第4章 恒定电场和恒定磁场
恒定磁场
三、恒定磁场电流或运动电荷在空间产生磁场。
不随时间变化的磁场称恒定磁场。
它是恒定电流周围空间中存在的一种特殊形态的物质。
磁场的基本特征是对置于其中的电流有力的作用。
永久磁铁的磁场也是恒定磁场。
1、磁通密度与毕奥-萨伐尔定律磁通密度是表示磁场的基本物理量之一,又称磁感应强度,符号为B。
电流元受到的安培力 B l d I f d⨯''=毕奥——萨伐尔定律 ⎰⨯=l r r l Id B 2004 πμ对于粗导线,可将导线划分为许多体积元dV 。
⎰⎰⎰⨯=Vrr dV J B 24 πμ 2、磁通连续性定理磁场可以用磁力线描述。
若认为磁场是由电流产生的,按照毕奥-萨伐尔定律,磁力线都是闭合曲线。
磁场中的高斯定理 0d =⋅⎰⎰SS B式中,S 为任一闭合面,即穿出任一闭合面的磁通代数和为零。
应用高斯散度定理⎰⎰⎰⎰⎰⋅∇=⋅VSdV B S B d0=⎰⎰⎰⋅∇VdV B由于V 是任意的,故 0=B⋅∇式中⋅∇为散度算符。
这是磁场的基本性质之一,称为无散性。
磁场是无源场。
3、磁场中的媒质磁场对其中的磁媒质产生磁化作用,即在磁场的作用下磁媒质中出现分子电流。
总的磁场由自由电流与分子电流共同产生。
永磁铁本身有自发的磁化,因而不需要外界自由电流也能产生磁场。
磁媒质的磁化程度用磁化强度M来表征,它是单位体积内的磁偶极矩。
磁偶极矩:环形电流所围面积与该电流的乘机为磁偶极矩,其方向与电流环绕方向符合右螺旋关系。
n IS P m =磁场强度 M B H-=0μ 或 )(0M H B +=μ本构方程 由m H M χ=可得 H B μ=,该式称为磁媒质的成分方程或本构方程。
磁媒质的分类:r m μμχμμ00)1(=+=,顺磁质 1>r μ,抗磁质 1<r μ,铁磁质1>>r μ。
4、安培环路定律磁场强度H沿闭合回路的积分,等于穿过该回路所限定的面上的自由电流。
回路的方向与电流的正向按右螺旋规则选定。
恒定电流的电场和磁场课件
目录
• 恒定电流的基本概念 • 电场与电场力 • 磁场与磁场力 • 恒定电流的磁场效应 • 恒定电流的应用 • 实验与实践
01
恒定电流的基本概念
电流的定义与性质
电流
电荷在导体中定向移动形成电流 ,单位时间内通过导体横截面的 电荷量称为电流强度,简称电流 。
电流的性质
电荷的定向移动形成电流,其方 向由正电荷定向移动的方向决定 ,而与导体内自由电荷的运动方 向无关。
电场力是电荷在电场中受到的力,其大小与电荷的电量成正比,与电场强度成正比 。
电场强度是描述电场强弱和方向的物理量,等于单位正电荷在电场中受到的力。
电场强度具有方向性,规定正电荷受力方向为电场强度的方向。
电势与电场能量
电势是描述电场能的物理量,等于单 位正电荷在电场中具有的电势能。
电场能量是电场中储存的能量,与电 势能密切相关。
电阻
导体对电流的阻碍作用,由导体的材 料、长度、横截面积和温度等因素决 定。
02
电场与电场力
电场的概念与性质
电场是由电荷产生的 ,对放入其中的电荷 有力的作用。
电场的性质包括对放 入其中的电荷有力的 作用、静电感应现象 等。
电场具有物质性,是 传递电荷间相互作用 的一种特殊物质形态 。
电场力与电场强度
详细描述
电磁感应现象是当导体在磁场中发生相对运动时,会在导体中产生电动势或电流的现象。这个现象由英国物理学 家迈克尔·法拉第于19世纪30年代发现,是电磁化的电场和磁场相互激发,形成电磁波并传播出去。
详细描述
电磁波是由变化的电场和磁场相互激发而形成的。当电场或磁场发生变化时,就会产生电磁波,并传 播出去。电磁波的传播速度等于光速,在真空中传播不受影响,但在介质中传播速度会减慢。
第4章 恒定电场和恒定磁场
故两种介质中的电流密度和电场强度分别为
J e
E1 e
[ 2 ln(b a) 1 ln(c b)]
2U 0 [ 2 ln(b a) 1 ln(c b)]
