常见递推数列通项的九种求解方法

合集下载

数列通项公式的九种求法

数列通项公式的九种求法

1数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强 的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

笔者总结出九种求解 数列通项公式的方法,希望能对大家有帮助。

一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法, 类型的题目.2例1 .等差数列{an}是递增数列,前n 项和为S1,且引,*3,a9成等比数列,S 5^*5.求 数列{a n}的通项公式 解:设数列{an}公差为d(d >0)2•/a1,a 3,a 9 成等比数列,••• a 3 =a1a9 ,2 2即 @1 +2d)=印@1 +8d),得 d =a 1d...d H0 a1=d--S s = a](n -1)n ,1a3 -a2 = ---这种方法适应于已知数列5a 1 +5*4d =⑻ +4d)2a1=3 —5 =3 -5 由①②得:3 •••an —5点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再 写出通项。

二、累加法求形如a n -a n 」= f(n) (f(n)为等差或等比数列或其它可求和的数列)的数列通项, …n — 1得到n — 1个式子累加求得通项。

+ (n-1)3 =-n 5可用累加法,即令 n=2, 3,例2.已知数列{a n }中, an _an4解:由已知得a 1=1,对任意自然数 1an = an4 中n 都有n(n+1),求 an .—n(n+1),an ~ an-2 1a 2y,13^4 ,丄+ an_ q _ 2x3+■(n-2)(n —1) (n —1)n n(n+1)31…a=2 n +1 ,点评:累加法是反复利用递推关系得到n —=丄n(n+1) nn +1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n—1项的和,要注意求和的技巧.三、迭代法求形如a n* =q a n +d(其中q,d为常数)的数列通项,可反复利用递推关系迭代求出。

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:1()n n a a f n +=+(()f n 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

4、已知}{n a 中,nn n a a a 2,311+==+,求n a 。

5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

9类常见递推数列求通项公式方法

9类常见递推数列求通项公式方法

数列通项九种求解方法类型一:1n n a pa q+=+(1p ≠)思路(构造等比数列法):设()1n n a p a μμ++=+,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列。

例1、已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。

解:(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则113422n n n a -++=⋅=,即123n n a +=-。

3(a a ++-21n a n =+类型三:1()n n a f n a +=⋅ (累乘法) 思路(累乘法):=n a 13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式 例3、已知11a =,111n n n a a n --=+,求n a 。

解:,2≥n 111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a =,即12311n n n n a n n n ---=⋅⋅⋅+-…21243(1)n n ⋅⋅=+,11=a 也符合。

类型四:1()n n a pa f n +=+ (0p ≠且1p ≠)思路(转化法):1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n n a a f n p p p ---=+,我们令nn na b p =,那么问题就可以转化为类型二进行求解了。

例4 、已知12a =,1142n n n a a ++=+,求n a 。

解:142nn n a a -=+,式子两边同时除以4n得111442nn n n n a a --⎛⎫=+ ⎪⎝⎭,令4n n n a b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,由累加法得nn b )21(1-= 1441422n n n n n n n a b ⎡⎤⎛⎫∴=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,K K)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n+++-+-=-Λ即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:Θ 2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ=1)1()2()2()1(a f f n f n f ++++-+-Λ.例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n , 证明213-=n n a 例2.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:n a n 12-= 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。

)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。

解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。

2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。

类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。

i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。

例2已知a11,anan1n,求an。

解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。

方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。

类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。

anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。

数列通项公式常见9种求法

数列通项公式常见9种求法

解:令
,得
,则 是函数
的不动点。
因为
,所以

评注:本题解题的关键是通过将 形式,从而可知数列
最后再求出数列 的通项公式。
的换元为 ,使得所给递推关系式转化
为等比数列,进而求出数列
的通项公式,
,求数列 的通项公式。
解:令
,得
的两个不动点。因为
,则
是函数
。所以数列
是以
为首项,以 为公比的等比数列,故



评注:本题解题的关键是先求出函数
的不动点,即方程
的两
个根
,进而可推出
,从而可知数列
为等比数
列,再求出数列
的通项公式,最后求出数列 的通项公式。
例 15 已知数列 满足
,求数列 的通项公式。
并整理,得

,求数列 的通项公式。
,所以 ⑩
。在
式两边取
11
,则
,两边消去
,故
代入 11 式,得 由 得 则 所以数列 比数列,则
, ,
是以
12 及 12 式,
为首项,以 5 为公比的等 ,因此


