江苏省镇江市2020届九年级二模考试网上阅卷答题卡数学试题(扫描版)

合集下载

2020年江苏省镇江市实验学校初中毕业、升学统一考试模拟试卷2

2020年江苏省镇江市实验学校初中毕业、升学统一考试模拟试卷2

江苏省镇江市初中毕业、升学统一考试数学模拟试卷二一、填空题(每小题2分,共24分)1.2-的相反数是_________的立方根_________.2.函数y =中自变量x 的取值范围是________;分式12x x -+值为零的条件__________. 3.计算:()()223a a +-=__________;分解因式:32a ab -=___________.4.一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的形状是________,面积等于_________2cm .5.方程组35ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a =________,b =________.6.如图,PA PB 、是O e 的切线,A B 、为切点,AC 是O e 的直径,20BAC ∠=︒,则BAP ∠=__________︒,APB ∠=__________︒.7.如图,将边长为4的等边ABC ∆,沿x 轴向左平移2个单位后,得到'''A B C ∆,则点'A 和'B 的坐标分别为________和________.8.如图,在四边形ABCD 中,P 是对角线BD 的中点,,E F 分别是,AB CD 的中点,=,18AD BC PEF ︒∠=,则PFE=∠________︒,EPF ∠=________︒.9.已知一次函数y kx b =+的图象经过点()()0,2,1,0A B -,则b =________,k =________.10.如图,AB 是O e 的直径,且10AB cm =,C 是O e 上一点,44BOC ∠=︒,则A ∠的度数为________,以扇形BOC 为侧面的圆锥,它的底面圆的周长是________.11. 如图,CD 是ABC ∆的中线,且2,5,4,3CG DG GA cm GC cm GB cm ====,将ADG ∆绕点D 旋转180︒得到BDE ∆,则DE =_______cm .ABC ∆的面积_________2cm .12.在直角坐标系中,O 是坐标原点,点(),P m n 在反比例函数k y x=的图象上. (1)若,2m k n k ==-,则k =_______.(2)若,2m n OP +==,且此函数k y x=满足:当0x >时,y 随x 的增大而减小,则k =_______. 二、选择题(每题3分,共15分.每小题有四个选项,其中只有一个选项是正确的,将正确选项的字母填入题后的括号内.)13.已知点()2,3A -,则点A 在( )A.第一象限B.第二象限C.第三象限D.第四象限14.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( )A.4B.0或2C.1D.1-15.如图,ABC ∆中,50A ∠=︒,点,D E 分别在,AB AC 上,则12∠+∠的大小为( )A.130︒B.230︒C.180︒D.310︒16. 一艘轮船由海平面上A 地出发向南偏西40︒的方向行驶40海里到达B 地,再由B 地向北偏西20︒的方向行驶40海里到达C 地, 则A C 、两地相距( )A.30海里B.40海里C.50海里D.60海里17. 电子跳蚤游戏盘是如图所示的ABC ∆,678AB AC BC =,=,=.如果跳蚤开始时在BC 边的0P 处,02BP =.跳蚤第一步从0P 跳到AC 边的1P (第1次落点)处,且10CP CP =;第二步从1P 跳到AB 边的2P (第2次落点)处,且21AP AP =;第三步从2P 跳到BC 边的3P (第3次落点)处,且32BP BP =;……;跳蚤 按上述规则一直跳下去,第n 次落点为n P (n 为正整数),则点2007P 与2010P 之间的距离为( )A.1B.2C.3D.4三、解答题(本大题共11题,计81分.解答时应写明演算步骤、证明过程或必要的文字说明.)18.计算或化简:(1))013sin 451--︒++; (2)1111x x x ⎛⎫-÷ ⎪+-⎝⎭. 19.解方程或解不等式组(1)3511x x =-+; (2)()112241x x x -⎧≤⎪⎨⎪-<+⎩,并写出不等式组的正整数解. 20.如图,在ABC ∆中,D 是BC 边的中点,F E 、分别是AD 及其延长线上的点,//CF BE .(1)求证:BDE CDF ∆≅∆;(2)连接BF CE 、,如果ABC ∆中,AB AC =,那么四边形BECF 的形状一定是________.请说明理由.21.已知:如图,ABC ∆中,AB AC =,以AB 为直径的O e 交于BC 点P ,PD AC ⊥于点D .(1)PD 是O e 的切线吗?请说明理由;(2)若120CAB ∠=︒,AB =2,求BC 的值.22. 如图是规格为88⨯的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系, 使点A 坐标为()2,4-,B 点坐标为()4,2-;(2)在第二象限内的格点上画一点C ,使点C 与线段AB 组成一个以AB 为底的等腰三角形,且腰长是无理数, 则C 点坐标是________,ABC ∆的周长是_________(结果保留根号);(3)画出ABC ∆以点C 为旋转中心、旋转180︒后的''A B C ∆,连结'AB 和'A B ,试说出四边形''ABA B 是何特殊四边形, 并说明理由.23.设,其中.(1)说明;(2)比较与的大小,并说明理由.24. 如图,现有一横截面是一抛物线的水渠.一次,水渠管理员将一根长1.5m 的标杆一端放在水渠底部的A 点,另一端露出水面并靠在水渠边缘的B 点,发现标杆有1m 浸没在水中,露出水面部分的标杆与水面成30︒的夹角(标杆与抛物线的横截面在同一平面内).(1)以水面所在直线为x 轴,建立如图所示的直角坐标系,求该水渠横截面抛物线的解析式(结果保留根号);(2)在(1)的条件下,求当水面再上升0.3m 2.2,结果精确到0.1m ).25.如图,已知平面直角坐标系,A B 、两点的坐标分别为(2,3)(4,1)A B --,.(1)若(),0P p 是x 轴上的一个动点,则当p =_______时,PAB ∆的周长最短;(2)若()(),0,3,0C a D a +是x 轴上的两个动点,则当a =_______时,四边形ABDC 的周长最短;(3)设,M N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点()(),00M m N n 、,, 使四边形ABMN 的周长最短?若存在,请求出,m =_________,n =________(不必写解答过程);若不存在,请说明理由.26. 某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为四等, 并绘制成下面的频数分布表和扇形统计图.(1)试直接写出,,,x y m n 的值;(2)求表示得分为C 等的扇形的圆心角的度数;(3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A 等和B 等的人数共有多少人?27. 某市水果批发市场内有一种水果,保鲜期一周,如果冷藏,可以延长保鲜时间,但每天仍有一定数量的这种水果变质,假设这种水果保鲜期内的个体重量基本保持不变。

江苏省镇江市2020年中考二模数学试卷

江苏省镇江市2020年中考二模数学试卷

江苏省镇江市2020年中考二模数学试卷(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--中考数学学科二模试卷一、填空题(本大题共有12小题,每小题2分,共计24分)1. ﹣2的相反数是 .2. 74a a ÷= .3. 分解因式:24x -= .4. x 的取值范围是 .5. 已知一组数据8,3,x ,2的众数为3,则x 的值等于 .6. 若关于x 的方程220x x m +-=有两个相等的实数根,则实数m 的值等于 .7. 用半径为10cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .8. 同一温度的华氏度数y (°F)与摄氏度x (°C)之间的函数表达式是9325y x =+.若某一 温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为 °C. 9. 如图,DE 交△ABC 边AC 、BC 的延长线分别于D 、E 两点,且DE∥AB,若23CD AC =, 则△CDE 与△ABC 的面积比为 . 10. 如图,正十二边形A 1A 2.........A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10= .(第9题) (第10题) (第12题)11. 当实数m 的值满足 范围时,使得时间“对于二次函数()21132y x m x =--+,当x <﹣2时,y 随x 增大而减小”称为随机事件.直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E 运动的路径长为 .二、选择题(本大题共有6小题,每小题3分,共计18分,在每小题所给出的四个选项中恰有一项符合题目要求)13. 截至2020年3月9日24时,湖北全省累计治愈出院47585例,其中:武汉市31829例.将31829用科学记数法表示应为()A. ×104B. ×104C. ×105D. ×10514. 美是一种感觉,当人体下半身长与身高的比值越接近时,越给人一种美感.如图,某女士身高165cm,下半身x与身高l的比值是,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A. 4cmB. 6cmC. 8cmD. 10cm15. 若正多边形的内角和是540°,则该正多边形的一个外角为()A. 45°B. 60°C. 72°D. 90°16. 如图,AB为O的直径,C、D为O上两点,若∠BCD=38°,则∠ABD的大小为()A. 76°B. 52°C. 50°D. 38°(第14题)(第16题)(第17题)(第18题)17.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n的取值为()18. A.?36 B.?32 C.?28 D.?24在反比例函数y=三、解答题(本大题共有10小题,共计78分. 解答时应写出必要的文字说明,证明过(453-分)如图,将ABCD13(第26题)28.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接DC,点M、P,、N分别为DE、DC、BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN、BD、CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值。

苏教版2020年中考数学二模试卷(含答案解析)

苏教版2020年中考数学二模试卷(含答案解析)

