反激式开关电源原理与工程设计讲解

合集下载

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。

当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。

当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。

2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。

在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。

在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。

3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。

为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。

二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。

2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。

常见的控制方式有定时控制和反馈控制两种。

3.开关管:开关管在反激式开关电源中起到了关键的作用。

常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。

4.变压器:变压器用于将输入电压变换为所需的输出电压。

同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。

5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。

三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。

PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。

2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。

同时,还需要考虑变压器的大小和功耗。

反激式开关电源设计培训教材(第一节)

反激式开关电源设计培训教材(第一节)

5、开关管峰值电流Ip
6、初级绕组匝数Np 天通TP4/TP4A的磁芯Bs为5100GS,FSDM0265R有过温保护,因 此Bw可选0.6Bs,则Bw=3060GS,如IC无过温保护,则要留一定
的裕量,否则,在过载状态时,变压器易饱和,在饱和状态,
易发生故障损坏开关管,Bw要选低一点,选(0.3-0.5)Bs; 气隙Lg选0.025cm
• 参数计算 1、最大允许的反激电压
Vf=650V-373V-32.5V –100V=144.5V 选反激电压Vf为75V,则Mosfet的漏极最高电压为: 373V+100V+75V=548V<617.5V,是比较安全的。
2、原、副边的匝比n 次级选用3A/100V肖特基整流,则1.25A输出电流时的
输入过流保护主要是靠保险管、保险丝绕线电阻的过电流过功 率熔断特性。保险管主要用在高输出功率的电源上,绕线电阻用 在低输出功率的电源上。保险管重要的参数有额定电流、熔断时 间、分断能力,额定电流大、熔断时间长、分断能力低,容易炸 裂管壁,这在安全认证时是不允许的,因此,要尽量选择分断能 力高的保险管;保险丝绕线电阻重要的参数主要是过功率熔断时 间,一般加在电阻两端的电压与电流的乘积为电阻标称功率的25 倍时,要在60S内熔断
•PWM控制芯片(Fairchildsemi的FSDM0265R)
第二章、变压器设计
单端反激开关电源的变压器实质上是一个耦合电感, 它要承担着储能、变压、传递能量等工作。下面对工 作于连续模式和断续模式的单端反激变换器的变压器 设计进行总结。 • 1、已知的参数 根据需求和电路的特点确定,包括:输入电压Vin、输
S012B系列变压器设计步骤
• 已知条件 1、输入电压Vin:90Vac-264Vac 2、输出电压Vout:12V 3、输出电流Iout:1.25A 4、Mosfet耐压Vmos:650V 5、开关频率f:67KHz 6、FSDM0265R最大输出功率:

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

反激式变压器开关电源课件

反激式变压器开关电源课件
反激式变压器开关电源课件
• 反激式变压器开关电源概述 • 反激式变压器开关电源的设计与
优化 • 反激式变压器开关电源的特性与
性能指标
• 反激式变压器开关电源的调试与 测试
• 反激式变压器开关电源的常见问 题与解决方案
01 反激式变压器开关电源概述
定义与工作原理
定义
反激式变压器开关电源是一种通过控制开关管通断来调节输出电压的电源供应 器。
选择低损耗的开关管 和二极管,降低能量 损耗。
根据实际需求,选择 适当的保护电路和辅 助电路元器件。
选择合适的电容和电 感,以满足电源的稳 定性和效率要求。
变压器设计
确定变压器的匝数比和磁芯材料 ,以实现所需的电压和电流转换

考虑变压器的绝缘材料和结构, 确保安全可靠。
根据实际需求,优化变压器的体 积和重量。
1. 磁芯损耗过大
反激式变压器开关电源中的磁芯在工作过程中会产生损耗 ,若损耗过大,会导致效率降低。需要优化磁芯材料和结 构,降低损耗。
3. 散热不良
电源在工作过程中会产生热量,若散热不良,会导致效率 降低。需要加强散热设计,如增大散热面积、优化散热风 道等。
保护功能问题
总结词
保护功能问题表现为电源的保护功能 失效或误动作。
THANKS 感谢观看
可靠性分析
平均无率
失效率越低,电源的可靠性越高。
04 反激式变压器开关电源的调试与测试
调试步骤与注意事项
调试步骤 检查电路连接是否正确,确保所有元件都已正确安装。
接通电源,观察电源是否正常启动。
调试步骤与注意事项
01
调整变压器和开关管的工作参数 ,确保其在正常范围内。
当输入电压低于正常值时,电源可能无法 启动。解决方案是确保输入电压在正常范 围内。