评注:本题解题的关键是通过对数变换把递推关系式
转化为 ,从而可知数列
是等比数列,进而求出数列 公式,最后再求出数列 的通项公式。
解:设


代入⑥式,得
整理得


,则
,代入⑥式得


及⑦式,

,则

故数列 因此
是以 ,则
为首项,以 3 为公比的等比数列, 。
评注:本题解题的关键是把递推关系式

常见递推数列通项的求法 (很齐全)

常见递推数列通项的求法 (很齐全)

常见递推数列通项的求法类型一:1()n n a a f n +=+思路1(递推法):123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= (1)11()n i a f n -==+∑。

思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑。

例1 已知11a =,1n n a a n -=+,求n a 。

解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ……1[23a =+++…1(1)(2)(1)]2ni n n n n n n =++-+-+==∑。

方法2(叠/累加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、212a a -=,将各式叠加并整理得12nn i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑。

例2、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=. 例3.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a .解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n ,把以上各式相加,得()()()21232113231-=-+-=-+++=n n n n a n【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用2,3,4,,2,1 --n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。

解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。

二、累加法例2 已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例4已知数列满足,求数列的通项公式。

解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。

三、累乘法例5 已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。

例6 已知数列满足,求的通项公式。

解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。

所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。

四、待定系数法例7已知数列满足,求数列的通项公式。

解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

例8 已知数列满足,求数列的通项公式。

解:设⑥将代入⑥式,得整理得。

令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

(完整版)求递推数列的通项公式的九种方法精编版

(完整版)求递推数列的通项公式的九种方法精编版

求递推数列的通项公式的九种方法求递推数列通项公式是数列这一章节的重难点,不仅是高考的热点题型,而且也对培养学生的逻辑思维能力有很大的帮助,同时也可以考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为中学中所研究的等差或等比数列,从而将问题简化。

一.直接用公式(直接构成等差与等比数列)1111(1)5,3,(2)3,2n n n n a a a a a a ++==+==二. 利用,n n n S n a a 和的关系求1. 已知数列的前n 项和 {}21,n n S n a =+求的通项公式2. 已知数列的前n 项和 {}32,n n n S a a =+求的通项公式三迭加法与迭乘法(型或)()(11n g a a n f a a nn n n ==-+-) 1已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式2已知数列}a {n 满足1153n n n a a a +=⋅=,,求数列}a {n 的通项公式。

四 换元法(将一个部分当作整体,可构成等差或等比数列)1已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式na2已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

五、取倒数法(11n n n n pa a a a ++=-)1已知数列{n a }中,其中,11=a ,且当n ≥2时,1211+=--n n n a a a ,求通项公式n a 。

六、取对数法(1r n n a pa +=其中p,r 为常数) 1 若数列{n a }中,1a =3且21n n a a =+(n 是正整数),则它的通项公式是n a =▁▁▁七、平方(开方)法(n a =其中p,r 为常数,等等其它类似的) 1若数列{n a }中,1a =2且213-+=n n a a (n 2≥),求它的通项公式是n a .八、待定系数法待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:1、B Aa a n n +=+1(A 、B 为常数)型,可化为λ++1n a =A (λ+n a )的形式.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.2、B Aa a n n +=+1n C ⋅(A 、B 、C 为常数,下同)型,可化为11++⋅+n n C a λ=n n C a A ⋅+λ()的形式.在数列{n a }中,,342,1111-+⋅+=-=n n n a a a 求通项公式n a 。

数列递推公式的九种方法

数列递推公式的九种方法

数列递推公式的九种方法1.等差数列递推公式:在等差数列中,相邻两项之间存在相同的差。

如果已知等差数列的首项为a1,公差为d,可以求得递推公式为an = a1 + (n-1)d,其中n为第n项。

2.等比数列递推公式:在等比数列中,相邻两项之间的比值相同。

如果已知等比数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。

3. 几何数列递推公式:几何数列是一种特殊的等比数列,其公比是常数项。

如果已知几何数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。

4. 斐波那契数列递推公式:斐波那契数列是一种特殊的数列,每一项都是前两项的和。

斐波那契数列的递推公式为an = an-1 + an-2,其中n为第n项,a1和a2为前两项。

5. 回型数列递推公式:回型数列是一种特殊的数列,它的每一项都是由周围的四个数字决定的。

回型数列的递推公式为an = an-1 + 8 * (n-1),其中n为第n项,a1为第一项。

6. 斯特恩-布洛特数列递推公式:斯特恩-布洛特数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的约数个数决定的。