(a c)
( a b)
E2 e
1U 0 [ 2 ln(b a) 1 ln(c b)]
1 2 , 1
D1n D2 n
1 n 2 2 n
E1t E2 t
1 2 , 1
J1n J 2 n
1 n 2 2 n
电磁场
第4章 恒定电场和恒的场量之间有一一对应 的关系; 静电场 对应物理量 恒定电场
2 1U 0
c[ 2 ln(b a) 1 ln(c b)]
2 2
b
两种介质分界面上的电荷面密度为
S 12
(1e E1 2 e E2 ) (1 2 2 1 )U 0
1 1
b[ 2 ln(b a ) 1 ln(c b)]
a b
(1)设同轴电缆中单位长度的径向电流为I ,则由
J e I 2π (a c)
J dS I ,
S
介质中的电场
E1
J
1
e
I 2π 1 I 2π 2
( a b) (b c)
E2
J
2
E
D
E
J
q
I
C
G
2. 两种场的电位函数定义相同, 都满足拉普拉斯方程,若处于相 同的边界条件下,根据唯一性定理, 电位函数必有相同的解. 所以两种场的等位面及电场强度分布相同,J和D矢量线的分布 也相同; 恒定电场与静电场是可比拟的
电磁场4恒定磁场
S
L
S
磁化电流体密度:
Jm M
磁化电流面密度:
JS
M
en
结论:
➢有磁介质存在时,场中任一点的 B 是自由电流和磁化 电流共同作用在真空中产生的磁场;
➢磁化电流具有与传导电流相同的磁效应。
磁偶极子与电偶极子对比
模型
电量
产生的电场与磁场
电 偶
v p P
1 4π0
pv
1 R
pv evR 4π0R2
➢电流与电流之间 存在相互作用
➢磁场对运动电荷的作用 运动电荷既能产生磁效应也 受到磁力的作用
表明: ➢电流与电流之间,磁铁与电流之间都存在力的作用 ➢磁铁和电流周围存在磁场 ➢磁力是通过磁场来传递的
运动电荷
磁场
运动电荷
存在于电流或永久磁铁周围空间且能 对运动电荷和电流施加作用力的物质
(1) 安培定律
dF
Idl
0
4
I
dl
eR
l R2
点电荷q1对点电荷q2 的作用力
F
1
4 0
q2q1 R2
eR
电荷之间相互作用 力通过电场传递
F q
1
4 0
V
dV
R2
eR
qE
点电荷 库仑定律 电场强度
电流元I′dl′对电流元
Idl的作用力
F
0 4
Idl
(
I
dl
eR
)
R2
电流之间相互作用 力通过磁场传递
F
Idl
0
l
4
l
I
dl
eR
R2
Idl B
l
电流元 安培定律 磁感应强度
《电磁波与电磁场》4-恒定磁场
外加磁场时,磁场力使带电粒子的运动方向发生变化或产生 新的电流,使磁矩重新排列,宏观的合成磁矩不再为零,这 种现象称为磁化。
媒质磁化 B
B
B'
磁化结果出磁偶现极的子 合成磁矩产生二次磁场BS,这种二次 磁场影响外加磁场Ba,导致磁化状态发生改变,从而又使J’S
Chapter 4 恒定磁场
磁场是由运动电荷或电流产生的;当产生磁场 的电流恒定时,它所产生的磁场不随时间变化, 这种磁场称为恒定磁场。
4.1 磁感应强度 4.3 磁场的基本方程 4.5 电感 4.7 磁路
4.2 安培环路定律 4.4 磁场位函数 4.6 磁场能量
第4章 恒定磁场
1. 磁场是由运动电荷或电流产生的。 2. 运动电荷或载流导线在磁场中要受到磁场的作用力。 3. 检验磁场是否存在的一种方法是改变载流导线在磁
抗磁性。媒质正常情况下,原子中的合成磁矩为零。当外 加磁场时,电子进动产生的附加磁矩方向总是与外加磁场 的方向相反,导致媒质中合成磁场减弱。如银、铜、铋、 锌、铅及汞等属抗磁性媒质。 顺磁性。媒质在正常情况下,原子中的合成磁矩并不为零, 只是由于热运动结果,宏观的合成磁矩为零。在外加磁场的 作用下,磁偶极子的磁矩方向朝着外加磁场方向转动。使合 成磁场增强。如铝、锡、镁、钨、铂及钯等属顺磁性媒质。
