ANSYS桥梁建模经验1
ANSYS桥梁工程应用实例分析(详细)(图文)
![ANSYS桥梁工程应用实例分析(详细)(图文)](https://img.taocdn.com/s3/m/3e6c7f548762caaedc33d4b2.png)
本章介绍桥梁结构的模拟分析。
桥梁是一种重要的工程结构,精确分析桥梁结构在各种受力方式下的响应有较大的工程价值。
模拟不同类型的桥梁需要不同的建模方法,分析内容包括静力分析、动荷载响应分析、施工过程分析等等。
在本章中着重介绍桁架桥、刚架桥和斜拉桥三种类型桥梁。
内容 提要 第6章 ANSYS 桥梁工程应用实例分析本章重点结构分析具体步骤结构静力分析 桁架结构建模方法 结构模态分析本章典型效果图6.1 引言ANSYS通用有限元软件在土木工程应用分析中可发挥巨大的作用。
我们用它来分析桥梁工程结构,可以很好的模拟各种类型桥梁的受力、施工工况、动荷载的耦合等。
ANSYS程序有丰富的单元库和材料库,几乎可以仿真模拟出任何形式的桥梁。
静力分析中,可以较精确的反应出结构的变形、应力分布、内力情况等;动力分析中,也可精确的表达结构的自振频率、振型、荷载耦合、时程响应等特性。
利用有限元软件对桥梁结构进行全桥模拟分析,可以得出较准确的分析结果。
本章介绍桥梁结构的模拟分析。
作为一种重要的工程结构,桥梁的精确分析具有较大的工程价值。
桥梁的种类繁多,如梁桥、拱桥、钢构桥、悬索桥、斜拉桥等等,不同类型的桥梁可以采用不同的建模方法。
桥梁的分析内容又包括静力分析、施工过程模拟、动荷载响应分析等。
可以看出桥梁的整体分析过程比较复杂。
总体上来说,主要的模拟分析过程如下:(1) 根据计算数据,选择合适的单元和材料,建立准确的桥梁有限元模型。
(2) 施加静力或者动力荷载,选择适当的边界条件。
(3) 根据分析问题的不同,选择合适的求解器进行求解。
(4) 在后处理器中观察计算结果。
(5) 如有需要,调整模型或者荷载条件,重新分析计算。
桥梁的种类和分析内容众多,不同类型桥梁的的分析过程有所不同,分析侧重点也不一样。
在这里仅仅给出大致的分析过程,具体内容还要看具体实例的情况。
6.2 典型桥梁分析模拟过程6.2.1 创建物理环境建立桥梁模型之前必须对工作环境进行一系列的设置。
ansys桥梁建模流程
![ansys桥梁建模流程](https://img.taocdn.com/s3/m/a8aa4bc6294ac850ad02de80d4d8d15abe230085.png)
ansys桥梁建模流程咱就来说说ANSYS桥梁建模的流程哈。
一、前期准备。
咱得先对要建的桥梁有个基本的了解。
比如说,这桥是啥类型的呀,是梁桥呢,还是拱桥之类的。
这就好比你要画一个人的画像,得先知道画的是男是女、是老是少一样。
还有哦,桥梁的尺寸得清楚,像桥的长度、宽度、高度这些数据可不能马虎。
这就像是盖房子,你得知道房子的长宽高才能动手不是?另外呢,材料的特性也很重要。
不同的材料在ANSYS里的参数设置可不一样,就像不同的食材做菜的方法不一样。
比如钢材和混凝土,它们的弹性模量、泊松比这些参数都要提前查好或者根据实际情况确定下来。
二、几何建模。
这一步就像是搭积木的第一步,先把桥梁的形状搭出来。
在ANSYS里呢,我们可以用各种工具来创建桥梁的几何模型。
如果是比较规则的形状,像那种直的梁桥,可能用一些基本的几何形状创建工具就可以搞定啦。
比如说,创建一些长方体来表示桥墩,创建一些薄板来表示桥面板。
但要是桥梁的形状比较复杂,比如说那种弯弯的拱桥,那可能就得费点心思啦。
这时候呢,可能就需要用一些曲线绘制的功能,像样条曲线之类的,来把桥拱的形状准确地画出来。
在创建几何模型的时候,可一定要细心,不然一个小地方错了,后面可就麻烦大了。
就像搭积木的时候,一块积木放错了位置,可能整个建筑就不稳当了。
三、划分网格。
网格划分就像是给我们的桥梁模型穿上一件小格子衣服。
这一步可重要了呢。
网格的大小和形状会影响到后面计算的精度和速度。
如果网格划分得太粗,那计算结果可能就不太准确,就像你用大网捕鱼,可能会漏掉很多小鱼一样。
但是如果网格划分得太细,那计算起来就会超级慢,就像小蚂蚁搬家,一点点地挪,可费劲了。
所以呀,要根据桥梁的结构特点和计算的要求来合理地划分网格。
比如说,在桥梁结构应力比较集中的地方,像桥墩和桥面板的连接处,网格就可以划分得细一点,其他地方可以稍微粗一点。
四、定义材料属性。
前面咱们不是知道了材料的特性嘛,这时候就派上用场啦。
连续梁桥ansys命令流建模求解(可编辑)
![连续梁桥ansys命令流建模求解(可编辑)](https://img.taocdn.com/s3/m/fe6b230a58eef8c75fbfc77da26925c52cc5914f.png)
连续梁桥ansys命令流建模求解!!连续梁桥/prep7et,1,4定义梁单元et,2,21 定义mass21单元!!定义粱材料 !!泊松比!!密度mp,ex,2,3.45e10 !!直线段梁材料和1M段梁材料mp,nuxy,2,0.2mp,dens,2,3302.153125mp,ex,3,3.45e10mp,nuxy,3,0.2mp,dens,3,3301.658695mp,ex,4,3.45e10mp,nuxy,4,0.2mp,dens,4,3299.906778mp,ex,5,3.45e10mp,nuxy,5,0.2mp,dens,5,3298.327219mp,ex,6,3.45e10mp,nuxy,6,0.2mp,dens,6,3292.351605mp,ex,7,3.45e10mp,nuxy,7,0.2mp,dens,7,3284.137255 mp,ex,8,3.45e10mp,nuxy,8,0.2mp,dens,8,3271.802136 mp,ex,9,3.45e10mp,nuxy,9,0.2mp,dens,9,3260.41903 mp,ex,10,3.45e10mp,nuxy,10,0.2mp,dens,10,3248.193657 mp,ex,11,3.45e10mp,nuxy,11,0.2mp,dens,11,3235.117644 mp,ex,12,3.45e10mp,nuxy,12,0.2mp,dens,12,3221.585664 mp,ex,13,3.45e10mp,nuxy,13,0.2mp,dens,13,3208.826871 mp,ex,14,3.45e10mp,nuxy,14,0.2mp,dens,14,3194.279207 mp,ex,15,3.45e10mp,nuxy,15,0.2mp,dens,15,3179.924673 mp,ex,16,3.45e10mp,nuxy,16,0.2mp,dens,16,3166.445716 mp,ex,17,3.45e10mp,nuxy,17,0.2mp,dens,17,3152.555731 mp,ex,18,3.45e10mp,nuxy,18,0.2mp,dens,18,3138.312105 mp,ex,19,3.45e10mp,nuxy,19,0.2mp,dens,19,3124.795334 mp,ex,20,3.45e10mp,nuxy,20,0.2mp,dens,20,3110.7135 mp,ex,21,3.45e10mp,nuxy,21,0.2mp,dens,21,3097.080875 mp,ex,22,3.45e10mp,nuxy,22,0.2mp,dens,22,3083.186268 mp,ex,23,3.45e10mp,nuxy,23,0.2mp,dens,23,3068.968824 mp,ex,24,3.45e10mp,nuxy,24,0.2mp,dens,24,3055.612436 mp,ex,25,3.45e10mp,nuxy,25,0.2mp,dens,25,3045.857147 mp,ex,26,3.45e10mp,nuxy,26,0.2mp,dens,26,3035.174287 mp,ex,27,3.45e10mp,nuxy,27,0.2mp,dens,27,3026.696551 mp,ex,28,3.45e10mp,nuxy,28,0.2mp,dens,28,3015.795365mp,ex,29,3.45e10mp,nuxy,29,0.2mp,dens,29,3007.710181mp,ex,30,3.45e10mp,nuxy,30,0.2mp,dens,30,3000.513837mp,ex,31,3.45e10mp,nuxy,31,0.2mp,dens,31,2978.611375mp,ex,32,3.45e10mp,nuxy,32,0.2mp,dens,32,2958.618861mp,ex,33,3.45e10mp,nuxy,33,0.2mp,dens,33,2937.888072mp,ex,34,3.45e10mp,nuxy,34,0.2mp,dens,34,2919.475751mp,ex,35,3.45e10mp,nuxy,35,0.2mp,dens,35,2903.359983!!6700处mp,ex,36,3.45e10mp,nuxy,36,0.2mp,dens,36,3302.153125!!可以不用mp,ex,37,3.45e10mp,nuxy,37,0.2mp,dens,37,3302.153125mp,ex,38,3.45e10!!-700处梁mp,nuxy,38,0.2mp,dens,38,3180.578901mp,ex,39,3.45e10!!边支点横隔板mp,nuxy,39,0.2mp,dens,39,2868.674818mp,ex,40,3.45e10 !!合拢段横隔板mp,nuxy,40,0.2mp,dens,40,2868.674818mp,ex,41,3.45e10 !!中支点横隔板mp,nuxy,41,0.2mp,dens,41,2757.470588mp,ex,1,3.25e10 定义墩材料属性mp,nuxy,1,0.2mp,dens,1,2650!!定义实常数编号 ,面积,IYY,IZZ,宽,高,,RMORE,,抗扭惯距!!主梁截面r,1,11.851,28.52,215.151,16.95,4,,!!直线段r,2,11.862,28.57,215.458,16.95,4.001,, !!截面100处rmore,,56.905r,3,11.871,28.91,215.622,16.95,4.009,,rmore,,57.345r,4,11.903,29.03,215.78,16.95,4.025,,rmore,,57.938r,5,11.932,29.626,215.88,16.95,4.049,,rmore,,58.502r,6,12.043,30.402,217.093,16.95,4.081,,rmore,,59.768r,7,12.199,31.407,218.899,16.95,4.121,,rmore,,61.445r,8,12.441,32.716,221.806,16.95,4.169,,rmore,,63.652r,9,12.673,34.21,224.418,16.95,4.226,,rmore,,66.058r,10,12.932,35.94,227.279,16.95,4.290,,rmore,,68.801r,11,13.221,37.941,230.512,16.95,4.362,, rmore,,71.948r,12,13.534,40.233,233.872,16.95,4.442,,r,13,13.843,42.747,237.133,16.95,4.530,, rmore,,79.173r,14,14.213,45.688,241.054,16.95,4.627,, rmore,,83.484r,15,14.598,48.964,245.004,16.95,4.731,, rmore,,88.155r,16,14.979,52.547,248.817,16.95,4.843,, rmore,,93.111r,17,15.393,56.562,252.927,16.95,4.963,, rmore,,98.528r,18,15.842,61.069,257.347,16.95,5.092,, rmore,,104.47r,19,16.293,65.992,261.673,16.95,5.228,, rmore,,110.742r,20,16.791,71.484,266.426,16.95,5.372,, rmore,,117.648r,21,17.303,77.568,271.225,16.95,5.525,, rmore,,124.861r,22,17.858,84.282,276.363,16.95,5.685,, rmore,,132.631r,23,18.464,91.768,281.923,16.95,5.854,,r,24,19.072,99.936,287.364,16.95,6.03,, rmore,,149.875r,25,19.524,108.482,291.159,16.95,6.214,, rmore,,158.46r,26,20.084,118.046,295.597,16.95,6.407,, rmore,,167.857r,27,20.536,128.202,298.9,16.95,6.607,, rmore,,177.137r,28,21.148,139.669,303.86,16.95,6.816,, rmore,,187.495r,29,21.626,151.737,307.186,16.95,7.032,, rmore,,197.507r,30,22.07,164.734,310.057,16.95,7.257,, rmore,,207.681r,31,23.541,182.225,323.433,16.95,7.490,, rmore,,223.527r,32,25.066,201.932,336.467,16.95,7.730,, rmore,,241.046r,33,26.871,223.700,351.448,16.95,7.979,, rmore,,257.765r,34,28.707,247.928,365.663,16.95,8.235,,r,35,30.533,274.36,378.934,16.95,8.500,, rmore,,294.461r,46,14.58,35.599,238.702,16.95,4,, rmore,,238.702!!