材料力学-第十三章能量方法

合集下载

材料力学第十三章 能量法

材料力学第十三章 能量法

1 vε = = τγ 2G 2
τ2
三、扭转
由实验知,线弹性范围内,扭转角与扭转力偶成线性关系: 由实验知,线弹性范围内,扭转角与扭转力偶成线性关系:
M e l M e 2l 1 1 Vε = W = M e ⋅ ∆φ = M e = 2 2 G I p 2G I p
T 2 ( x) Vε = ∫ dx 2G I p ( x) l
截面的挠度。 例:求图示简支梁C截面的挠度。 求图示简支梁 截面的挠度
F
θ B2
wC1
解:由功的互等定理 F ⋅ wC1 = M ⋅ θ B 2
得:F ⋅ wC1
Fl =M⋅ 16 E I Ml = 16 E I
2
2
由此得:wC1
例:求图示悬臂梁中点C处的铅垂位移∆ C 。 求图示悬臂梁中点 处的铅垂位移
故:
M ( x) M ( x) ∆=∫ dx EI l
M ( x) M ( x) 莫尔定理 ∆=∫ dx 莫尔积分) (莫尔积分) EI l
对于组合变形: FN ( x) FN ( x) T ( x) T ( x) M ( x) M ( x) ∆=∫ dx + ∫ dx + ∫ dx EA GI p EI l l l
积分得: 积分得:
FN (x)dx M (x)dx T (x)dx Vε = ∫ +∫ +∫ 2EA 2EI 2GIP L L L
2
2
2
例:试求图示悬臂梁的应变能,并利用功 试求图示悬臂梁的应变能,并利用功 求自由端B的挠度 能原理求自由端 的挠度。 能原理求自由端 的挠度。
F
解:
B
A
l
x
M ( x) = − F ⋅ x

材料力学 能量法

材料力学  能量法
FN1 = F sinα ( 拉) , FN2 = F tanα ( 压 )
1
2 l
方法一
∆=
F l F l ∆l1 = N1 1 , ∆l2 = N2 EA EA
α
A′
A
1 ∆l1 ∆l2 Fl cos2 α + + = sinα tanα EAsin2 α cosα
F 12l1 F 22l F2l 1 V = N cos2 α + + N = ε 2EA 2EA 2EAsin2 α cosα F∆ W= 2 Fl 1 ∆= cos2 α + EAsin2 α cosα
A
外力功: 外力功: 载荷在其相应位移 上所作之功。 上所作之功。
F
∆ A
A′
广义力: 力偶, 广义力: 力,力偶,一对大小 相等、 相等、方向相反的力 或转向相反的力偶等。 或转向相反的力偶等。

A′
广义位移: 线位移,角位移,相对线位移,相对角位移等。 广义位移: 线位移,角位移,相对线位移,相对角位移等。
δ dδ δ ∆ f df F
线弹性体: 线弹性体:
f = kδ

F = k∆
f
1 2 1 W = ∫0 kδ dδ = k∆ = F∆ 2 2
Page 6 δ
第十三章
能量法
二、克拉比隆定理: 克拉比隆定理: 已知线弹性体上同时作用有多个广义力F 已知线弹性体上同时作用有多个广义力F1, F2 ,.. 及其相应广 义位移, 义位移, 求外力功
第十三章
能量法
第 13 章 能量法
§13-1 1313§13-2 13§13-3 13§13-4 13§13-5 外力功与应变能的一般表达式 互等定理 卡氏定理 变形体虚功原理 单位载荷法