但是,无论抗磁性或者顺磁性媒质,其磁化现象均很微弱,因此,可 以认为它们的相对磁导率基本上等于1。铁磁性媒质的磁化现象非常 显著,其磁导率可以达到很高的数值。值得注意的是,近年来研发的 新型高分子磁性材料,其相对磁导率可达到与介电常数同一数量级。
媒质 金 银 铜
电磁场理论练习题
第一章 矢量分析1.1 3ˆ2ˆˆz y x e e eA -+= ,z y e eB ˆ4ˆ+-= ,2ˆ5ˆy x e eC -= 求(1)ˆA e ;(2)矢量A 的方向余弦;(3)B A ⋅;(4)B A ⨯;(5)验证()()()B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅ ;(6)验证()()()B A C C A B C B A ⋅-⋅=⨯⨯。
1.2 如果给定一未知矢量与一已知矢量的标量积和矢量积,则可确定该未知矢量。
设A 为已知矢量,X A B ⋅=和X A B ⨯=已知,求X 。
1.3 求标量场32yz xy u +=在点(2,-1,1)处的梯度以及沿矢量z y x e e el ˆ2ˆ2ˆ-+= 方向上的方向导数。
1.4 计算矢量()()3222224ˆˆˆz y x e xy e x eA z y x ++= 对中心原点的单位立方体表面的面积分,再计算A ⋅∇对此立方体的体积分,以验证散度定理。
1.5 计算矢量z y e x e x eA z y x 22ˆˆˆ-+= 沿(0,0),(2,0),(2,2),(0,2),(0,0)正方形闭合回路的线积分,再计算A ⨯∇对此回路所包围的表面积的积分,以验证斯托克斯定理。
1.6 f 为任意一个标量函数,求f ∇⨯∇。
1.7 A 为任意一个矢量函数,求()A ⨯∇⋅∇。
1.8 证明:A f A f A f ⋅∇+∇=∇)(。
1.9 证明:A f A f A f ⨯∇+⨯∇=⨯∇)()()(。
1.10 证明:)()()(B A A B B A ⨯∇⋅-⨯∇⋅=⨯⋅∇。
1.11 证明:A A A 2)(∇-⋅∇∇=⨯∇⨯∇。
1.12 ϕρϕρϕρρsin cos ˆ),,(32z e ez A += ,试求A ⋅∇,A ⨯∇及A 2∇。
1.13 θθθϕθϕθcos 1ˆsin 1ˆsin ˆ),,(2re r e r e r A r ++= ,试求A ⋅∇,A ⨯∇及A 2∇。
电磁场复习提纲(大连海事大学)
五.均匀平面波对导体平面的垂直入射
①入、反射波都是行波,合成波为纯驻波,振幅与位置有关。
②z=0和z为0.5 整数倍处是合成波电场波节、磁场波腹;z为0.25 奇数倍处是合成波电场波腹、磁场波节。合成波磁场与电场存在90°相差。
2.远区场
远区电场与磁场相位相同、相互垂直,复数波印亭矢量无虚部;
平均波印亭矢量不为零,电流元能量转换成电磁波向四周扩散。
瞬时玻印亭矢量的值始终不小于零,说明电磁能量一直向外辐射,因此远区场又称为辐射场。
电基本振子远区场的电气特性:
非均匀球面波横电磁波
E面:电场矢量所在的平面。
H面:磁场矢量所在的平面。
电场强度矢量指向电位Ф减小的方向,即由正电荷指向负电荷的方向,而电位梯度方向是电位Ф增大的方向。
电场能量密度
静电位能
镜像电荷:两个导板夹角为180°/n (n必须为整数)条件下镜像电荷数为2n−1。
电流元的镜像:电流元视为等量异号电荷构成的电偶极子。电流元电流正方向由负电荷指向正电荷。
两个带等量异号电荷导体的电容:
第4章恒定电场与恒定磁场
一.恒定电场【有源场,无旋场】
恒定电场基本方程
恒定电场边界条件
电流密度法向分量在边界上连续
恒定电场切向分量在边界上连续
电流线与 很大的媒质表面垂直。
电导率均匀,体电荷密度为0。换言之,各向同性线性均匀媒质不存在体电荷(媒质内没有净余电荷)。
通常导电媒质分界面上存在面电荷。除非 。
(2)导电媒质均匀平面波是TEM波, 仍成立。
恒定电场与恒定磁场
A
于是跨步电压为
r d