横隔板截面!!边支点r,36,35.376,54.393,339.84,16.95,4.00,, rmore,,128.747!!合拢段r,37,35.376,53.405,339.84,16.95,4.00,, rmore,,127.015!!中支点r,38,71.981,454.871,543.871,16.95,8.5,, rmore,,684.565!!主墩截面!!截面1(实心)r,39,39.932,82.876,212.138,8,5,, rmore,,203.709!!截面(1/2空心)r,40,23.863,72.571,168.024,8,5,, rmore,,168.491!!截面3空心)r,41,14.236,52.366,114.529,8,5,, rmore,,116.391!!边墩截面!!截面1(实心1)r,42,36.113,66.217,177.703,7.7,4.7,, rmore,,165.119!!截面2(空心1/2)r,43,20.753,35.743,99.711,7,4,, rmore,,88.486!!截面3(空心)r,44,9.103,16.082,45.911,6.5,3.5,, rmore,,39.39!!截面4(实心2)r,45,22.673,23.005,79.361,6.5,3.5,, rmore,,61.527!!截面5(1/2)空心2r,49,16,21.958,68.708,6.5,3.5,, rmore,,55.682!!建立第一跨梁节点xlatan1.029/80n,1,0,n,2,2.25,2.25*xln,3,6,6*xln,4,9,9*xln,5,11,11*xln,6,13,13*xl-0.0045 n,7,15,15*xl-0.0135 n,8,17,17*xl-0.023 n,9,19,19*xl-0.038 n,10,21,21*xl-0.062 n,11,23,23*xl-0.092 n,12,25,25*xl-0.1275 n,13,27,27*xl-0.167 n,14,29,29*xl-0.2115 n,15,31,31*xl-0.261 n,16,33,33*xl-0.314 n,17,35,35*xl-0.3715 n,18,37,37*xl-0.435 n,19,39,39*xl-0.502 n,20,41,41*xl-0.5725 n,21,43,43*xl-0.648 n,22,45,45*xl-0.728 n,23,47,47*xl-0.8115n,24,49,49*xl-0.8995n,25,51,51*xl-0.9925n,26,53,53*xl-1.0895n,27,55,55*xl-1.1905n,28,57,57*xl-1.325n,29,59,59*xl-1.433n,30,61,61*xl-1.5155n,31,63,63*xl-1.6325n,32,65,65*xl-1.7535n,33,67,67*xl-1.879n,34,69,69*xl-2.007n,35,71,71*xl-2.1325n,36,73,73*xl-2.2635n,37,75,75*xl-2.399n,38,77,77*xl-2.533n,39,79,79*xl-2.631xl2atan0.7/140local,11,0,80,80*xl-2.631,0,xl2nsym,x,35,5,39,1!!复制粱结点从5到39结点编号增加35 csys,0n,75,149.6,0.15852local,12,0,150,0.15852,0,xl2nsym,x,36,40,75,1local,13,0,220,-1.6027,0nsym,x,111,1,111,1csys,0n,500,80,80*xl-2.631n,501,220,-1.6027n,502,360,-1.6148csys,0 !!返回普通坐标!!建立墩结点!!PM112边墩截面n,300,0,-2.165 !!实心)2米长n,301,0,-4.365n,302,0,-9.365!!(1/2空心)5M长n,303,0,-13.365n,304,0,-17.365n,305,0,-21.365 n,306,0,-24.93n,307,0,-28.93n,308,0,-30.63!!PM113主敦截面n,309,80,0.5-6.665-0.8n,310,80,0.5-3.5-6.665!!实心3.5mn,311,80,0.5-8.5-6.665!!1/2空心)5mn,312,80,0.5-12.5-6.665!!空心)4Mn,313,80,0.5-16.5-6.665 !!n,314,80,0.5-18.594-6.665n,315,80,0.5-22.594-6.665n,316,80,0.5-24.594-6.665+0.4!实心)2m!!pm114主墩截面n,350,220,0.5-6.665-0.8 !n,351,220,0.5-3.5-6.665 !!1/2空心5mn,352,220,0.5-8.5-6.665!!空心)5mn,353,220,0.5-12.5-6.665 !!空心)6.064Mn,354,220,0.5-16.5-6.665!!1/2空心)4Mn,355,220,0.5-19.294-6.665!!实心)2Mn,356,220,0.5-23.294-6.665n,357,220,0.5-25.294-6.665+0.4local,13,0,220,-1.6027,0nsym,x,17,300,316,1csys,0!!生成边跨1mat,39real,36e,1,2mat,38real,46e,2,3mat,2real,1e,3,4e,4,5mat,2real,2e,5,6*do,i,3,35,1 mat,ireal,ie,3+i,4+i*enddo*do,i,3,35,1 mat,ireal,ie,38+i,39+i *enddo*do,i,3,35,1 mat,ireal,ie,74+i,75+i *enddo*do,i,3,35,1 mat,ireal,ie,114+i,115+i *enddo*do,i,3,35,1 mat,ireal,ie,149+i,150+i *enddo*do,i,3,35,1 mat,ireal,ie,185+i,186+i *enddomat,41real,38e,39,500 mat,41real,38e,500,74 mat,2real,2 e,41,40 mat,2 real,1 e,40,75 mat,40 real,37 e,75,111 mat,2 real,1 e,111,76 mat,2 real,2 e,76,77 mat,41 real,38 e,110,501 mat,41 real,38 e,501,221 mat,2 real,2e,188,187 mat,2 real,1 e,187,222 mat,41 real,37 e,222,186 mat,2 real,1 e,186,151 mat,2 real,2 e,151,152 mat,41 real,38 e,185,502 mat,41 real,38 e,502,150 mat,39 real,36 e,112,113mat,38 real,46 e,113,114 mat,2 real,1 e,114,115 e,115,116 mat,2 real,2 e,116,117 !!建立桥墩!!边墩1 mat,1 real,42 e,300,301 mat,1 real,43 e,301,302 mat,1 real,44 e,302,303 mat,1e,303,304 mat,1 real,44 e,304,305 mat,1 real,44 e,305,306 mat,1 real,49 e,306,307 mat,1 real,45 e,307,308 !!主墩1 mat,1 real,39 e,309,310 mat,1 real,40 e,310,311 mat,1e,311,312 mat,1 real,41 e,312,313 mat,1 real,41 e,313,314 mat,1 real,40 e,314,315 mat,1 real,39 e,315,316 !!主墩2 mat,1 real,39 e,350,351 mat,1 real,40 e,351,352 mat,1e,352,353 mat,1 real,41 e,353,354 mat,1 real,41 e,354,355 mat,1 real,40 e,355,356 mat,1 real,39 e,356,357 !!主墩3 mat,1 real,39 e,326,327 mat,1 real,40 e,327,328 mat,1e,328,329 mat,1 real,41 e,329,330 mat,1 real,41 e,330,331 mat,1 real,40 e,331,332 mat,1 real,39 e,332,333 !!边墩2 mat,1 real,42 e,317,318 mat,1 real,43 e,318,319 mat,1e,319,320mat,1real,44e,320,321mat,1real,44e,321,322mat,1real,44e,322,323mat,1real,49e,323,324mat,1real,45e,324,325!!添加质量惯距!!两米段质量惯距r,100,,,,1293348.4!!100米处和直线段的质量惯距r,101,,,,1296019.6r,102,,,,1297493r,103,,,,1301181.8 r,104,,,,1311723 r,105,,,,1326622 r,106,,,,1348967 r,107,,,,1370728 r,108,,,,1395061 r,109,,,,1422801 r,110,,,,1452757 r,111,,,,1483258 r,112,,,,1519733 r,113,,,,1558030 r,114,,,,1597229 r,115,,,,1640292 r,116,,,,1687605 r,117,,,,1736625 r,118,,,,1790923 r,119,,,,1848602 r,120,,,,1911418 r,121,,,,1980562 r,122,,,,2052690 r,123,,,,2118097 r,124,,,,2192307r,125,,,,2263641r,126,,,,2350704r,127,,,,2432292r,128,,,,2516392r,129,,,,2679987r,130,,,,2853514r,131,,,,3048284r,132,,,,3252032r,133,,,,3462506!!边跨直线3米段r,148,,,,1293348.4*3/2!!-700处3.75米段的质量惯距r,134,,,,2725866.2!!边支点横隔r,135,,,,2246142.5!!合龙段横隔r,136,,,,833679/2!!中支点横隔r,137,,,,5292760!!添加边墩质量惯距从上到下!!变截面实心2米段r,138,,,,1163498!!1/2空心5米段r,139,,,,1794766!!空心段4米r,140,,,,657211!!1/2空心4米段r,141,,,,1085079!!实心2米段r,142,,,,1064567!!添加主墩质量惯性距从上到下!!实心3米段r,143,,,,2345361!!1/2空心5米段r,144,,,,2869095!!空心4米段r,145,,,,1769087!!1/2空心4米段r,146,,,,2869095*4/5!!实心2米段r,147,,,,2345361*2/3!!在结点处加入质量惯性距!!边跨合龙段!左边边跨real,135 e,2 type,2 real,134 e,3 type,2 real,148 e,4 type,2 real,100 e,5!!右边边跨type,2 real,135 e,113 type,2 real,134 e,114 type,2 real,148 e,115real,100e,116!!对第一个主跨的循环*do,i,6,39,1type,2real,94+ie,i*enddo!!对第二个主跨的循环*do,i,41,74,1 type,2real,59+ie,i*enddo!!对第3个循环*do,i,77,110,1 type,2real,33+ie,i*enddo!!