CR6853控制的反激式开关电源设计

CR6853控制的反激式开关电源设计

电力电子技术实操技能训练CR6853控制的反激式开关电源设计系别专业班级学生姓名指导教师王志强提交日期2012年9月20日一、 反激稳压电源的工作原理1、 设计要求:(1) 输入直流电压为90V~220V; (2) 输出直流电压为12V,功率为30W; (3) 开关频率为65KHz。

2、 CR6853控制的反激式开关电源原理分析:图1 CR6853控制的反激式开关电源原理图(1) 输入滤波电路开关电源的输入滤波器的主要作用是抑制电网中的噪声,使电子设备抗干扰能力大大加强,仅使电源工作频率附近的频率成分顺利通过,衰减高次频率成分。

它还能抑制开关电源所产生的共模干扰和差模干扰进入交流电网,避免干扰其他电气电子设备。

开关电源输入滤波器的结构如图2所示:图2 入滤波器的结构输入滤波器主要是由电容和电感组成。

(2) 整流滤波电路一般情况下的交流电压输入的电源,其整流器大多为桥式整流电路,每半个周期里,有两个整流二极管参与导电。

整流滤波电路如图3所示:图3 整流滤波电路(3) RCD吸收电路MOSEFT关断时,当 超过RCD缓冲电路中的电容两端的电压 时,缓冲二极管导通,尖峰电流被RCD电路吸收时,从而削减尖峰电流。

缓冲电容一定要足够大,才能保证在一个开关周期内电容两端的电压没有显著变化。

但吸收电容太大,也会增加缓冲电路的损耗,必须折中。

图4 RCD 吸收电路(4) 电压反馈控制电路反激电源原副边隔离,电压调节需要采样副边输出电压,经过调节后需要控制原边开关管的门极驱动,因此电压反馈控制涉及到采样隔离和PI 调节。

采用TL431 和TLP521 的控制电路如下:图5 TL431控制电路T L431提供参考电压,并与Rf1,Rf2,Rf4,Cf1构成PI 调节器,Rf3用于增加TL431的偏置电流,使其工作在稳压状态。

TLP521用于隔离模拟信号,在一定范围内可以等效为比例环节。

+-V DCV RO+-图6 TL431控制电路(5) 逆变电路反激式变换器是一种电气隔离的升压/降压变换器,也是最简单的隔离型直流变换器。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。

2.整流电路:将输入交流电压转换为直流电压。

3.开关变压器:通过变压器实现电压的升降。

4.开关管:通过快速开关控制电源的输出。

5.输出滤波电路:对输出电压进行滤波,减小纹波。

二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。

2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。

3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。

较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。

4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。

5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。

6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。

7.其他辅助电路设计:如过温保护电路、过流保护电路等。

8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。

9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。

三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。

2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。

3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。

4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。

5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。

通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。

反激式开关电源设计资料要点

反激式开关电源设计资料要点

反激式开关电源设计资料前言反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。

虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。

单端反激式开关稳压电源的基本工作原理如下:D1ET ON T OFFL P L STI PQ1C O R L图1 反激式开关电源原理图当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。

因单端反激式电源只是在原边开关管到同期间存储能量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。

因此又称单端反激式变换器是一种“电感储能式变换器”。

学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。

开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。

除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。

通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章电源参数的计算第一步,确定系统的参数。

我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。

先要确定这些相关因素,才能更好的设计出符合标准的电源。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。

它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。

当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。

2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。

(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。

(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。

(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。

(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。

3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。

(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。

(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。

(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。

(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。

总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。

通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。

超详细反激式开关电源电路图讲解

超详细反激式开关电源电路图讲解

.反激式开关电源电路图解说一,先分类开关电源的拓扑构造依据功率大小的分类以下:10W之内常用RCC(自激振荡)拓扑方式10W-100W之内常用反激式拓扑(75W以上电源有PF值要求)100W-300W正激、双管反激、准谐振300W-500W准谐振、双管正激、半桥等500W-2000W双管正激、半桥、全桥2000W以上全桥二,要点在开关电源市场中,400W以下的电源大概占了市场的70-80%,而此中反激式电源又占大多数,几乎常有的花费类产品全部是反激式电源。

长处:成本低,外头元件少,低耗能,合用于宽电压范围输入,可多组输出.弊端:输出纹波比较大。

(输出加低内阻滤波电容或加LC噪声滤波器能够改良)今日以最常用的反激开关电源的设计流程及元器件的选择方法为例。

给大家解说怎样读懂反激开关电源电路图!三,画框图一般来说,总的来分按变压器初测部分和次侧部分来说明。

开关电源的电路包含以下几个主要构成部分,如图1..图1,反激开关电源框图四,原理图图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详尽的设计,自然,这些设计都是依据必定步骤进行的。