E dr
I 2 (r d )
U A B
1 1 ) 2 r d r I d 20 0.8 3.9(V ) 1 2 r d 2 10 3 2.2 (
l H dl I
s B ds 0
安培环路定律
磁通连续性原理
7
§4.2 恒定磁场的基本方程和边界条件
二、恒定磁场的边界条件
两种不同媒质的分界面上恒定磁场的边界条件为: n (4.2 6) ˆ ( H1 H 2 ) J s ( B1 B2 ) 0 (4.2 7) 在不同媒质的分界面上,磁通密度的法向分量永远是连续的,而磁场强 度的切向分量仅当分界面上不存在面电流时才是连续的。 在分界面上不存在面电流时,恒定磁场的边界条件化为: H1t H 2t (4.2 8) B1n B2 n (4.2 7) 若媒质的磁导率,→∞称为理想导磁体。 某些边界可近似为理想导磁体边界,称为磁壁, 该壁上切向磁场为0;
E
的关系是欧姆定律的微分形式 J E
l s
E dl 0, J ds 0,
引入电位函数 E
得到无源区电位函数方程(拉普拉斯方程)
2 0
1
§4.1 恒定电场
二、恒定电场的边界条件
在具有不同电导率1和2的两种导体的分界面上
E1t E2t , J1n J 2n
§4.1 恒定电场
Steady Electric Field
一、恒定电场基本方程
恒定电场是电磁场的特例, 满足条件
F 0 t
电磁场理论课件 恒定磁场.ppt
18
4.磁场的有旋性
磁场的环路积分不恒为
零,说明磁场图形与静电场 不同。它的分布具有旋涡性, 是非位场
例如载流长直导线,其 图4-11 磁场的有旋性示意
周围的磁场,就是以电流为 轴心的旋涡线。
5.应用 利用真空中
B
的环路
定理,可以求解一些简单
磁场的计算问题。
图4-12 长直载流导线的磁场
19
例4-4 空气中无限长直圆柱导体载有电流I,其半径为
§4-8 磁场的矢量磁位及泊松方程
§4-9 磁场的镜象法
§4-10 自感及其计算
§4-11 互感及其计算
§4-12 载电流回路系统的磁场能量及其分布
§4-13 磁场力的计算
2
§4-1 磁感应强度与毕奥—萨瓦定律
磁感应强度 B
1.磁场——存在于载流回路或永久磁铁周围空间的
能对2.运磁动感电应荷强施度力B的—客—观运存动在的。单位正点电荷在场中
2 0.07
0.05
2
0.12106(Wb)
16
§4-3 真空中的安培环路定理
1.分析
设真空媒质中,有一无限长载电
流I的直导线,在与导线垂直的平面
上,作任意积分路径l,根据毕-萨
定律,l上任一点的磁感应强度
图4-10 安培环路定
B
0 I 2 R
e
.
B dl
0 2
I R
a=12cm,b=7cm,d=5cm,I=10A,求出数值结果。
解
长直导线外任一点的磁感应强度
B
0I 2r
e
与其距离为r的各点上 B 的方
向相同。窄长条上穿进的磁通
《电磁场与电磁波》复习纲要(含答案)
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
第4章 恒定电场与恒定磁场讲解
不同点: 源不同。静电场的源为静止电荷,恒定电场的源为 运动电荷
存在区域不同。静电场只能存在于导体外,恒定电 场可以存在于非理想导体内
4
l E dl 0
l E dl 0
S J dS 0
E 0
S D dS 0
E 0
J 0
D 0
J E
21
2 2
I
21 2U0
2 ln(b / a) 1 ln(c / b)
J
1 2U0
(a r c)
[ 2 ln(b / a) 1 ln(c / b)]r
E1
J
1
[ 2
ln(b /
2U0 a) 1
ln(c / b)]r
er
(a r b)
DE
2 0
2 0
E1t E2t
J1n J2n
1 2
2
2
n
1
1
n
E1t E2t
D1n D2n
1 2
2
2
n
1
1
n
5
C q
U
D dS E dS
S 2