斯特恩-布洛特数列的递推公式为an = 2 * an-1 - an-2,其中n为第n项,a1和a2为前两项。

7. 阶乘数列递推公式:阶乘数列是一种特殊的数列,它的每一项都是前一项的阶乘。

阶乘数列的递推公式为an = n * (n-1) * ... * 3 * 2 * 1,其中n为第n项,a1为第一项。

8. 斯特林数列递推公式:斯特林数列是一种特殊的数列,它的每一项都是由前一项和当前项之积的和决定的。

斯特林数列的递推公式为an = an-1 * n + 1,其中n为第n项,a1为第一项。

9. 卡特兰数列递推公式:卡特兰数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的乘积决定的。

卡特兰数列的递推公式为an = (4*n - 2) / (n + 1) * an-1,其中n为第n项,a1为第一项。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法数列通项公式是指能够直接给出数列中任意一项的公式。

找到数列通项公式可以帮助我们快速计算数列中的任意项,同时也能更好地理解数列的性质和规律。

在数学中,有多种方法可以求解数列通项公式,下面我们将介绍其中的9种常见方法。

1.递推关系法递推关系法是求解数列通项公式最常见的方法之一、当我们可以找到数列中每一项与前几项之间的关系时,可以利用递推关系求出通项公式。

例如,斐波那契数列中每一项都等于前两项的和,可以用递推关系f(n)=f(n-1)+f(n-2)来求解。

2.等差数列通项公式等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3.等比数列通项公式等比数列是指数列中每一项与前一项的比都相等的数列。

等比数列通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r 表示公比。

4.幂数列通项公式幂数列是指数列中每一项都是一个幂函数的形式。

幂数列通项公式为an = ar^(n-1),其中an表示第n项,a表示一些常数,r表示递增的比值。

5.组合数列通项公式组合数列是指数列中每一项都是由组合数形成的数列。

组合数列通项公式可以通过求解组合数来获得。

6.一元多项式数列通项公式一元多项式数列是指数列中的每一项都是由一元多项式形成的数列。

可以利用多项式的相关性质和求解方法获得数列通项公式。

7.递推与线性常系数齐次差分方程法递推与线性常系数齐次差分方程法是利用递推关系和差分方程的性质求解数列通项公式的方法。

8.高阶递推关系法当数列中每一项与前面多个项之间有复杂的关系时,可以利用高阶递推关系进行求解。

9.查找数列在数学常数表中的表达式有些数列的通项公式可以在数学常数表中找到,例如斐波那契数列中的通项公式可以在黄金分割数相关的公式中找到。

以上是数列通项公式的9种常见求法,每种方法都可以根据不同的数列规律和特点进行选择和运用。

数列通项公式的十种求法

数列通项公式的十种求法

数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。

例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。

方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。

方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。

例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。

方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。

首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。

方法五:求和法有些数列的通项公式可以通过求和公式得到。

例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。

方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。

线性递推法是通过设定通项公式的形式,然后求解出相应的系数。

例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。

方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。

例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。

方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。

方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。

例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。

由数列递推公式求通项公式的常用方法

由数列递推公式求通项公式的常用方法

21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。

初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。

一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。

二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。

习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。

设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。

能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。

学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。

比如,初中“网络课件构件设计”导学案设计。

①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。

②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。

元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。

元数据设计时可参照SCORM。

定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。

)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法
递推数列是一种数学数列,其中每一项都是由前一项推算出来的。