下边会依据这个原理图进行各个部分的设计说明。

图2典型反激开关电源原理图..五,保险管图3保险管先认识一下电源的安规元件—保险管如图3。

作用:安全防备。

在电源出现异样时,为了保护中心器件不遇到破坏。

技术参数:额定电压,额定电流,熔断时间。

分类:快断、慢断、惯例计算公式:此中:Po:输出功率η效率:(设计的评估值)Vinmin:最小的输入电压2:为经验值,在实质应用中,保险管的取值范围是理论值的 1.5~3倍。

:PF值六,NTC和MOVNTC热敏电阻的地点如图4。

图4NTC热敏电阻图4中的RT为NTC,电阻值随温度高升而降低,克制开机时产生的浪涌电压形成的浪涌电流。

..图4中RV为MOV压敏电阻,压敏电阻是一种限压型保护器件,过电压保护、防雷、克制浪涌电流、汲取尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等七,XY电容图5X和Y电容如图X电容,Y电容。

反激开关电源设计思路解析

反激开关电源设计思路解析

反激开关电源设计思路解析一、整体概括下图是一个反激式开关电源的原理图。

输入电压范围在AC100V~144V,输出dc12v的电压。

开关电源的思路:要实现输出的稳定的电压,先获取输出端的电压,然后反馈给输出端调控输出功率(电压低则增大输出功率,反之则减小),最终达到一个动态平衡,稳定电压是一个不断反馈的结果。

二、瞬变滤波电路解析市电接入开关电源之后,首先进入瞬变滤波电路(Transient] 各个器件说明:F1-->保险管:当电流过大时,断开保险管,保护电路。

CNR1-->压敏电阻:抑制市电瞬变中的尖峰。

R31、R32-->普通贴片电阻:给这部分滤波放电,使用多个电阻的原因是分散各个电阻承受的功率。

C1-->X电容:对差模干扰起滤波作用。

T2-->共模电感:衰减共模电流。

R2-->热敏电阻:在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样就可以有效的抑制开机时产生的浪涌电压形成的浪涌电流。

当电路进入稳态工作时,由于线路中持续工作电流引起的NTC发热,使得电阻器的电阻值变得很小,对线路造成的影响可以完全忽略。

三、整流部分各个器件说明:BD1->整流桥:作用应该知道。

L1、EC1、EC2->π型LC滤波电路,主要起的就是滤波,使输出的电流更平滑。

四、开关电源主体部分开关电源的主题部分如下图,由于采用标注的方式更好说明,所以提供标注版PDF下载(末尾有链接)。

五、输出端滤波电路下图是输出端滤波电路,由于采用标注的方式更好说明,所以提供标注版PDF下载(末尾有链接)。

六、总结学习开关电源,所以只对整体部分有个了解,对比较困难的部分--变压器,目前还没有很深刻的理解,其余部分有不懂的地方,可以交流。

反激式开关电源原理与工程设计

反激式开关电源原理与工程设计

反激式开关电源原理与工程设计反激式开关电源原理与工程设计一.反激式开关电源的原理分析二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则五.变压器的设计六.反激式开关电源的稳定性问题反激式开关电源原理与工程设计一.反激式开关电源的原理分析1.反激式开关电源电路拓扑2.为什么是反激式a.变压器的同名端相反b.利用了二极管的单向导电特性3.电感电流的变化为何不是突变电压加在有电感的闭合回路上,流过电感上电流不是突变的,而是线性增加。

愣次定律:a.当电感线圈流过变化的电流时会产生感生电动势,其大小于与线圈中电流的变化率成正比;b.感生电动势总是阻碍原电流的变化4.变压器的主要作用与能量的传递理想变压器与反激式变压器的区别反激式变压器的作用a.电感(储能)作用遵守的是安匝比守恒(而不是电压比守恒)储存的能量为1/2×L×Ip2b.限流的作用c.变压作用初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。

d.变压器的气隙作用扩展磁滞回线,能使变压器更不易饱和磁饱和的原理图电感值跟导磁率成正比,导磁率=B/HB是磁通密度H是磁场强度简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/HB是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦!电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零5.开关管漏极电压的组成a. 高压为基础部分b. 折射回来的电压部分c. 漏感产生的尖峰部分波形6.反激式拓扑开关电源有两种工作模式:(1) 完全能量转换,也叫做非连续导通模式。

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解反激式开关电源是一种常见的电力变换器,被广泛应用于电子设备和电力系统中。