2020年中考数学二模试卷一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.(3分)下列四个实数中,最大的实数是()A.|﹣2|B.﹣1C.0D.2.(3分)下列四个图案中,不是中心对称图案的是()A.B.C.D.3.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9 4.(3分)关于x的一元二次方程x2﹣(m+2)x+m=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.(3分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10B.15C.20D.246.(3分)如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°7.(3分)若在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x<﹣1C.x≥﹣1D.x≥﹣1且x≠0 8.(3分)如图,四边形ABCD内接于⊙O,连接OA,OC.若OA∥BC,∠BCO=70°.则∠ABC的度数为()A.110°B.120°C.125°D.135°9.(3分)如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A.海里B.海里C.80海里D.海里10.(3分)小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A.①④B.②③C.②③④D.②④二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应的位置上. 11.(3分)的倒数是.12.(3分)DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为.13.(3分)已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是.14.(3分)因式分解:2x2﹣8=.15.(3分)已知点P(a,b)是一次函数y=x﹣1的图象与反比例函数的图象的一个交点,则a2+b2的值为.16.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为.17.(3分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE∥AB,则DF的长为.18.(3分)如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.21.(6分)先化简,再求值:,其中.22.(6分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.23.(8分)今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).24.(8分)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?25.(8分)如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB =8,BC=6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.27.(10分)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.28.(10分)如图1,二次函数y=ax2﹣3ax﹣4a的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣3).(1)求二次函数的表达式及点A、点B的坐标;(2)若点D在二次函数图象上,且,求点D的横坐标;(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME∥y轴,与直线BC交于点E,过N作NF∥y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.答案与解析一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.(3分)下列四个实数中,最大的实数是()A.|﹣2|B.﹣1C.0D.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵|﹣2|>>0>﹣1,∴所给的四个实数中,最大的实数是|﹣2|.故选:A.2.(3分)下列四个图案中,不是中心对称图案的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、B、D是中心对称图形,C不是中心对称图形,故选:C.3.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.4.(3分)关于x的一元二次方程x2﹣(m+2)x+m=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】表示出根的判别式,判断判别式的正负即可确定出方程根的情况.【解答】解:由关于x的一元二次方程x2﹣(m+2)x+m=0,得到a=1,b=﹣(m+2),c=m,△=(m+2)2﹣4m=m2+4m+4﹣4m=m2+4>0,则方程有两个不相等的实数根,故选:A.5.(3分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10B.15C.20D.24【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可.【解答】解:根据题意得=0.25,解得:a=24,经检验:a=24是分式方程的解,故选:D.6.(3分)如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选:D.7.(3分)若在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x<﹣1C.x≥﹣1D.x≥﹣1且x≠0【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:若在实数范围内有意义,则x+1>0,解得:x>﹣1.故选:A.8.(3分)如图,四边形ABCD内接于⊙O,连接OA,OC.若OA∥BC,∠BCO=70°.则∠ABC的度数为()A.110°B.120°C.125°D.135°【分析】根据平行线的性质求出∠AOC,根据圆周角定理求出∠D,根据圆内接四边形的性质计算即可.【解答】解:∵OA∥BC,∴∠AOC=180°﹣∠BCO=110°,由圆周角定理得,∠D=∠AOC=55°,∵四边形ABCD内接于⊙O,∴∠ABC=180°﹣∠D=125°,故选:C.9.(3分)如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A.海里B.海里C.80海里D.海里【分析】过A作AD⊥BC于D,解直角三角形即可得到结论.【解答】解:过A作AD⊥BC于D,在Rt△ABD中,∠ABD=30°,AB=40,∴AD=AB=20,BD=AB=20,在Rt△ACD中,∵∠C=45°,∴CD=AD=20,∴BC=BD+CD=(20+20)海里,故选:B.10.(3分)小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A.①④B.②③C.②③④D.②④【分析】①根据题意和函数图象可以得到下坡路的长度;②利用路程除以时间求得上坡速度和下坡的速度;③根据“路程除以速度=时间”求解即可;④设上坡速度为x(米/分),根据题意列方程即可求解.【解答】解:①小明上学途中下坡路的长为1800﹣600=1200(米).②小明上学途中上坡速度为:600÷4=150(米/分),下坡速度为:1200÷6=200(米/分).③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,小明返回时经过这段路所用时间为:600÷200+1200÷150=11(分钟),所以小明返回时经过这段路比上学时多用1分钟;④设上坡速度为x(米/分),根据题意得,,解得x=160,经检验,x=160是原方程的解.所以返回时上坡速度是160米/分.综上所述,正确的有②③④.故选:C.二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应的位置上. 11.(3分)的倒数是.【分析】根据倒数的定义可知.【解答】解:的倒数是.12.(3分)DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为2×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0002=2×10﹣7.故答案为:2×10﹣7.13.(3分)已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是4.【分析】先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据5,x,3,6,4的众数是4,∴x=4,则数据重新排列为3,4,4,5,6,所以中位数是4,故答案为:4.14.(3分)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).15.(3分)已知点P(a,b)是一次函数y=x﹣1的图象与反比例函数的图象的一个交点,则a2+b2的值为5.【分析】一次函数y=x﹣1与反比例函数y=联立,求出a和b的值,代入a2+b2,计算求值即可.【解答】解:根据题意得:,解得:或,即或,则a2+b2=(﹣1)2+(﹣2)2=5或a2+b2=22+12=5,即a2+b2的值为5,故答案为:5.16.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为120°.【分析】设该圆锥侧面展开图所对应扇形圆心角的度数为n°,圆锥的母线长为l,底面圆的半径为r,利用扇形面积公式得到•2πr•l=3•πr2,所以l=3r,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得2πr=,再解关于n的方程即可.【解答】解:设该圆锥侧面展开图所对应扇形圆心角的度数为n,圆锥的母线长为l,底面圆的半径为r,所以•2πr•l=3•πr2,则l=3r,因为2πr=,所以n=120°.故答案为120°.17.(3分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE∥AB,则DF的长为.【分析】由等腰三角形的性质和平行线的性质得出∠B=∠C,∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,得出∠B=∠BAF=∠E=∠EDF,证出AF=BF,EF=DF,得出BD=AB=AC=5,ED=CD=BC﹣BD=3,由平行线得出△EDF∽△ABF,得出比例式,即可得出结果.【解答】解:AB=AC=5,∴∠B=∠C,∵DE∥AB,∴∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,∴∠B=∠BAF=∠E=∠EDF,∴AF=BF,EF=DF,∴BD=AB=AC=5,∴ED=CD=BC﹣BD=3,∵DE∥AB,∴△EDF∽△ABF,∴=,即=,解得:DF=;故答案为:.18.(3分)如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为3.【分析】连接CE,由等腰直角三角形的性质得出AC=BC=3,∠ACB=45°,由勾股定理得出AD==9,由正方形的性质得出DE=CD=3,∠DCF=90°,∠ECF=45°,CE=CF,求出AE=AD﹣DE=6,证明△BCF∽△ACE,得出==,即可得出结果.【解答】解:连接CE,如图所示:∵∠ABC=90°,AB=BC=3,∴AC=BC=3,∠ACB=45°,∵∠D=90°,CD=3,∴AD===9,∵四边形CDEF是正方形,∴DE=CD=3,∠DCF=90°,∠ECF=45°,CE=CF,∴AE=AD﹣DE=6,∴∠ACB=∠ECF,∴∠BCF=∠ACE,∵==,∴△BCF∽△ACE,∴==,∴BF===3;故答案为:3.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:.【分析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣3×+﹣=1﹣+﹣=.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【解答】解:,解①得:x>﹣2,解②得:x≤3,故不等式组的解集是:﹣2<x≤3,表示在数轴上如下:21.(6分)先化简,再求值:,其中.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:====,当x=+1时,原式===.22.(6分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出∠ADB=∠CBD,证明△BOF≌△DOE,得出DE=BF,即可得出结论;(2)证出CF=BC,得出OC是△BDF的中位线,由三角形中位线定理即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵O是对角线BD的中点,∴OB=OD,在△BOF和△DOE中,,∴△BOF≌△DOE(ASA),∴DE=BF,∴DE=AD=BF﹣BC,∴AE=CF;(2)解:OC∥DF,且OC=DF,理由如下:∵AE=BC,AE=CF,∴CF=BC,∵OB=OD,∴OC是△BDF的中位线,∴OC∥DF,且OC=DF.23.(8分)今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).【分析】(1)由一等奖人数及其所占百分比可得总人数,再求出二等奖人数即可补全图形;(2)用360°乘以对应的百分比即可得;(3)利用列举法即可求解即可.【解答】解:(1)本次竞赛获奖的总人数为4÷20%=20(人),补全图形如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数360°×=108°;(3)画树形图得:则P(抽取的两人恰好是甲和乙)=.24.(8分)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?【分析】(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,根据“一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;购买6个甲种型号排球和5个乙种型号排球,一共需花费780元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,根据甲种型号排球的个数多于乙种型号排球且学校购买甲、乙两种型号排球的预算资金不超过1900元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出购买方案的个数.【解答】解:(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,依题意,得:,解得:.答:每个甲种型号排球的价格是80元,每个乙种型号排球的价格是60元.(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,依题意,得:,解得:13<m≤17.又∵m为整数,∴m的值为14,15,16,17.答:该学校共有4种购买方案.25.(8分)如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB =8,BC=6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.【分析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入y=可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.【解答】解:(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=得k=5×4=20;(2)∵AC==10,∴BE=EC=5,∵BF﹣BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=,当x=10时,y==,∴G(10,),∴△CEG的面积=×3×=.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH ⊥OD,DH是圆O的切线;(2)①根据等腰三角形的性质的∠EAF=∠EAF,设∠B=∠C=α,得到∠EAF=∠EF A =2α,根据三角形的内角和得到∠B=36°,求得∠AOD=72°,根据弧长公式即可得到结论;②连接AD,根据圆周角定理得到∠ADB=∠ADC=90°,解直角三角形得到AD=2,根据相似三角形的性质得到AH=3,于是得到结论.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EF A=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.27.(10分)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.【分析】(1)利用待定系数法可得y与x的函数表达式;(2)方法一:证明△CDE∽△ADF,得∠ADF=∠CDE,可得结论;方法二:分别表示△DEF三边的长,计算三边的平方,根据勾股定理的逆定理得:△DEF 是直角三角形,从而得:DE⊥DF;(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】解:(1)设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2);(2)方法一:∵BE=x,BC=2∴CE=2﹣x,∴,,∴,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE,∴∠ADF+∠EDG=∠CDE+∠EDG=90°,∴DE⊥DF;方法二:∵四边形ABCD是矩形,∴∠C=∠DAF=∠B=90°,∴根据勾股定理得:在Rt△CDE中,DE2=CD2+CE2=1+(2﹣x)2=x2﹣4x+5,在Rt△ADF中,DF2=AD2+AF2=4+(4﹣2x)2=4x2﹣16x+20,在Rt△BEF中,EF2=BE2+BF2=x2+(5﹣2x)2=5x2﹣20x+25,∴DE2+DF2=EF2,∴△DEF是直角三角形,且∠EDF=90°,∴DE⊥DF;(3)假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,∴在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=;②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴,∴,x1=,x2=(舍),③若DG=EG,则∠GDE=∠GED,方法一:∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴,∵△CDE∽△ADF,∴=,∴,∴2﹣x=,x=,方法二:∵∠EDF=90°,∴∠FDG+∠GDE=∠DFG+∠DEG=90°,∴∠FDG=∠DFG,∴FG=DG,∴FG=EG,∵AD∥BC,∴∠FGA=∠FEB,∠F AG=∠B,∴△F AG∽△FBE,∴,∴,x=,综上,x=或或.28.(10分)如图1,二次函数y=ax2﹣3ax﹣4a的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣3).(1)求二次函数的表达式及点A、点B的坐标;(2)若点D在二次函数图象上,且,求点D的横坐标;(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME∥y轴,与直线BC交于点E,过N作NF∥y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.【分析】(1)求出a,即可求解;(2)求出直线BC的解析式,过点D作DH∥y轴,与直线BC交于点H,根据三角形面积的关系求解;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,即可求M;【解答】解:(1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3),∴a=,∴y=,与x轴交点A(﹣1,0),B(4,0);(2)设直线BC的解析式为y=kx+b,∴,∴,∴y=x﹣3;过点D作DH∥y轴,与直线BC交于点H,设H(x,x﹣3),D(x,x2﹣x﹣3),∴DH=|x2﹣3x|,∵S△ABC=,∴S△DBC==6,∴S△DBC=2×|x2﹣3x|=6,∴x=2+2,x=2﹣2,x=2;∴D点的横坐标为2+2,2﹣2,2;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),则E(m,m﹣3),F(n,n﹣3),∴ME=﹣m2+3m,NF=﹣n2+3n,∵EF∥MN,ME∥NF,∴四边形MNFE是平行四边形,∴ME=NF,∴﹣m2+3m=﹣n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=(n﹣m)=(4﹣2m)=5﹣m,∴ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,∵﹣<0,∴当m=时,ME+MN有最大值,∴M(,﹣)。

