x2﹣11x+24=0(x﹣3)(x﹣8)=0x﹣3=0,x﹣8=0,x1=3,x2=8,∵AB>OC,∴AB=8,OC=3,∵OC⊥AB,∴AC=AB=4,由勾股定理得,OA==5,故答案为:5.18.【解答】解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.19.【解答】解:已知A(0,0),B(2,2),C(4,0),如图:可设:AB的垂直平分线解析式为:y=kx+b,把(0,2),(2,0)代入解析式可得:,解得:,所以AB的垂直平分线解析式是y=﹣x+2,设AC的垂直平分线解析式为x=m,把(2,2)代入解析式,可得:x=2,所以AC的垂直平分线解析式是x=2,∴过A、B、C三点的圆的圆心坐标为(2,0).故答案为:(2,0).20.【解答】解:连接OC,由题意,得OE=OA﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故答案为2.21.【解答】解:作半径OD⊥AB于C,连接OB由垂径定理得:BC=AB=30cm,在Rt△OBC中,OC==40cm,当水位上升到圆心以下时水面宽80cm时,则OC′==30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.22.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故答案为:2.523.【解答】解:连接OB;Rt△OBD中,BD=AB=2cm,根据勾股定理得:OD2+BD2=OB2,即:(OB﹣1)2+22=OB2,解得:OB=2.5;所以轮子的直径为5cm.故答案为:5.24.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.25.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为: +1=+1,故答案为:(+1)m.三.解答题(共6小题)26.【解答】解:过点O作OM⊥CD于点M,联结OD,∵∠CEA=30°,∴∠OEM=∠CEA=30°,在Rt△OEM中,∵OE=4,∴,,∵,∴,∵OM过圆心,OM⊥CD,∴CD=2DM,∴,∵,∴在Rt△DOM中,,∴弦CD的长为,⊙O的半径长为.27.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.28.【解答】解:连接BC,∵AB是直径,CF=FD=4,∴AB⊥CD,∵∠ACB=90°∴∠A=∠BCF,∴△BCF∽△CAF,∴=,∴CF2=AF•BF,设AF=x,∴16=2x,∴x=8,∴由勾股定理可知:AC=429.【解答】解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.30.【解答】解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=AB=×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.31.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.。
人教版九年级上数学24.1.2垂直于弦的直径练习题含答案
24.1.2 垂直于弦的直径01 基础题 知识点1 圆的对称性 1.下列说法正确的是(B)A .直径是圆的对称轴B .经过圆心的直线是圆的对称轴C .与圆相交的直线是圆的对称轴D .与半径垂直的直线是圆的对称轴 2.圆是轴对称图形,它的对称轴有(D)A .1条B .2条C .4条D .无数条 知识点2 垂径定理3.(黄石中考)如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =(A)A .5B .7C .9D .114.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是(D)A .CM =DM B.CB ︵=DB ︵C .△OCM ≌△ODMD .OM =MB5.(大同期中)如图,在半径为5 cm 的⊙O 中,圆心O 到弦AB 的距离为4 cm ,则AB =6__cm .6.(长沙中考)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为5.7.如图,已知⊙O的半径为4,OC垂直弦AB于点C,∠AOB=120°,则弦AB的长为43.知识点3垂径定理的推论8.如图,⊙O的半径为10,M是AB的中点,且OM=6,则⊙O的弦AB等于(D) A.8 B.10 C.12 D.16知识点4垂径定理的应用9.(金华中考)如图,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弓形弦AB 的长为(C)A.10 cmB.16 cmC.24 cmD.26 cm10.(茂名中考)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.11.如图是某风景区的一个圆拱形门,路面AB宽为2米,净高5米,求圆拱形门所在圆的半径是多少米.解:连接OA.∵CD ⊥AB ,且CD 过圆心O , ∴AD =12AB =1米,∠CDA =90°.设⊙O 的半径为R ,则 OA =OC =R ,OD =5-R. 在Rt △OAD 中,由勾股定理,得 OA 2=OD 2+AD 2,即R 2=(5-R)2+12,解得R =2.6. ∴圆拱形门所在圆的半径为2.6米.易错点 忽略垂径定理的推论中的条件“不是直径” 12.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦 02 中档题13.(呼和浩特中考)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M.若AB =12,OM ∶MD =5∶8,则⊙O 的周长为(B)A .26πB .13π C.96π5 D.3910π514.如图,在⊙O 中,AB ,AC 是互相垂直的两条弦,OD ⊥AB 于点D ,OE ⊥AC 于点E ,且AB =8 cm ,AC =6 cm ,那么⊙O 的半径OA 长为5__cm.15.