S7 200模拟量输入处理方法
主题:S7-200模拟量EM235编程实例
主题:S7-200模拟量EM235编程实例西门子S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。
下面以EM235为例讲解模拟量扩展模块接线图,如图1。
图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X +和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。
对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。
(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V 0~5V 0~1V 0~500mV 0~100mV 0~50mV电压(双极性)±10V ±5V ±2.5V ±1V ±500mV ±250mV ±100mV ±50mV ±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数1信号范围电压输出 ±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。
EM235开关单/双极性选择增益选择衰减选择SW1 SW2 SW3 SW4 SW5 SW6ON 单极性OFF 双极性OFF OFF X1OFF ON X10ON OFF X100ON ON 无效ON OFF OFF 0.8OFF ON OFF 0.4OFF OFF ON 0.2由上表可知,DIP开关SW6决定模拟量输入的单双极性,当SW6为ON时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。
S7200 模拟量编程
模拟量编程模拟量扩展模块S7-200CPU要附加模拟量扩展模块才能实现模拟量输入/输出的功能。
普通模拟量模块有:•EM231:4通道电流/电压输入模块;配置拨码开关。
其中使用开关3,4,5来选择模拟量输入范围,使用开关1,2来选择电流输入模式(只有通道6和7可以用作电流输入)。
8输入的EM231模块只有第6、7两通道可以用做电流输入,使用拨码开关1、2对其进行设置:当开关1为“ON”时,通道6用做电流输入;开关2为“ON”时,通道7用做电流输入。
反之,当1、2开关为“OFF”时,6、7通道用做电压输入。
表2.新EM2318模拟量输入配置开关表•EM232:2通道电流/电压输出模块;•EM235:4通道电流/电压输入,1通道电流/电压输出。
温度测量型模块有:•EM231TC:4通道热电偶输入模块;•EM231RTD:2通道热电阻输入模块。
有一款新产品CPU224XP在CPU本体上集成了简单的模拟量I/O通道,性能不如模拟量模块。
将模拟量传感器信号连接到S7-200模拟量输入模块(EM231,EM235)模拟量输入模块可以通过DIP拨码开关设置为不同的测量方法。
开关的设置应用于整个模块,一个模块只能设置为一种测量范围。
(注:开关设置只有在重新上电后才能生效)DIP拨码开关的具体设置请参照《S7-200系统手册》。
输入阻抗与连接有关:电压测量时,输入是高阻抗为10MOhm;电流测量时,需要将Rx和x短接,阻抗降到250Ohm。
下列各图是各种传感器连接到S7-200模拟量输入模块的示例:1.四线制-外供电-电流型信号接线2.二线制-电流测量接线图中的L+和M属于为模拟量模块供电的CPU传感器电源。
如果使用其他外接电源,只要用相应电源的输出端取代上图中的L+和M,而且要使其M和为模块供电的M连接起来,如图3。
图3.三线制电流信号测量接线图4.四线制电压信号测量为了防止模拟量模块因短路而损坏,可以在传感器回路中串入一个750Ohm电阻。
PLC对模拟量信号是怎么进行处理的
PLC对模拟量信号是怎么进行处理的模拟量信号是自动化过程控制系统中最基本的过程信号(压力、温度、流量等)输入形式。
系统中的过程信号通过变送器,将这些检测信号转换为统一的电压、电流信号,并将这些信号实时的传送至控制器(PLC)。
PLC通过计算转换,将这些模拟量信号转换为内部的数值信号。
从而实现系统的监控及控制。
从现场的物理信号到PLC内部处理的数值信号,有以下几个步骤:从以上PLC模拟量的信号输入流程可以看到,在自动化过程控制系统中,模拟量信号的输入是非常复杂的。
但是,在现目前的工业现场,对模拟量信号的处理已基本都采用电流信号方式进行传输,相比于电压信号方式,电流信号抗干扰能力更强,传输距离更远,信号稳定。
这里就PLC对模拟量信号的转换过程进行一个简单的分解介绍。