江苏省镇江市中考数学二模试卷含答案解析

江苏省镇江市中考数学二模试卷含答案解析

江苏省镇江市中考数学二模试卷一、填空题1.﹣2的相反数是.2.计算:(﹣2)×(﹣)=.3.函数y=﹣1中,自变量x的取值范围是.4.若代数式的值为零,则x=.5.分解因式:x3﹣x=.6.小明同学参加射击训练,共设计了八发子弹,环数分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是.7.比较大小:(填“>”、“<”或“=”)8.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b的值等于.9.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=82°,则∠B=°.10.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是.11.若m、n互为倒数,则mn2﹣(n﹣1)的值为.12.如图,把面积为a的正三角形ABC的各边依次循环延长一倍,顺次连接这三条线段的外端点,这样操作后,可以得到一个新的正三角形DEF;对新三角形重复上述过程,经过次操作后,所得正三角形的面积是.二、选择题13.二次函数y=x2+4x+7的最小值是()A.3 B.4 C.6 D.714.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2 D.a2+b2=c215.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A. B.C.D.16.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.1365石B.388石C.169石D.134石17.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为1.5的正方形卡片放在棋盘上,被这块卡片覆盖了一部分或全部的小方格共有n个,则n的最大值是()A.4 B.6 C.10 D.12三、解答题18.计算:|1﹣|+()﹣1﹣2cos30°.(2)化简:﹣.19.(6分)解下列方程:(1)=;(2)2x=3﹣x2.20.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.21.(6分)国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)22.(6分)为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,请完成下列问题:(1)周三没有被选择的概率;(2)选择2天恰好为连续两天的概率.23.(6分)如图,已知一次函数y=ax﹣2的图象与反比例函数y=的图象交于A(k,a),B两点.(1)求a,k的值;(2)求B点的坐标;(3)不等式ax<﹣2的解集是(直接写出答案)24.(7分)在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=8cm,sinA=,求⊙O的半径的长.25.(7分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.26.(9分)如图,在△ABC中,∠ACB=90°,AC=BC,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.(1)求证:△ACE∽△BFC;(2)试探究AF、BE、EF之间有何数量关系?说明理由.27.(10分)如图,为了保护运河入江口的古桥OA,规划建一座新桥BC,已知,古桥OA 与河岸OC垂足,新桥BC与河岸AB垂直,且BC=AB,OC=210m,tan∠BCO=.(1)分别求古桥OA与新桥BC的长;(2)根据规划,建新桥的同时,将对古桥设立一个保护区,要求:保护区的边界为与BC相切的圆,且圆心M在线段OA上;古桥两端O和A到该圆上任意一点的距离不少于140m,设圆形保护区半径为R.OM=xm.①试求半径R与x的关系式;②试探究:当x多长时,圆形保护区的面积最大?并求出最大面积时R的值.28.(10分)如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)整个运动过程中,以点P、O、Q为顶点的三角形与Rt△AOB有几次相似?请直接写出相应的t值.(3)t为何值时,△POQ的面积最大?最大值是多少?江苏省镇江市中考数学二模试卷参考答案与试题解析一、填空题1.﹣2的相反数是2.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.计算:(﹣2)×(﹣)=3.【考点】有理数的乘法.【分析】有理数乘法法则:两数相乘,同号得正,依此计算即可求解.【解答】解:(﹣2)×(﹣)=3.故答案为:3.【点评】考查了有理数的乘法,方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.3.函数y=﹣1中,自变量x的取值范围是x≥0.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的意义,被开方数不能为负数,据此求解.【解答】解:根据题意,得x≥0.故答案为:x≥0.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.若代数式的值为零,则x=﹣1.【考点】分式的值为零的条件.【分析】分式的值为零时,分子x+1=0.【解答】解:依题意得:x+1=0,解得x=﹣1.当x=﹣1时,x﹣2=﹣3≠0,符合题意.故答案是:﹣1.【点评】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.5.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.6.小明同学参加射击训练,共设计了八发子弹,环数分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是8.5.【考点】中位数.【分析】首先将数据按从小到大排列,进而找出最中间求出答案.【解答】解:数据从小到大排列为:7,7,8,8,9,9,9,10,则最中间为:8和9,故这组数据的中位数是:(8+9)÷2=8.5.故答案为:8.5.【点评】此题主要考查了中位数,正确把握中位数的定义是解题关键.7.比较大小:>(填“>”、“<”或“=”)【考点】实数大小比较;通分;二次根式的性质与化简.【分析】通分得出=,=,根据5和11的大小推出5﹣5>6,即可得出答案.【解答】解:∵=,=,5==,11=,∴﹣5>﹣5,即5﹣5>6,∴>,故答案为:>.【点评】本题考查了通分、二次根式的性质、实数的大小比较等知识点的应用,关键是找出巧妙的方法比较两个数的大小,注意发现比较两实数的大小的技巧性.8.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b的值等于﹣3.【考点】一次函数图象上点的坐标特征.【分析】直接把点P(a,b)代入一次函数y=4x+3,求出4a﹣b的值,代入代数式进行计算即可.【解答】解:∵点P(a,b)在一次函数y=4x+3的图象上,∴4a+3=b,∴4a﹣b=﹣3,故答案是:﹣3.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=82°,则∠B=49°.【考点】平行线的性质.【分析】由∠BAC=82°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.【解答】解:∵∠BAC=82°,∴∠EAC=98°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=49°,∵AD∥BC,∴∠B=∠EAD=49°.故答案为:49.【点评】本题考查了平行线的性质,解答本题的关键是掌握角平分线的性质及平行线的性质:两直线平行内错角、同位角相等,同旁内角互补.10.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是9.【考点】三角形中位线定理;梯形.【分析】延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC 和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【解答】解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.故答案为:9.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.11.若m、n互为倒数,则mn2﹣(n﹣1)的值为1.【考点】代数式求值;倒数.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;12.如图,把面积为a 的正三角形ABC 的各边依次循环延长一倍,顺次连接这三条线段的外端点,这样操作后,可以得到一个新的正三角形DEF ;对新三角形重复上述过程,经过次操作后,所得正三角形的面积是 7a .【考点】等边三角形的性质.【分析】连接CD 、AE 、BF ,利用同底等高的三角形面积相等,可得S △ABC =S △BDC =S △CDE =a ,同理:S △ABC =S △ACE =S △AEF =a 、S △ABC =S △ABF =S △BDF =a ,再利用S △DEF 等于7个三角形面积之和,即可求得第一次操作后所得正三角形面积,同理即可得经过次操作后,所得正三角形的面积.【解答】解:如图,连接CD 、AE 、BF ,∵AB=BD ,∴S △ABC =S △BDC ,又∵BC=CE ,∴S △BCD =S △CDE ,∴S △ABC =S △BDC =S △CDE =a ,同理:S △ABC =S △ACE =S △AEF =a ,S △ABC =S △ABF =S △BDF =a ,∴第一次操作后,S △DEF =7a ,∴同理,经过次操作后,所得正三角形的面积是7a ,故答案为:7a .【点评】本题考查了三角形面积、同底等高的三角形面积相等.关键是作辅助线,构造同底等高的三角形.二、选择题13.二次函数y=x2+4x+7的最小值是()A.3 B.4 C.6 D.7【考点】二次函数的最值.【分析】本题考查利用二次函数顶点式求最小(大)值的方法.【解答】解:∵原式可化为y=x2+4x+4+3=(x+2)2+3,∴最小值为3.故选:A.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.14.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2 D.a2+b2=c2【考点】由三视图判断几何体.【分析】由三视图知道这个几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形.【解答】解:根据勾股定理,a2+b2=c2.故选:D.【点评】本题由物体的三种视图推出原来几何体的形状,考查了圆锥的高,母线和底面半径的关系.15.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A. B.C.D.【考点】动点问题的函数图象.【分析】首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1<x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【解答】解:①当点P在BC上时,此时0≤x≤1,∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积y=×AB×BP=×2x=x;②当点P在CD上时,此时1<x≤3,△ABP的高是1,底边是2,所以面积是1,即y=1;综上,当0≤x≤1时,y=x是正比例函数,且y随x的增大而增大,当1<x≤3时,y=1是一个常数函数,是一条平行于x轴的直线.故选:B.【点评】此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.16.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.1365石B.388石C.169石D.134石【考点】用样本估计总体.【分析】由条件“数得254粒内夹谷28粒”即可估计这批米内夹谷约多少.【解答】解:由题意可知:这批米内夹谷约为1534×≈169石,故选C.【点评】本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.17.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为1.5的正方形卡片放在棋盘上,被这块卡片覆盖了一部分或全部的小方格共有n个,则n的最大值是()A.4 B.6 C.10 D.12【考点】正方形的性质.【分析】要n取最大值,就让边长为1.5的正方形卡片边与小方格的边成一定角度.【解答】解:∵卡片的边长为1.5,∴卡片的对角线长为2<<3,且小方格的对角线长<1.5.故该卡片可以按照如图所示放置:图示为n取最大值的时候,n=12.故选D.【点评】本题考查的是已知正方形边长正方形对角线长的计算,旋转正方形卡片并且找到合适的位置使得n为最大值,是解题的关键.三、解答题18.(1)计算:|1﹣|+()﹣1﹣2cos30°.(2)化简:﹣.【考点】实数的运算;分式的加减法;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.【解答】解:(1)|1﹣|+()﹣1﹣2cos30°=﹣1+2﹣2×=﹣1+2﹣=1;(2)﹣=﹣==.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握绝对值、负整数指数幂、特殊角的三角函数值、二次根式等考点的运算.同时考查了分式的加减法,注意:①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.19.解下列方程:(1)=;(2)2x=3﹣x2.【考点】解一元二次方程-因式分解法;解分式方程.【分析】(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验,可得方程的解;(2)根据因式分解法解一元二次方程步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,可得答案.【解答】解:(1)去分母,得:2(x﹣2)=3(x+2),去括号,得:2x﹣4=3x+6,移项、合并,得:﹣x=10,系数化为1,得:x=﹣10,经检验:x=﹣10是原分式方程的解,故该分式方程的解为x=﹣10;(2)原方程可化为:x2+2x﹣3=0,左边因式分解,得:(x﹣1)(x+3)=0,∴x﹣1=0或x+3=0,解得:x=1或x=﹣3.【点评】本题主要考查解分式方程和一元二次方程的技能,熟练掌握其基本步骤是解题的关键.20.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.21.国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了200天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据4级的天数是24天,所占的百分比是48%,据此求得调查的总天数;(2)利用总天数减去其它组的天数即可求得5级的天数,从而补全直方图;(3)用360°乘以对应的百分比即可求得对应的圆心角的度数;(4)利用365乘以对应的比例即可求得.【解答】解:(1)抽查的总天数是24÷48%=50(天),故答案是:50;(2)是5级的天数是50﹣3﹣7﹣10﹣24=6(天),;(3)扇形统计图中3级空气质量所对应的圆心角为×360=72°,故答案是:72;(4)估计该年该城市适宜户外活动的天数是×365=146(天).答:估计该年该城市适宜户外活动的天数是146天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,请完成下列问题:(1)周三没有被选择的概率;(2)选择2天恰好为连续两天的概率.【考点】列表法与树状图法.【分析】(1)画树状图展示所有20种等可能的结果数,再找出周三没有被选择的结果数,然后根据概率公式求解;(2)找出选择2天恰好为连续两天的结果数,然后利用概率公式求解.【解答】解:(1)画树状图为:共有20种等可能的结果数,周三没有被选择的结果数12,所以周三没有被选择的概率==;(2)选择2天恰好为连续两天的结果数为8,所以选择2天恰好为连续两天的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,已知一次函数y=ax﹣2的图象与反比例函数y=的图象交于A(k,a),B两点.(1)求a,k的值;(2)求B点的坐标;(3)不等式ax<﹣2的解集是x<﹣1或0<x<3(直接写出答案)【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入两个函数解析式求解即可;(2)将两个函数解析式联立组成方程组进行求解,即可求得交点B的坐标;(3)将不等式ax<﹣2变成ax+2<,再结合函数图象进行判断即可.【解答】解:(1)由题意知,点A在双曲线上,即a==1又∵点A在直线上,∴a=ka﹣2∴1=k﹣2,即k=3∴a=1,k=3(2)由(1)可得:解得:或∵点B在第三象限∴B的坐标为(﹣1,﹣3)(3)根据图象可得,不等式ax<﹣2的解集是:x<﹣1或0<x<3.【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是把两个函数关系式联立成方程组求解.解题时注意:若方程组有解,则两者有交点;若方程组无解,则两者无交点.24.在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=8cm,sinA=,求⊙O的半径的长.【考点】切线的判定与性质;等腰三角形的性质.【分析】(1)根据切线的判定定理,只需连接OD,证明OD⊥DE.已知DE⊥AC,故利用同位角相等,两条直线平行就可证明;(2)根据切线的性质定理,连接过切点的半径,运用锐角三角函数的定义,用半径表示OA 的长,再根据AB的长列方程求解.【解答】(1)证明:如图1,连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC.又DE⊥AC,∴DE⊥OD.∴DE是⊙O的切线.(2)解:⊙O与AC相切于F点,如图2,连接OF,则:OF⊥AC.在Rt△OAF中,sinA=,∴OA=OF,又AB=OA+OB=8,∴OF+OF=8,∴OF=3cm.【点评】此题综合运用了切线的判定和性质,熟练运用锐角三角函数的定义表示出两条边之间的关系是解题的关键.25.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【分析】(1)直接根据题意列出关于a、b、c的方程组,解方程组即可解决问题.(2)运用分类讨论的数学思想,根据等腰三角形的定义,分类讨论,数形结合,即可解决问题.【解答】解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).【点评】该题主要考查了抛物线与x轴的交点、待定系数法求二次函数的解析式等知识点及其应用问题;解题的关键是灵活运用、大胆猜测、科学解答.26.如图,在△ABC中,∠ACB=90°,AC=BC,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.(1)求证:△ACE∽△BFC;(2)试探究AF、BE、EF之间有何数量关系?说明理由.【考点】相似形综合题.【分析】(1)由已知得出∠A=∠B=45°,再证得∠CFB=∠ACE,即可得出△ACE∽△BFC;(2)将△ACF顺时针旋转90°至△BCD,由旋转的性质得出CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF,证得∠DCE=∠2,由SAS可证△ECF≌△ECD,得出EF=DE,证得∠EBD=90°,由勾股定理即可得出结论.【解答】(1)证明:∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵∠CFB=∠ACF+∠A=∠ACF+45°,∠ACE=∠ACF+∠ECF=∠ACF+45°,∴∠CFB=∠ACE,∴△ACE∽△BFC;(2)解:EF2=AF2+BE2,理由如下:∵AC=BC,∠ACB=90°,∴∠A=∠ABC=45°,将△ACF顺时针旋转90°至△BCD,如图所示:则CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF,∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2,在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE,∵∠5=45°,∴∠EBD=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2.【点评】本题是相似形综合题,考查了等腰直角三角形的判定和性质、全等三角形的判定和性质、勾股定理、相似三角形的判定、旋转的性质等知识;综合性较强,有一定的难度.27.(10分)(•镇江二模)如图,为了保护运河入江口的古桥OA,规划建一座新桥BC,已知,古桥OA与河岸OC垂足,新桥BC与河岸AB垂直,且BC=AB,OC=210m,tan∠BCO=.(1)分别求古桥OA与新桥BC的长;(2)根据规划,建新桥的同时,将对古桥设立一个保护区,要求:保护区的边界为与BC相切的圆,且圆心M在线段OA上;古桥两端O和A到该圆上任意一点的距离不少于140m,设圆形保护区半径为R.OM=xm.①试求半径R与x的关系式;②试探究:当x多长时,圆形保护区的面积最大?并求出最大面积时R的值.【考点】圆的综合题.【分析】(1)利用正切的比设出BH=4x,CH=3x,则BC=5x,作辅助线构建直角三角形证△ABG≌△BCH,利用等量关系列方程求出x的值,从而求出古桥OA与新桥BC的长;(2)过M作MN⊥BC,构建直角△BNP,证明Rt△BHC∽Rt△BNP,得比例式表示出PN 和半径R的长,根据已知古桥两端O和A到该圆上任意一点的距离不少于140m和三角形的三边关系得出不等式组,求出x的取值,最后得出结论.【解答】解:(1)如图1,过B作BH⊥OC,垂足为H,由tan∠BCO=,设BH=4x,则CH=3x,BC=5x,又∵AB⊥BC知,即∠ABH+∠CBH=90°,又∠BCH+∠CBH=90°,∴∠ABH=∠BCH,再过A作AG⊥BH,垂足为G,则∠AGB=∠BHC=90°,∵AB=BC,∴△ABG≌△BCH(AAS),∴BG=CH=3x,AG=BH=4x,则OH=4x,OA=HG=x,又OC=210m,即7x=210,x=30,5x=150,故古桥OA的长为30m,新桥BC的长的长为150m;(2)如图2所示,因为OM=xm,故AM=(30﹣x)m,过M作MN⊥BC,分别交BC、BH于N、P,则MN即为保护区半径R,且MP=AB=150,BP=MA=30﹣xRt△BHC∽Rt△BNP,,则,PN=18﹣x①半径R=MN=MP+PN=150+18﹣x=168﹣x即R=160﹣x(0≤x≤30)②由题意得:R﹣OM≥140,即(168﹣x)﹣x≥140,解得x≤又R﹣AM≥140,即(168﹣x)﹣(30﹣x)≥140,解得x≥5故有:5≤x≤因为,要使圆面积最大,其半径R最大,而R最大也就是x要取最小值,故当x=5时,圆面积最大,此时半径为R的值为165m.【点评】此题属于圆的综合题,涉及了全等三角形和相似三角形的判定与性质、三角函数值的知识、不等式组的应用及最大值的求法,综合性较强;有几点技巧需同学们掌握:①利用条件中的三角函数值能求角的度数或利用比值表示边的长;②求极值时也可以利用三边关系列不等式求解.28.(10分)(•镇江二模)如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)整个运动过程中,以点P、O、Q为顶点的三角形与Rt△AOB有几次相似?请直接写出相应的t值.(3)t为何值时,△POQ的面积最大?最大值是多少?。

镇江市2020版中考数学二模试卷(II)卷

镇江市2020版中考数学二模试卷(II)卷

镇江市2020版中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)的倒数是()A .B .C . 3D . -32. (2分)已知:(x+y)2=8,(x﹣y)2=5,则x2+y2﹣xy的值等于()A .B .C . -D . ﹣3. (2分)(2017·玉林) 如图所示的几何体的俯视图是()A .B .C .D .4. (2分)如图,直线与 =-x+3相交于点A,若<,那么()A . x>2B . x<2C . x>1D . x<15. (2分)(2019·信阳模拟) 郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数23245211则下列叙述正确的是()A . 这些运动员成绩的众数是5B . 这些运动员成绩的中位数是2.30C . 这些运动员的平均成绩是2.25D . 这些运动员成绩的方差是0.07256. (2分)(2017·定远模拟) 如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:① = ;② = ;③ = ;④ =其中正确的个数有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2019九上·惠州期末) 如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A 是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)(2017·沂源模拟) 如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A . ①②B . ②③C . ①③D . ①④二、填空题 (共8题;共8分)9. (1分) (2019七下·兰州月考) 将0.00003651用科学记数法表示为________.10. (1分)(2017·黑龙江模拟) 因式分解:4ax2+16axy+16ay2=________.11. (1分)如果二次方程x2+3x+m=0有两个不相等的实数根,则实数m的取值范围是 ________.12. (1分)(2019·道外模拟) 在等边△ABC中,点D为BC边上一点,沿AD将△ABD翻折至△AED,使点B 落在点E处,连接CE,若∠CDE=20⁰则∠CED的度数为________.13. (1分)计算:2sin60°+tan45°=________14. (1分) (2017七下·岳池期末) 已知关于x,y的二元一次方程组的解互为相反数,则k 的值是________.15. (1分) (2016九上·大石桥期中) 如图,DE是△ABC的中位线,M是DE的中点,那么 =________.16. (1分) (2016九上·和平期中) 如图,P是等腰直角△ABC外一点,把BP绕直角顶点BB顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则PB:P′A的值为________.三、解答题 (共2题;共15分)17. (5分) (2015八下·农安期中) 计算:()﹣1+|﹣2|+(﹣π)0 .18. (10分) (2017八下·泰兴期末) 已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.四、综合题 (共8题;共86分)19. (15分)(2016·慈溪模拟) 垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如图:(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其他垃圾)根据图表解答下列问题:(1)在抽样数据中,产生的有害垃圾共多少吨?(2)请将条形统计图补充完整;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?20. (10分) (2016九上·泰顺期中) 将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.21. (10分) (2016七上·黄冈期末) 目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为44000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?22. (10分)(2018·嘉兴模拟) 有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50 cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮。