S 2
E dl
E dl
1
,设同轴线内外导体电压为U。
求:(1)导体间的 E ,J , ;
(2)分界面上自由电荷分布。
解:这是一个恒定电场边值问题。不能直接应用 高斯定理求解。
由边界条件,边界两边电流连续。
设单位长度内从内导体流向外导体电流为I。 E J
则:
J
I S
er
I
2 r er
恒定磁场分析
7
求证:
证 明:
∫
ur r B ds = 0
Q
ur µ B= 0 4π
∫
r ur Id l × R R3
r r u r r µ0 Idl × eR r ∴ ∫ B ds = ∫ ∫ c R2 d s s 4π
又Q
uv ur uv uv ur uv A× B C = A B×C
23
2、磁偶极子的标量位(解释P116) 磁偶极子的标量位(解释 ) 在无源区域( 在无源区域(只有无源 ∇ × H = J=0 uu r 区域才定义标量位): 区域才定义标量位): ∇×H =0 uu r H = −∇ ϕ m 由下面式子
P ( r ,θ , 0 )
µ0 µ0 1 A = p m × e r = − p m × ∇ 2 4πr 4π r B、幂级数近似) 与求电偶极子类似的方法(余弦定理、幂级数近似)可以得到 磁偶极子的矢量位和标量位: 磁偶极子的矢量位和标量位:
µ0 µ0 1 A= p m × er = − p m × ∇ 2 4πr 4π r
的距离,是标量。 其中 r 为场点 P 到磁偶极子中心 O 的距离,是标量。
这表明恒定磁场是无散有旋场, 这表明恒定磁场是无散有旋场, 无散有旋场 传导电流是其旋涡源。 传导电流是其旋涡源。
13
5-2、内、外半径分别为 a、b 的无限长空心圆柱中,均匀 - 、 、 的无限长空心圆柱中, 分布着轴向电流 求柱内、外的磁场强度。 I ,求柱内、外的磁场强度。
解:使用圆柱坐标系。电流密度沿轴线方向为 使用圆柱坐标系。
12
3、真空(介质)中磁场的基本方程: 真空(介质)中磁场的基本方程:
∫sB • d s = 0 , ∇•B =0 , ∇×H = J ∫c H • d l = I B = µ0H B = µH
《电磁场理论》第四章 恒定电场1
u r r u r J (r ) d S
S
(4.4)
上述电流密度 J 用来描述电流在某体积内流动的情况,所以称为体电流密度。 如果电流仅仅分布在导体表面的一个薄层内,如图4.1.2所示,则称为面电流。任意 一点面电流密度的方向是该点正电荷运动的方向,大小等于通过垂直与电流方向的单位
u r
1
1 n 2
2
n
(4.21) (4.22)
u r
1 2
若界面为电介质和导体的交界面,因介质中各点 J = 0 ,由 J n 的连续性,则在导体一 侧,有
Jn 0
(4.23) (4.24)
n
0
120
设分界面两侧的电场线与法线 n 的夹角分别为 1 , 2 , 如图4.4.1, 由 (4.19) 和 (4.20) 可得
i ( t ) lim q t dq dt
(4.1)
t 0
电流的单位为 A (安培) 。若电荷流动的速度不随时间改变,则有
t 0
lim
q t
dq dt
I (恒 定 值 )
(4.2)
这种情况下的电流称为恒定电流。 电流在穿过任一截面时,在该截面上有确定的分布和方向,电流强度并不能描述电 流在电流场中的分布情况,而电流产生的场 与电流的分布有关。从场的观点来看,电流 是一个通量,它并没有说明电流在导体内某 一点的分布情况,为了研究导体内不同点的 电荷运动情况,需引入电流密度的概念。 如图4.1.4所示,在垂直于电荷流动的方 向取一个面积元 S ,若流过 S 的电流为
J 0
(4.11)
这表明从任意封闭面穿出的恒定电流为 0,或者说恒定电流场是一个无散场。
工程电磁场--第4章--恒定磁场的基本原理
0 4a
4a
2 时,
整个圆形线电流在圆心产生的磁感应强度
B 2 0 Iez 0 Iez