材料力学(单辉祖)第十三章 能量法

材料力学(单辉祖)第十三章 能量法

第十三章能量法主讲人:张能辉1引言2-研究变形体方法:微体法,能量法引言微体法几何关系i ij u ~ε微体法静力学关系物理关系ijij εσ~平衡ij σd v ⇓V控制方程数学手段ij σ边界条件初值条件ijε3-引言能量法1P P 1P 外力作用线弹性体恢复22P 变形效应外力卸除原形i P →ij ij εσ~Hooke’s Law Lineariij u ~ε线弹性体f广义载荷δ广义位移δ∝f 引进比例常数δk f =下面看能量如何写?与外力有何关系?4由能量守恒WV =ε(外力功全部转化成应变能)P26488主平面微体应变能(P264 8-8)1ii εσυε2=应变能密度i =1,2,3)(,,)6外力功与应变能杆件应变能微段d x 储存应变能∫∫⋅==dVAdAdx dV dV εεευυdAxx体积分化为面积分d x dV整个梁存储应变能积分思想: 微段的叠加==dAdx dV V εεευ变∫∫∫AlV822 EA21 2NFdx EAd ml2ρ2p外力功与应变能弯曲(忽略切应力)21zM 21zM 2zEI ευ=2z lV dxEI ε=∫Conclusion外力功与应变能应变能特点C1: 与载荷终值有关,而与加载次序无关M(a) M 、F 同时作用(b)ABF (b)先F 后M (c) 先M 后F 三种加载历史等效?FM F M M FM M M M M =+=+19互等定理23互等定理讨论2F 独立加第I 组力系F 123411121:0;0;Δ→Δ→Δ先加第II 组力系,再加第I 组力系3F 2F 21110;0:Δ′→Δ′→Δ12344F ????;21211111Δ′=ΔΔ′=Δ问1F F =k Δ保证相等27互等定理线弹性体变形能特点:大小取决于加载终值而与加载次序无关21V V =414313222121Δ+Δ=Δ+Δ⇒F F F F 21F F I 组力系12I 组力系作用点43F F II 组力系,3,4力点II 组力系作用点2212,ΔΔII 组力系在I 组力系作用点引起的沿I 组力系方向的位移4131,ΔΔI 组力系在II 组力系作用点引起的沿II 组力系方向的位移28互等定理等定功的互等定理第I 组力系在第II 组力系引起位移上所做功等于第II 组力系在第I 组力系引起位移上所做功简化:If F 1---I; F 2---IIthen F =F FF =2then F 1Δ12= F 2Δ2112FF =1If F 1= F 2, then Δ12=Δ21位移互等定理弹在对于线弹性体,若在1,2处分别作用两个大小相等的载荷,则点1处由于点2处载荷引起的位移Δ12等于处由点点2处由于点1处载荷引起的位移Δ2129Example-1实测w 1 ,w 2 ,w 3方案:1F3211.三点装位移计浪费2.一个位移计逐点测费工1新方案(位移互等定理)F323.自由端加位移计逐点加载不影响原有力系30单位载荷法32Example-1E ample1qABlx已知:梁EI=const已知梁求:w=?θA=?A38Example-2M aCB B1x x FAa 2已知:刚架M B =F a 求:Δcy =?40E l3 Example-3BA1αβ2CF已知:桁架EA, l1l2? Δ?求: Δcx=? Δcy=?43Example-4 (P20 12-5)F FR已知:小曲率曲梁AB已知:小曲率曲梁,轴线曲率半径为R求:截面A和B的相对转角46E l5(P56)Example-5 (P56)F OA BϕCA B已知:小曲率曲梁,轴线曲率半径为R求求:A的铅垂位移48余能与卡氏第二定理50。

材料力学第十三章 能 量 法

材料力学第十三章 能 量 法

Vε Vε (D1 , D 2 ,, D i ,, D n )
假设位移 Di 有一微小增量 dDi 其它位移均保持不变 梁的应变能也有一增量 dVe
外力功的增量
d W Fi d D i
Ve d Ve d Di D i
d Ve d W
Ve Fi D i
卡氏第一定理
卡氏第一定理

l
0
F ( x) T ( x) dx dx 0 2GI 2 EA p
l
2 N
2
F ( x) M ( x) d x s dx 0 2 EI 0 2GA
l l
2
2 S
应变能恒为正 ,是内力或外力的二次函数。
非线性函数
一般情况:非线性弹性体
s s1 s e
外力作功:
de e 1
DAB 方向水平向外
§3-4 用能量法解超静定系统
解超静定问题要综合考虑三方面 几何方面 —— 建立变形几何相容条件 物理方面 —— 建立补充方程 静力学方面 —— 建立平衡方程
等直杆,发生基本变形,材料为线性弹性体 非等直杆或杆系结构,受较复杂荷载作用, 材料为非线性弹性体 易 难
能量法
例1:求图示超静定梁支座处的约束力。
③ 先加M,后加F
A
M AM
F
B
AF DCF
AM
Ml 3EI
D CF
Fl 48 EI
3
AF
Fl 16 EI
2
1 1 应变能: V M ε AM ( FD CF M AF ) 2 2 2 3 2 2 1 F l M l MFl ( ) EI 96 6 16
Ve Fi D i