江苏省镇江市2019-2020学年中考第二次模拟数学试题含解析

江苏省镇江市2019-2020学年中考第二次模拟数学试题含解析

江苏省镇江市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .2.如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB ,点P 从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能表示y 与x 函数关系的是( )A .①B .③C .②或④D .①或③3.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π-4.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( )A .m >3B .m <3C .m≤3D .m≥35.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC 的是()A.BA CABD CE=B.EA DAEC DB=C.ED EABC AC=D.EA ACAD AB=6.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是( )A.甲乙都对B.甲乙都不对C.甲对,乙不对D.甲不对,已对7.若,则的值为()A.﹣6 B.6 C.18 D.308.把6800000,用科学记数法表示为()A.6.8×105B.6.8×106C.6.8×107D.6.8×1089.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个10.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A .204×103B .20.4×104C .2.04×105D .2.04×10611.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .11212.2016的相反数是( )A .12016-B .12016C .2016-D .2016二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果正比例函数y=(k-2)x 的函数值y 随x 的增大而减小,且它的图象与反比例函数y=kx的图象没有公共点,那么k 的取值范围是______.14.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______. 15.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分. 16.方程32x x =+的根是________.17.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.18.如图,在△ABC 中,∠B =40°,∠C =45°,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,则∠DAE =______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B .(1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值; ③当136112DC =时,请直接写出t 的值.20.(6分)如图,已知一次函数12y kx =-的图象与反比例函数()20my x x=>的图象交于A 点,与x 轴、y 轴交于,C D 两点,过A 作AB 垂直于x 轴于B 点.已知1,2AB BC ==.(1)求一次函数12y kx =-和反比例函数()20my x x=>的表达式; (2)观察图象:当0x >时,比较12,y y .21.(6分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC 的三个顶点都在格点上,且直线m 、n 互相垂直. (1)画出△ABC 关于直线n 的对称图形△A′B′C′; (2)直线m 上存在一点P ,使△APB 的周长最小;①在直线m 上作出该点P ;(保留画图痕迹)②△APB 的周长的最小值为 .(直接写出结果)22.(8分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DF AC CG =.求证:△ADF ∽△ACG ;若12AD AC =,求AFFG的值.23.(8分)(1)计算:20161033(1)9(cos 60)(20162015)8(0.125)---++-+⨯-o ; (2)化简2112()111x x x x+÷+--,然后选一个合适的数代入求值. 24.(10分)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.25.(10分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.26.(12分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=33,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=33,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.27.(12分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a>0,∵对称轴为直线02bx a=->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 2.D 【解析】 【分析】分两种情形讨论当点P 顺时针旋转时,图象是③,当点P 逆时针旋转时,图象是①,由此即可解决问题. 【详解】分两种情况讨论:①当点P 顺时针旋转时,BP 的长从增加到2,再降到0,图象③符合;②当点P 逆时针旋转时,BP 降到0,再增加到2,图象①符合. 故答案为①或③. 故选D . 【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型. 3.D 【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×1 2×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.4.C【解析】【分析】根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.【详解】221x mx m->⎧⎨-<-⎩①②,由①得:x>2+m,由②得:x<2m﹣1,∵不等式组无解,∴2+m≥2m﹣1,∴m≤3,故选C.【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.5.C【解析】【分析】根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.【详解】A. 当BA CABD CE=时,能判断ED BC‖;B. 当EA DAEC DB=时,能判断ED BC‖;C. 当ED EABC AC=时,不能判断ED BC‖;D. 当EA ACAD AB=时,EA ADAC AB=,能判断ED BC‖.故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.6.A【解析】【分析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.【详解】证明:(1)如图1,连接OM,OA.∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;(1)如图1.∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确.故选A.【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.7.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.8.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:把6800000用科学记数法表示为6.8×1.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.10.C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.11.C【解析】【分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为1 36,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形.12.C。

2019-2020学年最新江苏省镇江市九年级第二次模拟考试数学试题及答案解析

2019-2020学年最新江苏省镇江市九年级第二次模拟考试数学试题及答案解析

中考数学模拟试题一.填空题(每小题2分,共24分) 班级 姓名 1.43-的倒数是 . 2. 分解因式:22mx mx m -+= .3. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约51 000 000 000千克,这个数据用科学计数法表示为 千克.4.一组数据 -2,-1,0,x ,1的平均数是0,则这组数据的方差为 . 5.如图△ABC 中,∠A=90°,点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .(第5题) (第8题) (第11题) (第12题) 6.若n 边形的内角和等于外角和,则n= .7.关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a 的最大值是 .8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AEDBA的正切值等于______.9.已知点(a,b )是直线2y x =-和双曲线1y x =的一个交点,则11b a-= . 10.将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是11.如图,点A 在双曲线3(0)y x x =>上,点B 在双曲线(0)ky x x=<上,且OA OB ⊥,030A ∠=,则k 的值是 .12.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2cm ,QM=4cm 。

动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值_____ _____(单位:秒)二.选择题(每小题3分,共15分) 13.下列运算正确的是( )A .2x+3y=5xy B.5m 2·m 3=5m 5 C.(a —b )2=a 2—b 2 D.(m 2) 2·m 3=m 1214.在实数范围内有意义,则x 的取值范围是( ) A .32x ≥B .32x >C .23x ≥D .23x >666666l15.如图是一个几何体的三视图,则这个几何体的侧面积是( )A.πB. 9πC. 18πD. 27π16.已知点A (2,1y )和点B (m, 2y )是抛物线22y x x =-上两点,且21y y >,则m 的取值范围是( )A. m>2B. 0m ≤或2m ≥C. 0<m<2D. m<0或m>217.已知:⊙1O 和⊙2O 的半径分别为1和5,圆心1O 在直线l 上,⊙2O 与直线l 相交于点A 、B ,且AB=6,圆心1O 在直线l 上运动,当⊙1O 和⊙2O 相切时,⊙1O 的个数有( )个. A. 1 B. 2 C. 3 D. 4三.解答题(共81分)18.(8分)(1)计算021(12cos 45()2--+- (2)化简:211(1)x x x--÷主视图左视图俯视图组:19.(10分)(1)解方程:21122x x x=--- (2)解不等式3(1)7342x x x x --≤⎧⎨-<⎩20.(6分) 3月,某中学结合镇江中小学生阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制成如图所示的统计表和数学统计图. 频数分布表扇形统计图折线统计图图20-① 图20-② 图20-③请根据图表中提供的信息解答下列问题:(1)填空:统计表(图20-①)中,a= ,c= .(2)扇形统计图(图20- ②)中,体育部分所对应的圆心角的度数为 . (3)请你把(图20-③)中的折线统计图补充完整。

江苏省镇江市2019-2020学年中考数学二模试卷含解析

江苏省镇江市2019-2020学年中考数学二模试卷含解析

江苏省镇江市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6π B.4π C.8π D.42.如图图形中,是中心对称图形的是()A.B.C.D.3.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.44.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.145.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)26.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥37.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是44 38.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定9.在平面直角坐标系中,位于第二象限的点是( )A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)10.计算2a 2+3a 2的结果是( )A .5a 4B .6a 2C .6a 4D .5a 211.如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(﹣2,3),先把△ABC 向右平移6个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,则顶点A 2的坐标是( )A .(4,﹣3)B .(﹣4,3)C .(5,﹣3)D .(﹣3,4)12.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分式方程32xx 2--+22x-=1的解为________. 14.如图,数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,若原点O 是线段AC 上的任意一点,那么a+b-2c= ______ .15.我们定义:关于x 的函数y=ax 2+bx 与y=bx 2+ax (其中a≠b )叫做互为交换函数.如y=3x 2+4x 与y=4x 2+3x 是互为交换函数.如果函数y=2x 2+bx 与它的交换函数图象顶点关于x 轴对称,那么b=_____. 16.如图,在四边形ABCD 中,AD ∥BC ,AB=CD 且AB 与CD 不平行,AD=2,∠BCD=60°,对角线CA 平分∠BCD ,E ,F 分别是底边AD ,BC 的中点,连接EF ,点P 是EF 上的任意一点,连接PA ,PB ,则PA+PB 的最小值为__.17.如图,抛物线y =ax 2+bx+c 与x 轴相交于A 、B 两点,点A 在点B 左侧,顶点在折线M ﹣P ﹣N 上移动,它们的坐标分别为M (﹣1,4)、P (3,4)、N (3,1).若在抛物线移动过程中,点A 横坐标的最小值为﹣3,则a ﹣b+c 的最小值是_____.18.因式分解:2()4()a a b a b ---=___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,点C 为线段OB 的中点,D 为线段OA 上一点.连结AC 、BD 交于点P . (问题引入)(1)如图1,若点P 为AC 的中点,求AD DO 的值. 温馨提示:过点C 作CE ∥AO 交BD 于点E .(探索研究)(2)如图2,点D 为OA 上的任意一点(不与点A 、O 重合),求证:PD AD PB AO =. (问题解决)(3)如图2,若AO=BO ,AO ⊥BO ,14AD AO =,求tan ∠BPC 的值.20.(6分)如图,在平面直角坐标系xOy 中,每个小正方形的边长都为1,DEF V 和ABC V 的顶点都在格点上,回答下列问题:()1DEF V 可以看作是ABC V 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC V 得到DEF V 的过程:______;()2画出ABC V 绕点B 逆时针旋转90o 的图形A'BC'V ;()3在()2中,点C 所形成的路径的长度为______.21.(6分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H 与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(8分)计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.23.(8分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.(10分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.25.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=12 AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,BECD= ;②当θ=180°时,BECD= .(2)拓展探究试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.26.(12分)已知抛物线y=ax2+ c(a≠0).(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;(2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,1a );(3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,OCOM ON是否为定值?若是,试求出该定值;若不是,请说明理由.27.(12分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD 都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.2.D【解析】【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.3.B【解析】【分析】先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.4.B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.5.C【解析】【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.6.C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.7.C【解析】【详解】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.8.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.9.D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.【点睛】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.10.D【解析】【分析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a2+3a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.11.A【解析】【分析】直接利用平移的性质结合轴对称变换得出对应点位置.【详解】如图所示:顶点A2的坐标是(4,-3).故选A.【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.12.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA ,∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.14.1【解析】∵点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,∴由中点公式得:c=2a b +, ∴a+b=2c ,∴a+b-2c=1.故答案为1.15.﹣1【解析】【分析】根据题意可以得到交换函数,由顶点关于x 轴对称,从而得到关于b 的方程,可以解答本题.【详解】由题意函数y=1x 1+bx 的交换函数为y=bx 1+1x .∵y=1x 1+bx=222()48b b x +-, y=bx 1+1x=211()b x b b+-, 函数y=1x 1+bx 与它的交换函数图象顶点关于x 轴对称,∴﹣4b =﹣22b 且218b b-=, 解得:b=﹣1.故答案为﹣1.【点睛】本题考查了二次函数的性质.理解交换函数的意义是解题的关键.16.23【解析】【分析】将PA+PB 转化为PA+PC 的值即可求出最小值.【详解】解:E,F 分别是底边AD,BC 的中点,四边形ABCD 是等腰梯形,∴B 点关于EF 的对称点C 点,∴AC 即为PA+PB 的最小值,Q ∠BCD=60o , 对角线AC 平分∠BCD,∴∠ABC=60o , ZBCA=30o ,∴∠BAC=90o ,Q AD=2,∴PA+PB 的最小值=·tan 60o AB =.故答案为: 【点睛】求PA+PB 的最小值, PA +PB 不能直接求, 可考虑转化PA +P C的值,从而找出其最小值求解.17.﹣1.【解析】【分析】由题意得:当顶点在M 处,点A 横坐标为-3,可以求出抛物线的a 值;当顶点在N 处时,y=a-b+c 取得最小值,即可求解.【详解】解:由题意得:当顶点在M 处,点A 横坐标为-3,则抛物线的表达式为:y=a (x+1)2+4,将点A 坐标(-3,0)代入上式得:0=a (-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c ,顶点在N 处时,y=a-b+c 取得最小值,顶点在N 处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1.【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M 、N 处函数表达式,其中函数的a 值始终不变.18.()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12;(2) 见解析;(3) 12 【解析】 【分析】 (1)过点C 作CE ∥OA 交BD 于点E ,即可得△BCE ∽△BOD ,根据相似三角形的性质可得CE BC OD BO=,再证明△ECP ≌△DAP ,由此即可求得AD DO的值;(2)过点D 作DF ∥BO 交AC 于点F ,即可得PD DF PB BC =,AD DF AO OC =,由点C 为OB 的中点可得BC=OC ,即可证得PD AD PB AO =;(3)由(2)可知PD AD PB AO ==14,设AD=t ,则BO=AO=4t ,OD=3t ,根据勾股定理求得BD=5t ,即可得PD=t ,PB=4t ,所以PD=AD ,从而得∠A=∠APD=∠BPC ,所以tan ∠BPC=tan ∠A=12OC OA =. 【详解】(1)如图1,过点C 作CE ∥OA 交BD 于点E ,∴△BCE ∽△BOD ,∴=,又BC=BO ,∴CE=DO .∵CE ∥OA ,∴∠ECP=∠DAP ,又∠EPC=∠DPA ,PA=PC ,∴△ECP ≌△DAP ,∴AD=CE=DO ,即 =;(2)如图2,过点D 作DF ∥BO 交AC 于点F ,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.20.(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)π.【解析】【分析】(1)△ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到△DEF;()2按照旋转中心、旋转角度以及旋转方向,即可得到△ABC绕点B逆时针旋转90︒的图形△A BC'';()3依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可.【详解】.例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个解:(1)答案不唯一单位,向下平移3个单位,再沿y轴翻折.(2)分别将点C、A绕点B逆时针旋转90︒得到点C'、A',如图所示,△A BC''即为所求;(3)点C所形成的路径的长为:902= 180ππ⨯⨯.故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)π..【点睛】本题考查坐标与图形变化-旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.21.53米.【解析】【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值. 【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为:53米.【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.22.-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1=1﹣3+(﹣1)+2=﹣1.点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.23.观景亭D到南滨河路AC的距离约为248米.【解析】【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【详解】过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=DE BE,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.24.(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】【分析】(1)先求得点B 和点C 的坐标,然后将点B 和点C 的坐标代入抛物线的解析式得到关于b 、c 的方程,从而可求得b 、c 的值;(2)作点O 关于BC 的对称点O′,则O′(1,1),则OP+AP 的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P 的坐标;(1)先求得点D 的坐标,然后求得CD 、BC 、BD 的长,依据勾股定理的逆定理证明△BCD 为直角三角形,然后分为△AQC ∽△DCB 和△ACQ ∽△DCB 两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C (0,1).把y=0代入y=﹣x+1得:x=1,∴B (1,0),A (﹣1,0).将C (0,1)、B (1,0)代入y=﹣x 2+bx+c 得:9303b c c -++=⎧⎨=⎩ ,解得b=2,c=1. ∴抛物线的解析式为y=﹣x 2+2x+1.(2)如图所示:作点O 关于BC 的对称点O′,则O′(1,1).∵O′与O 关于BC 对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP 的最小值=O′A=()()221330--+-=2. O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97 ,127) (1)y=﹣x 2+2x+1=﹣(x ﹣1)2+4,∴D (1,4).又∵C (0,1,B (1,0),∴CD=2,BC=12,DB=25.∴CD 2+CB 2=BD 2,∴∠DCB=90°.∵A (﹣1,0),C (0,1),∴OA=1,CO=1. ∴13AO CD CO BC ==. 又∵∠AOC=DCB=90°,∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB .如图所示:连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ 为直角三角形,CO ⊥AQ ,∴△ACQ ∽△AOC .又∵△AOC ∽△DCB ,∴△ACQ ∽△DCB .∴CD AC BD AQ =21025AQ=,解得:AQ=3. ∴Q (9,0).综上所述,当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.25.(122,②(2)无变化,证明见解析;(3)①2+23,②+13 1.【解析】【分析】(1)①先判断出DE ∥CB ,进而得出比例式,代值即可得出结论;②先得出DE ∥BC ,即可得出,AE AD AB AC=,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE ,进而判断出△ADC ∽△AEB 即可得出结论;(3)分点D 在BE 的延长线上和点D 在BE 上,先利用勾股定理求出BD ,再借助(2)结论即可得出CD .【详解】解:(1)①当θ=0°时,在Rt △ABC 中,AC=BC=2,∴∠A=∠B=45°,AB=22, ∵AD=DE=12AB=2, ∴∠AED=∠A=45°,∴∠ADE=90°,∴DE ∥CB ,∴CD BE AC AB=, ∴222CD =, ∴2BE CD=, 故答案为2,②当θ=180°时,如图1,∵DE ∥BC ,∴AE AD AB AC=, ∴AE AB AD AC AB AC++=, 即:BE CD AB AC =, ∴2222BE AB CD AC === 2;(2)当0°≤θ<360°时,BE CD的大小没有变化, 理由:∵∠CAB=∠DAE ,∴∠CAD=∠BAE , ∵AD AE AC AB =, ∴△ADC ∽△AEB , ∴2222BE AB CD AC ==; (3)①当点E 在BA 的延长线时,BE 最大, 在Rt △ADE 中,AE=2AD=2, ∴BE 最大=AB+AE=22+2;②如图2,当点E 在BD 上时,∵∠ADE=90°,∴∠ADB=90°,在Rt △ADB 中,AB=22,AD=2,根据勾股定理得,BD=22-AB AD =6, ∴BE=BD+DE=6+2,由(2)知,2BE CD=, ∴CD=62322+==+1, 如图3,当点D 在BE 的延长线上时,在Rt △ADB 中,2,2,根据勾股定理得,22-AB AD 6,∴BE=BD ﹣,由(2)知,BE CD=, ∴==1.+11.【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE ∥BC ,解(2)的关键是判断出△ADC ∽△AEB ,解(3)关键是作出图形求出BD ,是一道中等难度的题目.26.(1)211655y x =-;(2)详见解析;(3)OC OM ON +为定值,OC OM ON +=12【解析】【分析】(1)把点B(4,0),点P(1,–3)代入y=ax 2+ c(a≠0),用待定系数法求解即可;(2)如图作辅助线AE 、BF 垂直 x 轴,设A(m ,am 2)、B(n ,an 2),由△AOE ∽△OBF ,可得到21a mn =-,然后表示出直线AB 的解析式即可得到结论;(3)作PQ ⊥AB 于点Q ,设P (m ,am 2+c )、A (–t ,0)、B (t ,0),则at 2+c=0, c= –at 2由PQ ∥ON ,可得ON=amt+at 2,OM= –amt+at 2,然后把ON ,OM ,OC 的值代入整理即可.【详解】(1)把点B(4,0),点P(1,–3)代入y=ax 2+ c(a≠0), 1603a c a c +=⎧⎨+=-⎩, 解之得15165a c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴211655y x =-; (2)如图作辅助线AE 、BF 垂直 x 轴,设A(m ,am 2)、B(n ,an 2),∵OA ⊥OB ,∴∠AOE=∠OBF ,∴△AOE ∽△OBF , ∴AE OF OE BF =,22am n m an=-,21a mn =-, 直线AB 过点A(m ,am 2)、点B(n ,an 2),∴()()1y a m n x amn a m n x a =+-=++过点(0,1a); (3)作PQ ⊥AB 于点Q ,设P (m ,am 2+c )、A (–t ,0)、B (t ,0),则at 2+c=0, c= –at 2∵PQ ∥ON ,∴ON OB PQ QB=, ON=()2am c t PQ OB QB t m -+⋅=-=()2am c t m t+-=()22am at t m t --=()()at m t m t m t -+-=at(m+t)= amt+at 2, 同理:OM= –amt+at 2,所以,OM+ON= 2at 2=–2c=OC ,所以,OC OM ON +=12. 【点睛】本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.27.25-+【解析】【分析】作BD 平分∠ABC 交AC 于D ,则△ABD 、△BCD 、△ABC 均为等腰三角形,依据相似三角形的性质即可得出BC 的长.【详解】如图所示,作BD 平分∠ABC 交AC 于D ,则△ABD 、△BCD 、△ABC 均为等腰三角形,∵∠A =∠CBD =36°,∠C =∠C ,∴△ABC ∽△BDC , ∴DC BC BC AC=, 设BC =BD =AD =x ,则CD =4﹣x ,∵BC 2=AC×CD ,∴x 2=4×(4﹣x ),解得x 1=25-+,x 2=25-,∴BC 的长25-.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。