它能够将输入电压转换为稳定的输出电压,并具有体积小、效率高、轻负载性能好等优点。

本文将详细介绍反激式开关电源的工作原理、基本结构和设计方法。

1.工作原理:整体工作原理如下:1.输入电压通过整流电路转换为直流电压;2.直流电压经过滤波电路去除纹波;3.控制电路根据反馈信号对开关元件进行驱动;4.开关元件的工作周期性地将直流电压斩波形成交流电压;5.交流电压经过变压器降压并通过输出滤波电路去除纹波,得到稳定的输出电压。

2.基本结构:开关元件:通常采用MOSFET或IGBT作为开关元件。

它们能够在很短的开关时间内实现高效的能量转换。

变压器:变压器用于将输入电压降到合适的电压级别。

绕线的匝数比决定了输入输出电压的比例。

滤波电路:滤波电路用于去除输出电压中的纹波和噪声。

一般采用电容器进行滤波。

控制电路:控制电路通过对开关元件的工作周期进行调节,控制输出电压的稳定性。

常见的控制方法有固定频率控制和可变频率控制。

保护电路:保护电路用于对反激式开关电源进行过载、过压和短路等故障保护,确保电源的安全可靠。

3.设计方法:选取开关元件时,应考虑其导通压降、开关速度和损耗等因素。

通常选择导通压降较小、开关速度较快且具有较低损耗的器件。

选取变压器时,应根据输入输出电压和功率需求确定变压器的参数,如匝数比、磁芯材料和绕组结构等。

控制电路的设计需要结合具体应用进行调整,以实现输出电压的稳定性和负载适应性。

稳压和滤波电路的设计通常基于反馈控制的原理,通过对输入电压和输出电压进行差分放大和反馈控制,实现稳定的输出电压和滤波效果。

4.总结:反激式开关电源是一种广泛应用的电力变换器,具有体积小、效率高、轻负载性能好等优点。

设计反激式开关电源需要考虑开关元件、变压器、控制电路和滤波电路等多个方面的因素。

通过合理选型和设计,可以实现稳定可靠的输出电压。

反激式开关电源设计详解(下)

反激式开关电源设计详解(下)

电子科技大学杨忠孝(下)反激开关电源特点优点成本低,外围元件少,低耗能,可设置多组输出。

缺点输出纹波比较大。

弥补缺陷的方法输出加低内阻滤波电容或加LC噪声滤波器可以改善电动自行车电源电路原理图次级侧电路原理图次级整流二极管的选型•为了降低输出整流损耗,次级整流二极管一般选用肖特基二极管,肖特基二极管有较低的正向导通压降Vf,能通过较大的电流。

输出整流二极管的耐压值二极管的平均电流值二极管的峰值电流值次级整流管的热设计•二极管的热损耗包括正向导通损耗、反向漏电流损耗及恢复损耗。

因为选用的是肖特基二极管,反向恢复时间短和漏电流比较小,可忽略不记。

•二极管的PN结对环境的热阻可以通过DATASHEET查得Rthjc=1.2°C/W•Tj=Rthjc*Vf*Id_rms+TaTa为工作的环境温度Tj为二极管工作温度理论值Vf表示二极管的正向导通压降Id_rms表示通过二极管的平均电流•吸收的本质,什么是吸收?•在拓扑电路的原型上是没有吸收回路的,实际电路中都有吸收,由此可以看出吸收是工程上的需要,不是拓扑需要。

•吸收一般都是和电感有关,这个电感不是指拓扑中的感性元件,而是指诸如变压器漏感、布线杂散电感。

•吸收是针对电压尖峰而言,电压尖峰从何而来?电压尖峰的本质是什么?•电压尖峰的本质是一个对结电容的dv/dt充放电过程,而dv/dt是由电感电流的瞬变(di/dt)引起的,所以,降低di/dt或者dv/dt的任何措施都可以降低电压尖峰,这就是吸收。

•吸收的作用?•1、降低尖峰电压•2、缓冲尖峰电流•3、降低di/dt和dv/dt,即改善EMI品质•4、减低开关损耗,即实现某种程度的软开关。

•5、提高效率。

提高效率是相对而言的,若取值不合理不但不能提高效率,弄不好还可能降低效率。

•RC吸收的特点:•1、双向吸收。

一个典型的被吸收电压波形中包括上升沿、上升沿过冲、下降沿这三部分,RC吸收回路在这三各过程中都会产生吸收功率。

反激式开关电源工作原理

反激式开关电源工作原理

反激式开关电源工作原理
反激式开关电源是一种多用途的供电方式,由于它的高效率、低成本和易于使用,它已经成为电子设备供电的首选方式。

它的工作原理是通过两个经过调节的电压源(输入和输出)来控制电力的输入和输出,从而实现电源的调节。

反激式开关电源由一个调节器和一个变压器组成。

调节器由一个晶体管和一个开关元件(如三极管或端子)组成,它的主要作用是控制电源的输入和输出之间的电压差,使电源的输出电压保持稳定。

变压器的主要作用是将输入电压转换为输出电压,从而达到调节的目的。

反激式开关电源的工作原理是,当输入电压升高时,调节器会自动断开开关元件,从而降低输出电压,并将过多的输入电压转换为电磁能储存在变压器中;当输入电压降低时,变压器就会将储存的电磁能释放出来,调节器会自动打开开关元件,使输出电压升高,从而实现输出电压的调节。