材料力学第十三章 能 量 法

材料力学第十三章 能 量 法

单元体上外力作功: W s e1 d e 0
应变能密度:
ve
e1 s d e
0
边长为dx、dy、dz的单元体: dVe ve d x d y d z
杆: Ve dVe V ve dV
线性弹性体:
ve
s e1
0
de
1 2
s
1e1
1 2
Ee12
1 2E
s
2 1
ve
1 d
0
1 2
1
AF
Fl 2 16 EI
应变能:

1 2
M AM
(1 2
FDCF
M AF )
1
F 2l3 (
M
2l
MFl 2
)
EI 96 6 16
④ M、F 分别单独作用
F
A
DCF
B
A M AM
B
DCF
Fl 3 48 EI
AM
Ml 3EI
应变能之和: VεF VεM
1 2
FDCF
1 2
M AM
1 EI
VεS
l
s
FS2 (x) d x 2GA
s — 剪切形状因数
S
S
通常,梁的剪切应变能远小于弯曲应变能。
杆件发生组合变形
在线弹性、小变形的条件下,每一基本变形的内力仅 在其相应的基本变形上作功,在其他基本变形上不作功。

l FN2 (x) d x 0 2EA
l T 2 (x) dx
0 2GIp
材料是线弹性的,但变形 D 与力F 不是线性的
几何非线性弹性问题
材料是非线性弹性的
物理非线性弹性问题

材料力学第十三章 能量法2013

材料力学第十三章 能量法2013

§13-7 计算莫尔积分的图乘法 ★重点
(Energy methods)
§13-1 概述(Introduction)
能量方法 (Energy methods )
利用功能原理 U = W 来求解可变形固体的位移、变形和内 力等的方法.
功能原理(Work-energy principle) 外力功等于变形能
2
Me ( x) U dx l 2 EI ( x )
2
(Energy ( Strain energy density for pure shearing state of stresses )
1 u ηγ 2
将 = G 代如上式得
G 2 2 u γ 2 2G
F1a
F2
M图
a B x A
F1a+F2l
特点:在刚节点处,弯矩值连续 ;
(Chapter Thirteen)
(Energy Method)
(Energy methods)
第十三章 能量法 (Energy Methods)
§13-1 概述(Introduction) §13-2 杆件变形能的计算及普遍表达式 §13-3 互等定理(Reciprocal theorems) §13-4 卡氏定理(Castigliano’s Theorem) §13-5 虚功原理(了解) §13-6 单位荷载法 莫尔定理 ★重点
2、利用功能原理计算变形 (Work-energy principle for calculating deflection)
2 FN ( x) T 2 ( x) M 2 ( x) U dx dx dx l 2 EA( x ) l 2GI ( x ) l 2 EI ( x ) p

材料力学之能量法

材料力学之能量法
A
l/2
F C 1
l/2
B
l/2 1 1 Fl 3 W Fδ1 F F 2 2 48 EI C A 2) 力偶由零增至最后值 Me Mel B 截面的转角为 θ 3 EI 1 1 Mel 力偶 Me 所作的功为 W2 M eθ M e 2 2 3 EI
l/2 Me B
由 V =W 得
( FRsin ) 2 πF 2 R3 Rd 2 EI 8EI
Δ BV
πFR 4 EI
3
A
O
例: 简支梁, 两种载荷按同样比例加载, 计算其变形能。 梁中点的挠度为 梁右端的转角为
Fl 3 M el 2 δ1 48EI 16 EI Fl 2 M el δ2 θ 16 EI 3EI
Fb 2 Fa 2 ( x1 ) ( x2 ) a b l dx1 l dx2 0 0 2 EI 2 EI
2
B
x1 a l C x2
b
F 2b2 a3 F 2a 2 b3 F 2a 2b 2 2 2 2 EIl 3 2 EIl 3 6 EIl
1 W F vC 2
由 V =W 得
(( ))
1
q A
RA
F=qa B
C
x
A x 1/2a
B
C x
x
2a
a
2a
a
(2) 求 C 截面的转角 ( 在 C 处加一单位力偶 ) 2 qa qx x AB: M ( x) x (0 x 2a) M ( x) 2 2 2a BC: M ( x) qa x (0 x a) M ( x) 1 a 1 2 a qa qx 2 x 5qa3 c [ ( x )( )dx (qax)(1)d x] 0 EI 0 2 2 2a 6 EI (