1PLC对模拟量信号的转换西门子S7-200SMART PLC模拟量模块对模拟量信号的转换范围台达DVP系列模拟量模块对模拟量信号的转换范围从以上可以看到:1、模拟量信号接入PLC后,PLC将模拟量信号转换为了整型数据,不是浮点数(如西门子-27,648 到 27,648);2、不同品牌的PLC对模拟量转换范围是有差异的(如西门子-27,648 到 27,648;台达-32,384 到 32,384);3、PLC同一个模块对不同类型的模拟量信号的转换范围是一致的(如西门子对±10 V、±5 V、±2.5 V 或 0 到 20mA的模拟量信号的转换范围均为-27,648 到 27,648);故从以上几点我们可以知道,接入PLC的模拟量信号还需要进行再转换处理,才可以得到与实际物理量相匹配的数据;在进行数据转换处理的时候,还应该与使用的PLC模块的处理数据范围相对应。
2PLC数据转换处理过程1、模拟量信号与PLC转换数据之间的转换从以上内容知道,从PLC直接读取到的模拟量信号为整型数据,整型数据无法直观的反馈出实际的物理量大小,故为了能够直观的反馈出现场的过程信号情况,还应该将这些整型数据转换为反馈直观真实的浮点数信号。
S7-200模拟量模块的使用教程
S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。
下面以EM235为例讲解模拟量扩展模块接线图,如图1。
图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。
对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。
(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV电压(双极性)±10V±5V±2.5V±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。
时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。
SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。
6个DIP开关决定了所有的输入设置。
也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。
第六讲:西门子模拟量模块
IN1 OUT IN2
EM235连接不同类别传感器的接线
EM235 的 DIP 开关的设置
模拟量输入模块的工作流程
传感器 检测
传感器
传感器 输出
测量范围
标准信号 范围
模拟量 输入
数字量 范围
中央 处理器
0~10V; 0~5V; 0~20mA; 4~20mA; +/-10V; +/-5V;
等等
0~32000 6400~32000 -32000~32000
IN1 OUT IN2
+D IN1,OUT -D IN2,OUT
双整数加法指令 双整数减法指令
ADD_R EN ENO
IN1 OUT IN2
SUB_R EN ENO
IN1 OUT IN2
+R IN1,OUT -R IN2,OUT
实数加法指令 实数减法指令
16位有符 号整数
32位有符 号整数
32位有符 号实数
加减法指令是对有符号数进行操作。
ห้องสมุดไป่ตู้
1.加法指令
当EN有效时,把两个输入端(IN1,IN2)指定的数相 加,结果送到输出端(OUT)指定的存储单元中。 即: IN1+IN2=OUT
(VW100)+(VW200)=(VW300)
2.减法指令
• 当EN有效时,把两个输入端(IN1,IN2)指定的数相 减,结果送到输出端(OUT)指定的存储单元中。 即: IN1-IN2=OUT
● 模拟量输出模 块的接线图 (EM232)
● EM232的输出量程:
※ 电压输出 :±10V
※ 电流输出:0 ~20mA
输出端子 工作电源
西门子200模拟量模块
西门子S7-200模拟量编程PLC 2009-09-16 20:05 阅读77 评论0字号:大中小西门子S7-200模拟量编程韩耀旭本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。
下面以EM235为例讲解模拟量扩展模块接线图,如图1。
图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。
对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。
(后面将详细介绍)量的单/双极性、增益和衰减。
模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。
SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。
