七年级数学乘法公式

合集下载

数学中常用的乘法公式有哪些及如何推倒出来?

数学中常用的乘法公式有哪些及如何推倒出来?

数学中常⽤的乘法公式有哪些及如何推倒出来?我是中考数学当百荟,我来回答。

对初中⽣⽽⾔,乘法公式分两类:平⽅公式和⽴⽅公式。

其中常⽤的是平⽅公式,现⾏《课标》中已经把⽴⽅公式不做要求了。

平⽅公式包括:平⽅差公式和完全平⽅公式,⽴⽅公式包括:完全⽴⽅公式、⽴⽅和、⽴⽅差公式等。

它们的推导主要有两种⽅式:代数法和⼏何法,两种⽅式相互印证,体现数形结合的思想。

代数⽅法,主要运⽤整体思想和分配律,⼏何⽅法,主要运⽤图形的等(⾯)积变换。

01--乘法公式平⽅公式平⽅差(a-b)(a+b)=a²-b²完全平⽅公式(a-b)²=a²+b²-2ab(a+b)²=a²+b²+2ab⽴⽅公式⽴⽅差(a-b)(a²+b²+ab)=a^3-b^3⽴⽅和(a+b)(a²+b²-ab)=a^3+b^3完全⽴⽅公式(a-b)^3=a^3-3a²b+3ab²-b^3(a+b)^3=a^3+3a²b+3ab²+b^302--乘法公式的推导乘法公式是初中阶段务必掌握的基础内容,也是重点。

对初学者⽽⾔,乘法公式太多了,容易犯死记硬背的⼤忌。

死记硬背绝对是最后的选择,除⾮不能理解,学习没有章法(可想⽽知,死记硬背者,在公式运⽤阶段的那种痛苦和不堪状)。

因⽽学习乘法公式必须弄清楚公式的来龙去脉,掌握公式的推导,推导包括代数法和⼏何法。

理解了,你就会发现其中的规律,理解了,你就会巧妙记忆,将公式归类,在此基础上,你就会发现原来公式并不需要那么多,4个够了,甚⾄1个(分配律)⾜矣!乘法公式的代数法推导,主要依据初中七年级所学的多项式乘法法则,追根溯源,初中所学的多项式的乘法法则,是⼩学所学乘法对加法分配律⽽来。

乘法公式的⼏何法解释除了印证代数法推导的合理解释外,更重要的是其中涉及的数学思想:数形结合。

七年级数学从面积到乘法公式

七年级数学从面积到乘法公式

解:n(n+2)+1=(n+1)2
•(你能用“数形结合”的数学思想来说明这一规律吗?)Biblioteka • • • • • • •
18、先阅读后解题 若m2+2m+n2-6n+10=0,求m和n的值 解:把等式的左边分解因式:m2+2m+1+n2-6n+9=0 即(m+1)2+(n-3)2=0,因为(m+1)2≥0,(n-3)2≥0 所以m+1=0,n-3=0,即m=-1,n=3 利用以上解法,解下列问题: 17 2 2 已知x +y -x+4y+ 4 =0,求x和y的值。 解:x2-x+
第九章 从面积到乘法公式
复习课
你知道吗?
• 1、单项式乘单项式:①系数与系数相乘;②相同 字母相乘;③单独字母照抄。 • 2、单项式乘多项式:用单项式去乘以多项式的每 一项,再把所得积相加。 • 3、多项式乘多项式:用其中一个多项的每一项去 乘以另一个多项式的每一项,再把所得的积相加。
你知道吗?
• 15、一个长方形的面积是60cm2,分别以它的长和宽为边 长的两个正方形的面积和是136cm2。求长方形的周长。 解:设长方形的长为a,宽为b 则,ab=60,a2+b2=136
而(a+b)2=a2+2ab+b2=136+60=256
因此,a+b=16
所以,周长为2(a+b)=32
• 16、请阅读以下材料: • 现定义某种运算“★”,对于任意两个数a,b都有a★b=a2-ab+b2. 例如:3★4=32-3×4+42=9-12+16=13。 • 请按上面的定义的运算解答下面的问题: (a+1)2-(a+1)(a+2)+(a+2)2=a2+3a+3 • (1)(a+1)★(a+2)=_________________________________ (a+b)2-(a+b)(a-b)+(a-b)2=a2+3b2 • (2)(a+b)★(a-b)=__________________________________ • 17、观察下列算式: • 1×3+1=4=22 • 2×4+1=9=32 • 3×5+1=16=42 • 4×6+1=25=52 • …… • 请将你找出的规律用公式表示出来。