材料力学 第十三章能量方法

材料力学 第十三章能量方法

杆件的应变能在数值上等于变形过程中外力所做的功。 在线弹性范围内,外力由零开始缓慢增加到某一值,将外 力做的功统一写成
V
W

1 2
F
式中 F——广义力;
δ——与广义力对应的位移,即为广义力作用 点且与广义力方向一致的位移。称为广义位移。
6
§13-1 杆件应变能的计算
例题13-1
求图示悬臂梁的应变能V 和自由端的挠度yA。已知梁的抗弯刚度为EI。
拉压
dV

FN2 x 2EAx
dx
V l 2FEN2Axxdx
扭转
T 2x dV 2GIP x dx
弯曲
M 2x dV 2EIx dx
T 2x
V l 2GIP xdx
M 2x
V l 2EIxdx
5
§13-1 杆件应变能的计算
10
应变能不能叠加:
简单说明
A:F1单独作用 B:F2单独作用
1 V1 2 F1l1
V 2

1 2
F2l2
F2
F1
F2
F1
E:同时加F1、 F2
C:先加F1,再加F2
常力F1在 Δl2上作功
V

1 2
F1l1

1 2
F2l2
F1l2
F1

F12l 2EA

F2 2l 2EA
15
F112 F2 21
上式表明第一组力F1在第二组力引起的位移δ12上所做的 功,等于第二组力F2在第一组力引起的位移δ21上所做的功。 这就是功的互等定理 在F1=F2的情况下,由功的互等定理可得

1 2
Fy

材料力学 第十三章能量方法

材料力学 第十三章能量方法

l
l
l
25
例13-4 结构如图,用卡氏定理求A 面的挠度和转角。 P A 解:求挠度,建坐标系 ①求内力
M ( x ) xP
EI
L
x
O
②将内力对PA求偏导
M ( x) PA x
③变形
fA
U PA
L

2

M ( x ) M ( x ) EI PA
dx
L


0
Px EI
U U ( P1 , P2 ,..., Pn )
给Pn 以增量 dPn ,则:应变能增量:
结构的应变能: U1 U U dPn
P n
U Pn
d Pn
n
Pn
2.先给物体加力 dPn ,则应变能
1 2 ( d Pn ) ( d n )
再给物体加P1、 P2、•••、Pn 个力,则:
F l
2 3
6 EI
由于应变能V 等于外载荷所做的功W。即V =W
F l
2 3

1 2
6 EI
Fy A
由该式得自由端的挠度
yA
Fl
3
3EI
由该例题可以看出,只有当弹性体上仅作用一个广义力,且所求 位移为相应的广义位移时,才可直接利用功能原理计算。
7
例13-2 图示半圆形等截面曲杆位于水平面内,在A点受铅垂力P 的作用,求A点的垂直位移。
12
二、组合变形杆件应变能的普遍表达式:
在组合变形时,杆件横截面上同时有几种内力分 量作用,为计算杆件的应变能,可取dx微段来研究。
M x
FN x
dx
M x
T x

材料力学第13章 能 量 法

材料力学第13章 能 量 法

基本变形下的外力功及杆件的变形能的计算 变形 类型 外力功 应变能(内力 为常力) 应变能(内力 为变力) 拉压 扭转 弯曲
1 Pl 2
1 T 2
1 M e 2
F l 2 EA FN ( x) l 2 EA dx
2
2 N
T 2l 2GI P T 2 ( x) l 2GI P dx
2
M l 2 EI
?
解:
Fi i W 2 i 1
n
PwA M A 2 2 P 2l 3 M 2l FMl 2 6 EI 2 EI 2 EI
3 Pl P wA 3EI
2 Ml M wA 2 EI
P A
Pl 2 EI
2
M A
Ml EI
例2: 弯曲刚度为EI的简支梁受均布荷载q作 q 用,如图所示。试求梁内的应变能 。
W dW F d
0 0
F F1
1
1
O
d
F
1
(a)
W dW F d
0 0
1
1
F F
F W 2
当载荷与相应的位移保持正 比关系,并且载荷由零逐渐 增加时,载荷所作之功为载 荷最大值与位移最大值乘积 的一半。 式中力F是广义力(力, 力矩)、Δ为广义位移( 线位移,角位移)。
P a2 RB (3l a ) 2 2 l
§13-3
1.卡氏定理
卡氏定理
设图中材料为线性弹性体,求与广义力Fi对应 的广义位移Δi 。
1 2 3 n
B
1 2 3 n
根据克拉贝隆定理,由于应变能只与最后荷 载有关,而与加载顺序无关。外力功与应变 能为:
Fi i V W 2 i 1