(宿迁中考)如图,在△ABC 中,已知∠ACB =130°,∠BAC =20°,BC =2,以点C 为圆心,CB 为半径的圆交AB 于点D ,则BD 的长为23.16.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为4.17.(雅安中考)⊙O 的直径为10,弦AB =6,P 是弦AB 上一动点,则OP 的取值范围是4≤OP ≤5. 18.如图,已知⊙O 的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥AD.(1)求证:点E 是OB 的中点; (2)若AB =8,求CD 的长. 解:(1)证明:连接AC. ∵OB ⊥CD ,∴CE =ED ,即OB 是CD 的垂直平分线. ∴AC =AD. 同理AC =CD.∴△ACD 是等边三角形. ∴∠ACD =60°,∠DCF =30°. 在Rt △COE 中,OE =12OC =12OB.∴点E 是OB 的中点. (2)∵AB =8,∴OC =12AB =4.又∵BE =OE ,∴OE =2.∴CE =OC 2-OE 2=16-4=2 3.∴CD=2CE=4 3.19.(湖州中考)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.解:(1)证明:过点O作OE⊥AB于点E.则CE=DE,AE=BE.∴AE-CE=BE-DE,即AC=BD.(2)连接OA,OC.由(1)可知,OE⊥AB且OE⊥CD,∴CE=OC2-OE2=82-62=27,AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.03综合题20.太原市城市风貌提升工程正在火热进行中,检查中发现一些破旧的公交车候车亭有碍观瞻,现准备制作一批新的候车亭,查看了网上的一些候车亭图片后(如图1),设计师画出了如图2所示的侧面示意图,FG为水平线段,PQ⊥FG,点H为垂足,FG=2 m,FH=1.2 m,点P在弧FG上,且弧FG所在圆的圆心O到FG,PQ的距离之比为5∶2,则PH的长约为0.6__m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆24.1.2 垂直于弦的直径精选练习答案一、单选题(共10小题)1.(2019·广东铁一中学初三期中)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,则∠AOB的度数为()A.90°B.120°C.135°D.150°【答案】B【详解】过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知,OD12=OC12=OA,由此可得.在Rt△AOD中,∠OAD=30°,同理可得∠OBD=30°.在△AOB中,由内角和定理,得:∠AOB=180°﹣∠OAD﹣∠OBD=120°.故选B.【名师点睛】本题考查了垂径定理,折叠的性质,特殊直角三角形的判断.关键是由折叠的性质得出含30°的直角三角形.2.(2019菏泽市期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4【答案】B【详解】如图:EF 的中点M ,作MN⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN -ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选:B .【名师点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3.(2018·扬州中学教育集团树人学校初三期中)已知⊙O 的直径为,弦AB 为8cm ,P 为弦AB 上的一动点,若OP 的长度为整数,则满足条件的点P 有( )A .2个B .3个C .5个D .7个【答案】C【详解】解:①当点P与点A或点P重合时,OP=r=2cm;②如图所示:∵OP⊥AB,∴AP=PB=12AB=4,在Rt△OPB中,==2(cm).综上可得OP的取值范围为:2cm≤OP≤.则OP的整数值是2,3,4.其中长度是2cm的只有当OP⊥AB时一种情况,当OP=3cm、4cm各自有2种情况.则总计有5种.故选:C.【名师点睛】本题考查了垂径定理的知识,平分弦的直径平分这条弦,并且平分弦所对的两条弧,需要同学们熟练掌握.4.(2017长沙市期末)如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为点D,E,若AC=2cm,则⊙O的半径为()A.1 cmB.2 cm cm D.4 cm【答案】C【详解】∵OD⊥AB,∴AD=BD=12 AB.同理AE=CE=12 AC.∵AB=AC,∴AD=AE.连接OA,∵OD⊥ABOE⊥ACAB⊥AC,∴∠OEA=∠A=∠ODA=90°,∴ADOE为矩形.又∵AD=AE,∴ADOE为正方形,(cm).故选:C.【名师点睛】考查垂径定理、勾股定理、正方形的判定和性质等知识,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.5.(2019·山东省东营市河口区义和镇中心学校初三期中)如图,圆O的直径AB垂直于弦CD,垂足是E,22.5A∠=,4OC=,则CD的长为()A.B.4 C.D.8【答案】C【详解】∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,,∴CE=2.【名师点睛】考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.6.如图,图O半径为10cm,弓形高为4cm,则弓形的弦AB的长为()A.8cm B.12cm C.16cm D.20cm【答案】C【详解】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=4,OD=10,∴OC=6,又∵OB=10,∴Rt△BCO中∴AB=2BC=16.故选:C.【名师点睛】本题考查圆的弦的知识,掌握勾股定理是解题关键.7.(2018·重庆市期末)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A B.C.D.8【答案】C【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,故选C.