4a
2a
28
注意:
θ1为A到电流后端, θ2为A到电流前端29
30
4.2 矢量磁位与磁通连续性定理
1.矢量磁位
由体电流(典型情况)产生磁场的磁感应强度
B 0
4
V
J
R
eR
2
dV
0 4
V
J
1 R
16
载流线圈是一种线电流,
所产生磁场的磁感应强度为
B 0
4
l
Idl eR R2
式中: l 为线电流的源区。
17
由面电流产生的磁感应强度为
B
0 4
S
K
e R2
R
dS
式中: S 为面电流的源区。
由体电流产生的磁感应强度为
B 0
4
V
J
R
e
2
R
dV
式中:V 为体电流的源区。
18
5.洛仑兹力
0 4
I1dl1
I2dl2 e21 R221
对比库仑定律,两电荷元之间作用力:
dF12
1 40
dq1
dq2e12 R122
9
电磁场与电磁波第四章
∇2ϕ
−
με
∂2ϕ ∂t 2
=
−
1 ε
ρ
矢量位和标量位满足(分离出的两个独立)的方程, 称为达朗贝尔方程
间接方法:A. 求解两个达朗贝尔方程 B. 达朗贝尔方程 + 洛仑兹条件
9
4.3 电磁能量守恒定律
讨论电磁场的能量问题,引入坡印廷矢量, 得到反映电磁能量守恒关系的坡印廷定理。
一、电磁场能量密度和能流密度
=
d dt
V
(1 2
μ
|
v H0
|2
+
1 2
ε
|
v E0
|2 )dV
+
σ
V
|
v E0
|2
dV
20
根据
v E0
或
v H0
满足的边界条件,左端被积函数
v (E0
×
v H
0
)
⋅
evn
|S
=
(evn
×
v E0
)
⋅
v H
0
|S
=
v (H
0
×
evn
)
⋅
v E0
|S
=
0
即
∫ ∫ d
dt
V
(1 2
μ
|
v H0
|2
+
∂2Ez ∂y 2
+
∂2Ez ∂z 2
− με
∂2Ez ∂t 2
=0
解波动方程,可求出空间中电磁场场量的分布。
(直接求解波动方程的过程很复杂)
4
4.2 电磁场的位函数
一、矢量位和标量位
∇ ⋅ Bv = 0
第四章作业解答
ρS
J1n = J 2 n
σ 1 E1n = σ 2 E2 n
ε1 ε 2 ε1 ε2 ρ S = D1n − D2 n = ε 1 E1n − ε 2 E2 n = J1n − J 2 n = − J n σ σ σ1 σ2 2 1
特殊情况
ε1 ε 2 − =0 σ1 σ 2
v ∇× E = 0 v ∇⋅D = 0 v v D = εE
v ∇× E = 0 r ∇• J = 0 r r J = σE
E1t = E2t
D1n = D2 n
E1t = E2t
J1n = J 2 n
ε ⇔σ
of Information
r r E⇔E
r r D⇔J
Nanjing University
推广
r r J = σE
Nanjing
University
of
Information
Science
&
Technology
第四章 恒定电场与恒定磁场 电导率为无限大的导体称为理想导电体。由上式可见, 电导率为无限大的导体称为理想导电体。由上式可见,在理想 理想导电体 导电体中是不可能存在恒定电场的,否则,将会产生无限大的电流, 导电体中是不可能存在恒定电场的,否则,将会产生无限大的电流, 从而产生无限大的能量。但是,任何能量总是有限的。 从而产生无限大的能量。但是,任何能量总是有限的。 电导率为零的媒质,不具有导电能力,这种媒质称为理想介质。 电导率为零的媒质,不具有导电能力,这种媒质称为理想介质。 理想介质 媒 质 电导率(S/m) 电导率 媒 质 电导率(S/m) 电导率 4
第四章 恒定电场与恒定磁场
第四章 恒定电场与恒定磁场
《凝聚态物理》第四章_能带理论-II
第四章 能带论-2
一、模型的描述:波包
按量子力学,电子用波来描述。经典粒子性要求确定的 轨道、动量。如何把电子的粒子性与波动性联系和统一 起来呢?