反激式开关电源的优势是高效率和低成本,可以有效地控制电源的输入和输出,具有高精度、低噪音、低功耗和高可靠性等优点,因此,它已经成为电子设备供电的首选方式。

第8课_反激式电源原理设计

第8课_反激式电源原理设计

2012-5-7
反激拓扑输入电路设计2
流经开关元件的有效电流值: Irms=Ids×√(Ton/T) 这里的,Ton为开关导通时间,T为整个周期。 提供给输出负载的电流: Irh=√(Irms2-Idc2) 共模电感的设计在前面章节已有说明,这里不在论述。 放电电阻的设计: R=t/2.21×C 这里的,t:交流的电源的频率,在50Hz时为2ms; C:与电阻并联的电容的值,取国际单位。
2012-5-7
开关的反馈调整电路原理
反馈电路一般由光电耦合器组成,完成的主要 作用是隔离和控制输出回路,使之更稳定和可 靠。 本电路采用电压环进行闭环调节实现输出电压 的稳定,选用PC817作为输出采样、反馈信号、 输出驱动,一方面起隔离作用,另一方面光耦 的发光二极管是电流驱动器件,可以形成电流 环路的传输形式,同时是低阻抗的,对噪声不 敏感。可以提高可抗干扰能力,同时对电磁干 扰也有抑制作用。
2012-5-7
输入保护器件
浪涌电流: 浪涌电流主要由纹波电容充电引起的,在 开关管开始导通的瞬间,电容对交流呈现很低 的阻抗,就是电容的ESR值,如不采取一些措 施,浪涌电流可能到几百安培。 通常采用负温度系数(NTC)的热敏电阻 以增加阻抗,把浪涌电流减小到安全值。它主 要特性是温度上升,阻抗下降。 输入瞬间电压保护:
2)电容的纹波电流对电源的寿命有很大影响,流经直流 输入回路的平均电流Idc由下公式决定: Idc=Ids×Dmax; 这里的,Ids:输入Np(MOS管)电流; Dmax:最大占空比。 3)这里也给出与上面公式不一样求C值的公式: 按经验值:C=(400~600)×Idc(单位:uF) 4)流经C的纹波电压Vcr: Vcr=(Idc×t)/C 这里的,t:为整流器的非导通时间,一般由二极管资料 得到;

多路输出单端反激式开关电源原理及设计

多路输出单端反激式开关电源原理及设计
为承受可能从电网线窜入的电击,可在交流端并联一个标称电压u1mA为275V的压敏电阻VSR。
鉴于在功率MOSFET关断的瞬间,高频变压器的漏感产生尖峰电压UL,另外,在原边上会产生感应反向电动势UOR,二者叠加在直流输入电压上。典型的情况下,交流输入电压经整流桥整流后,其最高电压UImax=380V,UL&asymp;165V,UOR=135V,贝UOR+UL+UOR&asymp;680V。这就要求功率MOSFET至少能承受700V的高压,同时还必须在漏极增加钳位电路,用以吸收尖峰电压,保护TOP222G中的功率MOSFET。本电源的钳位电路由D2、D3组成。其中D2为瞬态电压抑制器(TVS)P6KE200,D3为超快恢复二极管UF4005。当MOSFET导通时,原边电压上端为正,下端为负,使得D3截止,钳位电路不起作用。在MOSFET截止瞬间,原边电压变为下端为正,上端为负,此时D1导通,电压被限制在200V左右。
C3为控制端旁路电容,它能对控制回路进行补偿并设定自动重启频率。当C3=47&mu;F时,自动重启频率为1.2Hz,即每隔0.83s检测一次调节失控故障是否已经被排除,若确认已被排除,就自动重启开关电源恢复正常工作。
R2为PC817中LED的外部限流电阻。实际上除了限流保护作用外,他对控制回路的增益也具有重要影响。当R2改变时,会依次影响到下列参数值:IF&rarr;IC&rarr;D&rarr;UO,也就相当于改变了控制回路的电流放大倍数。
采用TOPSwitch-Ⅱ系列设计单片开关电源时所需外接元器件少,而且器件对电路板布局以及输入总线瞬变的敏感性大大减少,故设计十分方便,性能稳定,性价比更高。
对于芯片的选择主要考虑输入电压和功率。由设计要求可知,输入电压为宽范围输入,输出功率不大于10W,故选择TOP222G。