6个DIP开关决定了所有的输入设置。
也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。
输入校准模拟量输入模块使用前应进行输入校准。
其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。
其步骤如下:A、切断模块电源,选择需要的输入范围。
B、接通CPU和模块电源,使模块稳定15分钟。
C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。
D、读取适当的输入通道在CPU中的测量值。
E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。
F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。
G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。
H、必要时,重复偏置和增益校准过程。
(完整版)S7-200模拟量详细教程
模拟量比例换算因为A/D(模/数)、(D/A)数/模转换之间的对应关系,S7-200 CPU内部用数值表示外部的模拟量信号,两者之间有一定的数学关系。
这个关系就是模拟量/数值量的换算关系。
例如,使用一个0 - 20mA的模拟量信号输入,在S7-200 CPU内部,0 - 20mA对应于数值范围0 - 32000;对于4 - 20mA的信号,对应的内部数值为6400 - 32000。
如果有两个传感器,量程都是0 - 16MPa,但是一个是0 - 20mA输出,另一个是4 - 20mA输出。
它们在相同的压力下,变送的模拟量电流大小不同,在S7-200内部的数值表示也不同。
显然两者之间存在比例换算关系。
模拟量输出的情况也大致相同。
上面谈到的是0 - 20mA与4 - 20mA之间换算关系,但模拟量转换的目的显然不是在S7-200 CPU中得到一个0 - 32000之类的数值;对于编程和操作人员来说,得到具体的物理量数值(如压力值、流量值),或者对应物理量占量程的百分比数值要更方便,这是换算的最终目标。
如果使用编程软件Micro/WIN32中的PID Wizard(PID向导)生成PID功能子程序,就不必进行0 - 20mA 与4 - 20mA信号之间的换算,只需进行简单的设置。
通用比例换算公式模拟量的输入/输出都可以用下列的通用换算公式换算:Ov = [(Osh - Osl)*(Iv - Isl)/(Ish - Isl)] + Osl其中:Ov: 换算结果Iv: 换算对象Osh: 换算结果的高限Osl: 换算结果的低限Ish: 换算对象的高限Isl: 换算对象的低限它们之间的关系可以图示如下:图1. 模拟量比例换算关系实用指令库在Step7 - Micro/WIN Programming Tips(Micro/WIN编程技巧中)的Tip38就是关于如何实现上述转换的例程。
为便于使用,现已将其导出成为”自定义指令库“,可以添加到自己的Micro/WIN编程软件中应用。
主题:S7-200模拟量EM235编程实例
主题:S7-200模拟量EM235编程实例西门子S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。
下面以EM235为例讲解模拟量扩展模块接线图,如图1。
图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X +和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。
对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。
(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数 4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV?电压(双极性)±10V±5V±±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数 1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。
EM235开关单/双极性选择增益选择衰减选择SW1 SW2 SW3 SW4 SW5 SW6ON 单极性?OFF 双极性?OFF OFF X1 ?OFF ON X10 ?ON OFF X100 ?ON ON 无效?ON OFF OFFOFF ON OFFOFF OFF ON由上表可知,DIP开关SW6决定模拟量输入的单双极性,当SW6为ON时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。