2020年江苏省中考数学二模试卷附解析

2020年江苏省中考数学二模试卷附解析

2020年江苏省中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.主视图、左视图、俯视图都是圆的几何体是( )A . 圆锥B . 圆柱C . 球D .空心圆柱2.已钝角三角形三边长分别为 a 、b 、c (a>b> c ),外接圆半径和内切圆半径分别为 R 、r , 则能盖住这个三角形的圆形纸片的最小半径是( )A .RB .rC .2aD .2c 3.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( )A .12B .14C .16D .18 4.己如图,点 D .E 、F 分别是△ABC (AB>AC )各边的中点,下列说法中,错误的是( ) A . AD 平分∠BAC B .EF=12BCC . EF 与 AD 互相平分 D .△DFE 是△ABC 的位似图形5.已知 y 与x 成反比例,当 x 增加 20% 时,y 将 ( )A .约减少20%B .约增加20%C .约增加80%D .约减少 80% 6.已知Rt △ABC 斜边上的中线是2,则这个三角形两直角边的平方和是 ( ) A .2B .4C .8D .16 7.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是( )A .0.15B .0.20C .0.25D .0.308.现有2008年奥运会福娃卡片20张,其中贝贝 6张、晶晶 5 张、欢欢4张、迎迎3张、妮妮2张,每张卡片大小、质地均匀相同,将有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到晶晶的概率( )A .110B .310C .14D .159.在3-,227,9-,π,2.121121112111122中,无理数有( ) A .1个 B .2个 C .3个 D .4个10.若a a ±=-时,a 是( ) A . 全体实数B . 正实数C .负实数D .零 二、填空题11.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .12.若a:2=b:3,则ba a += . 13.如图,△ABC 是⊙O 的内接三角形,∠B =55°,P 点在AC 上移动(点P 不与A 、C 两点重合),则α的变化范围是 .14.如图所示,⊙O 表示一个圆形工件,AB=15cm ,OM= 8cm ,并且MB :MA=1:4, 则工件半径的长为 cm .解答题15.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满 足函数关系y=-0.1x 2+2.6x +43(0≤x ≤30),且y 值越大,表示接受能力越强.则当x 满 足 ,学生的接受能力逐渐增强.16.若某数的一个平方根是54,则这个数的另一个平方根是 .17.有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 .18.汽车以每小时60 km 的速度行驶5h ,中途停驶2h ,后又以每小时80 km 行驶3 h ,则汽车平均每小时行驶 km .19. Rt △ARC 中,∠C=90°,若CD 是AB 边的中线,且CD=4cm ,则AB= cm ,AD= BD= cm.20.如图,∠1 = 101°,当∠2 = 时,a ∥b .21.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE =__________cm .22.下列图形中,轴对称图形有 个.23.已知ax=by+2008的一个解是⎩⎨⎧-==11y x ,则a+b= . 三、解答题24.某商店中的一盒什锦糖是由甲、乙、丙三种糖果混合成的,小明购得这种糖果 80 颗,通过多次摸糖试验后,发现摸到甲、乙、丙三种糖果的频率依次是 35、35和 30,试估计小明所购得的糖中甲、乙、丙三种糖果的数目.25.如图,MN ∥PQ ,同旁内角的平分线AB ,BC 和AD ,CD 相交于点B ,D .(1)猜想AC 和BD 之间的关系;(2)试证明你的猜想.26.某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).(1)这50名学生在这一天课外阅读所用时间的众数是多少?(2)这50名学生在这一天平均每人的课外阅读所用时间是多少?(3)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0 h 以上(含1.0 h)的有多少人?27.光明中学的甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成进行统计后,绘制成如图所示的统计图. 已知甲队五场比赛成绩的平均分90x =分,方差241.2s =平方分. 甲、乙两球队比赛成绩折线统计图(1)请你计算乙队五场比赛成绩的平均分x 乙;(2)就这五场比赛,计算乙队成绩的方差;(3)如果从甲、乙两队中选派一支球队参加市篮球锦标赛,根据上述统计情况,试从平均分、 折线的走势、方差三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成 绩?28.为了了解学生的身高情况,抽测了某校50名17岁男生的身高,并将其身高情况绘制成统计图如图所示.回答下面的问题:(1)观察图形,50名17岁男生身高的众数、中位数分别是多少?(2)用计算器计算出这50名学生的平均身高(精确到0.Ol m).29.某高校共有 5 个同规格的大餐厅和 2 个同规格的小餐厅,经过测试:同时开放 1 个大餐厅,2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅, 1 个小餐厅,可供2280 名学生就餐.(1)求 1 个大餐厅,1个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由.30.某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.B4.A5.A6.D7.D8.C9.B10.D二、填空题11.61 12. 52 13. 0°<α<110°14.1015.0≤x ≤1316.5417. 1118.5419.8.420.79°21.2.422.323.2008三、解答题24.甲:80×35%=28(颗)乙:80×35%=28(颗)丙:80×3O =24(颗25.(1)互相平分且相等;(2)证矩形ABCD26.(1)1.0 h;(2)1.05 h;(3)1400人27.(1)90分 (2)111. 6平方分 (3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势,所以适合选甲队参赛;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩教稳定. 所以,选派甲队参赛更脂取得好成绩28.(1)众数:1.70m,中位数:1.70 m;(2)1.68m29.( 1) 1 个大餐厅可供 960 名学生就餐, 1 个小餐厅可供360 人就餐;(2)5300 人30.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人)“其他”人数=100-30-20-40=10 (人)“其他”在扇形统计图中所占的圆心角=360°×10100=36°(3)略。

2019-2020学年最新江苏省镇江市九年级中考二模数学试题及答案解析

2019-2020学年最新江苏省镇江市九年级中考二模数学试题及答案解析

中考数学模拟试题一、填空题:(每题2分,共24分)1.3-的相反数是 _________.2.因式分解:322x x x -+=___________.3.按我国现有13亿人口计算,如果每人每年浪费0.5千克粮食,那么每年浪费总计就是6.5亿千克粮食,6.5亿用科学计数法表示为_________________________.4.已知正比例函数(0)y kx k =≠,请选取一个k 的值,使y 随x 的增大而增大,k =________.5.如图,一块含60°的直角三角形纸片,剪去这个60°的角后,得到一个四边形,那么∠1+∠2=_________°.(第5题) (第6题) (第7题)6.如图,△ABC 中,D 、E 分别是AB 、AC 的中点,若△ADE 的面积为2,则四边形DECB 的面积是______________.7.如图,△ABC 内接于O ,∠BAC=30°,BC=2,则O 的半径是__________.2160°E D C B A8.一组数据7,3,5,x ,9的众数为7,则这组数据的中位数是__________.9.已知直线112y x =-与5y x =-+的交点坐标是(4,1),则方程组215x y x y -=⎧⎨+=⎩的解是___________.10.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是________.11.如图,边长为6的正方形ABCD 内部有一点P ,BP=4,∠PBC=60°,点Q 为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q 点有_________个.(第11题) (第12题)12. 如图,点A 在反比例函x >0)的图象上,AB ⊥y 轴于点B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE=3EC ,点D 为OB 的中点,若△ADE 的面积为6,则k 的值为_____________.二、选择题(每题3分,共15分)13.函数y =变量的取值范围是( )A .0x ≠B .0x ≥C .1x ≥-D .1x ->14. 8的平方根是( )A .±4B .±C .4D .15.下列运算正确的是( )A .236()a a -=B .339a a a =C .23246()a b a b -=D .224a a a +=16. 一个几何体的三视图如图所示,则根据已知的数据,可得这个几何体的侧面积是( )A .15πB .24πC .12πD .20π(第16题) (第17题)17. 如图是二次函数2y ax bx c =++的图象的一部分,其对称轴是直线1x =-,且过点(3-,0),有下列说法:①0abc <;②20a b -=; ③420a b c ++<; ④若(-5,1y ),(52,2y )是抛物线上两点,则12y y >,其中说法正确的是( )A .①②B .②③C .①②④D .②③④三、解答题(共11题,总计81分)18.(本题满分10分)(1)计算:301cos60()(12-︒+ (2)化简:22(1)n m m n m n -÷+-19. (本题满分10分)(1)解方程32122xx x-=--(2)解不等式213x+>1x-,写出不等式的非负整数解.20. (本题满分6分)2013年,我国遭受了严重的雾霾天气.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:请结合统计图表,回答下列问题.(1)本次参与调查的学生共有__________人,m=________,n=_________;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是__________度;(3)请补全图1示数的条形统计图.21.(本题满分6分)小明同学看到路边上有人设摊玩“有奖摸球”游戏,在一个不透明的纸箱里只装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏规则是:交1元钱可以玩一次摸球游戏,从纸箱里随机摸出2个球,若摸到的球颜色相同,则中奖,奖金3元.否则不中奖.小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙!(1)用树状图或列表法求出中奖的概率;(2)通过以上“有奖”游戏,你能帮小明出个主意吗?简要说明理由.22.(本题满分6分)如图,四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F ,垂足分别为E 、F.(1)求证:BF=DE ;(2)连接CE 、AF ,证明四边形CEAF 是平行四边形.23. (本题满分6分)已知一次函数y kx b =+经过点B (-1,0),与反比例函数k y x=交于点A(1,4).(1)分别求两个函数的关系式;(2)直线AD 经过点A 与x 轴交于点D ,当∠BAD=90°时,求点D 的坐标.24. (本题满分6分)某旅游区有一景观奇异的望天洞,D是洞的入口,游人从洞口进入参观,可经过山洞到达山顶A,最后可坐缆车沿索道AB返回山脚下的B.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A处的仰角∠ADF=85°,过D作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)25.(本题满分6分)如图,已知二次函数y=x2+mx+n的图象经过A(0,3),且对称轴是直线x=2.(1)求该函数解析式;(2)在抛物线上找点P,使△PBC的面积是△ABC的面积的23,求出点P的坐标.26. (本题满分7分)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线;(2)求证:FD=FG.(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.27. (本题满分8分) 如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是__________三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.28. (本题满分10分)如图,在平面直角坐标系中,四边形OABC 为矩形, OA=6,A B=8.动点M 、N 分别从O 、B 同时出发,都以1个单位的速度运动,其中,点M 沿OA 向终点C 运动,点N 沿BC 向终点C 运动,过点N 作NP ⊥BC ,交AC 于点P ,连接MP ,已知动点运动了x 秒.(1)点B的坐标是__________,用含x的代数式表示点P的坐标为___________;(2)设四边形OMPC的面积为S,求当S有最小值时点P的坐标;(3)试探究,当S有最小值时,在线段OC上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的13?若存在,求出点T的坐标;若不存在,请说明理由.初中毕业升学考试数学模拟试卷参考答案及评分标准21. (1)画树状图(2分略)得:∴一共有12种等可能的结果,中奖的有2种情况,∴中奖的概率为16(3分)(2)答到“最好还是不要去玩”即得分(6分)22. (1)证明△ABE≌△CDF即可(3分)(2)证明AE∥DF即可(6分)23. (1)4yx=(1分)22y x=+(3分)(2)D(9,0)(6分)24.(1)∵DC⊥CE,又∵∠DBC=10°,∴∠BDC=80°,∵∠ADF=85°∴∠ADB=105°.(2分)25.(1)函数解析式为y=x2-4x+3 (3分);26.(1)如右图所示,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠MAC=∠ABC,∴∠CAB+∠MAC=90°,即∠MAB=90°,∴MN是半圆的切线.(3分)(2)证明:∵DE⊥AB,∴∠EDB+∠ABD=90°,∵AB是直径,∴∠ACB=90°,∴∠CBG+∠BGC=90°∵D是弧AC的中点,∴∠CBD=∠ABD,∴∠EDB=∠BGC,∵∠DGF=∠BGC,∴∠EDB=∠DGF,∴DF=FG.(6分)(3)∵DF=FG,∴∠DGF=∠FDG,∵∠DGF+∠DAG=90°,∠FDG+∠ADF=90°,∴∠DAF=∠ADF,∴AF=DF=GF,∴S △ADG=2S△DGF=9,∵△BCG∽△ADG,因为△ADG的面积为9,所以△BCG的面积是16.(9分)。