对第4个循环*do,i,188,221,1 type,2real,-88+ie,i*enddo!!对第5个循环*do,i,152,185,1 type,2real,i-52e,i*enddo!!对第6个循环*do,i,117,150,1 type,2real,-17+ie,i*enddo!!添加质量惯距到桥墩!!左边墩type,2real,138e,301real,139 e,302 type,2 real,140 e,303 type,2 real,140 e,304 type,2 real,140 e,305 type,2 real,140 e,306 type,2 real,141 e,307 type,2 real,142 e,308!!右边墩real,138 e,318 type,2 real,139 e,319 type,2 real,140 e,320 type,2 real,140 e,321 type,2 real,140 e,322 type,2 real,140 e,323 type,2 real,141 e,324 type,2e,325!!左边主墩type,2real,143e,310type,2real,144e,311type,2real,145e,312type,2real,145e,313type,2r,400,,,,1769087*3/4 e,314type,2real,146e,315type,2e,316!!中间主墩type,2real,143e,351type,2real,144e,352type,2real,145e,353type,2real,145e,354type,2r,400,,,,1769087*3/4 e,355type,2real,146e,356type,2e,357!!右边主墩type,2real,143e,327type,2real,144e,328type,2real,145e,329type,2real,145e,330type,2r,400,,,,1769087*3/4 e,331type,2real,146e,332type,2e,333!!添加横隔板处质量惯性距!!中支点type,2real,137e,500type,2real,137e,501type,2real,137e,502!!合龙段1type,2real,136e,75type,2real,136e,111type,2r,411,,,,1293348.4*3/10e,40type,2r,412,,,,1293348.4*3/10 e,76!!合龙段2type,2real,136e,222type,2real,136e,186type,2r,411,,,,1293348.4*3/10 e,187type,2r,412,,,,1293348.4*3/10 e,151!!偶合结点cp,1,uy,1,300cp,2,uz,1,300cp,3,rotx,1,300cp,4,uy,309,500cp,5,uz,309,500 cp,6,rotx,309,500 cp,7,ux,350,501 cp,8,uy,350,501 cp,9,uz,350,501 cp,10,rotx,350,501 cp,11,roty,350,501 cp,12,uy,326,502 cp,13,uz,326,502 cp,14,rotx,326,502 cp,15,uy,317,112 cp,16,uz,317,112 cp,17,rotx,317,112 加约束d,308,all,all,0 d,316,all,all,0 d,357,all,all,0 d,333,all,all,0 d,325,all,all,0 allselfinish求解/soluantype,2 !模态分析acel,,9.8 !加载重力modopt,subsp,20!提取前30阶模态mxpand,20,,,0LUMPM,1solvefinish/post1set,list。
ansys桥梁模型建立
![ansys桥梁模型建立](https://img.taocdn.com/s3/m/f9bbefb9804d2b160a4ec07f.png)
在桥梁用ansys建立模型时,可参照以下建议的单元进行桥桑模型的建立.L梁(配筋)单元:桥墩.箱梁、纵横梁°2、板无(配筋)单元:桥面系烧。
3、冥体(配筋)单元:桥議系烧、基础结构。
4、拉杆单元:拱桥的系杆、吊杆.5、拉寒单元:斜拉桥的寒、想索桥的钢丝龜。
6、演紧单元:察力控制、螺栓柳钉楚接.7、连接单元:支座、堆基。
连接部分解决方法:ansys在解决桥梁不同的连楼部位时可遶用如下的方法:1、C ombin7. Co<nbin40. LinklL Combin52. Ccnbin38禅簧(阻尼、问陳元):可爲来模拟支座、媚瓠拉杆等桥梁部使。
2、艮紧单元可解决螺栓、紳钉连楼的问題&3、二力杆拉杆、索可解决拉索问题.4、锅合与约束方稚可解决梁与塔横梁的边界妁束关系。
5、接触单元如Contiwtl52可模拟•滑动支座、销接等需件的真冥情况。
常见桥梁發触问題:U淸动苣接:点点接離2、绑走這接:点面接触3、辕动匹接:面面接触基础的处理方式:U基础平台与桩基:用实体模型、预应力配筋2、基础与岩土系统:祢限区域实体模型、预应力配筋桥梁中常见的模型可以用相应的草元1、刚构桥.拱桥:梁与杆单元姐合模型2、钢管跄:复合竄面梁模型3、连续梁:梁模型4、料拉桥.患既桥:梁、板売、裳或杆单元绘合模型5、立交桥:娈体墩、板无桥面和加强梁混合模型6、局篩详纽计算:实体(考虑配筋〉或板模型,以便考虑模型细节符征.如结构尺寸构造側角、厚薄或粗细过度、凹凸却其配筋k.9.-70/prep7 et. l.beiiml et.2 JinklOet.3.shell63r.1.2...1.2r.2. •mp.ex.1.2ellmp.nuxy ・l ・mp.dens.1.7800 mp.ex.2.3el0mp ・nuxy ・2・ mp.dens.2.3000 k.l.-60. 10.0k.2.-50k.3.-30.15k.4.-10.20k.5.10.20k.6.30.15k.7.50k.8.60.-10k ・10.・60k.11,-30 k.12,-10k.13,10k. 11.30k.15.60k. 16,70kgen,2.all .......... -20. .0 ♦do.i.1.7l.i.inl.i+16.iH7拿enddo拿do.i・2・7l.i.i416拿enddo1.L91.1,101.17.251.17.261.8.151.8.161.24.311.24.321.2.171.8.231.7.24拿do.i.3.6l.i+16.i*24♦enddo<1.9.10.26.25a.10,2.18.26a.2.11.27.18a.llJ2.28.27a.12,13.29.28 aJ3J4.30.29a. 14,7.23.30a.7.15.31.23a.15,16.32.31 !桥体權粟lsel.s...1.32 latt,1.1.1 1esize・nl1.2 lmesh.all!悬索lsel.s...33.40Imesh.all!桥面aatt.2.3.3aesize.nl1.2 amesh.all。
ANSYS矮塔斜拉桥建模-荷载与动力分析
![ANSYS矮塔斜拉桥建模-荷载与动力分析](https://img.taocdn.com/s3/m/2f036dd38bd63186bcebbcd9.png)
目录一.文件名及前处理模式 (2)二.截面的建立 (2)1.主梁截面 (2)2.桥塔截面 (30)三.定义单元属性 (31)四.建立主要节点和单元 (32)1.主梁节点和单元 (32)2.桥塔节点和单元 (39)3.斜拉索节点和单元 (40)4.鱼刺骨模型模拟斜拉索与主梁连接 (41)五.加载与求解 (43)1.施加边界条件 (43)2.施加自重和公路一级荷载 (43)六.动力特性 (43)1.前十阶模态自振频率 (43)2.前五阶振型图 (44)一.文件名及前处理模式定义工作文件名与工作标题,并进入前处理模式(PREP7):/FILNAME,BRIDGE,1 !定义工作文件名/TITLE,ZHANG HAO NAN’S HOMEWORK !定义工作标题/REPLOT !重新显示/PREP7 !进入PREP7处理器二.截面的建立1.主梁截面根据本桥图纸,截面一共有32个,其中包括截面纵向变化与横向变化,为简化模型,减小工作量,选取其中11个截面作为分析对象,可以大致上反应桥梁的形态,从左到右选取图纸中的截面:截面1:左边跨直线段截面截面8:4号墩墩顶截面截面11:截面第一次横向变化(39M—43M)起始截面截面14:截面第一次横向变化(39M—43M)结束截面截面16:主跨跨中截面截面22:截面第二次横向变化(43M—45M)起始截面截面24:截面第二次横向变化(43M—45M)结束截面截面25:5号墩墩顶截面截面27:截面第二次横向变化(45M—39M)起始截面截面31:截面第二次横向变化(45M—39M)结束截面截面32:6号墩墩顶截面由于截面形式复杂,而变截面需要前后两端的拓扑一致,即两端的形状,线与线的关系必须一致,两端截面的节点能一一对应,不使用辅助软件的条件下,必须对这些截面在输入时进行划分,取单元形状为四边形,方向为逆时针,并定义梁截面为MESH(自定义截面),截面偏移为梁节点偏移至横截面圆点。
简单桁架桥梁ansys分析
![简单桁架桥梁ansys分析](https://img.taocdn.com/s3/m/5f5e4a65a4e9856a561252d380eb6294dd8822f2.png)
简单桁架桥梁ansys分析Ansys是一款广泛使用的有限元分析软件,可以用于各种工程结构的分析,包括桁架桥梁。
下面是一个简单的桁架桥梁分析的步骤,使用Ansys进行模拟。
一、建立模型1.创建新的分析:在Ansys中,首先需要创建一个新的分析。
选择适当的分析类型,例如静态分析或动态分析,根据需要进行设置。
2.创建几何体:在Ansys中,可以使用自带的建模工具创建几何体。
对于桁架桥梁,需要创建梁单元和节点。
梁单元用于模拟桥梁的横梁和纵梁,节点用于连接梁单元。
3.定义材料属性:为梁单元分配适当的材料属性,例如弹性模量、泊松比、密度等。
4.网格化:对几何体进行网格化,以生成有限元网格。
可以调整网格密度以获得更精确的结果。
5.边界条件和载荷:定义边界条件和载荷。
对于桁架桥梁,可能需要在支撑处施加固定约束,并在桥面上施加车辆载荷。
二、进行分析1.运行分析:在Ansys中,可以运行分析并观察结果。
可以使用后处理功能来查看结果,例如位移、应力、应变等。
2.检查结果:检查模型的位移、应力、应变等是否符合预期。
如果结果不符合预期,可能需要返回模型进行修正。
三、优化设计1.优化设置:在Ansys中,可以使用优化工具对模型进行优化设计。
设置优化目标,例如最小化总重量或最大化刚度。
2.运行优化:运行优化过程,Ansys将自动调整模型的参数以达到优化目标。
3.检查结果:在优化完成后,检查结果以确保满足设计要求。
四、验证模型1.确认模型的正确性:在完成优化设计后,需要确认模型的正确性。
可以通过与实验数据进行比较,或者与其他分析工具的结果进行比较来验证模型的准确性。
2.进行敏感性分析:可以使用Ansys的敏感性分析功能来确定哪些参数对模型结果影响最大。
这有助于在后续设计中更好地控制这些参数。
3.确认模型的可靠性:确认模型是否符合工程要求和规范。
如果模型满足所有条件,那么可以将其用于实际工程设计。
五、应用模型1.工程设计:在确认模型的正确性和可靠性后,可以将模型应用于实际的工程设计。
ANSYS桥梁建模经验1
![ANSYS桥梁建模经验1](https://img.taocdn.com/s3/m/3f91e1d7360cba1aa811dae6.png)
2.从横截面来看,一般单箱室连续刚构桥具有外轮廓的几何拓扑,因此将其作为截面的拓扑。对于和其拓扑一致或者可以调整为该拓扑结构的连续刚构都能分析。对于箱内倒角为双折线的连续刚构只能近似模拟。具体建模时,我们只需输入外轮廓尺寸,截面纵向位置,APDL命令流即可自动计算其他关键点位置,用循环语句生成实体模型。
442钢筋与混凝土的连接如果采用线单元初应力法模拟预应力有限元模型中钢筋和混凝土的连接主要分为三种即分离式整体式和组合式4252分离式模型把混凝土和钢筋作为不同的单元来处理即混凝土和钢筋各自被划分为足够小的单元两者的刚度矩阵是分开来求解的考虑到钢筋是一种细长的材料通常可以忽略其横向抗剪强度因此可以将钢筋作为线单元处理
3.对于每一根预应力束,定义张拉端为局部坐标原点,通过指定导线点局部坐标,和局部坐标在整体坐标中的位置进行定位。对于双向张拉的预应力束将其分为两根来建模,分割点位于0.5L处(L预应力束总长)。这样做看上去繁琐,但却解决了所有预应力束都可以通过一个宏命令完成预应力束损失的计算,单元的生成,初应变的赋值功能,没有任何局限性,为参数化建模提供了保证。参数的输入只有各导线点局部坐标,局部坐标在整体坐标中坐标,张拉控制力,波纹管类型等计算损失的参数。
1)输入参量: ; ; ; ;
2)计算建模控制点参量 : ;
3)计算上层配筋层纵向配筋率 :
4)返回计算数值 和 进行建模和单元属性赋值。
图4-1配筋率计算示意图
Fig.4-1Schematic plan of ratio of reinforcement calculation
用ANSYS进行桥梁结构分析..