反激式开关电源变压器的设计

反激式开关电源变压器的设计

反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。

它具有体积小、效率高以及输出电压稳定等优点。

本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。

一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。

在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。

三、设计步骤1.确定输入电压和输出电压的需求。

根据实际应用需求确定输入电压和输出电压的范围。

2.计算变压器的变比。

根据输入电压和输出电压的比例计算变压器的变比N。

3.计算变压器的功率。

根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。

4.确定变压器的工作频率。

根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。

5.计算变压器的参数。

根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。

6.选择合适的磁性材料。

根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。

7.进行原型设计和测试。

根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。

8.进行参数调整和优化。

根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。

9.进行批量生产。

当设计满足要求时,可以进行批量生产并进行产品验证和测试。

总结:。

单端反激式开关电源原理与设计

单端反激式开关电源原理与设计

单端反激式开关电源原理与设计2008-11-7 10:45:00 来源:中国自动化网网友评论0条点击查看0 引言近年来随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、继承化的方向发展,高效率的开关电源已经得到越来越广泛的应用。

单端反激式变换器以其电路简单、可以高效提供直流输出等许多优点,特别适合设计小功率的开关电源。

本文简要介绍了Unitorde公司生产的电流型脉宽调制器UC3842,介绍了该芯片在单端反激式开关电源中的应用,对电源电路进行了具体分析。

利用本文所述的方法设计的小功率开关电源已经应用在国电南瑞科技股份有限公司工业控制分公司自主研发的分散控制系统GKS-9000中,运行状况良好,各项指标均符合实际工程的要求。

1 反激式开关电源基本原理单端反激开关电源采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。

这种反馈控制电路的最大特点是:在输入电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。

反激电路适应于小功率开关电源,其原理图如图1所示。

下面分析在理想空载的情况下电流型PWM的工作情况。

与电压型的PWM比较,电流型PWM又增加了一个电感电流反馈环节。

图中:A1为误差放大器;A2为电流检测比较器;U2为RS触发器;Uf为输出电压Uo的反馈取样,该反馈取样与基准电压Uref 通过误差放大器A1产生误差信号Ue(该信号也是A2的比较箝位电压)。

设场效应管Q1导通,则电感电流iL以斜率Ui/L线性增长,L为T1的原边电感,电感电流在无感电阻R1上采样u1=R1iL,该采样电压被送入电流检测比较器A2与来自误差放大器的Ue进行比较,当u1>Ue时,A2输出高电平,送到RS触发器U2的复位端,则两输入或非门U1输出低电平并关断Q1;当时钟输出高电平时,或非门U1始终输出低电平,封锁PWM,在振荡器输出时钟下降的同时,或非门U1的两输入均为低电平,则Q1被打开。

反激式(RCD)开关电源原理及设计

反激式(RCD)开关电源原理及设计

反激式(RCD)开关电源原理及设计因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。

先学习下Buck-Boost变换器工作原理简单介绍下1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量!3.接着开始下个周期!从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量!根据电流的流向,可以看出上边输出电压为负输出!根据伏秒法则Vin*Ton=Vout*ToffTon=T*DToff=T*(1-D)代入上式得Vin*D=Vout*(1-D)得到输出电压和占空比的关系Vout=Vin*D/(1-D)看下主要工作波形从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout);再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。

如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。

把上边的Buck-Boost变换器的开关管和续流管之间加上一个变压器就会变成反激变换器!还是和上边一样,先把原理大概讲下:1.开关开通,变压器初级电感电流在输入电压的作用下线性上升,储存能量。

变压器初级感应电压到次级,次级二极管D反向偏置关断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反激式开关电源原理与工程设计一.反激式开关电源的原理分析二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则五.变压器的设计六.反激式开关电源的稳定性问题反激式开关电源原理与工程设计一.反激式开关电源的原理分析1.反激式开关电源电路拓扑2.为什么是反激式a.变压器的同名端相反b.利用了二极管的单向导电特性3.电感电流的变化为何不是突变电压加在有电感的闭合回路上,流过电感上电流不是突变的,而是线性增加。