中山市七中七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算课件新版湘教版3

中山市七中七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算课件新版湘教版3

学习目标
(1)会利用合并同类项的方法解一元一次方程,体 会等式变形中的化归思想.
(2)能够从实际问题中列出一元一次方程,进一步 体会方程模型思想的作用及应用价值.
推进新课 知识点1 合并同类项
数学小资料
约公元820年 , 中亚细亚数学家阿尔-花拉子米 写了一本代数书 , 重点论述怎样解方程.这本书的 拉丁文译本取名为【対消与还原]. 〞対消”与〞 还原”是什么意思呢 ?
探究新知
〔1〕(x+1)(x2+1)(x-1); 〔2〕(x+y+1)(x+y-1).
你能用简单的方法计算上面的式子吗?
(x + y + 1)(x + y-1) =[(x + y) + 1][(x + y)-1] = (x + y)2-1 = x2 + 2xy + y2-1
把 x+y 看做一个整体
运用乘法公式计算 : ( a + b + c )2 . 解: ( a + b + c )2
= [(a + b) + c]2 = (a + b)2 + 2c(a + b) + c2 = a2 + 2ab + b2 + 2ac + 2bc + c2 = a2 + b2 + c2 + 2ab + 2ac + 2bc 遇到多项式的乘法时 , 我们要先观察式子的特征 , 看 能否运用乘法公式 , 以到达简化运算的目的.
第一个数为x , 第二个数为 x
9
方程 x xx1701
3
93

乘法公式 第一课时-数学七年级下册同步教学课件(冀教版)

乘法公式 第一课时-数学七年级下册同步教学课件(冀教版)

(2)(3a-4b)(-4b-3a)=(-4b)2-(3a)2=16b 2-9a 2.
(3)
3 4
a
1 3
b
3 4
a
1 3
b
3 4
a
2
1 3
2
b
9 16
a2
1 9
b2 .
(4)
a2
1 2
b2
a2
1 2
b2
a2
2
1 2
b2
2
a4
1 4
b4 .
2 解下列方程:
(1)4x 2+x-(2x-3)(2x+3)=1 ; (2)2(x+3)(3-x )+2x+2x 2=20. 解:(1)4x 2+x-(2x-3)(2x+3)=1,
(2)你发现了什么规律?请用含有字母的式子表示出来.
解:(2)(2n-1)(2n+1)=4n 2-1(n 为正整数).
4 运用平方差公式计算:(2-1)(2+1)(22+1)(24+1).
解:(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =28-1 =256-1 =255.
所以a 2-b 2=(a-b)(a+b)=2×16=32.
5 已知2a 2+3a-6=0,求式子3a (2a+1)-(2a+1)(2a-1)的值.
解:原式=6a 2+3a-4a 2+1=2a 2+3a+1, 因为2a 2+3a-6=0,所以2a 2+3a=6.
所以原式=7.
6 探究活动: (1)如图①,可以求出阴影
(2)395×405.
解:(1)998×1 002=(1 000-2)×(1 000+2)=1 0002-22