S7-200_EM231使用说明
问题1:如何将传感器连接到S7-200 模拟量输入模块(EM231,EM235)以及有哪些注意事项回答:模拟量输入模块可以通过拨码开关设置为不同的测量方法。
开关的设置应用于整个模块,一个模块只能设置为一种测量范围。
开关设置只有在重新上电后才能生效。
输入阻抗与连接有关:电压测量时,输入是高阻抗为10 MOhm ;电流测量时,需要将Rx 和x 短接,阻抗降到250 Ohm 。
注意:为避免共模电压,须将M端与所有信号负端连接如下列各图。
下列各图是各种传感器连接到S7-200 模拟量输入模块的示例图1: 4线制-外供电-测量图2: 2线制-测量为了防止模拟量模块短路,可以串入传感器一个750 Ohm电阻。
它将串接在内部250 Ohm电阻上并保证电流在 32 m A以下。
图 3: 电压测量注意:如果你使用一个4-20mA 传感器, 测量值必须通过编程进行相应的转换.输入转换: X=32000 *(AIWx – 6400) /(32000 – 6400)输出转换: Y=计算值*(32000 – 6400)/32000 + 6400问题2:为什么使用S7-200 模拟量输入模块时接收到一个变动很大的不稳定的值回答:1.你可能使用了一个自供电或隔离的传感器电源,两个电源没有彼此连接。
这将会产生一个很高的上下振动的共模电压,影响模拟量输入值。
.2.另一个原因可能是模拟量输入模块接线太长或绝缘不好。
补救措施:1.连接传感器输入的负端与模块上的公共M 端以补偿此种波动。
注意:事前要确定,这是两个电源间的唯一连接。
如果另外一个连接已经存在了,当再添加公共连接时可能会产生一个多余的补偿电流。
背景:模拟量输入模块不是内部隔离的.共模电压不会大于 12V.对于60Hz 的共模干扰是40dB2.使用模拟量输入滤波器:在Micro/Win 中进入"View > System block> Tab: Analog Input Filters".选择模拟量输入滤波.选择 "Number of samples" 和"Deadband"." Number of samples " 区域包含了由几个采样的平均值计算得出的值。
西门子S7-200_PLC模拟量的使用
摘要:介绍S7-200 PLC在水处理设备给粉机上的应用,并重点介绍模拟量的处理。
以及模拟量的稳定和抗干扰问题。
关键词:可编程控制器;给粉机;模拟量处理一、引言给粉机是一种机、电、水、气一体化粉(粒)料定量分切式全自动加药装置,它是现代科技发展新兴的一种技术产品。
为达到全自动运转,采用了PLC控制,通过检测稀释罐中的液位高低来控制给粉机的工作,还控制计量泵将稀释罐中的液体药液送到凝集罐中,凝集罐中已有液体是来自高速过滤器的反冲洗水,药液使该反冲洗水的悬浮物凝集成大块状絮凝物以便进行下一步的水处理工作。
二、控制内容和要求控制内容和要求取决于工艺要求、资源、及可操作性等。
给粉机涉及到的工艺流程如图1所示,首先将粉状凝集助剂倒入料斗,给粉机工作时,通过粉位计检测料斗中是否有料,如果有料,先将干燥空气经气源三联件和气阀吹入出料口,延迟一段时间后,打开淋水器侧的水电磁阀,为送料作好准备,再延迟一段时间,启动给粉机运行。
此时,给粉机将药液定量的连续的注进稀释罐,在稀释罐中,有搅拌机不停的搅拌,搅拌均匀后待用。
使用药液时,用计量泵来运送,从稀释罐中注入到凝集罐一类的设备中。
给粉机、水阀、气阀、搅拌机、计量泵的工作状况都与稀释罐中的液位密切相关,一般讲,液位控制采用电极式的开关量信号,将有关的4个位置的液位信号送到PLC中参与控制。
但当用户的液位检测装置是液位变送器时,就需采用模拟量模块,稀释罐中的液位是通过液位变送器来检测的,对应一定的液位,送出4-20mA电流信号(4-20mA对应着液位高度0-1M)。
∙液位距池底为120mm时,为L2液位,低于L2液位时,报警,不能启动计量泵。
∙液位距池底为120mm时,为L1液位,液位低于L1时要启动气阀、水阀、给粉机,当给粉机运行时,搅拌机也要运行。
给粉机停止时,搅拌机也停止。
∙液位距池底为750mm时,为H1液位,高于H1液位,给粉机停。
∙液位距池底为850mm时,为H2液位,高于H2液位时,报警。
S7-200PLC模拟量编程方法
1、模拟量值和A/D转换值的转换假设模拟量的标准电信号是A0—Am(如:4—20mA),A/D转换后数值为D0—D (单极性的西门子PLC200系列的0—32000),设模拟量的标准电信号是A,A/D转换后的相应数值为D,由于是线性关系,函数关系A=f(D)可以表示为数学方程:A=(D-D0)×(Am-A0)/(Dm-D0)+A0根据该方程式,可以方便地根据D值计算出A值。