愣次定律:a.当电感线圈流过变化的电流时会产生感生电动势,其大小于与线圈中电流的变化率成正比;b.感生电动势总是阻碍原电流的变化4.变压器的主要作用与能量的传递理想变压器与反激式变压器的区别反激式变压器的作用a.电感(储能)作用遵守的是安匝比守恒(而不是电压比守恒)储存的能量为1/2×L×Ip2b.限流的作用c.变压作用初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。

d.变压器的气隙作用扩展磁滞回线,能使变压器更不易饱和磁饱和的原理图电感值跟导磁率成正比,导磁率=B/HB是磁通密度H是磁场强度简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/HB是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦!电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零5.开关管漏极电压的组成a. 高压为基础部分b. 折射回来的电压部分c. 漏感产生的尖峰部分波形6.反激式拓扑开关电源有两种工作模式:(1) 完全能量转换,也叫做非连续导通模式。

该模式的特点是,变压器在储能周期中储存的所有能量在反激周期都转移到输出端。

(2) 不完全能量转换,也叫做连续导通模式。

存储在变压器中的一部份能量保留到下一个储存周期开始。

工作模式是由初级电流和负载电流决定的2、结合图1以非连续导通模式为例分析反激式开关电源的工作原理。

该模式反激式拓扑开关电源的一个工作周期中有励磁、去磁、非连续导通三个阶段。

(1) 励磁阶段:当开关VT1导通时,变压器初级励磁电感中的电流从零开始上升。

由于次级边的二极管具有单向导通性,此时二极管反偏,在次级不导通电流,输出滤波电容C向负载供电。

由于此阶段的作用是向初级励磁电感补充能量,以为在下一个阶段向次级绕组转移能量做准备,因此这个阶段被称为励磁阶段。

(2) 去磁阶段:当励磁阶段结束后,VT1停止导通。

由于电感电流不能突变,励磁电感电流开始在初级电感上续流,能量通过变压器转移到输出端,在次级边上,二极管正向导通,输出端得到能量。

此时,励磁电感上的电压反向,励磁电流开始下降,因此该阶段被称为去磁阶段。

(3) 非连续导通阶段:当励磁电感的电流下降到零时,变压器初级边的能量己经完全转移到次级边,次级边上二极管不再导通。

此时反激式拓扑中的初级和次级绕组都不导通电流,等待着下一个周期的到来。

在连续导通模式下,不存在这个阶段。

7.电流控制模式电流控制模式特点:有两个反馈环1. 一个由电流检测电阻输入电压和脉宽调制器组成响应速度快的内环组成2. 一个由分压电阻、误差放大器组成的响应速度慢的外环二.反激式开关电源实际电路的主要部件及其作用1.实际电路(1)2.我司电路a. FD9022b.FD9020R 10N CR91K/0805EC3NCCY1222Date:Sheet:ofBThursday , February 26, 2015A0SCHEMATIC111FD9020DB_DEMOD5 FR207D6IN4007EC24.7uF/50VD7SR3100IC2PC8171234C 1047n FR 161K /0805R 82K /0805R 1418K /0805C9104R 114.7K /0805IC3TL431CL F 140m H1234R11M/1206R21MK/1206T1EE251254108D8SR3100E C 147u F /400VC 4472/1K VD11N4007*4C5100nF/0805R 131R /1WD2D3D4FD9020IC1VDD 1FB2CS4DRAIN5DRAIN 6GND7GND 8NC 3T 2A L 250V A CF 1RV110D471KC10.1uF/275V X 电容C20.1uF/275V X 电容R 562K /1WR 4500KR1210R/1206EC71000uF/25VL23uH/2AEC61000uF/25VC6NCR T 1N T CC13102/1KVR1747RGND 12V 12V GNDC11332C12332CN1SIP41234U1L NG N DFD9020三.反激式开关电源各主要器件的参数选择1.输入电路设计保险丝最好用延迟型的保险丝,平均电流的5倍热敏电阻10欧/耐压问题,10mm,14mm,20mm共模滤波器5倍的平均电流,25—40MH安规电容交流250V--275V 的X2电容;Y2安规电容交流250V--275V压敏电阻10mm, 14mm 470V---680V耐压的2.交流整流管的参数选择整流管选用600V—800V的管子;额定电流为最大电流3-5倍,习惯选5倍3.输入滤波电容选择1W/1.5--2U ,耐压为最高电压+(30—50V)例如265 V× 1.4=370V选用400V耐压的电解电容285V×1.4=399V 选用450V耐压的电解电容4.