七年级数学下册第2章整式的乘法2.2乘法公式教学课件新版湘教版

七年级数学下册第2章整式的乘法2.2乘法公式教学课件新版湘教版

3.计算: (1)202×198;
(2)49.8×50.2.
答案:(1)39996;(2)2499.96.
我思 我进步
通过本节课,你有什么收获? 你还存在哪些疑问,和同伴 交流。
2.2.2 完全平方公式
思考
计算下列各式,你能发现什么规律: ( a+1 )2=( a+1 )( a+1 )=a2+a+a+12=a2+2·a·1+12, ( a+2 )2=( a+2 )( a+2 )=a2+2a+2a+22=a2+2·a·2+22, ( a+3 )2=( a+3 )( a+3 )=a2+3a+3a+32=a2+2·a·3+32, ( a+4 )2=( a+4 )( a+4 )=a2+4a+4a+42=a2+2·a·4+42. 我们用多项式乘法来推导一般情况: ( a+b )2=( a+b )=a2+ab+ab+b2=a2+2ab+b2.
(2)1982.
解:(1)1042=( 100+4 )2 (2)1982=( 200-2 )2
= 1002+2×100×4+42
= 2002-2×200×2+22
= 10000+800+16
= 40000-800+16
= 10816.
= 39204.
练习
1.运用完全平方公式计算: (1)( -2a+3 )2; (3)( -x2-4y )2;

七年级数学乘法公式

七年级数学乘法公式
《数学》( 苏科版 标题 .七年级 下册 ) 第九章 从面积到乘法公式
标题
授课人:高邮市南海中学
俞永毅
数学——来源于生活 如图,一块边长为a米的正方形试验田, 因需要将其边长增加 b 米。 形成四块实验田,以种植不 b 同的新品种(如图). 用不同的形式表示实验田 的总面积, 并进行比较. a 探索: 你发现了什么?

熟练运用——掌握公式
用完全平方公式计算:
1. (-3a+2)2 2. (2m-3n)2 3. (-2x- y)2
学以致用——简化计算
用完全平方公式计算: (1)1022
=(100+2)2 =1002+2×100×2+22
=10000+400+4
(2)9972
=(1000-3)2
=10404
=10002-2×1000×3+32 =1000000-6000+9 =994009
在解题过程中要准确确定a和b、对照公式原形的 两边, 做到不丢项、不弄错符号、2ab时不少乘2;
转化思想在数学中有广泛的运用
乘法公式给我们的运算带来了方便.
作业 :课本P 69. 4(1~4),6,7(1~2)

mqv60hnp
有些过意不去地说:“可要辛苦娃娃们了!”耿直说:“还有送俺们回来的大白骡!”耿兰笑着说:“二哥啊,看你,怎么又把人和骡 子说一块儿去了!”大家都会心地笑了„„15第百二七回 全盘考虑巧筹划|(耿老爹想着种水稻,拟将大任交耿正;建筑图纸既已定, 明儿吉日就动工。)在家门口送走了义子李尚武后,耿老爹一家人返回堂屋。耿老爹坐在那个大大的餐桌边上招呼妻子和儿女们:“来 来来,都坐下!”耿兰说:“俺想叫姐姐教俺打算盘呢!”耿老爹说:“打算盘以后再教,现在咱得商讨一下接下来要办的几件大事儿 了!”耿直还没有从尚武离去的伤感中恢复过来,一句话也不说,默默地坐下了。耿老爹先问耿正和耿英:“这些天儿,你俩联系土木 工匠和预备石料、木料和砖瓦等各种建筑物材的事儿进展得如何了?还有建筑图纸,正儿,你可跟工匠头儿们商量过了?”耿正说:“ 土木工匠都已经联系好了,石料和木料也都有专人负责给咱们提供。至于建筑图纸,俺倒是已经找那几个土木工匠头儿们仔仔细细地推 敲过几次了,但还拿不准是不是可以就这样确定了。”耿英说:“砖瓦也没有问题,俺已经和咱们镇上的那几家窑主都说好了,他们现 在还没有卖出去的,和以后半年内新出窑的砖瓦全部都给咱们留着。他们都给俺打了保票啦,说是绝对不会影响咱们的修建进度!”耿 老爹听了很满意,轻咳一声清清嗓子说:“爹是这样想的,俺先一边育秧,一边简单地初编一部适合于一年级小学童采用的教材,无非 就是简单的认字、儿歌和加减计算什么的。然后哇,正儿你和英子、小直子,你们商量着再在这个基础上做一些增增减减,进行修改完 善也就可以了。另外啊,俺也考虑过了,咱们的小学堂确定为五年制比较合适。至于二、三、四、五年级都开些什么课程,咱们最好也 能早点儿确定下来。不过,适合采用什么样的教材眼下并不着急呢,咱们以后一边教着,一边再考虑着慢慢编写哇。”看耿正、耿英和 耿直都在认真听着,耿老爹接着说:“俺已经考虑过了,咱们就以朱熹的《小学集注》和《近思录》为编写基础,但也不完全拘泥于《 四书》、《五经》一类的东西。还有,这今后哇,俺想把主要精力放在试种水稻上,咱们家的学堂,包括下一步的新建和以后的管理, 就由正儿执掌起来哇!英子和小直子你俩要全力协助你们哥哥,谁也不许偷懒。兰兰就好好地做个小学生哇,争取早日学成了,也好为 咱们家的小学堂出点儿力!当然啦,如果遇到什么难以排解的事情,你们还是要和俺商量的,爹毕竟比你们多吃了二十多年的干饭哪! ”兄妹四人或默默地听着,或轻轻点头。耿老爹想一想,又说:“还有戏台,也最好是能够同步盖起来。至于戏台以后怎么管理,都主 要做些什么,俺现在还没有想