2020-2021学年江苏省镇江市中考数学二模试卷及答案解析A

2020-2021学年江苏省镇江市中考数学二模试卷及答案解析A

江苏省镇江市中考数学二模试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.计算:|﹣2|= .2.用科学记数法表示:0.0125= .3.函数:自变量x的取值范围是.4.因式分解:x﹣xy2= .5.如图,已知:a∥b,三角板的直角顶点在直线b上,∠1=40°,则∠2= .6.一组数据:1,3,4,x,6,6的平均数为4,则众数为.7.比较大小(填:>或=或<)8.函数y=x﹣2和的图象经过点(a,b),则= .9.已知:圆锥的母线长为5cm,侧面积为30πcm2,则圆锥的底面半径为cm.10.如图,PA、PB是⊙O的切线,Q为上一点,过点Q的直线MN与⊙O相切,已知PA=4,则△PMN周长= .11.如图,直线l∥x轴,分别与函数(x>0)和(x<0)的图象相交于点A、B,交y 轴于点C,若AC=2BC,则k= .12.如图1,正方形ABCD中,点P从点A出发,以每秒2厘米的速度,沿A→D→C方向运动,点Q从点B出发,以每秒1厘米的速度,沿BA向点A运动,P、Q同时出发,当点P运动到点C 时,两动点停止运动,若△PAQ的面积y(cm2)与运动时间x(s)之间的函数图象为图2,若线段PQ将正方形分成面积相等的两部分,则x的值为.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.下列几何体中,左视图与主视图不相同的只可能是()A.B.C.D.14.下列结论中正确的是()A.a3+a2=a5B.a3•a2=a6C.a3÷a2=a D.(a3)2=a515.如图,△ABC内接于⊙O,BC=8,⊙O半径为5,则sinA的值为()A.B.C.D.16.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.17.如图,正方形PQMN的边PQ在x轴上,点M坐标为(2,1),将正方形PQMN沿x轴连续翻转,则经过点(2015,)的顶点是()A.点P B.点Q C.点M D.点N三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.计算:(1)计算|﹣3|+()0+sin30°(2)化简.19.解方程或解不等式组(1)解方程(2)解不等式组并将解集在数轴上表示出来.20.如图,△ABC中,BD是△ABC的角平分线,(1)尺规作:作BD的垂直平分线分别交AB、BC于M、N(保留作图痕迹,不写作法)(2)连结MD、ND,判断四边形BMDN的形状,并说明理由.21.某校九(1)班同学积极参加社团活动,每人均参加篮球、书法、舞蹈和象棋其中的一项,小明同学调查后,整理相关数据并制作了两个不完整的统计图:根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中的m=(2)学校对该班社团活动进行测评,各社团的平均得分如表:社团篮球书法舞动象棋平均分 4 4.5 3 4求九(1)班社团测评的平均分.22.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A处测得建筑物CD的顶点C的俯角∠EAC=30°,测得底部D点的俯角∠EAD=45°.(1)求两建筑物之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).23.如图,直线y=x+b和双曲线相交于点A、B,且点A坐标为(2,1)(1)b= ,k= ,(2)P为x轴上一点,若以A、B、P为顶点的三角形是直角三角形,则点P的坐标为.24.一不透明的袋子中装有2个白球和1个红球,这些球除颜色不同外其余都相同,搅匀后,(1)从中一次性摸出两只球,用树状图或列表表示其中一个是红球另一个是白球的所有结果并求其概率.(2)向袋子中放入若干个红球(与原红球相同),搅匀后,从中任取一个球是红球的概率为,求放入红球的个数.25.如图,AB是⊙O直径,∠DAC=∠BAC,CD⊥AD,交AB延长线于点P,(1)求证:PC是⊙O的切线;(2)若tan∠BAC=,PB=2,求⊙O半径.26.国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款36000元用来代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x (元/件)之间的关系如图所示(实线),每天付员工的工资每人每天82元,每天应支付其它费用106元.(1)求日销售y(件)与销售价x (元/件)之间的函数关系式;(2)若暂不考虑还贷,当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?27.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN 的面积最大?如果存在,求t的值;如果不存在,请说明理由.28.阅读:已知如图(1)△ABC中,AB=AC,CF为AB边上的高,P为BC边上的一个动点,PD⊥AB,PE⊥AC,探究PD、PE和CF之间的关系.聪明的小强连接AP通过S△APB +S△APC=S△ABC,从而发现PD+PE=CF.理解:小强对上述问题进一步进行探究,当点P在BC延长线上时,如图2,其它条件不变,发现PD﹣PE=CF,请你证明小强的这一发现.运用(一):如图3,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,P为折痕EF上的任意一点,PG⊥BE,PH⊥BC,若AD=8,CF=3,求PG+PH的值.运用(二):如图4,四边形ABCD中,E为AD边上的点,且EB⊥AB,CE⊥CD,且AB•CE=CD•BE,M、N分别为AE、DE的中点,若AD=10,sinA=,求△BEM与△CEN的周长之和.江苏省镇江市中考数学二模试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分.)1.计算:|﹣2|= 2 .【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.用科学记数法表示:0.0125= 1.25×10﹣2.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0125=1.25×10﹣2.故答案为:1.25×10﹣2.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.函数:自变量x的取值范围是x≤1且x≠0 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得1﹣x≥0,且x≠0.解得x≤1且x≠0,故答案为:x≤1且x≠0.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.4.因式分解:x﹣xy2= x(1+y)(1﹣y).【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(1﹣y2)=x(1+y)(1﹣y).故答案为:x(1+y)(1﹣y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.如图,已知:a∥b,三角板的直角顶点在直线b上,∠1=40°,则∠2= 50°.【考点】平行线的性质.【分析】先根据三角板的直角顶点在直线b上求出∠3的度数,进一步得到∠4的度数,再由平行线的性质即可得出结论.【解答】解:∵三角板的直角顶点在直线b上,∠1=40°,∵a∥b,∴∠3=∠1=40°,∴∠4=90°﹣∠3=50°,∴∠2=∠4=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.一组数据:1,3,4,x,6,6的平均数为4,则众数为4和6 .【考点】众数;算术平均数.【分析】本题需先求出x的值,再根据众数的定义找出出现次数最多的数即是众数.【解答】解:∵1,3,4,x,6,6的平均数为4,∴(1+3+4+x+6+6)÷6=4,x=4,∴这组数据的众数是:4和6.故答案为:4和6.【点评】本题主要考查了众数的有关知识,在解题时要能根据众数的定义求出一组数据的众数是本题的关键.7.比较大小>(填:>或=或<)【考点】实数大小比较.【分析】根据无理数的估算方法比较﹣1与1的大小,根据分数的性质比较即可.【解答】解:∵>2,∴﹣1>1,∴>.故答案为:>.【点评】本题考查的是实数的大小比较,掌握无理数的估算方法是解题的关键.8.函数y=x﹣2和的图象经过点(a,b),则= ﹣2 .【考点】反比例函数与一次函数的交点问题.【分析】由函数y=x﹣2和的图象经过点(a,b),代入解析式得到b=a﹣2,b=,求得a ﹣b=﹣2,ab=1,即可得到结论.【解答】解:∵函数y=x﹣2和的图象经过点(a,b),∴b=a﹣2,b=,∴a﹣b=﹣2,ab=1,∴=﹣2,故答案为:﹣2.【点评】本题考查了反比例函数与一次函数的交点问题,把点的坐标代入解析式得到方程是解题的关键.9.已知:圆锥的母线长为5cm,侧面积为30πcm2,则圆锥的底面半径为 6 cm.【考点】圆锥的计算.【分析】根据圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:设底面圆半径rcm,因为母线长为5cm,侧面积=π×5×r=30π,解得r=6,.故答案为:6.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算公式:S=lr是解题的关键.10.如图,PA、PB是⊙O的切线,Q为上一点,过点Q的直线MN与⊙O相切,已知PA=4,则△PMN周长= 8 .【考点】切线长定理.【分析】根据切线长定理得MA=MQ,NQ=NB,然后根据三角形周长的定义进行计算.【解答】解:∵直线PA、PB、MN分别与⊙O相切于点A、B、Q,∴MA=MQ,NQ=NB,∴△PMN的周长=PM+PN+MQ+NQ=PM+MA+PN+NM=PA+PB=4+4=8.故答案为:8.【点评】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.11.如图,直线l∥x轴,分别与函数(x>0)和(x<0)的图象相交于点A、B,交y 轴于点C,若AC=2BC,则k= ﹣1 .【考点】反比例函数图象上点的坐标特征.【分析】根据题意可以设B点坐标为(x,y),因为BC∥x轴,AC=2BC,故知A点坐标为(﹣2x,y),把两点代入函数方程,即可解得k.【解答】解:设B点坐标为(x,y),∵BC∥x轴,AC=2BC,∴C点坐标为(﹣2x,y),故=,解得k=﹣1.故答案是:﹣1.【点评】本题主要考查反比例函数系数k的几何意义,数形结合是解答此题的关键,本题也比较基础,同学们需要牢固掌握.12.如图1,正方形ABCD中,点P从点A出发,以每秒2厘米的速度,沿A→D→C方向运动,点Q从点B出发,以每秒1厘米的速度,沿BA向点A运动,P、Q同时出发,当点P运动到点C 时,两动点停止运动,若△PAQ的面积y(cm2)与运动时间x(s)之间的函数图象为图2,若线段PQ将正方形分成面积相等的两部分,则x的值为 3 .【考点】动点问题的函数图象.【分析】由题意可知,当点P在AD上运动时y与x满足二次函数关系,当点P在DC上运动时y 与x满足一次函数关系,设正方形的边长为acm,列出当0<x≤时y与x的函数关系式并配方,结合函数图象可得a的值,进而求出此时x的值.【解答】解:设正方形的边长为acm,由题意知,点P的运动路程为2xcm,BQ=xcm,当0<x≤时,y=•AQ•AP=(a﹣x)•2x=﹣x2+ax=﹣(x﹣)2+,则当x=时,y取得最大值,最大值为,由题意可知,=9,解得:a=6或a=﹣6(舍),当y=9时,x==3,故答案为:3.【点评】本题主要考查动点问题的函数图象,结合题意分析点的运动轨迹,并列出函数关系式是关键,结合函数关系式及性质求某一时刻的值则是基本运算.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.下列几何体中,左视图与主视图不相同的只可能是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分析出四个几何体的左视图与主视图,然后再确定答案.【解答】解:A、正方体的左视图和主视图都是正方形,故此选项错误;B、长方体的左视图是长方形,主视图也是长方形,但是长和宽不相同,故此选项正确;C、球的左视图和主视图都是圆形,故此选项错误;D、圆锥的左视图和主视图都是等腰三角形,故此选项错误;故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图和主视图所看的位置.14.下列结论中正确的是()A.a3+a2=a5B.a3•a2=a6C.a3÷a2=a D.(a3)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.15.如图,△ABC内接于⊙O,BC=8,⊙O半径为5,则sinA的值为()A.B.C.D.【考点】圆周角定理;解直角三角形.【分析】连接BO并延长交⊙O于D,连接CD,根据圆周角定理得到∠BCD=90°,∠D=∠A,然后根据三角函数的定义即可得到结论.【解答】解:连接BO并延长交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A,∵⊙O半径为5,∴BD=10,∴sinA=sinD===,故选B.【点评】本题考查了圆周角,解直角三角形,正确的作出辅助线是解题的关键.16.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【考点】概率公式.【专题】网格型.【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【解答】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.P=,故选:D.【点评】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.如图,正方形PQMN的边PQ在x轴上,点M坐标为(2,1),将正方形PQMN沿x轴连续翻转,则经过点(2015,)的顶点是()A.点P B.点Q C.点M D.点N【考点】坐标与图形变化-旋转.【专题】规律型.【分析】先确定经过(2,)的点为N点,经过点(3,)的点为点P,经过点(4,)的点为点Q,经过点(5,)的点为点M,经过点(6,)的点为点N,于是得到每四次一循环,由于2015﹣2=503×4+1,由此可判断点P经过点(2015,).【解答】解:第1次将正方形PQMN沿x轴翻转时,经过点(2,)的点为点N,第2次将正方形PQMN沿x轴翻转时,经过点(3,)的点为点P,第3次将正方形PQMN沿x轴翻转时,经过点(4,)的点为点Q,第4次将正方形PQMN沿x轴翻转时,经过点(5,)的点为点M,第5次将正方形PQMN沿x轴翻转时,经过点(6,)的点为点N,而2015﹣2=503×4+1,所以经过点(2015,)的顶点是点P.故选A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(本大题共有11小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.计算:(1)计算|﹣3|+()0+sin30°(2)化简.【考点】分式的混合运算;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)将sin30°=代入,然后运算绝对值及零指数幂,继而合并可得出答案;(2)首先把括号里的式子进行通分,然后因式分解,再约分化简即可求解.【解答】解:(1)|﹣3|+()0+sin30°=3+1+=4.(2)=×=×=.【点评】考查了分式的混合运算,通分、因式分解和约分是解答的关键.同时考查了实数的运算,解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、绝对值等考点的运算.19.解方程或解不等式组(1)解方程(2)解不等式组并将解集在数轴上表示出来.【考点】解一元一次不等式组;解分式方程;在数轴上表示不等式的解集.【分析】(1)将方程两边都乘以最简公分母x﹣2去分母,然后依次去括号、移项、合并同类项、系数化为1,最后检验可得;(2)分别求出每一个不等式的解集,根据口诀确定不等式解集的公共部分,表示在数轴上.【解答】解:(1)去分母,得:3x﹣(x﹣2)=﹣2,去括号,得:3x﹣x+2=﹣2,移项,得:3x﹣x=﹣2﹣2,合并同类项,得:2x=﹣4,系数化为1,得:x=﹣2,经检验:x=﹣2是原方程的解;(2)解不等式2x+1>x﹣1,得:x>﹣2,解不等式x+4>4﹣x,得:x>0,故不等式组的解集为:x>0,将不等式解集表示在数轴上:【点评】本题主要考查解分式方程和不等式组的能力,严格遵循解方程或解不等式得基本步骤是基础,去分母时找到最简公分母和解不等式系数化为1时注意不等号方向是易错点.20.如图,△ABC中,BD是△ABC的角平分线,(1)尺规作:作BD的垂直平分线分别交AB、BC于M、N(保留作图痕迹,不写作法)(2)连结MD、ND,判断四边形BMDN的形状,并说明理由.【考点】作图—基本作图;菱形的判定.【专题】作图题.【分析】(1)利用基本作图(作已知线段的垂直平分线)作MN垂直平分BD;(2)先根据线段垂直平分线的性质得MB=MD,NB=NC,再利用BD平分∠MBN,BD⊥MN可判断△BMN为等腰三角形,则BM=BN,所以BM=MD=DN=NB,于是可判断四边形BMDN为菱形.【解答】解:(1)如图,MN为所作;(2)四边形BMDN为菱形.理由如下:∵MN垂直平分BD,∴MB=MD,NB=NC,∵BD平分∠MBN,BD⊥MN,∴△BMN为等腰三角形,∴BM=BN,∴BM=MD=DN=NB,∴四边形BMDN为菱形.【点评】本题考查了基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.也考查了菱形的判定.21.某校九(1)班同学积极参加社团活动,每人均参加篮球、书法、舞蹈和象棋其中的一项,小明同学调查后,整理相关数据并制作了两个不完整的统计图:根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中的m= 35(2)学校对该班社团活动进行测评,各社团的平均得分如表:社团篮球书法舞动象棋平均分 4 4.5 3 4求九(1)班社团测评的平均分.【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)篮球社团的人数有8人,所占比例为20%,求得社团总人数,再进一步得出象棋社团人数,进一步求得舞蹈社团人数占总人数的百分比求得m即可;(2)求得每个社团总分,相加得出所有社团总分,再除以总人数即可.【解答】解:(1)8÷20%=40(人),40﹣8﹣12﹣14=6(人),14÷40=35%补全条形统计图如下:(2)(8×4+4.5×12+14×3+4×6)÷(8+12+14+6)=3.8(分)答:九(1)班社团测评的平均分式3.8分.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A处测得建筑物CD的顶点C的俯角∠EAC=30°,测得底部D点的俯角∠EAD=45°.(1)求两建筑物之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC 中利用∠FAC=30°求得CF,然后即可求得CD的长.【解答】解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60米,答:两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60米,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20米,又∵FD=60米,∴CD=60﹣20(米).答:建筑物CD的高度为(60﹣20)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确标注仰角和俯角、熟记锐角三角函数的定义是解题的关键.23.如图,直线y=x+b和双曲线相交于点A、B,且点A坐标为(2,1)(1)b= ﹣1 ,k= 2 ,(2)P为x轴上一点,若以A、B、P为顶点的三角形是直角三角形,则点P的坐标为(3,0)、(﹣3,0)、(,0)、(,0).【考点】反比例函数与一次函数的交点问题.【分析】(1)直接把A点坐标分别代入y=x+b和中,即可求出b和k的值;(2)联立方程求得B的坐标,设P点坐标为(t,0),根据两点间的距离公式求得PA2=12+(t ﹣2)2,PB2=22+(t+1)2,AB2=32+32=18,然后分类讨论:①∠APB=90°时,②∠PAB=90°时,③∠PBA=90°时,根据勾股定理得关于t的方程,再分别解方程求出t的值,最后写出P点坐标.【解答】解:(1)把A(2,1)代入y=x+b得1=2+b,解得b=﹣1;把A(2,1)代入y=得,k=2×1=2;故答案为﹣1,2;(2)解得或,∴A(2,1),B(﹣1,﹣2),设P点坐标为(t,0),∴PA2=12+(t﹣2)2,PB2=22+(t+1)2,AB2=32+32=18,当∠APB=90°时,则PA2+PB2=AB2,即12+(t﹣2)2+22+(t+1)2=18,解得t=,此时P点坐标为(,0)或(,0);当∠PAB=90°时,则PA2+AB2=PB2,即12+(t﹣2)2+18=22+(t+1)2,解得t=3,此时P点坐标为(3,0);当∠PBA=90°时,则PB2+AB2=PA2,即22+(t+1)2+18=12+(t﹣2)2,解得t=﹣3,此时P点坐标为(﹣3,0);综上所述,P点坐标为(3,0)、(﹣3,0)、(,0)、(,0);故答案为(3,0)、(﹣3,0)、(,0)、(,0).【点评】考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了勾股定理以及分类讨论的思想.24.一不透明的袋子中装有2个白球和1个红球,这些球除颜色不同外其余都相同,搅匀后,(1)从中一次性摸出两只球,用树状图或列表表示其中一个是红球另一个是白球的所有结果并求其概率.(2)向袋子中放入若干个红球(与原红球相同),搅匀后,从中任取一个球是红球的概率为,求放入红球的个数.【考点】列表法与树状图法;概率公式.【专题】应用题.【分析】(1)先画树状图为展示所有6种等可能的结果数,再找出一个是红球另一个是白球的所有结果数,然后根据概率公式求解;(2)设放入红球的个数为x个,根据概率公式得到=,然后解方程即可.【解答】解:(1)画树状图为:共有6种等可能的结果数,其中一个是红球另一个是白球的所有结果数为4,所以其中一个是红球另一个是白球的概率==;(2)设放入红球的个数为x个,根据题意得=,解得x=5,即放入红球的个数为5个.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.25.如图,AB是⊙O直径,∠DAC=∠BAC,CD⊥AD,交AB延长线于点P,(1)求证:PC是⊙O的切线;(2)若tan∠BAC=,PB=2,求⊙O半径.【考点】切线的判定.【分析】(1)根据等腰三角形的性质和∠DAC=∠BAC,得出∠DAC=∠OCA,判定OC∥AD,得出∠OCP=90°,即可证得结论;(2)连接BC,证得△PBC∽△CPA,根据相似三角形的性质得出==,根据tan∠BAC=得出PC2=PB•PA,PA=2PC,进一步求得PC=4,设⊙O半径为x,则OP=x+2,根据勾股定理列出方程,解方程即可求得.【解答】(1)证明:∵OA=OC,∴∠OAC=∠OCA,又∠DAC=∠BAC,∴∠DAC=∠OCA,∴OC∥AD,又CD⊥AD,∴∠OCP=90°,∴PC是⊙O的切线;(2)解:如图,连接BC,∵PC是⊙O的切线,∴∠PCB=∠PAC,∵∠BPC=∠CPA,∴△PBC∽△CPA,∴==,∵tan∠BAC==,∴PC2=PB•PA,PA=2PC,∴PC2=2PB•PC,PC=2PB=4,设⊙O半径为x,则OP=x+2,在RT△OPC中,OP2=OC2+PC2,即(x+2)2=x2+42,解得x=3,∴⊙O半径为3.【点评】本题考查了切线的判定和性质三角形相似的判定和性质以及勾股定理的应用,作出辅助线构建相似三角形是解题的关键.26.国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款36000元用来代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x (元/件)之间的关系如图所示(实线),每天付员工的工资每人每天82元,每天应支付其它费用106元.(1)求日销售y(件)与销售价x (元/件)之间的函数关系式;(2)若暂不考虑还贷,当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?【考点】二次函数的应用.【分析】(1)根据待定系数法,可得函数解析式;(2)根据收入等于支出,可得一元一次方程,根据解一元一次方程,可得答案;(3)分类讨论40≤x≤58,或58≤x≤71,找出两种情况下定价为多少时,每日收入最高,再由(收入﹣支出)×天数≥债务,即可得出结论.【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得:,解得:.∴y=﹣2x+140;等58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得:,解得:.∴y=﹣x+82.综上所述:y=.(2)设人数为a,当x=48时,y=﹣2×48+140=44,则(48﹣40)×44=106+82a,解得:a=3.答:该店员工人数为3.(3)令每日的收入为S元,则有:当40≤x≤58时,S=(x﹣40)(﹣2x+140)=﹣2(x﹣55)2+450,故当x=55时,S取得最大值450;当58<x≤71时,S=(x﹣40)(﹣x+82)=﹣(x﹣61)2+441,故当x=61时,S取得最大值441.综上可知,当x=55时,S取得最大值450.设需要b天,该店还清所有债务,则:(450﹣106﹣82×2)b≥3600,解得:b≥200.故该店至少需要200天才能还清贷款,此时,每件服装的价格应定为55元.【点评】此题考查了二次函数的应用,利用待定系数法求函数解析式,一次方程的应用,不等式的应用,解题的关键是根据图象分类讨论.本题属于中档题,难度不大运算量不小,该题的难点在于(3)中极值的求取,结合(1)的关系式得出每日收入的二次函数,转化为顶点式寻找极值.27.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为(0,﹣3m2),AB的长度为4m ;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN 的面积最大?如果存在,求t的值;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令横坐标为0即可求出C点的纵坐标,将抛物线的解析式进行因式分解,可得出A、B两点的坐标,从而得出AB的长度;。