量子——经典类比,用到“波包”的概念
▪ 波包:是分布在空间有限区域的波列,频率也有
一定的分布范围。 粒子空间分布在 r 附近 △r 范围内,动量取值
NC
C
gC
e d C KBT
PV
g V
V
e d V KBT
C
V
T的缓 变函数
E
CB
VB
f (E)
第四章 能带论-2
4、半导体的统计理论
本征半导体:
nC pv
c
v
2
1 2
kBT
ln
Pv Pc
E
CB
C
V
VB
f (E)
4-2 恒定电场、磁场作用下
电子的运动
九、恒定磁场 作用下电子的 准经典运动
例:自由电子,B=(0,0,B)
kz
B
运动轨道为圆-回旋运动
回旋周期:
T d k d k d t
2 k 2 m
kx
evB eB
回旋频率:
c
eB m
k
ky
等能面
等于实空间的 回旋频率
第四章 能带论-2
二、自由电子回旋运动(实空间)
m dv dt ev B
vvxy
eB mvy eB mvx
能带电子?由于晶格的散射,电子不可能被无 限制加速
第四章 能带论-2
二、k-空间运动
▪ 电子的运动保持在同一个能带内,能量周期性 变化,在 K-空间周期性运动。
《电磁场理论》练习题与参考答案(最新版)
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。
2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。
5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
6. 电流连续性方程的微分和积分形式分别为 和 。
7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
1 2
ˆ D1 z ˆ 1E1 1 J s上 n 1
s介质
2 ˆ D2 z ˆ 2 E2 s下 n J 2
1 2 21 ˆ D1 - D2 - z ˆ D1 - D2 z ˆ D2 - D1 n U 2 d1 1d 2
1 2
2 1
U0
2、 2 1、1
c
b
介质2 介质1
a
J I
内导体
外导体
电磁场
第4章 恒定电场和恒定磁场
解 电流由内导体流向外导体,在分界面上只有法向分量,所以 电流密度成轴对称分布。可先假设电流为I,由求出电流密度 的表达式,然后求出 确定出电流 I。 (1)设同轴电缆中单位长度的径向电流为I ,则由 得电流密度 可 和 ,再由
电导存在。 例如, 聚乙烯的电导率为10-10数量级, 则
tg1 1 1010 17 10 tg 2 2 107
1 1010 17 tg1 tg 2 tg 2 10 tg 2 0, 当 2 时 7 2 10 2
定会有微小的漏电流 J 存在。
漏电流与电压之比为漏电导,即
I G U
其倒数称为绝缘电阻,即
1 U R G I
电磁场
第4章 恒定电场和恒定磁场
用静电比拟法求电导
Q C 两导体电极间的电容: U
ds E ds E dl E dl
S1 2 1 S S1 2 1
(通常认为金属的介电常数为ε0)
1 s 0 1 E1n 2
可见, 只要σ1≠σ2, 分界面上必定有一层自由电荷密度。
电磁场
第4章 恒定电场和恒定磁场
推论3: 若媒质1为理想介质, 媒质2为导体,即1=0,则
J1=0,故J2n= 0 且 E2n= 0,
I G 两导体电极间的电导: U
J ds E ds E dl E dl
S1 2 S1 2 1 1
2 S1
E dl 1 1 两导体电极间的电阻: R G E ds
C G
电磁场
第4章 恒定电场和恒定磁场
根据静电比拟法, 只要两电极之间的导电媒质与作为电极的金属材料 相比较为不良导电媒质(如土壤等), 则当两电极之间的电容为已知时,
tan 1 E1t / E1n 1 / J1n 1 tan 2 E2t / E2n 2 / J 2n 2
1
2
E2
2
电磁场
第4章 恒定电场和恒定磁场
导电媒质分界面上的电荷面密度
1 2 1 2 ˆ ( D1 D2 ) n ˆ ( J1 S n J2 ) ( )Jn 1 2 1 2
可得,介质1内表面的电荷面密度为
介质2外表面的电荷面密度为
两种介质分界面上的电荷面密度为
2 2
1 1
J I
电磁场
第4章 恒定电场和恒定磁场
四、 静电比拟法
比拟法:
用一种物理场的解来类比与其有相同数学描述的另一种物理场的解 的方法.
U
D
0
U
J
0
静电场
• 线性各向同性导电媒质的本构关系
J E
电磁场
第4章 恒定电场和恒定磁场
恒定电场和静电场都是有源无旋场,具有相同的性质。 恒定电场与静电场的重要区别:
(1)恒定电场可以存在于导体内部; (2)恒定电场中有电场能量的损耗,要维持导体中
的恒定电流,就必须有外加电源来不断补充被损耗
的电场能量。
电位的边界条件
1 2 1 2 , 1 2 n n