![用ANSYS进行桥梁结构分析..](https://img.taocdn.com/s3/m/51a3650e974bcf84b9d528ea81c758f5f71f2955.png)
⽤ANSYS进⾏桥梁结构分析..⽤ANSYS进⾏桥梁结构分析宝来华龙海引⾔:我院现在进⾏桥梁结构分析主要⽤桥梁博⼠和BSACS,这两种软件均以平⾯杆系为计算核,多⽤来解决平⾯问题。
近来偶然接触到ANSYS,发现其结构分析功能强⼤,现将⼀些研究⼼得写出来,并⽤⼀个很好的学习例⼦(空间钢管拱斜拉桥)作为引⽟之砖,和同事们共同研究讨论,共同提⾼我院的桥梁结构分析⽔平⽽努⼒。
【摘要】本⽂从有限元的⼀些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使⽤⽅法和利⽤APDL语⾔快速进⾏桥梁的结构分析,最后通过⼯程实例来更近⼀步的介绍ANSYS进⾏结构分析的⼀般⽅法,同时进⾏归纳总结了各种单元类型的适⽤围和桥梁结构分析最合适的单元类型。
【关键词】ANSYS有限元APDL结构桥梁⼯程单元类型⼀、基本概念有限元分析(FEA)是利⽤数学近似的⽅法对真实物理系统(⼏何和载荷⼯况)进⾏模拟。
还利⽤简单⽽⼜相互作⽤的元素,即单元,就可以⽤有限数量的未知量去逼近⽆限未知量的真实系统。
有限元模型是真实系统理想化的数学抽象。
真实系统有限元模型⾃由度(DOFs)⽤于描述⼀个物理场的响应特性。
节点和单元1、每个单元的特性是通过⼀些线性⽅程式来描述的。
2、作为⼀个整体,单元形成了整体结构的数学模型。
3、信息是通过单元之间的公共节点传递的。
4、节点⾃由度是随连接该节点单元类型变化的。
单元形函数1、FEA 仅仅求解节点处的DOF 值。
2、单元形函数是⼀种数学函数,规定了从节点DOF 值到单元所有点处DOF 值的计算⽅法。
3、因此,单元形函数提供出⼀种描述单元部结果的“形状”。
4、单元形函数描述的是给定单元的⼀种假定的特性。
5、单元形函数与真实⼯作特性吻合好坏程度直接影响求解精度。
6、DOF 值可以精确或不太精确地等于在节点处的真实解,但单元的平均值与实际情况吻合得很好。
7、这些平均意义上的典型解是从单元DOFs 推导出来的(如,结构应⼒,热梯度)。
ANSYS建模的经验与技巧
![ANSYS建模的经验与技巧](https://img.taocdn.com/s3/m/2b95e741aaea998fcc220ea9.png)
A N S Y S建模的经验与技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII1.始终注意保持使用一致的单位制2.求解前运行allsel命令求解前运行allsel命令。
要不然,某些已经划分网格的实体而没有被选择,那么加在实体模型上加的荷载可能会没有传到nodes or elements上去;3.网格划分问题牢记《建模与分网指南》上有关建模的忠告。
网格划分影响模型是否可用,网格划分影响计算结果的可接受程度;自适应网格划分(ADAPT)前必须查自适应网格划分可用单元,在ansys中能够自适应网格划分的单元是有限的。
网格划分完成后,必须检查网格质量!权衡计算时间和计算精度的可接受程度,必要时应该refine网格4.实体建模布尔运算应用实体建模以及布尔运算(加、减、贴、交)的优势解决建立复杂模型时的困难;但是,没有把握时布尔运算将难以保证成功!5.计算结果的可信度一般来说,复杂有限元计算必须通过多人,多次,多种通用有限元软件计算核对,互相检验,相互一致时才有比较可靠的计算结果。
协同工作时必须对自己输入数据高度负责,并且小组成员之间保持良好的沟通;有限元分析不是搞什么“英雄主义”,而需要多方面的质量保证措施。
6.了解最终所需要的成果建立模型之前,应该充分了解最终要求提交什么样式的成果,这样能形成良好的网格,早期良好的建模规划对于后期成果整理有很大的帮助;7.撰写分析文档文档与分析过程力求保持同步,有利于小组成员之间的沟通和模型的检验和查证;8.熟悉命令对没有把握的命令应该先用简单模型熟悉之,千万不能抱有“撞大运”的想法;9.多种单元共节点不同单元使用共同节点时注意不同单元节点自由度匹配问题导致计算结果的正确与否(《建模与分网指南》)三维梁单元和壳单元的节点自由度数一致,但是应该注意到三维梁单元的转动自由度和壳单元的转动自由度的含义不一样。
壳的ROTZ不是真实的自由度,它与平面内旋转刚度相联系,在局部坐标中壳的单元刚度矩阵ROTZ对应的项为零,对此不能将梁与壳单元仅仅有一个节点相连,例外的是当shell43 orshell63(两者都有keyopt(3)=2)的Allman旋转刚度被激活时。
ANSYS高速建模方法介绍
![ANSYS高速建模方法介绍](https://img.taocdn.com/s3/m/a9760abf69eae009591bec76.png)
ANSYS命令流主要使用FORTRAN语言,但并非就要求 你熟悉FORTRAN语言,学过C语言、VB语言及其他类似语 言的,都可以很好掌握APDL方法,语言本身不重要,主要 是有编程的思维和方法,才能熟练使用APDL。
2.ANSYS高速建模办法
这里所说高速,我个人认为是实实在在的高速建模,这里 不采用GUI,不采用APDL,而是采用第三方软件来辅助。 这里的第三方软件就是MIDAS,MIDAS建立空间模型是非常 快速的,可以说相同模型,MIDAS可以比ANSYS效率高几倍, 越是复杂的桥梁结构越是有它的优越性。MIDAS有一个特点, 可以输出MCT文件,这个文件是ANSYS建模的基本文件。 这里要介绍一款程序:CMTA CMTA:CONVERT MIDAS MCT TO ANSYS APDL
导出MCT文件
材料类型
读取MCT文件后,在梁单元截面及桁架单 元截截面类型
双击桁架单元截面,可以输入面积 右击材料名称,可以输入材料属性
单击“输出APDL”可以输出命令流文件,文件名笔者定 位为CMTA
输出完毕:cmta.txt
打开cmta.txt文件,你可以看到APDL命令流 并且将MIDAS里节点及单元编组也可以输出为ANSYS里 的组
而桥梁专业软件MIDAS、桥梁博士等软件则 在设计院和有关设计施工单位应用普遍。MIDAS 软件不仅针对桥梁建模,也可以建立实体及板壳 单元,是一款功能强大的桥梁专业软件。
而对桥梁专业硕士来说,如何快速使用 ANSYS建模是一件非常重要的事情,其建模时间 长短决定着成果发布的时间长短。很多人使用 ANSYS建立带有复杂加劲类的箱型板壳结构往往 感觉非常繁琐,只好舍去认为不重要的构件,委 曲求全。下面,就来介绍ANSYS快速及高速建模 方法。
利用有限元软件ANSYS对钢桁梁桥进行建模
![利用有限元软件ANSYS对钢桁梁桥进行建模](https://img.taocdn.com/s3/m/d28eb4c86bd97f192379e95e.png)
利用有限元软件ANSYS对钢桁梁桥进行建模发表时间:2009-08-28T15:41:45.107Z 来源:《企业技术开发(下半月)》2009年第2期供稿作者:李奇霏,徐梁晋(中南大学土木建筑学院,湖南长沙410083 [导读] 文章对有限元分析软件ANSYS,以及钢桁梁桥进行了简单的介绍,并利用大型有限元软件ANSYS对钢桁梁桥进行建模作者简介:李奇霏,中南大学土木建筑学院。
摘要:文章对有限元分析软件ANSYS,以及钢桁梁桥进行了简单的介绍,并利用大型有限元软件ANSYS对钢桁梁桥进行建模,为实际工程中的研究和计算提供了方便。
关键词:ANSYS;钢桁梁桥;建模结构建模分析是建筑设计的一个基本要求,随着科技的进步,大型有限元软件ANSYS已成为结构建模分析的有力工具,能更好地对模型进行准确快速的模拟,在工程计算领域的应用越来越广阔。
1有限元分析软件——ANSYS ANSYS*软件是美国ANSYS公司研制的一个功能强大的大型有限元分析软件,具有强大的前处理、求解和后处理功能,目前广泛应用于航空航天、核工业、铁道、石油化工、机械制造、水利水电、生物医学、土木工程、家用产品及科学研究等领域,它是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAD工具之一。
建模所用版本为ANSYS10.0版。
2钢桁梁桥随着时代的发展,对桥梁跨度的要求也越来越高,钢板梁的梁高增加,用钢量也相应增加,很不经济,应采用桁梁。
桁梁桥主要有以下六部分组成:主桁架、桥面、桥面系、联结系、制动撑架以及支座。
主桁主桁是桁梁桥的主要承重结构,它将承受的列车竖向荷载等传给支座。
主桁由上弦、下弦和腹杆组成。
腹杆又分为斜杆和竖杆。
有斜杆交汇的节点称为大节点,无斜杆交汇的节点称为小节点,节点之间距离称做节间长,竖杆视其受拉或受压又分为挂杆与立柱。
ansys学习-桥梁结构分析中常用apdl代码小结
![ansys学习-桥梁结构分析中常用apdl代码小结](https://img.taocdn.com/s3/m/b33cd0355a8102d276a22f65.png)
NSEL, S, LOC, Z, 0 , 10 !选择截面一侧全部节点
ESLN, S, 1 !选择截面一侧全部单元
NSEL, S, LOC, Z, 10 !仅选择截面节点
ESEL, U, MAT, , 2 !将预应力单元从选择集中删除(可选)
!定义计算点
SPOINT, , 0, 0, 10 !为截面形心坐标,采用3的方法计算
FSUM !FSUM, LAB, ITEM,LAB默认为全局笛卡儿坐标,取RSYS为当前激活坐标系
!提取结果
*GET,F1,FSUM,,ITEM,FZ !轴力,轴向Z
*GET,F2,FSUM,,ITEM,FY !剪力,竖向y
*GET,M,FSUM,,ITEM,MX !弯矩,满足右手法则,横向x
需要注意的是计算内力效应时,如包含预应力筋节点及预应力单元,FSUM得到的是
外力效应,不存在截面轴力及预应力弯矩效应,如不包含预应力单元,FSUM得到的
是扣除预应力效应后的混凝土内力,此时的结果与通常结构分析一致。
给节点赋温度值,体内温度分布自然得到。
*GET,N,NODE,,COUNT
*DO, i, 1, NБайду номын сангаас 1
BF,i,TEMP,TEMP1(NY(i))
*ENDDO
3、计算截面形心及截面特性
以下代码,对于完整截面及非完整截面均可,对于非完整截面要求各截面是共面的
。
ASEL,S,LOC,Z,20 !选择截面上所有平面
!创建预应力筋节点
*DO, i, 0, 20
N, i+1, 0, 0.008*i*1*(i*1-20), i*1
如何使用ANSYS 建模进行桥梁荷载评估
![如何使用ANSYS 建模进行桥梁荷载评估](https://img.taocdn.com/s3/m/481f491ef12d2af90242e6f7.png)
如何使用ANSYS 建模进行桥梁荷载评估摘要本文主要介绍利用ANSYS建立桥梁的结构模型,并计算出恒载、活载作用下所产生的内力及应力。
其中活载采用公路-Ⅰ级和公路-Ⅱ级的荷载标准对桥梁进行加载,并将活载作用下杆件所产生的内力及应力进行组合,将其组合值与实测应力幅值相比较,以此来作为评估荷载等级的依据。
随后对实桥的交通进行观测,在观测的基础上统计出车辆的类型、车重、轴距和过往频率,再根据统计的结果最终建立车辆模拟荷载。