项公式则是通过已知的数列项之间的关系,找出数列的整体规律,从而可
以直接计算任意一项的值。

下面将介绍11种方法来推导递推数列的通项公式。

1.递归定义法
递归定义法是通过规定数列的首项以及前面项与后面项之间的关系,
来表达出数列的通项公式。

2.直接求和法
直接求和法是通过将数列的前n项求和,并将结果化简得出通项公式。

3.递推关系法
递推关系法是通过规定数列前两项之间的关系,并将该关系推广到前
n项之间的关系,从而求出通项公式。

4.变量代换法
变量代换法是通过引入新的变量,将原数列表示成一个新的数列,从
而得到新数列的通项公式。

5.假设公式法
假设公式法是通过猜测数列的通项公式,并验证猜测的公式是否符合
已知项的规律。

6.拆项法
拆项法是通过拆解数列的项,将数列表示成两个或多个部分,再求和得出通项公式。

7.枚举法
枚举法是通过穷举数列的前几项,找出数列项之间的规律,推算出通项公式。

8.差分法
差分法是通过计算数列项之间的差值,找出数列项之间的规律,从而得到通项公式。

9.生成函数法
生成函数法是通过将数列视为多项式的系数,构造一个生成函数,再通过求导、积分等运算得到通项公式。

10.求和公式法
求和公式法是通过利用已知的数列求和公式,计算数列的前n项和,并化简得出通项公式。

11.对称性法
对称性法是通过观察数列的对称性,推断出数列的通项公式。

由递推公式求通项的9种方法经典总结

由递推公式求通项的9种方法经典总结

精析由递推公式求通项的9种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n=f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1).[例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t=b n +1换元即可转化为等比数列来解决.[例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1qn +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可以在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ·⎝ ⎛⎭⎪⎫q p n ,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用叠加法(逐差相加法)求解.[例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n .于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…,b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32, 所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2,即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧ 2A =2,2B -3A =-1, 解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*)式,得a n =2·3n -n -1.6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2n , 即lg a n =lg a 1-2n ,所以a n =a 1-2n .7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n, ∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23,∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n3n +2. 8.)(1n f a a n n =++型由原递推关系改写成),()1(2n f n f a a n n -+=-+然后再按奇偶分类讨论即可例8.已知数列{}n a 中,,11=a .21n a a n n =++求n a解析:.21n a a n n =++2212+=+++n a a n n ,故22=-+n n a a即数列{}n a 是奇数项和偶数项都是公差为2的等差数列,⎩⎨⎧∈≥-=∴*,1,1,N n n n n n n a n 且,为偶数为奇数 9.)(1n f a a n n =⋅+型将原递推关系改写成)1(12+=+⋅+n f a a n n ,两式作商可得,)()1(2n f n f a a n n +=+然后分奇数、偶数讨论即可例9.已知数列{}n a 中,,2,311n n n a a a =⋅=+求{}n a 解析:⎪⎩⎪⎨⎧∈≥⋅⋅=+-N n n n n a n n n ,1,231,23221,为偶数为奇数。

数列求通项公式的9种方法

数列求通项公式的9种方法

例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。

2 ,为偶数时
变式训练15
n2

a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an

(m pq 0) 的数列直接取倒数
pan q

例 8 已知数列 {an } 满足 a1 1 , an1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:1()n n a a f n +=+(()f n 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

4、已知}{n a 中,nn n a a a 2,311+==+,求n a 。

5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式.11、设平面内有n 条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n 条直线交点的个数,则(4)f = ; 当4n >时,()f n = (用n 表示).答案:1. (12n n n a +=) 2. (31)2n n n a += 3.21n a n =+ 4. 21n n a =+ 5. 13122n n a -⎛⎫=- ⎪⎝⎭6. 312n n a -=7. 1123n n a +=-8. 31n n a n =+-9. 312n a n =- 10.(1)2 (2) 22n a n n =-+11.(1)5 (2) 222n n -+类型二:1()n n a f n a +=⋅ (()f n 可以求积)−−−−→解决方法累积法例1、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。

解析:1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅ 123211143n n n n n n --=⋅⋅⋅⋅+-21n =+ 又1a 也满足上式;21n a n ∴=+ *()n N ∈评注:一般情况下,累积法里的第一步都是一样的。

【类型二专项练习题】1、 已知11a =,111n n n a a n --=+(2n ≥),求n a 。

2、已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

3、已知}{n a 中,12n n na a n +=+,且12a =,求数列}{n a 的通项公式.4、已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。

5、已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 6、已知数列{}n a 满足11,a =12nn n a a +=,求通项公式n a ?7、已知数列}a {n 满足3a a 5)1n (2a 1n n 1n =⋅+=+,,求数列}a {n 的通项公式。