七年级 数学 乘法公式

七年级 数学 乘法公式

个性化一对一教学辅导教案学科: 数学 学生姓名 年级 七 任课老师 授课时间 一、教学内容:乘法公式二、教学重、难点:难点是整体思想的应用,公式中符号的变化 三、教学过程: 一、复习:①(a+b)(a-b)=a 2-b 2 ②(a+b)2=a 2+2ab+b 2 ③(a-b)2=a 2-2ab+b 2 ④(a+b)(a 2-ab+b 2)=a 3+b 3⑤(a-b)(a 2+ab+b 2)=a 3-b 3⑥(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )⋅c +c 2 =a 2+2ab +b 2+2ac +2bc +c 2=a 2+b 2+c 2+2ab +2bc +2ac即(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac二、典型例题例1、计算(-a 2+4b)2分析:运用公式(a+b)2=a 2+2ab+b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b-a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .1、2)2332(y x -2、22)2()2(a b b a -++3、2)72(y x -4、22)23()32(+-+x x例2、 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a+b)(a-b)=a 2-b 2中的a ,而“2x 2”则是公式中的b .练习、1、(2a-3b )(2a+3b ) 2、(5ab -3x )(-3x -5ab )3、(-y 2+x )(x+y 2)4、x (x+5)-(x -3)(x+3)5、(-1+a )(-1-a )(1+b 2)把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a ba b ab a ba b a b a ba b a b ab+-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

11.2 乘法公式(第1课时 平方差公式)(课件)-七年级数学上册(沪教版2024)

11.2 乘法公式(第1课时 平方差公式)(课件)-七年级数学上册(沪教版2024)
图①,阴影部分的面积是 a2- b2
;比较图①,图②阴影部分的面积,可以
得到乘法公式 ( a + b )( a - b )= a2- b⁠2
课堂小结
5 −3 − 2 3 − 2
6 − 2 + 2 + 2 − 2 +
=(-2x-3 )(-2x+3)
=x²-(2y)²+(2x)²-y²
=(-2x)²-3²
= x²-4y ²+4x²-y²
=4x²-9
=5x²-5 y²
分层练习-基础
1. 下列各式能用平方差公式计算的是( B
= 42 − 92 .
课本例题
例2
计算:
(1) − + 1 − − 1 ;
解(1)( − + 1 − − 1
= − 2 − 12
= 2 − 1.
2 2 − 3 −2 − 3
2 2 − 3 −2 − 3
= −3 + 2 −3 − 2
=
( − 3)
2
− ( 2)
1. 计算:
(1) 2 + 5 2 − 5 ;
解: 1 2 + 5 2 − 5
= 2 ²- 5²
=4²-25
1 2 1
+
2
3
3
3
1 2 1
+
2
3
1
2
1 4
1