关键词:钢桁架、有限元模型、车辆荷载模拟This paper mainly introduces the structure of the bridge by ANSYS established model, and calculates the constant load, under the influence of live load and the internal force produced and stress. Live load of the highway-Ⅰlevel and highway-Ⅱlevel to bridge for the standard load load, and will be under the influence of live load and stem a generated internal force and stress in combination, will the combination with measured values stress amplitude compared, as the basis for evaluating load level. Then the real bridge traffic for observation, the basis of the observation statistics a vehicle type, weight of the car, wheelbase and past frequency, again according to statistics results vehicle load establish simulation.Keywords: steel truss, finite element model, the vehicle load simulation 中图分类号:F407.9 文献标识码:A 文章编号1 概述近年来,随着我国交通运输事业的不断发展,大量低等级公路被改建扩建,服役桥梁能否继续使用已成为公路建设决策部门的一件大事。
ansys技巧总结_桥梁计算(常用的计算方法)
![ansys技巧总结_桥梁计算(常用的计算方法)](https://img.taocdn.com/s3/m/d9f11ff8770bf78a652954dd.png)
4.拉杆单元:拱桥的系杆、吊杆。
5.拉索单元:斜拉桥的索、悬索桥的钢丝绳。
6.预紧单元:索力控制、螺栓铆钉连接。
7.连接单元:支座、地基。
二、常见桥梁连接部位
在桥梁建立模型时要准确模拟边界条件,因此要准确分析连接部位的
能受压。如果混凝土与节点底板分离,单元将不起作用,否则Hnkl0单元要
承受拉力。如果用Linkl0的话,你可以把不与结构相联接的一端所有自由度
在Ansys单元库中,有近200种单元类型,在本章中将讨论一些在桥梁
工程中常用到的单元,包括一些单元的输人参数,如单元名称、节点、自由
度、实常数、材料特性、表面荷载、体荷载、专用特性、关键选项KEYOPl等。
*** 关于单元选择问题
这是一个大问题,方方面面很多,主要是掌握有限元的理论知识。首先
3.用温度变化模拟。
在常用的软件系统中,预应力混凝土分析根据作用不妨分为两类:分离
式和整体式。所谓分离式就是将混凝土和力筋的作用分别考虑(脱离体),
以荷载的形式取代预应力钢筋的作用,典型.的如等效荷载法;而整体式则是
将二者的作用一起考虑,典型的如Ansys中用Link单元模拟力筋的方法。
(2):fullintegration。rreducedintegration其实又是两种不同的单元,这样不同
组合一下这个Solid45实际上是包含了6种不同单元,各有各的不同特点和
用处。因此使用Ansys要注意各单元的Keyopt选项。不同的选项会产生不
同的结果。 ·
体)。下面的几节介绍一下桥梁工程计算中经常会用到的单元。
*** 桥梁仿真单元类型
桥梁结构ANSYS建模原则及常见问题
![桥梁结构ANSYS建模原则及常见问题](https://img.taocdn.com/s3/m/12fe3f7ff242336c1eb95ee7.png)
桥梁结构 ANSYS 建模原则及常见问题
王东绪,周昱,王士刚,李永乐
西南交通大学桥梁工程系李永乐研学团队 二 O 一二年九月
目 录
1 桥梁结构 ANSYS 模拟方法及原则 ................................. 1
1.1 模拟方法.......................................................... 1 1.1.1 梁格法 ...................................................... 1 1.1.2 实体元法和板壳元法 ......................................... 1 1.1.3 空间梁单元 ................................................. 1 1.2 各种构件模拟...................................................... 2 1.2.1 主梁模拟原则 ............................................... 2 1.2.2 刚臂问题. ................................................... 3 1.2.3 质量及质量惯性矩 ............................................ 3 1.2.4 索结构模拟 ................................................. 4 1.2.5 常用单元特性 ............................................... 4 1.3 命令流编写注意事项................................................ 5
斜拉桥ansys建模
![斜拉桥ansys建模](https://img.taocdn.com/s3/m/198cc2e2cc7931b764ce15ed.png)
斜拉桥ansys建模/prep7/title, cable_stayed bridge,author is Sunhang/,define the keypoints*set,alfa1,10 !angle of tower upside*set,alfa2,65 !angle of tower downside*set,alfa3,79.04594 !angle of tower with bridge surface*set,y1,55.5 !桥塔顶面到原点的距离*set,y2,33.5 !桥塔中部的Y轴向长度*set,pi,3.1415926*set,x3,y2/tan(alfa2*pi/180) !桥塔中部的X轴向长度*set,x2,(y1-y2)*tan(alfa1*pi/180) !桥塔上部的X轴向长度*set,x1,x2+x3 !桥塔的X轴向长度*set,kp_yy1,0 !定义桥塔上部的索锚固点竖向距离(从塔顶算起)*set,kp_yy2,2.5185*set,kp_yy3,3.5788*set,kp_yy4,4.6469*set,kp_yy5,5.7248*set,kp_yy6,6.8151*set,kp_yy7,7.9211*set,kp_yy8,9.0479*set,kp_yy9,10.2027*set,kp_yy10,11.3965*set,kp_yy11,12.6470*set,kp_yy12,13.9848*set,kp_yy13,15.7143*set,kp_yy14,17.7041*set,kp_yy15,22.0000k,1,-x1,y1,k,6,-x1+kp_yy2*tan(alfa1*pi/180),y1-kp_yy2k,8,-x1+kp_yy3*tan(alfa1*pi/180),y1-kp_yy3k,10,-x1+kp_yy4*tan(alfa1*pi/180),y1-kp_yy4k,12,-x1+kp_yy5*tan(alfa1*pi/180),y1-kp_yy5k,14,-x1+kp_yy6*tan(alfa1*pi/180),y1-kp_yy6k,16,-x1+kp_yy7*tan(alfa1*pi/180),y1-kp_yy7k,18,-x1+kp_yy8*tan(alfa1*pi/180),y1-kp_yy8k,20,-x1+kp_yy9*tan(alfa1*pi/180),y1-kp_yy9k,22,-x1+kp_yy10*tan(alfa1*pi/180),y1-kp_yy10k,24,-x1+kp_yy11*tan(alfa1*pi/180),y1-kp_yy11k,26,-x1+kp_yy12*tan(alfa1*pi/180),y1-kp_yy12k,28,-x1+kp_yy13*tan(alfa1*pi/180),y1-kp_yy13k,30,-x1+kp_yy14*tan(alfa1*pi/180),y1-kp_yy14k,38,-x1+kp_yy15*tan(alfa1*pi/180),y1-kp_yy15kfill,1,6 !在已建关键点内内插关键点kfill,6,8kfill,8,10kfill,10,12kfill,12,14kfill,14,16kfill,16,18kfill,18,20kfill,20,22kfill,22,24kfill,24,26kfill,26,28kfill,28,30kfill,30,38*set,kp_numone,38!定义桥塔上部的最后一个关键点号/,define and mesh the above part of tower*dim,BBS,,40*dim,HHS,,40*dim,SSS,,40*dim,IIYYS,,40*dim,IIZZS,,40*set,length1,2.9546108*set,length2,4.9251168*set,width1,3*set,width2,5*set,diff1_length,length2-length1 !桥塔上部两个截面的长度之差(纵桥向)*set,diff1_width,width2-width1 !桥塔上部两个截面的宽度之差(横桥向)*dim,yy,,40 !定义桥塔上部的关键点竖向距离数组(从塔顶计算)*do,i,1,38*set,yy(i),y1-ky(i)*set,hhs(i),diff1_length*yy(i)/(y1-y2)+length1*set,bbs(i),diff1_width*yy(i)/(y1-y2)+width1SSS(i)=BBS(i)*HHS(i) !按照实心截面IIZZS(i)=BBS(i)*HHS(i)**3/12IIyyS(i)=HHS(i)*BBS(i)**3/12*enddo*do,i,1,kp_numone-1et,i,beam44keyopt,i,9,0mp,ex,i,3.5e10mp,prxy,i,0.167mp,dens,i,2.6e3mp,alpx,i,1e-05 !定义混凝土的线膨胀系数r,i,SSs(i),IIZZS(i),IIyyS(i),BBS(i)/2,HHS(i)/2,IIZZS(i)+IIyyS(i)rmore,SSs(i+1),IIZZS(i+1),IIyyS(i+1),BBS(i+1)/2,HHS(i+1)/2,IIZZS(i+1)+IIyyS(i+1) rmore,0,0,0,0,0,0rmore,0,0,BBS(i)/2,HHS(i)/2,BBS(i+1)/2,HHS(i+1)/2lsel,u,real,,1,kp_numonelstr,i,i+1latt,i,i,ilesize,all,,,1,,1lmesh,all,allallsel,all*enddocm,uptower,elem*get,emin_ts,elem,0,num,min*get,emax_ts,elem,0,num,maxallselkp_ts=emax_ts-emin_ts+1 !提取出来桥塔上部的关键点数目/,createt the kps of tower down*set,zfirst,1.25 !三个控制点的横桥向坐标*set,zsecond,7.4839*set,kp_numtwo,kp_ts+2 !定义桥塔下部的第一个关键点*set,diff1_elem,67 !桥塔下部的单元数目*set,kp_numthree,kp_numtwo+diff1_elem !桥塔下部的最后一个关键点k,kp_numtwo,-y2/tan(alfa2*pi/180),y2 ,-zfirstk,kp_numthree,,,-zsecondkfill,kp_numtwo,kp_numthree*dim,BBX,,200*dim,HHX,,200*dim,SSX,,200*dim,IIYYX,,200*dim,IIZZX,,200*set,HHXQ,0.8*sin(alfa2*pi/180) !定义砍掉部分的长度*set,BBXQ,0.4*sin(alfa3*pi/180)*set,SSXQ,HHXQ*BBXQ*dim,IIYYXQ,,200*dim,IIZZXQ,,200!