材料力学-第十三章 能量方法

材料力学-第十三章 能量方法

班级学号姓名
1图示桁架各杆的材料相同,截面面积相等。

试求在F力作用下,桁架的应变能。

2计算图示各杆的应变能。

班级学号姓名
3用互等定理求解题。

试求图示各梁的截面B的挠度和转角,EI为常数。

4图示刚架的各杆的EI皆相等,试求截面A,B的位移和截面C的转角。

班级学号姓名
5图示桁架各杆的材料相同,截面面积相等。

在载荷F作用下,试求节点B与D间的相对位移。

6图示桁架各杆的材料相同,截面面积相等。

试求节点C处的水平位移和垂直位移。

班级学号姓名
7刚架各部分的EI相等,试求在图示一对F力作用下,A,B两点之间的相对位移,A,B两截面的相对转角。

班级学号姓名
8等截面曲杆如图所示。

试求截面B的垂直位移和水平位移以及截面B的转角。

9等截面曲杆BC的轴线为四分之三的圆周。

若AB杆可视为刚性杆,试求在F力作用下,截面B的水平位移及垂直位移。

班级学号姓名
10在图示曲拐的端点C上作用集中力F。

设曲拐两段材料相同且均为同一直径的圆截面杆,试求C点的垂直位移。

11正方形刚架各部分的EI相等,GIt也相等。

E处有一切口。

在一对垂直于刚架平面的水平力F作用下,试求切口两侧的相对水平位移δ。

班级学号姓名
12轴线为水平平面内四分之一圆周的曲杆如图所示,在自由端B作用垂直载荷F。

设EI和GIp已知,试求截面B在垂直方向的位移。

13平均半径为R的细圆环,截面为圆形,其直径为d。

F力垂直于圆环中线所在的平面。

试求两个F力作用点的相对线位移。

材料力学第十三章__能量方法

材料力学第十三章__能量方法

解:由节点B的静力平衡 条件求得各杆内力:
NAB5 4P , NBC4 3P
构架的变形能等于 AB和 BC两杆变形能之和:
UUAB UBC N 2A 2ElB AA B N 2B 2ElC BA C
U 1.9P2l 2EA
1.9P2l UWPB
2EA
2
B

1.9Pl EA
的中点挠度 f 5q l 4
。求梁在中点
384 E I
集中力P作用下 (见图),梁的挠曲线与梁变
形前的轴线所围成的面积 。


q P 5ql4 5Pl4
384E I
384E I
例:长为 l、直径为d的圆杆受一对横向压力
P作用,求此杆长度的伸长量。已知E和μ。
解:由位移互等定 ,理 ①知 杆的伸长量 ②杆直径的减小量
i