江苏省镇江市丹阳市市区2020年九年级网上阅卷答题卡模拟训练数学试卷(含答案)

江苏省镇江市丹阳市市区2020年九年级网上阅卷答题卡模拟训练数学试卷(含答案)

镇江2020年市区九年级网上阅卷答题卡模拟训练数学试卷本试卷共6页,共28题;全卷满分120分,考试时间120分钟.注 意 事 项:1.答卷前,考生务必用0.5毫米黑色水笔将自己的姓名、考试号填写在试题答题卷上相应位置.2.考生必须在试题答题卷上各题指定区域内作答,在本试卷上和其他位置作答一律无效.3.如用铅笔作图,必须用黑色水笔把线条描清楚.一、填空题(本大题共有12小题,每小题2分,共计24分.) 1. -2020的绝对值等于 ▲ . 2.已知分式xx 1-的值等于0,则x = ▲ . 3.将8化为最简二次根式是 ▲ .4.截至2020年3月1日,江苏多家企业向湖北某市捐赠生活物资合计约372.46万元,372.46万元用科学计数法表示为 ▲ 元. 5.142+-x x =2)2(-x - ▲ .6.将一把直尺和一块三角板如图放置,若∠1=40°,则∠2的度数为 ▲ °. 7.点A (m ,2),B (n ,3)在反比例函数xy 3-=的图像上,则m ▲ n (用“<”或“>”填空).8.已知圆锥的母线长为3,底面圆半径为2,则该圆锥的侧面积为 ▲ .(结果保留π)9.将容量为100的样本分成3个组,第一组的频数是35,第二组的频率是0.28,那么第三组的频率是 ▲ .10.如图,在⊙O 的内接四边形ABCD 中,∠C =2∠A ,则cos A = ▲ . 11.若二次函数x m x y )1(2--=的图像经过点(3,0),则关于x 的一元二次方程0)1(2=--x m x 的根为 ▲ .(第6题)(第10题)ABC DO12.如图,O是□ABCD的对称中心,点E在边BC上,AD=7,BE=3,将△ABE 绕点O旋转︒180,设点E的对应点为E',则EAESS□'∆=▲.二、选择题(本大题共有6小题,每小题3分,共计18分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.点P(1-,2)到x轴的距离为(▲)A.1 B.2 C.1-D.2-14.下面计算正确的是(▲)A.2aaa=+B.12322=-aaC.226)3(aa=D.43aaa=⋅15.一组数据为5,6,7,7,10,10,某同学在抄题的时候,误将其中的一个10抄成了16,那么该同学所抄的数据和原数据相比,不变的统计量是(▲)A.极差B.平均数C.中位数D.众数16.如图,一个长方体从正面、上面看到的图形如图所示,则这个长方体的体积等于(▲)A. 6B. 9C. 12D. 1817.如图1,点P从Rt△ABC的顶点A出发,沿A→C→B的路径匀速运动到点B 停止,作PQ⊥AB于点Q,设点P运动的路程为x,PQ的长为y,若y与x之间的函数关系如图2所示,当x=6时,PQ的长为(▲)A.1B.54C.53D.52(第16题)从正面看从上面看(第12题)x(第17题)图1P18.如图,在平面直角坐标系xoy 中,已知点A (-9,7),B (-3,0),点P 在x 轴的正半轴上运动,将线段AB 沿直线AP 翻折到AC ,当点C 恰好 落在y 轴上时,直线AP 对应的函数表达式可以是( ▲A .891+=x yB .5853+-=x yC .132+-=x yD .453+-=x y三、解答题(本大题共有10小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本小题满分8分)(1)计算:02o)13()2(30sin 2+--+- (2)化简:1)111(22-÷+-x x x 20.(本小题满分10分)(1)解不等式组:⎪⎩⎪⎨⎧+<-≥+1221302x x x (2)解方程:x x 3121=--21.(本小题满分6分)如图,AC 是正方形ABCD 的对角线,E 、F 分别为BC 、CD 边上的点, CE =CF ,连接AE 、AF . (1)求证:AE =AF ;(2)连接EF ,试证明:AC EF ⊥.22.(本小题满分6分)某小区为促进生活垃圾的分类处理,将生活垃圾分为a (厨余)、b (可回收)、c (其他)三类,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱分别记为A 、B 、C .小亮将分类好的两袋垃圾(可回收、其他)随机投入到三种垃圾箱内,请用画树状图或列表格的方法,求小亮投放正确的概率.(第21题)A B C DEF(第18题)随着网络资源日趋丰富,更多人选择在线自主学习,在线学习方式有在线阅读、在线听课、在线答题、在线讨论。