*set,w4,2.6875*2 !在桥塔折角处单元的宽度!*set,w5,4.3682*2 !在坐标原点处单元的宽度*set,w4,4.5361558*set,w5,8.1609208*do,i,1,diff1_elem+1BBX(i+kp_numone)=2.5*sin(alfa3*3.1415926/180)HHX(i+kp_numone)=w4+(i-1)*(w5-w4)/67SSX(i+kp_numone)=BBX(i+kp_numone)*HHX(i+kp_numone)-SSXQ*2IIYYXQ(i+kp_numone)=HHXQ*BBXQ**3/12+SSXQ*BBX(i+kp_numone)**2/4IIZZXQ(i+kp_numone)=BBXQ*HHXQ**3/12+SSXQ*HHX(i+kp_numone)**2/4IIYYX(i+kp_numone)=HHX(i+kp_numone)*BBX(i+kp_numone)**3/12-IIYYXQ(i+kp_numone )*2IIZZX(i+kp_numone)=BBX(i+kp_numone)*HHX(i+kp_numone)**3/12-IIZZXQ(i+kp_numone) *2*enddo*do,i,KP_numone,kp_numone+diff1_elem-1et,i,beam44keyopt,i,9,0mp,ex,i,3.5e10mp,prxy,i,0.167mp,dens,i,2600mp,alpx,i,1e-05 !定义混凝土的线膨胀系数r,i,SSX(i+1),IIZZX(i+1),IIYYX(i+1),BBX(i+1)/2,HHX(i+1)/2,IIZZX(i+1)+IIYYX(i+1) rmore,SSX(i+2),IIZZX(i+2),IIYYX(i+2),BBX(i+2)/2,HHX(i+2)/2,IIZZX(i+2)+IIYYX(i+2) rmore,0,0,0,0,0,0rmore,0,0,BBX(i+1)/2,HHX(i+1)/2,BBX(i+2)/2,HHX(i+2)/2*enddo*do,i,kp_numtwo,kp_numthree-1lsel,u,real,,1,150lstr,i,i+1latt,i-1,i-1,i-1lesize,all,,,1,,1lmesh,allallsel,all*enddoesel,u,real,,1,kp_numtwo-2cm,downtower,elemallsel,allcmsel,s,downtower*get,emin_tx,elem,0,num,min*get,emax_tx,elem,0,num,maxallselkp_tx=emax_tx-emin_tx+1esel,all,allcm,tower,elemlsel,s,real,,kp_numone,kp_numthree-2lsymm,z,all,,,100allsel,all*set,kp_numfour,kp_numone+2*kp_tx+100+1 !主梁的第一个关键点号!esel,s,ename,,beam44!tunif,0!tref,-30!allsel,all/,couple the tower upside and tower downcerig,node(kx(38),ky(38),kz(38)),node(kx(39),ky(39),kz(39)),all,cerig,node(kx(38),ky(38),kz(38)),node(kx(139),ky(139),kz(139)),all,*set,beam_height,1.2725-0.3!主梁节点即锚固点到原点的距离!*set,kp_numfour,kp_numone+2*(kp_tx+1)+100+1 !主梁的第一个关键点号*set,kp_numfour_inc,210 !主梁的关键点数目-1*set,kp_numfive,kp_numfour+kp_numfour_inck,kp_numfour,,beam_heightk,kp_numfive,105,beam_heightkfill,kp_numfour,kp_numfive*do,i,1,kp_numfour_inclstr,kp_numfour+i-1,kp_numfour+i*enddo*set,enum_beam,emax_tx+1et,enum_beam,beam188mp,ex,enum_beam,3.5e10mp,dens,enum_beam,3038.8 !考虑到二期恒载后的换算密度mp,alpx,enum_beam,1e-05 !定义混凝土的线膨胀系数KEYOPT,enum_beam,7,2keyopt,enum_beam,8,3keyopt,enum_beam,9,3SECTYPE,1,BEAM,MESH,sec1SECOFFSET,user,,-1.40 !截面读入时主梁的平移SECREAD,'main_beam','SECT',' ',MESHk,5000,,1000000lsel,u,real,,1,200latt,enum_beam,enum_beam,enum_beam,,5000,,1lesize,all,,,1,,1lmesh,allallsel,allesel,s,ename,,beam188cm,main_beam,elemallsel,all/,create the cable element*set,enum_link,enum_beam+1 !拉索的开始单元号*dim,cable_area,,13 !定义拉索单元的面积数组*dim,cable_istrain,,13 !定义拉索单元的初始应变数组*dim,cable_dens,,13/,define the angle of all cable*set,cable_area1,1.668E-03*set,cable_area2,1.668E-03*set,cable_area3,2.6410E-03*set,cable_area4,2.6410E-03*set,cable_area5,2.6410E-03*set,cable_area6,2.6410E-03*set,cable_area7,3.0580E-03*set,cable_area8,3.0580E-03*set,cable_area9,3.0580E-03*set,cable_area10,3.7530E-03*set,cable_area11,3.7530E-03*set,cable_area12,3.7530E-03*set,cable_area13,3.7530E-03*set,cable_area_back,2.0155E-02*set,cable_area(1),cable_area1*set,cable_area(2),cable_area2*set,cable_area(3),cable_area3*set,cable_area(4),cable_area4*set,cable_area(5),cable_area5*set,cable_area(6),cable_area6*set,cable_area(7),cable_area7*set,cable_area(8),cable_area8*set,cable_area(9),cable_area9*set,cable_area(10),cable_area10*set,cable_area(11),cable_area11*set,cable_area(12),cable_area12*set,cable_area(13),cable_area13*set,cable_dens(1),13.2/cable_area1*set,cable_dens(2),13.2/cable_area2*set,cable_dens(3),20.9/cable_area3*set,cable_dens(4),20.9/cable_area4*set,cable_dens(5),20.9/cable_area5*set,cable_dens(6),20.9/cable_area6*set,cable_dens(7),24.2/cable_area7*set,cable_dens(8),24.2/cable_area8*set,cable_dens(9),24.2/cable_area9*set,cable_dens(10),29.7/cable_area10*set,cable_dens(11),29.7/cable_area11*set,cable_dens(12),29.7/cable_area12*set,cable_dens(13),29.7/cable_area13*set,cable_dens_back,159.5/cable_area_back*set,cable_istrain1,0.26032E-02*set,cable_istrain2,0.25568E-02*set,cable_istrain3,0.23210E-02*set,cable_istrain4,0.23456E-02*set,cable_istrain5,0.23892E-02*set,cable_istrain6,0.24412E-02*set,cable_istrain7,0.28199E-02*set,cable_istrain8,0.28719E-02*set,cable_istrain9,0.29143E-02*set,cable_istrain10,0.28321E-02*set,cable_istrain11,0.28559E-02*set,cable_istrain12,0.28743E-02*set,cable_istrain13,0.28926E-02cable_back_istrain1=0.32891E-02cable_back_istrain2=0.33661E-02*set,cable_istrain(1),cable_istrain1*set,cable_istrain(2),cable_istrain2*set,cable_istrain(3),cable_istrain3*set,cable_istrain(4),cable_istrain4*set,cable_istrain(5),cable_istrain5*set,cable_istrain(6),cable_istrain6*set,cable_istrain(7),cable_istrain7*set,cable_istrain(8),cable_istrain8*set,cable_istrain(9),cable_istrain9*set,cable_istrain(10),cable_istrain10*set,cable_istrain(11),cable_istrain11*set,cable_istrain(12),cable_istrain12*set,cable_istrain(13),cable_istrain13/,create the kps of croSSbeams*set,w5,5.35 !横梁到主梁中心的距离*do,i,1,13k,kp_numfour+i*14+400+12,i*7+6,beam_height,-w5k,kp_numfour+i*14+800+12,i*7+6,beam_height,w5*enddo!定义拉索单元*do,i,1,13et,enum_link+i-1,link10mp,ex,enum_link+i-1,2.0e11mp,prxy,enum_link+i-1,0.3mp,dens,enum_link+i-1,cable_dens(i)!mp,alpx,enum_link+i-1,1.5e-05 !