将该方程式逆变换,得出函数关系D=f(A)可以表示为数学方程:D=(A-A0)×(Dm-D0)/(Am-A0)+D0举几个例子:例1、以S7-200和4—20mA为例,经A/D转换后,得到的数值是6400—32000,即A0=4,Am=20,D0=6400,Dm=32000,代入公式,得出:A=(D-6400)×(20-4)/(32000-6400)+4假设该模拟量与AIW0对应,则当AIW0的值为12800时,相应的模拟电信号是6400×16/25600+4=8mA。
例2、某温度传感器,-10—60℃与4—20mA相对应,以T表示温度值,AIW0为PLC模拟量采样值,则根据上式直接代入得出:T=70×(AIW0-6400)/25600-10可以用T 直接显示温度值。
例3、某压力变送器,当压力达到满量程5MPa时,压力变送器的输出电流是20mA,AIW0的数值是32000。
可见,每毫安对应的A/D值为32000/20,测得当压力为0.1MPa时,压力变送器的电流应为4mA,A/D值为(32000/20)×4=6400。
由此得出,AIW0的数值转换为实际压力值(单位为KPa)的计算公式为:VW0的值=(AIW0的值-6400)(5000-100)/(32000-6400)+100(单位:KPa)再举个具体编程实例:组建一个小的实例系统演示模拟量编程。
本实例的的CPU是CPU222,仅带一个模拟量扩展模块EM235,该模块的第一个通道连接一块带4—20mA变送输出的温度显示仪表,该仪表的量程设置为0—100度,即0度时输出4mA,100度时输出20mA。
S7-200数字信号转换算法
S7-200数字信号转换算法介绍S7-200是西门子推出的一款高性能PLC(可编程逻辑控制器)。
在PLC程序设计中,数字信号转换是一个非常常见的需求。
本文档将介绍一种基于S7-200的数字信号转换算法。
算法原理数字信号转换是将输入的模拟信号转换为数字信号的过程。
在S7-200中,可以通过模拟量输入模块来实现数字信号转换。
算法流程如下:1. 配置模拟量输入模块的参数。
包括输入量程、参考电压等。
2. 读取模拟量输入模块的输出值。
3. 根据输入值和参考电压的关系,进行数值转换。
4. 将转换后的数字信号用于后续的逻辑控制处理。
算法实现以下是一个基于S7-200的数字信号转换算法示例:VARInputValue: REAL; // 模拟量输入值ReferenceVoltage: INT; // 参考电压ConvertedValue: INT; // 转换后的数字信号RangeMin: REAL; // 量程下限RangeMax: REAL; // 量程上限ConvertedMin: INT; // 数字量下限ConvertedMax: INT; // 数字量上限END_VARInputValue := ReadAnalogInput(); // 读取模拟量输入ReferenceVoltage := GetReferenceVoltage(); // 获取参考电压RangeMin := GetRangeMin(); // 获取量程下限RangeMax := GetRangeMax(); // 获取量程上限ConvertedMin := GetConvertedMin(); // 获取数字量下限ConvertedMax := GetConvertedMax(); // 获取数字量上限ConvertedValue := ((InputValue - RangeMin) * (ConvertedMax - ConvertedMin)) / (RangeMax - RangeMin) + ConvertedMin; // 数字信号转换公式UseConvertedValue(ConvertedValue); // 将转换后的数字信号用于后续逻辑处理结论S7-200数字信号转换算法使用简单且高效。
S7-200类型PLC模拟量问题的解答
S7-200模拟量问题的解答问题:S7-200模拟量输入模块(EM231,EM235)如何寻址?回答: 模拟量输入和输出为一个字长,所以地址必须从偶数字节开始, 精度为12位,模拟量值为0-32000的数值。
格式: AIW[起始字节地址] AIW6 ;AQW[起始字节地址] AQW0每个模拟量输入模块,按模块的先后顺序地址为固定的,顺序向后排。
例: AIW0 AIW2 AIW4 AIW6每个模拟量输出模块占两个通道,即使第一个模块只有一个输出AQW0 (EM235只有一个模拟量输出), 第二个模块模拟量输出地址也应从AQW4开始寻址,依此类推。
(注: 每一模块的起始地址都可在step7 micro/win 中 Plc/Information里在线读到)。
问题:如何将传感器连接到S7-200 模拟量输入模块(EM231,EM235)以及有哪些注意事项?回答:模拟量输入模块可以通过拨码开关设置为不同的测量方法。