U C Pi
性弹性杆件或杆系在 外力Pi作用点处与Pi相 应的位移δi
在线弹性杆件或杆系U=UC
卡氏第二定理 i

U Pi
线弹性杆件或杆系的应变能U对
于作用在该杆件或杆系上的某一
外力之变化率就等于该力作用点
沿作用线方向的位移。
(1)
轴向拉伸和压缩
i

l
N(x)N(x)dx EA P
M2(x) dx
l 2EI(x)
QS Z
bI Z
矩形:
s
6 5
U

l
s Q 2 dx
2 GA
圆形: 薄壁管:
s s

10 9 2 .0
U弯

l
22
1 (Px)2dxP2l3

材料力学第十三章 能量法

材料力学第十三章    能量法

1 W F wC 2
由Vε=W 得
Fa 2b 2 wC 3 EIl
例题
试求图示四分之一圆曲杆的变形能,并利用功能原理求B截
B
面的垂直位移. 已知EI为常量.
解: M ( ) FRsin
F
R
θ
M ( ) Vε Rd l 2 EI π ( FRsin )2 πF 2 R 3 2 Rd A 0 2 EI 8 EI 1 W F y 2 πFR 3 由Vε=W 得 y 4 EI
1 1 1 1 W P1 1 P2 2 P3 3 Pn n 2 2 2 2
All forces are applied slowly from zero to the final value. All deformations are within the proportional limit. Conclusion: (1) U is not related to the order in which the forces are applied. (2) U = W
q
A B
F=qa
C x A x B x 2a a
C
1
x
FRA
2a
a
1/2a
(2)求C 截面的转角(在C处加一单位力偶)
qa qx 2 x AB: M ( x) x M ( x) 2 2 2a BC: M ( x ) qa x M ( x) 1 2 2 a qa a 1 qx x C [ ( x )( )dx ( qax )(1)dx ] 0 EI 0 2 2 2a 5qa 3 6 EI ( )
例题 图示外伸梁,其抗弯刚度为 EI. 用单位载荷法求C点的挠 度和转角.

材料力学13能量法

材料力学13能量法
FN (x)
T (x)
M (x)
FN (x)
T (x)Fs(x)

FN2 (x) dx l 2EA(x)
T 2(x) dx l 2GIp (x)
M 2(x) dx l 2EI (x)
kFs 2 (x) dx l 2GA(x)
对若k于是杆双用件向来及弯修杆曲正系,横的弯力变矩弯形沿曲是形时以心切弯主应曲轴力变分不形解沿为, 截主面的均,匀因分轴布力的和修剪正力系远数小,
)
再施加P1
AB又伸长
Dl AB

P1l1 EA
P2保持不变,作功为
V 2

P2

P1l1 EA
P1作功为
V 3

P12l1 2EA
(5)应变能是可逆的。(跳板跳水) 总功仍为上述表达式。10
直接利用功能原理求位移的实例 利用能量法求解时,所列
例 求简支梁外力P作用点C的挠度。 弯矩方程应便于求解。
V F

FL3 48 EI
wC
29
说明: (1)卡氏第二定理只适用于线性弹性体
δi

Vε Fi
(2)Fi 为广义力,i为相应的位移
一个力
一个力偶
一对力
一对力偶
一个线位移
一个角位移
相对线位移
相对角位移
30
(3)卡氏第二定理的应用
(a) 轴向拉伸与压缩
δi

Vε Fi

Fi
22
F
B2
wC1
解:由功的互等定理 F wC1 M B2
得:F

wC1

M
Fl 2 16EI

材料力学第13章(能量方法)

材料力学第13章(能量方法)
M 2 ( x) [ M ( x ) M ( x )]2 M 2 ( x) dx L 2 EI dx L 2 EI dx 1 f A L 2 EI
M ( x)M ( x) 1 f A dx L EI
M ( x)M ( x) fA dx L EI
莫尔定理或莫尔积分 (单位载荷法)
先加单位力,再加原载荷:
外力作功:W1 W W 1 f A 应变能:
图b F0 =1
A
q(x) 图c
fA
[ M ( x ) M ( x )]2 V 1 L dx 2 EI
W1 Vε1
[ M ( x ) M ( x )]2 W W 1 f A L dx 2 EI
和转角。 q
A
1
x
l
B
A
B
x l
解: (1)垂直位移
qx 2 M ( x) 2
M ( x)M ( x) dB dx L EI
M ( x) x
1 l qx2 ql 4 0( 2 )( x )dx 8 EI ( EI
)
q
A
1
x
l
B
A
l
x
B
(2)转角
qx 2 M ( x) 2
[例2] 已知:梁的抗弯刚度EI,用莫尔积分法求B点的垂直
位移和转角。
q
A
1
B
A B
l
l
FNi FNi l i T ( x )T ( x ) dx L GI P E i Ai
M ( x)M ( x) L EI dx
M ( x)M ( x) dB dx L EI
[例3] 已知:梁的抗弯刚度EI,用能量法求B点的垂直位移