定义索(钢材)的线膨胀系数lsel,u,real,,1,1000r,i+enum_link-1,cable_area(i),cable_istrain(i)lstr,30-2*(i-1),kp_numfour+i*14+400+12lstr,30-2*(i-1),kp_numfour+i*14+800+12latt,enum_link+i-1,enum_link+i-1,enum_link+i-1lesize,all,,,1,,1lmesh,alllsel,all*enddo/,create the back cables*set,enum_back_cable,enum_link+13et,enum_back_cable,link10mp,ex,enum_back_cable,2.0e11mp,prxy,enum_back_cable,0.3mp,dens,enum_back_cable,cable_dens_backr,enum_back_cable,cable_area_back,cable_back_istrain1lsel,u,real,,1,enum_back_cable-1k,3001,-45,k,3002,-45+2.956lstr,3001,10latt,enum_back_cable,enum_back_cable,enum_back_cable lesize,all,,,1,,1lmesh,allallsel,allet,enum_back_cable+1,link10mp,ex,enum_back_cable+1,2.0e11mp,prxy,enum_back_cable+1,0.3mp,dens,enum_back_cable+1,cable_dens_backr,enum_back_cable+1,cable_area_back,cable_back_istrain2 lsel,u,real,,1,200lstr,3002,18latt,enum_back_cable+1,enum_back_cable+1,enum_back_cable+1 lesize,all,,,1,,1lmesh,allallsel,allesel,s,ename,,link10cm,cable,elemalls/,create the croSSbeams*set,enum_croSSbeam,enum_back_cable+2 !横梁的单元号et,enum_croSSbeam,beam4mp,ex,enum_croSSbeam,3.5e20mp,prxy,enum_croSSbeam,0.167mp,dens,enum_croSSbeam,2500r,enum_croSSbeam,0.5,0.5**3/12,0.5/12,0.5,1,lsel,u,real,,1,150*do,i,1,13lstr,kp_numfour+i*14+400+12,kp_numfour+i*14+12lstr,kp_numfour+i*14+12,kp_numfour+14*i+800+12lesize,all,,,3,,1latt,enum_croSSbeam,enum_croSSbeam,enum_croSSbeam, lmesh,all*enddoallsel,alldk,kp_numthree,all, dk,kp_numthree+100,all, dk,kp_numfour,all, dk,3001,all,dk,3002,all,dk,kp_numfive,uy,/soluantype,0acel,,10allssolvefinisav。
ansys连续梁桥
![ansys连续梁桥](https://img.taocdn.com/s3/m/7cbbf70552d380eb62946dec.png)
ansys连续梁桥建模和分析的关键步骤如下:1、用箱梁的中心线来模拟板的边线,板厚即为箱梁的底板、顶板、腹板及翼缘板的厚度。
2、确定各个关键点的位置。
3、正确模拟倒角及渐变的翼缘板厚度及地板的厚度。
4、进入后处理分析受力及变形情况。
/prep7/title,three span continus griderk,1,0,0k,2,-2.1,0k,3,-2.6,-0.125k,4,-2.8,-0.125k,5,-3,-0.125k,6,-3.4857,-0.1036k,7,-3.9714,-0.0821k,8,-4.4571,-0.0607k,9,-4.9429,-0.0393k,10,-5.4286,-0.0179k,11,-5.9143,0.0036k,12,-6.4,0.025k,13,-2.800,-1.85k,14,0.0000,-1.85kgen,9,1,12,1,0,0,49/8,100kgen,2,1,12,1,0,0,50,900kgen,9,901,912,1,0,0,34.5/8,100kgen,2,901,912,1,0,0,35,900c1=0.000843399c2=0.001701323*dim,x1,array,8x1(1)=49/8x1(2)=2*49/8x1(3)=3*49/8x1(4)=4*49/8x1(5)=5*49/8x1(6)=6*49/8x1(7)=7*49/8x1(8)=8*49/8*dim,x2,array,8x2(1)=34.5/8x2(2)=2*34.5/8x2(3)=3*34.5/8x2(4)=4*34.5/8x2(5)=5*34.5/8x2(6)=6*34.5/8x2(7)=7*34.5/8x2(8)=8*34.5/8*dim,yb,array,8yb(1)=-c1*x1(1)*x1(1)yb(2)=-c1*x1(2)*x1(2)yb(3)=-c1*x1(3)*x1(3)yb(4)=-c1*x1(4)*x1(4)yb(5)=-c1*x1(5)*x1(5)yb(6)=-c1*x1(6)*x1(6)yb(7)=-c1*x1(7)*x1(7)yb(8)=-c1*x1(8)*x1(8)*dim,ym,array,8ym(1)=-c2*(x2(1)-34.5)*(x2(1)-34.5)+2.025 ym(2)=-c2*(x2(2)-34.5)*(x2(2)-34.5)+2.025 ym(3)=-c2*(x2(3)-34.5)*(x2(3)-34.5)+2.025 ym(4)=-c2*(x2(4)-34.5)*(x2(4)-34.5)+2.025 ym(5)=-c2*(x2(5)-34.5)*(x2(5)-34.5)+2.025 ym(6)=-c2*(x2(6)-34.5)*(x2(6)-34.5)+2.025 ym(7)=-c2*(x2(7)-34.5)*(x2(7)-34.5)+2.025 ym(8)=c2*(x2(8)-34.5)*(x2(8)-34.5)+2.025 kgen,2,13,14,1,0,yb(1),x1(1),100kgen,2,13,14,1,0,yb(2),x1(2),200kgen,2,13,14,1,0,yb(3),x1(3),300kgen,2,13,14,1,0,yb(4),x1(4),400kgen,2,13,14,1,0,yb(5),x1(5),500kgen,2,13,14,1,0,yb(6),x1(6),600kgen,2,13,14,1,0,yb(7),x1(7),700kgen,2,13,14,1,0,yb(8),x1(8),800kgen,2,813,814,1,0,0,1,100kgen,2,913,914,1,0,ym(1),x2(1),100 kgen,2,913,914,1,0,ym(2),x2(2),200 kgen,2,913,914,1,0,ym(3),x2(3),300 kgen,2,913,914,1,0,ym(4),x2(4),400 kgen,2,913,914,1,0,ym(5),x2(5),500 kgen,2,913,914,1,0,ym(6),x2(6),600 kgen,2,913,914,1,0,ym(7),x2(7),700 kgen,2,913,914,1,0,ym(8),x2(8),800kgen,2,1,14,1,0,0,-0.5,50**************************************************************************** et,1,shell63mp,ex,1,3.5e10mp,dens,1,2500mp,prxy,0.1667r,1,0.25*do,i,0,16,1a,1+i*100,1+(i+1)*100,2+(i+1)*100,2+i*100*enddoa,1,51,52,2aatt,1,1,1asel,noner,2,0.375*do,i,0,16,1a,2+i*100,2+(i+1)*100,3+(i+1)*100,3+i*100*enddoa,2,52,53,3aatt,1,2,1asel,noner,3,0.5*do,i,0,16,1a,3+i*100,3+(i+1)*100,4+(i+1)*100,4+i*100a,4+i*100,4+(i+1)*100,5+(i+1)*100,5+i*100*enddoa,3,53,54,4a,4,54,55,5aatt,1,3,1asel,none*dim,hd,array,8hd(8)=0.2hd(7)=0.2+(3.4/7)*0.3/3.4hd(6)=0.2+2*(3.4/7)*0.3/3.4hd(5)=0.2+3*(3.4/7)*0.3/3.4hd(4)=0.2+4*(3.4/7)*0.3/3.4hd(3)=0.2+5*(3.4/7)*0.3/3.4hd(2)=0.2+6*(3.4/7)*0.3/3.4hd(1)=0.2+7*(3.4/7)*0.3/3.4*do,i,1,7,1r,30+i,hd(i+1),hd(i+1),hd(i),hd(i)*enddo*do,i,0,16,1*do,k,5,11,1a,k,k+50,k+1+50,k+1a,k+i*100,k+(i+1)*100,k+1+(i+1)*100,k+1+i*100 aatt,1,k+26,1asel,none*enddo*enddoasel,noner,4,0.5*do,i,0,16,1a,4+i*100,4+(i+1)*100,13+(i+1)*100,13+i*100*enddoa,4,54,63,13aatt,1,4,1asel,nonec3=6.2474e-05c4=0.000126024*dim,h1,array,8h1(1)=0.25+c3*x1(1)*x1(1)h1(2)=0.25+c3*x1(2)*x1(2)h1(3)=0.25+c3*x1(3)*x1(3)h1(4)=0.25+c3*x1(4)*x1(4)h1(5)=0.25+c3*x1(5)*x1(5)h1(6)=0.25+c3*x1(6)*x1(6)h1(7)=0.25+c3*x1(7)*x1(7)h1(8)=0.25+c3*x1(8)*x1(8)*dim,h2,array,9h2(1)=0.25+c3*x2(1)*x2(1)h2(2)=0.25+c3*x2(2)*x2(2)h2(3)=0.25+c3*x2(3)*x2(3)h2(4)=0.25+c3*x2(4)*x2(4)h2(5)=0.25+c3*x2(5)*x2(5)h2(6)=0.25+c3*x2(6)*x2(6)h2(7)=0.25+c3*x2(7)*x2(7)h2(8)=0.25+c3*x2(8)*x2(8)h1(1)=0.25+c3*x1(1)*x1(1)h2(9)=0.4*do,i,1,8,1r,10+i,h1(i)a,13+(i-1)*100,13+i*100,14+i*100,14+(i-1)*100aatt,1,10+i,1asel,none*enddo*do,i,1,9,1r,20+i,h2(i)a,13+(i+7)*100,13+(i+8)*100,14+(i+8)*100,14+(i+7)*100a,13,63,64,14aatt,1,20+i,1asel,none*enddor,50,2a,1,51,64,14a,801,901,914,814aatt,1,50,1asel,noneallselesize,0.4mshape,0mshkey,1amesh,allnsel,allnsym,x,10000,1,80000,1esym,,10000,1,10000,1cskp,12,0,1714,1713,1701nsym,z,100000,1,100000,1esym,,100000,1,100000,1allsel,nummrg,all*********************************************************************************** ***csys,0nsel,s,loc,y,-1.85nsel,r,loc,x,-3,-2.6nsel,r,loc