开关的设置应用于整个模块,一个模块只能设置为一种测量范围。
(注:开关设置只有在重新上电后才能生效)输入阻抗与连接有关:电压测量时,输入是高阻抗为10 MOhm ;电流测量时,需要将Rx 和 x 短接,阻抗降到250 Ohm 。
注意:为避免共模电压,须将M端与所有信号负端连接, 未连接传感器的通道要短接, 如下列各图。
下列各图是各种传感器连接到S7-200 模拟量输入模块的示例为了防止模拟量模块短路,可以串入传感器一个750 Ohm电阻。
它将串接在内部250 Ohm电阻上并保证电流在 32 m A以下。
3: 电压测量注意:如果你使用一个4-20mA 传感器, 测量值必须通过编程进行相应的转换.输入转换: X=32000 *(AIWx – 6400) /(32000 – 6400)输出转换: Y=计算值*(32000 – 6400)/32000 + 6400问题:为什么使用S7-200 模拟量输入模块时接收到一个变动很大的不稳定的值?回答: 1.你可能使用了一个自供电或隔离的传感器电源,两个电源没有彼此连接。
浅谈S7-200PLC模拟量输入处理方法
浅谈S7-200PLC模拟量输入处理方法S7-200系列PLC是SIEMENS公司新推出的一种小型PLC。
它以紧凑的结构、良好的扩展性、强大的指令功能、低廉的价格,已经成为当代各种小型控制工程的理想控制器。
S7-200PLC包含了一个单独的S7-200CPU和各种可选择的扩展模块,可以十分方便地组成不同规模的控制系统。
其控制规模可以从几点到上百点。
在生产过程中,存在大量的物理量,如压力、温度、速度、旋转速度、pH值、粘度等。
为了实现自动控制,这些模拟量信号需要被PLC处理。
S7-200PLC模拟量输入扩展模块分为模拟量输入模块、模拟量输入/输出混合模块。
模拟量输入扩展模块提供了模拟量输入功能。
S7-200的模拟量输入扩展模块具有较大的适应性,可以直接与传感器相连,有很大的灵活性,并且安装方便。
1S7-200系列PLC模拟量输入模块介绍1.1主要模块的功能及特性1.1.1模拟量输入模块EM231。
EM231具有4路模拟量输入,输入信号可以是电压也可以是电流,其输入与PLC具有隔离。
输入信号的范围可以由SW1、SW2和SW3设定。
输入特性:4路模拟量输入电源电压:标准24VDC/4mA输入类型:0~10V、0~5V、±5V、±2.5V、0~20mA分辨率:12bit转换速度:250µs隔离:有1.1.2模拟量混合模块EM235。
EM235具有4路模拟量输入和1路模拟量输出。
它的输入信号可以是不同量程的电压或电流。
其电压、电流的量程是由开关SW1、SW2到SW6设定。
EM235有1路模拟量输出,其输出可以是电压也可以是电流。
1.2模块的寻址方式和模拟量值的表示方法1.2.1模拟量输入模块的寻址—模拟量输入映像区(AI区)。
模拟量输入映像区是S7-200CPU为模拟量输入端信号开辟的一个存贮区。
S7-200将测得的模拟值(如温度、压力)转换成1个字长的(16bit)的数字量,模拟量输入用区域标识符(AI)、数据长度(W)及字节的起始地址表示。
17.S7-1200对模拟量的处理
模拟量输出的规范化
先将以工程单位表示的值标准化为 0.0和 1.0 之间的值,然 后将其换算到 0 到 27648 之间或 -27648 到 27648之间
模拟量输出的规范化
Scale的最大最小值与模拟量输出通道的极性有关
2016年春
电气控制与可编程控制器 PLC
自动化与电子工程学院 邢关生
xinggs@
PLC对模拟量的处理
1. 基本原理 2. S7-1200的模拟量输入输出 3. 模拟量与数字量之间的对应关系 4. 模拟量的规范化
1. 基本原理
2. S7-1200的模拟量输入输出
➢ CPU自带,例如CPU1214C有2路AI
4)AI的各通道可启用溢出诊断,AQ的各通道可启用 短路诊断(电压输出)或断路诊断(电流输出)
4. 模拟量的规范化
模拟量输入的规范化
需要先将模拟量输入值规范化为由 0.0 到 1.0的实数(浮点) 值。再按比例放到测量范围中,转为具有工程单位的量。
模拟量输入的规范化
规范化的最大最小值与模拟量输入通道的极性有关
模拟量输出的电流范围(SB 和 SM)
3. 模拟量与数字量之间的对应关系
一些说明: 1)一个模块常有几个通道,不是每个通道都可配置为 电压型和电流型,有些是默认为电压或者电流
2)每个输入通道有固定的IW对应,每个输出通道有 固定的QW对应,无需手动设置
3)AI、AQ的位数表示了AD和DA转换的精确程度, 但编程读IW和写QW时,都按16位有符号数理解,正 常范围最大值对应27648
E FSR
2n
量化单位
3. 模拟量与数字量之间的对应关系
以CPU1210003617V递增
详见S7-1200系统手册(2016.9)