4
9
1 2 1

;
2
3
1 2 1

2
3
1
3
= ( 2 )²−( )²
=
2 1 − 2 1 + 2

初一数学]乘法公式

初一数学]乘法公式

初一数学]乘法公式精品文档-可编辑乘法公式二项式的平方,等于其中每一项(连同它们前面的符号)的平方,加上这两项积的两倍.完全平方公式是计算两数和或差的平方的简算公式,在有关代数式的变形和求值中应用广泛.正确运用完全平方公式就要抓住公式的结构特点,通过与平方差公式的类比加深理解和记忆.运用中要防止出现(a±b)2=a2±b2,或(a-b)2=a2-2ab-b2等错误.需要指出的是,如同前面的平方差公式一样,这里的字母a,b可以表示数,也可以是单项式或多项式.例1利用完全平方公式计算:1)(-3a-5)2;(2)(a-b+c)2.分析:有关三项式的平方可以看作是二项式的平方,如(a-b+c)2=[(a-b)+c]2或[a-(b-c)]2,通过两次应用完全平方公式来计算.解:(1)(-3a-5)23a)2-2×(-3a)×5+52精品文档-可编辑9a2+3a+252)(a-b+c)2a-b)+c]2a-b)2+2(a-b)c+c2a2-2ab+b2+2ac-2bc+c2a2+b2+c2+2ac-2ab-2bc.例2利用完整平方公式进行速算.1)112(2)992解:(1)112分析:将112变形为(1+1)2原式可1+1)2利用完全平方公式来速算.12+2×1×1+12121解:(2)992分析:将992变形为(1-1)2原式可1-1)2利用完整平方公式来速算.12-2×1×1+12981例3计算:22精品文档-可编辑1)992-98×1;(2)49×51-2499.解:(1)992-98×11-1)2-98×112-2×1+1-981-2-98+11;2)49×51-24995-1)(5+1)-249925-1-24990.例4已知a+b=8,ab=1,求a2+b2,(a-b)2的值.分析:由前面的公式变形可以知道:a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.解:由于a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.而a+b=8,ab=1所以22精品文档-可编辑a2+b2=(a+b)2-2ab=82-2×1=44a-b)2=(a+b)2-4ab=82-4×1=24.三:练1.利用乘法公式进行计算:1)(x-1)(x+1)(x2+1)(x4+1)(2)(3x+2)2-(3x-5)2(3)(x-2y+1)(x+2y-1)4)(2x+3y)2(2x-3y)2(5)(2x+3)2-2(2x+3)(3x-2)+(3x-2)26)(x2+x+1)(x2-x+1)解:(1)原式=(x2-1)(x2+1)(x4+1)x4-1)(x4+1)x8-1.2)解法1:原式=(9x2+12x+4)-(9x2-3x+25)9x2+12x+4-9x2+3x-2542x-21解法2:原式=[(3x+2)+(3x-5)][(3x+2)-(3x-5)]2222222佳构文档-可编辑6x-3)×742x-21.3)原式=[x-(2y-1)][x+(2y-1)]x2-(2y-1)2x2-(4y2-4y+1)x2-4y2+4y-14)原式=[(2x+3y)(2x-3y)]24x2-9y2)216x4-72x2y2+81y45)原式=[(2x+3)-(3x-2)]2x+5)2x2-1x+256)原式=[(x2+1)+x][(x2+1)-x]x2+1)2-x2x4+2x2+1)-x2x4+x2+12.:a+b=5,ab=3,求:(1)a-b)2;2)a2+b2;(( 佳构文档-可编辑解:(1)(a-b)2=(a+b)2-4ab52-4×3132)a2+b2=(a+b)2-2ab52-2×319.在线测试选择题1.在以下多项式的乘法中,能够用平方差公式计较的是()222A、(x+1)(1+x)B、(a+b)(b-a)C、(-a+b)(a-b)D、(x2-y)(x+y2)2.下列各式计算正确的是()A、(a+4)(a-4)=a2-4B、(2a+3)(2a-3)=2a2-9C、(5ab+1)(5ab-1)=25a2b2-1D、(a+2)(a-4)=a2-8精品文档-可编辑3.(-x+2y)(-x-2y)的计较成效是()2222A、x2-4y2B、4y2-x2C、x2+4y2D、-x2-4y24.(abc+1)(-abc+1)(a2b2c2+1)的结果是()。