,z,-0.5,0d,all,ux,,,,,uy,roty,rotzallselnsel,s,loc,y,-1.85nsel,r,loc,x,2.6,3nsel,r,loc,z,-0.5,0d,all,ux,,,,,uy,roty,rotzallselnsel,s,loc,y,-1.85nsel,r,loc,x,-3,-2.6nsel,r,loc,z,169,169.5d,all,ux,,,,,uy,roty,rotzallselnsel,s,loc,y,-1.85nsel,r,loc,x,2.6,3nsel,r,loc,z,169,169.5d,all,ux,,,,,uy,roty,rotzallselnsel,s,loc,y,-3.875nsel,r,loc,x,2.6,3nsel,r,loc,z,49,50d,all,ux,,,,,uy,uz,roty,rotzallselnsel,s,loc,y,-3.875nsel,r,loc,x,-3,-2.6nsel,r,loc,z,49,50d,all,ux,,,,,uy,uz,roty,rotzallselnsel,s,loc,y,-3.875nsel,r,loc,x,2.6,3nsel,r,loc,z,119,120d,all,ux,,,,,uy,uz,roty,rotzallselnsel,s,loc,y,-3.875nsel,r,loc,x,-3,-2.6nsel,r,loc,z,119,120d,all,ux,,,,,uy,uz,roty,rotzallsel*********************************************************************************** *****/soluallselacel,,9.8solve/post1plnsol,s,1nsel,s,loc,z,10 esln,s,,all plnsol,s,1 finishsave。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把混凝土和钢筋作为不同的单元来处理,即混凝土和钢筋各自被划分为足够小的单元,两者的刚度矩阵是分开来求解的,考虑到钢筋是一种细长的材料,通常可以忽略其横向抗剪强度,因此可以将钢筋作为线单元处理。钢筋和混凝土之间可以插入粘结单元来模拟钢筋和混凝土之间的粘结和滑移。一般钢筋混凝土是存在裂缝的,而开裂必然导致钢筋和混凝土变形的不协调,也就是说要发生粘结的失效与滑移,所以此种模型的应用最为广泛。
3.预应力在整个预应力钢筋中的分布
实际的预应力值由于张拉预应力钢筋与混凝土的摩擦导致预应力值的分布不均一。如果采用线单元初应力法,则必须采用多单元赋予多个初应变来模拟,当然,带来了模型的复杂化。
4.混凝土收缩徐变带来后期预应力损失
混凝土的收缩徐变可以采用调整弹性模量法、和定义蠕变材料非线性来实现。其带来的预应力损失效应最好用线单元初应力法模拟,程序进行自动应变协调计算,不需要人工干预,或者手算。
1.从连续刚构桥纵向来看,保证各个截面具有几何拓扑一致性,对于箱形截面来说,只有空间倒角部位可能出现截面拓扑不一致,在建模时人为将其定义为几何拓扑一致。对于横隔板建模采用后补法来实现。
2.从横截面来看,一般单箱室连续刚构桥具有外轮廓的几何拓扑,因此将其作为截面的拓扑。对于和其拓扑一致或者可以调整为该拓扑结构的连续刚构都能分析。对于箱内倒角为双折线的连续刚构只能近似模拟。具体建模时,我们只需输入外轮廓尺寸,截面纵向位置,APDL命令流即可自动计算其他关键点位置,用循环语句生成实体模型。
1)输入参量: ; ; ; ;
2)计算建模控制点参量 : ;
3)计算上层配筋层纵向配筋率 :
4)返回计算数值 和 进行建模和单元属性赋值。
图4-1配筋率计算示意图
Fig.4-1Schematic plan of ratio of reinforcement calculation
4
从上一节我们可以看出,本文采用的连续刚构实体有限元模型,从真实反应结构的力学特性方面做的比较细致,采用APDL建模技术后,可操作性也大大提高,但尽管如此,模型的规模还是比较庞大的,因此必须考虑计算效率的问题。
2.可以通过简单编程实现重复计算,减少人工干预,降低分析成本。
3.通过对ANSYS有限元数据库的访问,可以通过不同的手段控制模型的建立,为二次开发提供了方便。
4
4
为了满足分析的要求,要求箱形截面具有可调性;为了使APDL命令流能够适应不同跨径,不同预应力配束的混凝土单箱室连续刚构,要求纵向各个截面具有几何拓扑一致性,预应力束的生成具有规律性;为了适应钢筋混凝土,预应力混凝土桥的分析要求,要求普通钢筋的配筋率具有可调性;针对以上模型要求,制定以下建模手段。
2.对于桥梁的下部结构,仅建立双薄壁墩,对于基础不作模拟,即采用墩低完全固接。这样做对我们的研究对象箱形梁影响不大。
3.对部分预应力筋进行集束处理,顶板纵向预应力束预留位置是固定的,如果跨经较大,纵向预应力束较多,只能以就近原则在同一点建立多根预应力束;竖向预应力如果是双排按单排考虑。
4.边跨支座以SOLID45做混凝土块体近似模拟支座,块体底部仅施加竖向支撑,其他自由度放松。这样做是为了避免在进行非线性运算时SOLID65单元因应力集中而不收敛。
4
APDL也就是ANSYS参数化设计语言,是一种类似FORTRAN的解释性语言。它具有一般程序语言所具有的功能,如参数、宏、标量、向量及矩阵运算、分支、循环、重复以及访问ANSYS有限元数据库等功能。是优化设计的基础,也是参数化设计的最高技术[52]。APDL命令流通常具有以下优点:
1.模型文件小,不同版本间通用性强。
本文分析的重点在于大跨度预应力混凝土梁桥箱形截面抗弯抗剪的效率研究,通过研究箱梁顶底板和腹板的匹配对弯曲应力和剪切应力的影响,以及不同荷载情况下连续刚构各区段弯曲应力和剪切应力的增长速率规律,来揭示预应力混凝土箱梁腹板开裂的本质。因此需要建立一个通用性强的参数化实体模型。同时为了进行分析对比,以及其他相关参数的概略获取,需要建立与实体模型对应的空间梁元模型。通过大型通用有限元分析程序ANSYS的APDL(ANSYSparametric design language)功能,建立了一个合理的连续刚构桥参数化实体有限元模型,为本文有限元分析提供了坚实的基础,为刚构桥桥梁分析设计工作提供了有力的保障。本章就连续刚构桥参数化实体有限元模型的建立的方法、必要的简化、实际工程力学特性在有限元模型中的实现做概要介绍。
值得一提的是补偿弹性压缩损失。关于弹性压缩损失,有两点需要澄清一下:a.弹性压缩损失有时指实际工程的弹性压缩损失,有时指有限元模型的弹性压缩损失。前者是指先张法预应力混凝土放张后产生的弹性压缩损失和后张法预应力混凝土分批张拉引起先张拉的预应力束,在其他预应力束张拉时可能引起的弹性压缩损失;后者是由于有限元采用线单元初应力法模拟预应力所带来的;本文所说的补偿弹性压缩损失是针对于后者而言,也是有限元正确模拟预应力分批张拉的必经之路。b.对于先张法和后张法预应力的工程弹性压缩损失,有限元模拟和手算是截然相反的。先张法工程弹性压缩损失手算是在控制力乘以一个折减系数,而有限元模拟则是输入与控制力等价的初始应变,通过预应力和实体元变形协调真实得模拟混凝土的受力状态,也就是说不需要、也应该再调整初始应变。后张法预应力,对于张拉过程中产生的弹性压缩,手算不折减,对于分批张拉引起的弹性损失进行折减;而有限元模拟恰恰相反,张拉过程的弹性压缩要通过迭代计算调整初应变来真实模拟张拉,而对于分批张拉的弹性压缩损失,通过预应力和实体元变形协调自行损失,不得再次调整。图4-2是后张法悬臂施工预应力初应变调整流程图:
1.为了大量降低单元数,纵向仅对一个T进行模拟(即:只模拟一个边跨和半个中跨);在跨中处施加对称约束;横向上仅模拟半个箱梁,在对称截面处施加对称约束。也就是采用四分之一模型。单元总数控制在10万以内,单次求解时间小于15分钟。这样做只能模拟对称荷载,近似模拟部分非对称荷载效应,当然扭转效应无法模拟,这样做对于本文的分析研究基本满足,如果有必要,也可以采用单元镜像功能对APDL命令流稍作改动进行全桥分析。
5.预应力的被动受力效应以及预应力钢筋与混凝土之间的滑移的模拟
这种效应的模拟必须采用线单元初应力法模拟,钢筋与混凝土之间的滑移还必须引进接触单元。
本文所建立的模型采用线单元初应力法,分段模拟预应力值,不考虑钢筋与混凝土之间的滑移和混凝土收缩徐变带来后期预应力损失。管道摩擦损失、锚具变形、钢筋回缩损失按照现行规范编写预应力损失计算程序,在预应力钢筋单元生成的同时,自动计算相应的初应变赋予单元,并按顺序将实常数编号、相应初应变返回预定的数组,便于下一步根据施工阶段的模拟补偿弹性压缩损失。
第
4.1
众所周知,有限元分析的最终目的是通过模型来反映实际工程的力学特性,建模的过程是将工程特性转化为数学行为特征,而建立一个能准确反应物理原形的有限元模型对正确分析结构,得到正确的结果来说是至关重要的。当然建立一个完全与物理模型吻合,面面俱到的模型,对于一个庞大的复杂的工程来说也是不太可能的。从实用角度来说,模型的求解费用也是一个相当重要的指标。因此,有限元模型的建立尽量做到有的放矢。
具体建模采用几何建模法和单元建模法的组合建模,钢筋混凝土采用建立几何模型后扫略成SOLID65实体单元,预应力束采用直接连接钢筋混凝土单元上的节点形成LINK8单元。这样建模的前提是实体单元的建立必须在预应力束所在位置生成节点。通过ANSYS的体切割命令,可以在实体几何模型上切出预应力筋的节点位置,这对于几何形状不太复杂的模型是比较方便的,如果模型较为复杂时,(如实体不太规律,含有曲线预应力钢筋等),切割法会产生形状不符合求解要求的实体单元,即坏单元。同时切割的APDL编程不太容易控制。本文采用预应力筋处预留关键点,以及适当加密腹板单元的竖向划分数来保证模型的预应力束位置与实际工程吻合(见图4-2,4-4)。这样做一方面增加了分析命令流程序的通用性和APDL编程的可操作性;另一方面有利于模型的生成,即保证了单元的正确性,又大大降低了单元的数目(见图4-4,4-5),这对于求解是非常有利的,但带来了大量的模型建立前期工作。要使模型具有一定的适用性和可调性,必须进行容错判断,需要进行合理的几何数学计算和严密的逻辑判断。
3.对于每一根预应力束,定义张拉端为局部坐标原点,通过指定导线点局部坐标,和局部坐标在整体坐标中的位置进行定位。对于双向张拉的预应力束将其分为两根来建模,分割点位于0.5L处(L预应力束总长)。这样做看上去繁琐,但却解决了所有预应力束都可以通过一个宏命令完成预应力束损失的计算,单元的生成,初应变的赋值功能,没有任何局限性,为参数化建模提供了保证。参数的输入只有各导线点局部坐标,局部坐标在整体坐标中坐标,张拉控制力,波纹管类型等计算损失的参数。
2.整体式模型
将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料,与分离式不同的是,它求出的是综合了混凝土和钢筋单元的刚度矩阵;与组合式不同之点在于它不是分别求出混凝土与钢筋对单元刚度的贡献然后再组合,而是一次求得综合的刚度矩阵。
3.组合式模型
组合式模型又分为两种:一种是分层组合式,在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设,这种组合方式在钢筋混凝土板、壳结构中的应用较广;另一种组合方法是采用带钢筋膜的等参单元。
4.关于普通钢筋混凝土的配筋率的计算,采用分部位分区段配筋,即横截面分区域,纵向分段,在每一个截面赋值数组中定义各个部位的钢筋横向、竖向、纵向的钢筋直径、钢筋间距,通过这些参数编写APDL命令流确定配筋率以及实体单元分层关键点所在。以下给出一个算例:
例:顶板普通钢筋配筋如图4-1,确定上层配筋层纵向配筋率,建模控制点参量 。计算:
1.施加预加力
如果是单纯施加一定的预加应力,通常有等效荷载法、线单元初应力法。前者的弊端是不能模拟后期预应力损失,以及被动受力特性。
2.预应力张拉损失
预应力张拉损失包括管道摩擦损失;锚具变形、钢筋回缩损失;混凝土加热养护时,预应力钢筋与台座之间的温差损失;混凝土弹性压缩损失。这些损失有的可以通过事先计算然后采用等效荷载法、线单元初应力法对其进行模拟,然而弹性压缩损失按规范计算难以对其真实模拟,必须通过施工顺序的模拟来实现其真实的模型预应力赋予值。