电磁场
第4章 恒定电场和恒定磁场
说明:
恒定电场同时存在于导体内部和外部,在导体表面上的电场
既有法向分量又有切向分量,电场并不垂直于导体表面,因
而导体表面不是等位面;
1、 1
b
a
电磁场
第4章 恒定电场和恒定磁场
第4章 恒定电场和恒定磁场
例1 一个填充有两层导电媒质的平行板电容器,媒质参数分别为 1、1 和 2、2 ,外加电压U。求介质分界面上的自由电荷密度。 解 :极板是理想导体, o 为等位面,电流沿z 方向。 U 1 , 1 d1 由 J1n J 2n J1 J 2 Jz ˆ d2 2 ,2 z J1 J1 J2 J2 ˆ, E2 ˆ E1 z z 1 1 2 2 d1 d 2 d1 d 2 J U ( ) U U1 U 2 E1d1 E2 d 2 ( ) J
D = eE
J 0, E 0 J E
E ,
2 0
E ,
2 0
D1n D2 n 1 2 1 2 , 1 2
n n
E1t E2 t
E1t E2 t
J1n J 2 n
1 2 1 2 , 1 2 n n
是由于σ2有限, 导体中沿电流方向存在电场。
而在静电场中, 导体内电场强度为零, 介质中的场强总是垂直导体表面, 导体是等 位体, 其表面是等位面。这一点, 恒定电场与静电场有根本的区别。然而σ2越大,
E2t和E1t越小, θ1也越小, 直至σ2=∞时, E1就垂直导体表面, 导体表面为等位面。
电磁场
电磁场
第4章 恒定电场和恒定磁场
例3 求同轴电缆的绝缘电阻。设内外的半径分别为a 、b,长
电磁场
第4章 恒定电场和恒定磁场
宏观电磁理论的核心:
麦克斯韦方程组
时变场
0 t
静态场
0 t
静电场
恒定电场
恒定磁场
电磁场
第4章 恒定电场和恒定磁场
电荷在电场作用下
产生
定向运动
形成
电流
电流
恒定电流(直流)
--电流不随时间变化
时变电流
--电流随时间变化
恒定电场
恒Байду номын сангаас磁场
电磁场
第4章 恒定电场和恒定磁场
电磁场
第4章 恒定电场和恒定磁场
二、恒定电场的电位及其方程
若媒质是均匀的,则 J (E ) E 0 • 恒定电场的电位函数
E 0
均匀导电媒质中 没有体分布电荷
E 0
由
E
J 0
( ) 0
Ñ f=0
2
电磁场
一、 恒定电场的基本方程
• 恒定电场:恒定电流所产生的电场。(考虑导电媒质中)
• 恒定电场的基本场矢量是电流密度 J ( r ) 和电场强度 E (r ) ;
• 恒定电场的基本方程: 微分形式:
J 0 E 0
J dS 0 S 积分形式: E dl 0 C
恒定电场
电磁场
第4章 恒定电场和恒定磁场
恒定电场与静电场的比较 静电场( 0 区域 ) D dS 0, E dl 0
S C
恒定电场(电源外)
基本方程 本构关系 位函数 边界条件
J dS 0,
S
C
E dl 0
Ñ × D = 0, Ñ ´ E = 0
tan 1 1 tan 2 2
电流由良导体进入不良导体时,在不良导体里的电流线近似与良导 体表面垂直,即良导体表面可以近似地看作等位面.
电磁场
第4章 恒定电场和恒定磁场
例如:
同轴线的内外导体通常由电导率很高(107数量级)的铜或铝制成, 而
填充在两导体间的材料不可能是理想的绝缘电介质, 总有很小的漏
即导体中的电流和电场与分界面平行。
ˆ n
媒质1 1 0
媒质2
E1
E2
( 2 0)
2
电磁场
第4章 恒定电场和恒定磁场
E1 E12n E12t
ˆ n
媒质1 1 0
媒质2
E1
E2
( 2 0)
2
由上式可知E1不垂直导体表面, 那么导体表面不是等位面, 导体也不是等位体, 这
电磁场
第4章 恒定电场和恒定磁场
例2 填充有两层介质的同轴电缆,内导体半径为a,外导体半径为 c,介质的分界面半径为b。两层介质的介电常数为1 和2 、电导
率为 1 和 2 。设内导体的电压为U0 ,外导体接地。求:(1)
两导体之间的电流密度和电场强度分布;(2)介质分界面上的自 由电荷面密度。
电磁场
第4章 恒定电场和恒定磁场
结论
1. 两个场的相同数学表达式中的场量之间有一一对应的关系; 静电场 对应物理量 恒定电场
E
D
E
J
q I
C
G
2. 两种场的电位函数定义相同, 都满足拉普拉斯方程,若处于相同 的边界条件下,根据唯一性定理, 电位函数必有相同的解. 所以两种场的等位面及电场强度分布相同,J和D矢量线的分布也相 同; 恒定电场与静电场是可比拟的
如两种导电媒质的电导率2 >> 1:
即,一种导电媒质为不良导体(σ1≠0, 但很小), 另一种导电媒质为良导体(σ2很大),且 2≠90° 则1=0,即电场线近似垂直于与良导体表面。 此时,良导体表面可近似地看作为等位面;
媒质1 媒质2
E1
E2 2
( 2 1 )
1 2
推论1
第四章 恒定电场和恒定磁场
基本方程 边界条件 恒定电场与静电场的静电比拟法
----计算电导(电阻)