8、已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项9、设{a n }是首项为1的正项数列, 且(n + 1)a 21+n - na 2n +a n +1·a n = 0 (n = 1, 2, 3, …),求它的通项公式.10、数列}{n a 的前n 项和为n S ,且11=a ,n S =*)(2N n a n n ∈,求数列}{n a 的通项公式.答案:1. 22n a n n =+ 2. 23n a n = 3. ()41n a n n =⋅+ 4. 631n a n =- 5. n a n = 6. 222n nn a -=7. 2123!25n nn n a n --=⨯⨯⨯ 8. 1!2n a n ⎧⎪=⎨⎪⎩ 12n n =≥ 9. 1n a n =10. 22n a n n =+类型三:1(n na Aa B +=+≠其中A,B 为常数A 0,1)−−−−→解决方法待定常数法 可将其转化为1()n n a t A a t ++=+,其中1B t A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。

例1 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。

解析:设()13n n a t a t -+=+,则132n n a a t -=+1t ∴=,于是()1131n n a a -+=+{}1n a ∴+是以112a +=为首项,以3为公比的等比数列。

1231n n a -∴=⋅-【类型三专项练习题】1、 在数列{}n a 中, 11a =,123n n a a +=+,求数列{}n a 的通项公式。

2、若数列的递推公式为*111,22()n n a a a n N +==-∈,则求这个数列的通项公式3、已知数列{a n }中,a 1=1,a n =21a 1-n + 1(2)n ≥求通项a n . 4、在数列{}n a (不是常数数列)中,1122n n a a +=+且113a =,求数列{}n a 的通项公式.5、在数列{a n }中,,13,111-⋅==+n n a a a 求n a .6、已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式.7、设二次方程n a x 2- 1.+n a x+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3. (1)试用n a 表示a 1n +; (2)求证:数列23n a ⎧⎫-⎨⎬⎩⎭是等比数列; (3)当176a =时,求数列{}n a 的通项公式8、在数列{}n a 中,n S 为其前n 项和,若132a =,22a =,并且113210(2)n n n S S S n +--++=≥,试判断{}1()n a n *-∈N 是不是等比数列?答案:1. 32nn a =- 2. 122n n a -=- 3. 122nn a -=- 4. 111423nn a -=-⋅ 5. 1132n n a -+=6. 21nn a =- 7.(1) 11123n n a a +=+ (3) 2132nn a ⎛⎫=+ ⎪⎝⎭8.是类型四:()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组A BCαββα⋅-=⎧⎨-⋅=⎩,解出,;αβ还原到(*)式,则数列{}1n n a a α++是以21a a α+为首项, Aβ为公比的等比数列,然后再结合其它方法,就可以求出n a 。

例1 在数列{}n a 中, 12a =,24a =,且1132n n n a a a +-=-()2n ≥求数列{}n a 的通项公式。

解析:令11(),(2)n n n n a a a a n αβα+-+=+≥得方程组32βααβ-=⎧⎨⋅=-⎩解得1,2;αβ=-=()()1122n n n n a a a a n +-∴-=-≥则数列{}1n n a a +-是以21a a -为首项,以2为公比的等比数列11222n n n n a a -+∴-=⨯=21232343112222n n n a a a a a a a a ---=⎧⎪-=⎪⎪∴-=⎨⎪⎪-=⎪⎩ 112(12)2212n n n a a --∴-==--()*2n n a n N ∴=∈ 评注:在()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0中,若A+B+C=0,则一定可以构造{}1n n a a +-为等比数列。

例2 已知12a =、23a =,116n n n a a a +-=-(2)n ≥,求n a解析:令()()112n n n n a a a a n αβα+-+=+≥,整理得()11n n n a a a βααβ+-=-+16βααβ-=-⎧∴⎨=⎩3,2αβ∴== ()1112133292n n n n a a a a --++=+⋅=⋅;两边同除以12n +得,11392224n n n n a a +++=, 令2n n na b =,13924n n b b +∴+=令()132n n b t b t ++=-+,得13522n n b b t ++=- 59,24t ∴-= ∴910t =-193910210n n b b +⎛⎫∴-=-- ⎪⎝⎭,故910n b ⎧⎫-⎨⎬⎩⎭是以119911021010a b -=-=为首项,32-为公比的等比数列。

∴ 191310102n n b -⎛⎫-=- ⎪⎝⎭,191310102n n b -⎛⎫=+- ⎪⎝⎭即1913101022n n na -⎛⎫=+- ⎪⎝⎭,得()19123105n n n a -=⋅+- 【类型四专项练习题】1、已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

相关文档
最新文档