开关管的选择a.耐压余量耐压取理论值加80V,原则上不宜太大,也不宜太小,余量太大,导通电阻大,导通损耗大,b.电流余量电流值应取最大电流的3-4倍,注意是100℃时5.箝位电路参数的选择a.箝位电容的选择b.箝位电路电阻的选择c.箝位电路的阻断二极管的选择6.输出整流二极管的选择a.电压余量耐压的理论计算值=最大交流电压×1.414×N1/N2+V o+尖峰+30Vb.电流余量流过整流管的电流为输出电流平均值的4倍,因此选择整流管的额定电流应为输出平均电流的3—5倍c.输出滤波电容的选择ESR小的高频电解1A/1000U 反激式电路耐压30﹪,10V,16V,25V,35V 60V,100Vd.输出滤波电感3UH四.反激式开关电源pcb排板原则一般原则:(反射噪声,串扰,开关噪声,地弹,轨道塌陷,以及辐射)a.Pcb走线长度减少一半,则其电感也减少一半,但走线宽度要增加10倍才减少一半b.电流路径小电流信号尽可能与大电流信号的地回路分开;高压信号尽可能与低压信号远些;多路输出的地回路有条件尽可能分开c.减小电感的方法实际情况a.初级回路b.次级回路c.初次级回路的安全距离d.典型排板案例(第一版本)(第二版本:初级地分开汇总到高压电容,次级地一路汇总到变压器)(第三版本:次级地12V 5V分开汇总到变压器)五.变压器的设计1.实用的工程设计计算FD9020 5V/2A 12V/0.5A变压器:输入电压:90V~265Vac输出功率:16W效率η=80% 占空比D=0.45 频率F=65K由于工作在宽电压范围,设计按连续模式计算1、峰值电流计算(最大峰值电流设在交流电压最低的情况计算)Po=Pin*η=Udc*Idc*D*ηIdc=(Ip1+Ip2)/ 2→Ip1+Ip2=2*Po/(Udc*d*η)=2*16/((90*1.414-20)*0.45*0.8)=2*16/(107*0.45*0.8)=0.8307AIp2=4Ip1→Ip1=0.166A; Ip2=0.664A△Ip=Ip2-Ip1=0.498A2、初级电感量计算L*△Ip=Udc*Ton Ton=D*T=D/F→L=(Udc*D)/(△Ip*F)=107*0.45/(0.498*65)=1.487mH3、匝比及各绕组匝数计算取反射电压Ur=80V D/(1-D)×V(100V)N=Ur/(Uout+0.5)=80/5.5=14.5查表知EE22 Ae为36.7mm2 取△B为0.25Np=(Udc*D)/(△B*Ae*F)=(107*0.45*1000)/(0.25*36.7*65)=80.74匝Ns=Np/N=80.74/14.5=5.568 取整数6匝反推原边Np=Ns*N=6*14.5=87 取87匝次级12V路:N12V=Ns/Uout*U12v=6/5 *12=14.4 取14匝辅助绕组:Na=Ns/Uout*Ua=6/5 *17=20.4 取20匝各绕组匝数匝比:原:辅:5V:12V = 87:20:6:144、各绕组线径计算初级电流Irms=Ip*√D÷3= 0.8307*√0.45÷3=0.1857A取5A/mm初级:πR^2=0.1857÷5→D=2*R=0.2175mm,取D=0.23mm 5V输出:3*πR^2=2÷5→D=2*R=0.412mm,取D=0.45mm 12V输出:πR^2=0.5÷5→D=2*R=0.3568mm,取D=0.35mm 辅助路输出:电流较小,为配线方便取D=0.23mm综上:初级Np = 87匝线径0.23mm*15V路Ns = 6匝线径0.45mm*312V路N12V = 14匝线径0.35mm*1辅助Na=20匝线径0.23mm*1Lp=1.487mH5、CS电阻计算R= 0.8V/Ip2 = 0.8/0.664 = 1.2R 保留一点裕量取1R电阻2. 传统的Ap3. 变压器的工艺问题 (三明治,分层,绕向,磁路,磁材形状)减少漏感的工艺安全工艺改善辐射工艺降低成本工艺六. 反激式开关电源的稳定性问题七. 关键器件的特性功率VDMOS 场效应晶体管具有双极型功率晶体管不具备的许多独特优点:1、开关速度非常快功率VDMOS 场效应晶体管是多数载流子器件,具有非常快的开关速度,不存在双极型功率晶体管的少数载流子存贮效应,没有存贮时间。

开关时间可达几ns 至数十ns 。

一般低压器件开关时间为10ns 数量级,高压器件位100ns 数量级。

特别适合于制作高频开关,可以大大减小电抗元件的损耗、尺寸和重量。

功率VDMOS 器件的开关速度主要决定于器件的内部电容的充、放电,并与工作温度无关。

2、高输入阻低和低驱动电流功率VDMOS 器件的栅极以二氧化硅作为电介质绝缘层,其直流电阻在40M Ω以上,因而它的输入阻抗极高,是一种理想的电压控制器件,其驱动线路简单,可以直接被C-MOS 、TTL 、IC 驱动。

相关文档
最新文档