【名师点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键8.(2018·天津市期中)8.(2018·天津初三期中)下列说法中正确的有()①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③一条直线平分弦,那么这条直线垂直这条弦;④平分弦的直线,必定过圆心;⑤平分弦的直径,平分这条弦所对的弧.A.1个 B.2个 C.3个 D.4个【答案】B【解析】垂直于弦的直径平分弦,符合垂径定理,故①正确;在命题②中,两条直径是相互平分的,所以②是错误的;平分弦的直线不是直径一定不垂直这条弦,故③错误;平分弦的直线不是直径一定不过圆心,故命题④错误;平分弦的直径不一定平分这条弦所对的弧,因为当弦是直径时,任意两条直径互相平分,但不垂直,也不平分这条弦所对的弧,故⑤错误;正确的一个,故选A.9.(2018·杭州市期中)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为( )A.6B.6√2C.8D.8√2【答案】B【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON=√102-82=6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=√62+62=6√2.故选B.【名师点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(2018扬州市期末)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是()A.8πB.4πC.64πD.16π【答案】D【解析】试题解析:如图,设AB与小圆切于点C,连结OC,OB.∵AB与小圆切于点C,∴OC⊥AB,118 4.22BC AC AB∴===⨯=∵阴影的面积2222πππ().OB OC OB OC=⋅-⋅=-又∵直角△OBC中, 222.OB OC BC=+∴阴影的面积22222πππ()π16πOB OC OB OC BC=⋅-⋅=-=⋅=,故选D.二、填空题(共5小题)11.(2018春南昌市期中)如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为__.【答案】2【详解】根据圆周角定理,∵∠A=15°,∴∠BOC=30°,∴CE=OC⋅sin∠BOC=2×=1,∵⊙O的直径垂直于弦CD,垂足为E,∴CD=2CE=2.【名师点睛】本题主要考查圆周角定理与垂径定理,熟练掌握这些知识是解答本题的关键. 12.(2018·甘肃省武威第五中学初三期末)某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.【答案】4cm.【详解】由题意知OD⊥AB,交AB于点E,∵AB=16cm,∴BC=12AB=12×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,(cm),∴CD=OD-OC=10-6=4(cm)故答案为4cm.【名师点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.13.(2018春南开区期末)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是____.【答案】【解析】试题解析:连接OC,由题意,得=-=-=,OE OA AE413==CE ED==CD CE2故答案为:14.(2018春蚌埠市期中)如图所示,⊙O的半径OA=4,∠AOB=120°,则弦AB长为____________.【答案】【详解】如图,作OC垂直弦AB于点C,∴AC=BC,∵∠AOB=120°,∴∠AOC=60°,即∠OAC=30°,又∵OA=4,∴OC=12OA=2,∴AB=2AC=故答案为15.(2017春厦门市期中)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为______.【答案】2.5【解析】连接OC,则OC=r,OE=r-1,CE=12CD=2,根据Rt△OCE的勾股定理可得:22+(r−1)2=r2,解得:r=2.5.三、解答题(共3小题)16.(2017春宜昌市期中)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F在⊙O上,FD恰好经过圆心O,连接FB.(1)若∠F=∠D,求∠F的度数;(2)若CD=24,BE=8,求⊙O的半径.【答案】(1)30°;(2)13.【解析】(1)∵OF=OB,∴∠B=∠F,∴∠DOB=∠B+∠F=2∠B,∵∠DOE+∠D=90°∴2∠B+∠D=90°,∵∠B=∠D,∴2∠D+∠D=90°,∴∠D=30°;(2)设⊙O的半径为r,∵AB⊥CD,∴CE=DE=12CD=12×24=12,在Rt△ODE中,OE=OB-BE=r-8,OD=r,∵OE2+DE2=OD2,∴(r-8)2+122=r2,解得r=13,∴⊙O的半径为13.17.(2018春怀化市期末)如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.【答案】25 4【详解】如图,连接OB.∵AD是△ABC的高.∴BD= 12BC=6在Rt△ABD中,.设圆的半径是R.则OD=8﹣R.在Rt△OBD中,根据勾股定理可以得到:R2=36+(8﹣R)2解得:R= 254.【名师点睛】本题考查垂径定理以及勾股定理,解题关键是根据勾股定理转化成方程问题.18.(2017·湖北郯城红花初中初三期中)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【答案】(1)r=34;(2)不需要采取紧急措施.【解析】(1)连结OA,由题意得:AD=12AB=30,OD=(r-18)在Rt△ADO中,由勾股定理得:r2=302+(r-18)2,解得,r=34;(2)连结OA′,∵OE=OP-PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2-OE2,即:A′E2=342-302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.。