【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)

【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)
符号表示:
(ab)n anbn,(其中n为正整数), (abc)n anbncn (其中n为正整数)
练习:计算下列各式。
(2xyz)4,( 1 a2b)3,(2xy2 )3,(a3b2 )3 2
温故知新 4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:
(其中m、n为正整数)
名师归纳
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法 的基础.其逆向运用可将问题化繁为简,负数乘方 结果的符号,奇次方得负,偶次方得正.
举一反三
1.下列计算不正确的是( D )
A.2a3 ·a=2a4
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4 )4 a44 a8,[(b2 )3]4 b234 b24 (x2 )2n1 x4n2,(a4 )m (am )4 (a2m )2
温故知新 3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再 把所得的幂相乘。(即等于积中各因式乘方的积。)
(一)整式的乘法
1、同底数的幂相乘 2、幂的乘方
3、积的乘方
4、同底数的幂相除
5、单项式乘以单项式 6、单项式乘以多项式
7、多项式乘以多项式 8、平方差公式
9、完全平方公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
温故知新 (一)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
名师归纳

乘法公式(第2课时)(课件)七年级数学下册课件(苏科版)

乘法公式(第2课时)(课件)七年级数学下册课件(苏科版)

新知探索
借助几何图形证明:
a
a
a-b
a-b
a
b
a-b
a2-b2
b
b
(a+b)(a-b)
两个相同的梯形的面积和_________;
a2-b2
大正方形面积与小正方形的面积差_______.
(a+b)(a-b)
新知归纳
平方差公式
(a+b)(a-b)= a2-b2
文字表述:
两数和与这两数差的积,等于 这两数的平方差.
你也没有吃亏,你看如何?” 张老汉一听觉得没有吃亏,就答应了 ,回到家中,
他把这件事对邻居讲了,邻居一听,说:“张老汉你吃亏了!”,张老汉
非常吃惊.同学们,你知道为什么吗?
a米
2米
a米
a米
a2
(a-2)米

(a+2)(a-2)
新知探索
计算下列多项式的积
a2-2a+2a-4 a2-4
(1) (a+2)(a-2)=___________=______;
(2) (m+2n)(2n-m);
解:原式= (5x)2 - y2
原式=(2n+m)(2n-m)
=25x2 - y2
=(2n)2-m2
=4n2-m2
例题讲解
例1
用平方差公式计算:
(3) (3y-x)(-x-3y).
原式= (-x+3y)(-x-3y)
=(-x)2-(3y)2
= x2-9y2
完全平方公式、平方差
相同项
相反项
特征:
两个二项式
相乘
新知应用
(a+b)(a-b)= a2-b2

冀教版七年级下册数学精品教学课件 第八章 整式的乘法 乘法公式 第2课时 完全平方公式 (2)

冀教版七年级下册数学精品教学课件 第八章 整式的乘法 乘法公式 第2课时 完全平方公式 (2)
b有什么关系?它的符号与什么有关?
想一想:下面各式的计算是否正确?如果不正确, 应当怎样改正?
(1)(x+y)2=x2 +y2 (2)(x -y)2 =x2 -y2
×
(x +y)2 =x2+2xy +y2
×
(x -y)2 =x2 -2xy +y2
(3) (-x +y)2 =x2+2xy +y2 × (-x +y)2 =x2 -2xy +y2 (4) (2x+y)2 =4x2 +2xy +y2 × (2x +y)2 =4x2+4xy +y2
a2-ab+b2=a2+b2-ab=37-(-6)=43. 7.已知x+y=8,x-y=4,求xy. 解:∵x+y=8, ∴(x+y)2=64,即x2+y2+2xy=64①;
∵x-y=4, ∴(x-y)2=16,即x2+y2-2xy=16②; 由①-②得 4xy=48 ∴xy=12.
课堂小结
法则
完全平方 注 意 公式
=1002-400+4-1002+1=-395; (2)原式=20162-2×2016×2015+20152
=(2016-2015)2=1.
例3 已知x-y=6,xy=-8.求: (1) x2+y2的值; (2)(x+y)2的值. 解:(1)∵x-y=6,xy=-8,
(x-y)2=x2+y2-2xy, ∴x2+y2=(x-y)2+2xy
(2) 992. 992 = (100 –1)2
=13;1
=10404.
=9801.
方法总结:运用完全平方公式进行简便计算,要熟 记完全平方公式的特征,将原式转化为能利用完全 平方公式的形式.