材料力学-13 能量法共36页文档

材料力学-13 能量法共36页文档

RA
2a
a
1/2
2a
a
【解】
RA
qa 2
1 RA 2
(1)求截面的挠度(在 c 处加一单位力“1”)
AB:
M(x1)
q2ax1
qx12 2
M
(
x1
)
x1 2
河南理工大学力学系
材料力学
q
A
RA
2a
F=qa
B
CA
x2
a
1/2
第十三章 能量法
1
B
C
x2
2a
a
BC:
M(x1)q2ax1
qx12 2
M(
x1 )
§13-2 杆件变形能的计算
一、变形能的计算
拉压变形能 扭转变形能
V
FN2l 2EA
T 2l V 2GI p
河南理工大学力学系
材料力学
第十三章 能量法
弯曲变形能
Me
1. 纯弯曲
θ
Me
Me
Me
V W 1 2M eθ1 2M eM E el IM 2E e2lI
2. 横力弯曲
V
Me2(x)dx l 2EI(x)
河南理工大学力学系
材料力学
第十三章 能量法
例题13-2 图示为一水平面内的曲杆,B 处为一刚性 节点, ABC=90°在 C 处承受竖直力 F,设两杆的抗弯刚 度和抗扭刚度分别是 EI 和 GIp ,求 C 点竖向的位移。
F
A a
C Bb
河南理工大学力学系
材料力学
F
C
A
x1
x2 B b a
【解】在 C点加竖向单位力
V L 2EI dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fc
U P
M (x) M (x) dx
l EI P
1
EI
l 2 0
[(
P 2
Me l
) x1
M
e
]
x1 2
dx1
1 EI
l 2
(
P
02
Me l
) x2
x2 2
dx2
M el 2 Pl3 16EI 48EI
(
)
31
• 例13-6 求刚架B的水平位移和C点的转角。
解:
AB段: M (x1) (Pa Pf x1)
P
2
29
A截面的转角:
A
U M e
M (x) M (x) dx l EI M e
1
EI
l
2 [(
0
P 2
Me l
) x1
M e ](1
x1 l
)dx1
1
EI
l 2 0
(P 2
Me l
) x2
x2 l
dx2
M el 3EI
Pl 2 16EI
(
)
30
Me
p
A
C
X1
L/2 L/2
B
X2
C截面的挠度为:
A ②将内力对MA求偏导后,令M A=0
L xO
③求变形( 注意:M A=0)
M (x)
1
M A M 0
A
A
L
M (x) M (x) dx EI M A
L Px dx 0 EI
PL2
2 EI
A
PL2 ( 2 EI
)
“负号”说明 A与所加广义力MA反向。
27
例13-5 A截面的转角和梁的中点C的挠度。
T 2 x dx
M
2 x
dx
2EA
2GIP
2EI
积分求出整个杆件的应变能为
V
FN2
x
dx
l 2EA
T 2 xdx
l 2GIP
M 2x
dx l 2EI
14
§13-3 功的互等定理和位移互等定理
F1
F2
1
2
F1
1 11
12
21 F2
2
22
F1
1
12
22 F2
2
11 21
梁上作用两组力时,应变能与其作用 次序无关,只与最终状态有关。
贝依隆原理。
由于位移Δ1,Δ2 ,… Δi ,… Δn与外力F1,F2, … Fi, Fn之间是线性关系,则应变能是外力的二次齐次函数, 所以应变能不能叠加。
10
应变能不能叠加:
简单说明
A:F1单独作用 B:F2单独作用
V 1
1 2
F1l1
V 2
1 2
F2l2
F2
F1
F2
F1
E:同时加F1、 F2
1
§13-1 杆件应变能的计算
在弹性范围内外力所作的功,全部转变为弹性
体的应变能。即 W=V 一、拉压
F
A
F F
l
Δl
O ΔL
B ΔL
l FNl EA
V
W
1 2
Fl
FN2l 2EA
比能: u 1
2
2
§13-1 杆件应变能的计算
二、扭转
T
φ
T l
T A
T
B
O
φ
φ
Tl
GIP
V W
比能
1 T T 2l
7
例13-2 图示半圆形等截面曲杆位于水平面内,在A点受铅垂力P 的作用,求A点的垂直位移。
P R
A
解:用能量法(外力功等于应变能)
①求内力
P A MN
A
BT
Q
弯矩 : M PR sin
扭矩 :T PR(1 cos)
8
②变形能:
U
N 2 (x) dx
M
2 n
(
x
)
dx
M 2(x) dx
先加F1力,再加F2力。
W
1 2
F111
1 2
F2 22
F112
先加F2力,再加F1力。
W
1 2
F2 22
1 2
F111
F2 21
F112 F2 21
15
F112 F2 21
上式表明第一组力F1在第二组力引起的位移δ12上所做的 功,等于第二组力F2在第一组力引起的位移δ21上所做的功。 这就是功的互等定理 在F1=F2的情况下,由功的互等定理可得
力作用方向的位移。此即为卡氏定理。
19
二、定理证明
P1
1. 先给物体加P1、 P2、•••、 Pn 个力,则:
P2
U U (P1,P2 ,..., Pn )
U
给Pn
以增量
dPn
,则:应变能增量:
Pn
dPn
结构的应变能:
U1
U
U Pn
dPn
n Pn
2.先给物体加力 dPn ,则应变能
1 2
(dPn
)
(F1 F2 )2 l 2EA
注意:V V1 V 2
11
结论: 应变能不可叠加,即各个载荷分别作用时
弹性体的应变能之和不等于各个载荷共同作用 时弹性体的应变能。
应变能的大小仅与载荷的最终值有关,而 与加载的次序无关。
12
二、组合变形杆件应变能的普遍表达式:
在组合变形时,杆件横截面上同时有几种内力分 量作用,为计算杆件的应变能,可取dx微段来研究。
C:先加F1,再加F2
常力F1在 Δl2上作功
V
1 2
F1l1
1 2
F2l2
F1l2
F1
F12l 2EA
F2 2l 2EA
F1
F2l EA
(F1 F2)2l 2EA
F2
D:先加F2 ,再加F1
V
1 2
F2l2
1 2
F1l1
F2l1
(F1 F2 )2 l 2EA
V
1 2
F1
F2
(
F1
F2 EA
)l
解:解除尾顶针的工件可简化为悬臂梁。
F、FBy作为第一组力。然后右端单独作用 X=1的单位力,并作为第二组力。
在第二组力作用下
1
2
1
a2 6EI
3l
a
2
l3 3EI
第一组力在第二组力引起的位移上
X 1
第二组力在第一组力引起的位 移上所作的功为零(B为铰支)。
所作的功为
F1 FBy 2
Fa2 6EI
a C p
(a) 2x C p
A
(b3)4
例13-7 求B点的竖直和水平位移。
解:任意横截面mm上的弯矩 为
M PR cos A
R
M R cos
P
利用计算曲杆变形的卡氏定理表达式得:
(B )竖直
M M ds
s EI P
1
2
PR cos
R cos
Rd
PR3
EI 0
4EI
B
p
35
2.求B点的水平位移,在点B附加水平力Pf
B
V
M
2
x
dx
1
l 2EI
2EI
l Fx2 dx F 2l3
0
6EI
在变形过程中,外载荷所做的功为
W
1 2
FyA
由于应变能V等于外载荷所做的功W。即V =W
F 2l3 6EI
1 2
FyA
由该式得自由端的挠度
yA
F l3 3EI
由该例题可以看出,只有当弹性体上仅作用一个广义力,且所求 位移为相应的广义位移时,才可直接利用功能原理计算。
弹性体上作用载荷时,它的作 用点也因物体变形产生位移,载荷
在此位移上做功,其值等于弹性体
Δ1 Δ2 Δ3 Δ4
的应变能。所以可用载荷做功来求
应变能。
V
W
1 2
F11
1 2
F2 2
1 2
Fi i
1 2
Fn n
其中Δ1,Δ2 ,… Δi ,… Δn为F1,F2, … Fi,Fn共同 作用下引起的各载荷作用点的位移。这一结论称为克拉
Me
p
A
Me C
Me
B
A
p
C
B
C
L/2
L/2
X1
L/2
X2
L/2
解:
AC段 :
M
( x1 )
Me
(
P 2
Me l
) x1
M (x1) 1 x1
M e
l
M (x1) x1
P 2
28
Me
p
A
C
X1
L/2 L/2
B
X2
BC段 :
M
( x2
)
(
P 2
M l
e
) x2
M (x2 ) x2 Me l
M ( x2 ) x2
(d
n
)
再给物体加P1、 P2、•••、Pn 个力,则:
U dPn n
20
按此加力顺序结构的应变能
P1 P2
n Pn
U2
1 2
(dPn ) (d n )
U
dPn n

U1 U2
U
n Pn
第二卡氏定理
卡氏定理:弹性体内的变形能对任一载荷的偏导 数等于该载荷作用点沿载荷作用方向的位移。
相关文档
最新文档