江苏省镇江市2019-2020学年中考数学二月模拟试卷含解析

江苏省镇江市2019-2020学年中考数学二月模拟试卷含解析

江苏省镇江市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤2.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.63.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x34.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个5.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2B.m=2 C.m=–2 D.m≠268-1的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间7.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或68.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°9.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为()A.80°B.70°C.60°D.40°10.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3 B.4 C.5D.711.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线()A.x=1 B.x=49C.x=﹣1 D.x=﹣4912.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)14.已知代数式2x﹣y的值是12,则代数式﹣6x+3y﹣1的值是_____.15.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=22,则OE的长为_____.16.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为1003A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)17.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.18.下列说法正确的是_____.(请直接填写序号)①“若a>b,则ac>bc.”是真命题.②六边形的内角和是其外角和的2倍.③函数1x的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?20.(6分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.(1)二月份冰箱每台售价为多少元?(2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?(3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?21.(6分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)22.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?23.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.24.(10分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.25.(10分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数7 8 9 10人数 3 6 15 6表2:乙调查三个年级各10位同学植树情况每人植树棵6 7 8 9 10数人数 3 6 3 12 6根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?26.(12分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?(2)扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.27.(12分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED =∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】①首先利用已知条件根据边角边可以证明△APD≌△AEB;②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为3③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;⑤连接BD,根据三角形的面积公式得到S△BPD=12PD×BE=32,所以S△ABD=S△APD+S△APB+S△BPD6由此即可判定.【详解】由边角边定理易知△APD≌△AEB,故①正确;由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,所以∠BEP=90°,过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,在△AEP中,由勾股定理得2,在△BEP中,5,2,由勾股定理得:3∵∠PAE=∠PEB=∠EFB=90°,AE=AP,∴∠AEP=45°,∴∠BEF=180°-45°-90°=45°,∴∠EBF=45°,∴EF=BF,在△EFB中,由勾股定理得:EF=BF=6,故②是错误的;因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;由△APD≌△AEB,∴PD=BE=3,可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=12+62,因此④是错误的;连接BD,则S△BPD=12PD×BE=32,所以S△ABD=S△APD+S△APB+S△BPD=2+62,所以S正方形ABCD=2S△ABD=4+6.综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.2.B【解析】【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.3.B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案. 详解:A 、不是同类项,无法计算,故此选项错误;B 、235x x x ⋅=, 正确;C 、()326x x -=-,故此选项错误; D 、624x x x ÷=, 故此选项错误;故选:B .点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.B【解析】【详解】解:∵二次函数y=ax 3+bx+c (a≠3)过点(3,3)和(﹣3,3),∴c=3,a ﹣b+c=3.①∵抛物线的对称轴在y 轴右侧, ∴b x 2a=-,x >3. ∴a 与b 异号.∴ab <3,正确.②∵抛物线与x 轴有两个不同的交点,∴b 3﹣4ac >3.∵c=3,∴b 3﹣4a >3,即b 3>4a .正确.④∵抛物线开口向下,∴a <3.∵ab <3,∴b >3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.5.D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D6.B【解析】试题分析:∵23,∴1<2,在1到2之间,故选B.考点:估算无理数的大小.7.C【解析】【分析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.8.C【解析】【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得AC ∥BD ,只有选项C 能证得AB ∥CD .注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A ,本选项不能判断AB ∥CD ,故A 错误;B.∵∠D=∠DCE ,∴AC ∥BD.本选项不能判断AB ∥CD ,故B 错误;C.∵∠1=∠2,∴AB ∥CD.本选项能判断AB ∥CD ,故C 正确;D.∵∠D+∠ACD=180°,∴AC ∥BD.故本选项不能判断AB ∥CD ,故D 错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.9.B【解析】【分析】根据平行线的性质得到°140ABD ∠=,根据BE 平分∠ABD ,即可求出∠1的度数. 【详解】解:∵BD ∥AC ,∴°180ABD A ∠+∠=,°140ABD ∠=,∵BE 平分∠ABD , ∴°°1111407022ABD ∠=∠=⨯=故选B .【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.10.C【解析】如图所示:过点O 作OD ⊥AB 于点D ,∵OB=3,AB=4,OD ⊥AB ,∴BD=12AB=12×4=2, 在Rt △BOD 中,2222325OB BD -=-=故选C .11.D【解析】【分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴.【详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a ). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab a a ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x=﹣49. 故选D .【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.12.C【解析】【分析】设参加酒会的人数为x 人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x 人,依题可得:12x (x-1)=55, 化简得:x 2-x-110=0,解得:x 1=11,x 2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.π【解析】∵∠C=30°,∴∠AOB=60°,∴»603180ABl ππ⨯==.即»AB 的长为π. 14.52- 【解析】【分析】由题意可知:2x-y=12,然后等式两边同时乘以-3得到-6x+3y=-32,然后代入计算即可. 【详解】∵2x-y=12, ∴-6x+3y=-32. ∴原式=-32-1=-52.故答案为-52.【点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-32是解题的关键.15.2【解析】【分析】连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C=OAOC=12,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt △OAE 中,sin ∠OAE =OE OA =12, ∴OA =2OE ,∴OE =12OA.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA 的值,从而利用直角三角形的三角函数的运用求出答案.16.100(【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt △ACD 中利用正切定义可计算出AD=100,在Rt △BCD 中利用等腰直角三角形的性质得,然后计算AD+BD 即可.详解:如图,∵无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt △ACD 中,∵tanA=CD AD,∴AD=0tan 60=100,在Rt △BCD 中,,∴(.答:A 、B 两点间的距离为100(故答案为100(.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形. 17.3【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,故答案为﹣1.考点:正数和负数18.②④⑤【解析】【分析】根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.【详解】①“若a>b,当c<0时,则ac<bc,故①是假命题;②六边形的内角和是其外角和的2倍,根据②真命题;③函数y=1x的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;故答案为②④⑤【点睛】本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.20.(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.【解析】【分析】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.【详解】(1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据题意,得:90000500x=80000x,解得:x=4000,经检验,x=4000是原方程的根.答:二月份冰箱每台售价为4000元.(2)根据题意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y为整数,∴y=3,9,10,11,2.∴洗衣机的台数为:2,11,10,9,3.∴有五种购货方案.(3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利润相同,∴1﹣a=0,∴a=1.答:a 的值为1.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w 关于m 的函数关系式.21.DE 的长度为63+1.【解析】【分析】根据相似三角形的判定与性质解答即可.【详解】解:过E 作EF ⊥BC ,∵∠CDE =120°,∴∠EDF =60°,设EF 为x ,DF 3, ∵∠B =∠EFC =90°,∵∠ACB =∠ECD ,∴△ABC ∽△EFC ,∴BC CF AB EF=, 即1.82.7311.5x =+, 解得:x =3∴DE =(239233+3, 答:DE 的长度为3.【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.22. (1)见解析(2)300(3)2小时【解析】【分析】【详解】解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,得6360k =,解得60k =.所以,甲组加工的零件数量y 与时间x 的函数关系式为:60y x =.(2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.8 2.82a -=⨯-.解得300a =. (3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x≤2时,6050300x x +=.解得3011x =.舍去. 当2<x≤2.8时,10060300x +=.解得103x =.舍去. 当2.8<x≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱.当3<x≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x≤6时.603003002x +=⨯.解得5x =.因为5-3=2,所以,再经过2小时恰好装满第2箱.23.(1)证明见解析;(2)ED=EB ,证明见解析;(1)CG=2.【解析】【分析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE ;(2)、取AB 的中点O ,连接CO 、EO ,根据△ACO 和△CDE 为等边三角形,从而得出△ACD 和△OCE 全等,然后得出△COE 和△BOE 全等,从而得出答案;(1)、取AB 的中点O ,连接CO 、EO 、EB ,根据题意得出△COE 和△BOE 全等,然后得出△CEG 和△DCO 全等,设CG=a ,则AG=5a ,OD=a ,根据题意列出一元一次方程求出a 的值得出答案.【详解】(1)∵△CDE 是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.24.证明见解析.【解析】【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED= AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.25.(1)9,9;(2)乙;(3)1680棵;【解析】【分析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.【详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.26.(1)50万人;(2)43.2°;统计图见解析(3)13.【解析】【分析】(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;(2)先用360°乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待游客数补全条形统计图;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市景点共接待游客数为:15÷30%=50(万人);(2)扇形统计图中E景点所对应的圆心角的度数是:650×360°=43.2°,B景点的人数为50×24%=12(万人)、D景点的人数为50×18%=9(万人),补全条形统计图如下:故答案为43.2°;(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴P(同时选择去同一个景点)31. 93 ==【点睛】本题考查的是统计以及用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.27.(1)AC与⊙O相切,证明参见解析;(2).【解析】试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.考点:1.切线的判定;2.解直角三角形.。

2020-2021学年江苏省镇江市九年级第二次模拟考试数学试题及答案解析

2020-2021学年江苏省镇江市九年级第二次模拟考试数学试题及答案解析

中考数学模拟试题一.填空题(每小题2分,共24分)班级姓名1.43-的倒数是.2. 分解因式:22mx mx m-+= .3. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约51 000 000 000千克,这个数据用科学计数法表示为千克.4.一组数据-2,-1,0,x,1的平均数是0,则这组数据的方差为.5.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.(第5题)(第8题) (第11题)(第12题)6.若n边形的内角和等于外角和,则n= .7.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是.8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AEDBA的正切值等于______.9.已知点(a,b )是直线2y x =-和双曲线1y x =的一个交点,则11b a-= . 10.将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是11.如图,点A 在双曲线3(0)y x x =>上,点B 在双曲线(0)ky x x=<上,且OA OB ⊥,030A ∠=,则k 的值是 .12.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2cm ,QM=4cm 。

动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值_____ _____(单位:秒)二.选择题(每小题3分,共15分) 13.下列运算正确的是( )A .2x+3y=5xy B.5m 2·m 3=5m 5C.(a —b )2=a 2—b 2D.(m 2) 2·m 3=m 1214.32x -x 的取值范围是( ) A .32x ≥B .32x >C .23x ≥D .23x >666666l15.如图是一个几何体的三视图,则这个几何体的侧面积是( )A.πB. 9πC. 18πD. 27π16.已知点A (2,1y )和点B (m, 2y )是抛物线22y x x =-上两点,且21y y >,则m 的取值范围是( )A. m>2B. 0m ≤或2m ≥C. 0<m<2D. m<0或m>217.已知:⊙1O 和⊙2O 的半径分别为1和5,圆心1O 在直线l 上,⊙2O 与直线l 相交于点A 、B ,且AB=6,圆心1O 在直线l 上运动,当⊙1O 和⊙2O 相切时,⊙1O 的个数有( )个. A. 1 B. 2 C. 3 D. 4三.解答题(共81分)18.(8分)(1)计算021(12cos 45()2--+- (2)化简:211(1)x x x --÷主视图左视图俯视图组:19.(10分)(1)解方程:21122x x x=--- (2)解不等式3(1)7342x x x x --≤⎧⎨-<⎩20.(6分) 3月,某中学结合镇江中小学生阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制成如图所示的统计表和数学统计图. 频数分布表扇形统计图折线统计图图20-① 图20-②图20-③书籍名称 频数频率 科普 50 a 文学 60 0.3 体育30 b 艺术c 0.2 其它d0.1请根据图表中提供的信息解答下列问题:(1)填空:统计表(图20-①)中,a= ,c= .(2)扇形统计图(图20- ②)中,体育部分所对应的圆心角的度数为. (3)请你把(图20-③)中的折线统计图补充完整。

镇江市2020年中考数学二模试卷(II)卷

镇江市2020年中考数学二模试卷(II)卷

镇江市2020年中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·江门月考) 下列说法中,正确的是()A . 因为相反数是成对出现的,所以0没有相反数B . 数轴上原点两旁的两点表示的数是互为相反数C . 符号不同的两个数是互为相反数D . 正数的相反数是负数,负数的相反数是正数2. (2分) (2019九下·保山期中) 中国倡导的“一带一路”建设将促进世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A . 44×108B . 4.4×108C . 4.4×1010D . 4.4×1093. (2分) (2017九上·鸡西期末) 下列各运算中,计算正确的个数是()①3x2+5x2=8x4 ② (- m2n)2= m4n2 ③ (- )-2=16④ - =A . 1B . 2C . 3D . 44. (2分)如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A . 42°、138°B . 都是10°C . 42°、138°或10°、10°D . 以上都不对5. (2分) (2020八下·栖霞期中) 小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如下表:抛掷次数100500100015002000正面朝上的频数452535127561020若抛掷硬币的次数为3000,则“正面朝上”的频数最接近()A . 1000B . 1500C . 2000D . 25006. (2分)(2018·德州) 已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A . 7B . 6C . 5D . 47. (2分)(2020·南宁模拟) 如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A . c<0B . b2-4ac<0C . a-b+c<0D . 图象的对称轴是直线x=38. (2分) (2020八上·海拉尔期末) 如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A .B .C .D .9. (2分)如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF 的长度为()A . 2B .C .D .10. (2分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如右图那样折叠,使点A与点B重合,则折痕BE的长是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2018八上·大连期末) 如果分式有意义,那么的取值范围是________.12. (1分) (2019八下·云梦期中) 如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=2cm,BC=16cm,则EF=________cm.13. (1分) (2015九下·武平期中) 分解因式:xy2﹣x=________.14. (1分)(2018·鹿城模拟) 小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上支出100元,则在午餐上支出________元15. (1分)(2016·漳州) 一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为________分.班级人数平均分(1)班5285(2)班488016. (1分) (2020九下·舞钢月考) 若关于的一元二次方程总有两个不相等的实数根,则实数的取值范围是________.17. (1分)(2017·景德镇模拟) 我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”,在Rt△ABC 中,∠ACB=90°,AB=4,AC=2,D是BC的中点,点M是AB边上一点,当四边形ACDM是“等邻边四边形”时,BM 的长为________.18. (1分)(2018·眉山) 如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.三、解答题 (共10题;共90分)19. (5分)(2019·华容模拟) 计算:(﹣)﹣2﹣(2019﹣π)0﹣2sin45°+| ﹣1|20. (5分)解不等式组:.21. (5分)(2019·哈尔滨模拟) 先化简,再求值:,其中.22. (5分) (2017八上·崆峒期末) 比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴而行,到相距16米的银树下参加探讨环境保护的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后,提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.23. (10分)(2019·平阳模拟) 艺术节期间,学校向学生征集书画作品,张老师从全校36个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整,并估计全校共征集了多少件作品?(2)如果全校征集的作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,求选取的两名学生恰好是一男一女的概率.(要求列表或画树状图)24. (10分)(2016·三门峡模拟) 如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)25. (10分)(2020·青白江模拟) 如图,一次函数y=kx+1与反比例函数y=的图象相交于A(2,3),B两点.(1)求k、m的值和B点坐标;(2)过点B作BC⊥x轴于C ,连接AC ,将△ABC沿x轴向右平移,对应得到△A'B'C',当反比例函数图象经过A'C'的中点M时,求△MAC的面积.26. (10分)如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.27. (15分)(2020·青羊模拟) 抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD ,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+ CF的值最大时,求点E的坐标.28. (15分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造平行四边形PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)直接写出当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上运动时,四边形ADEC的面积为S.①求证:四边形ADEC为平行四边形.②写出s与t的函数关系式,并求出t的取值范围.(3)是否存在某一时刻,使OC是PC的一半?若存在,求出t的值,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共90分)19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档