七年级数学乘法公式

七年级数学乘法公式


熟练运用——掌握公式
用完全平方公式计算:
1. (-3a+2)2 2. (2m-3n)2 3. (-2x- y)2
学以致用——简化计算
用完全平方公式计算: (1)1022
=(100+2)2 =1002+2×100×2+22
=10000+400+4
(2)9972
=(1000-3)2
=10404
=10002-2×1000×3+32 =1000000-6000+9 =994009
1、已知(a+b)2=7, 求:(1)a2+b2的值. (2)ab的值. 2、已知a-b=2,
(a-b)2=3,
ab=1,
a2+b2=(a-b)2+ 2ab (a+b)2=(a-b)2+ 4ab
求:(1)a2+b2的值. (2)(a+b)2的值.
乘法公式
{
(a+b)2= a2+2ab+b2 (a-b)2= a2-2ab+b2
(a-b)2=a2-2ab+b2
这个公式也称为完全平方公式
认识 完全平方公式 (a+b)2 = a2+2ab+b2 (a−b)2 = a2−2ab+b2
结构特征: 左边是
(差) 两数和 的平方;
右边是 两数的平方和 加上(减去)这两数乘积的两倍. 语言表述: 两数和 (差)的平方 等于 这两数的平方和 (减去) 加上 这两数乘积的两倍.
《数学》( 苏科版 标题 .七年级 下册 ) 第九章 从面积到乘法公式
标题
授课人:高邮市南海中学

乘法公式——完全平方公式(课件)七年级数学下册课件(浙教版)

乘法公式——完全平方公式(课件)七年级数学下册课件(浙教版)

= a2+2ab +b2 -2ac -2bc +c2
= 4x2-25y2+30y-9.
= a2+b2+c2 +2ab -2bc -2ac.
例5 若式子 x2+(m+7)x+25 是完全平方式,则m的值是______.
解:∵
式子x2+(m+7)x+25
是完全平方式,
∴ x2+(m+7)x+25 = x2±10x+25=(x±5)2 ,
(1)用多项式乘法证明:
(a+b)2 =(a+b)(a+b) =a2+ab+ab+b2 =a2+2ab+b2
(a-b)2 =(a-b)(a-b) =a2-ab-ab+b2 =a2-2ab+b2
将(ɑ-b)2看成[ɑ+(-b)]2
转化
思想
[ɑ+(-b)]2
= ɑ2 +2ɑ(-b) +(-b)2
(2) 借助几何图形证明:
故选B.
2.已知 a,b 满足a2+b2-4a-6b+13=0,求(2a+b)(2a-b)-(b-2a)2的值.
解:(1) (2a+b)(2a-b)-(b-2a)2
= 4a2 - b2 - (b2 - 4ab + 4a2)
= 4a2 - b2 - b2 + 4ab - 4a2
= 4ab - 2b2 ,
注意
2.不能直接应用公式进行计算
的式子,需要先添括号变形
3.弄清完全平方公式和平方差
公式的不同点(从公式结构特

七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)

七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)

乘法公式、整式的除法【考向解读】一、考点突破本讲考点主要包括:平方差公式、完全平方公式,同底数幂的除法、单项式除以单项式、多项式除以单项式。

通过多项式的乘法运算得到乘法公式,再运用公式计算多项式的乘法,培养从一般到特殊,再从特殊到一般的思维能力;通过乘法公式的几何背景,培养运用数形结合思想和整体思想解决问题的能力。

平方差公式是中考命题中比较重要的考点之一,单独命题的题型多为填空题,选择题和简单的计算题,这一知识点也常融入其他知识命题;完全平方公式在中考中占有重要地位,它在数的运算,代数式的化简,方程,函数等方面都有极其广泛的应用。

整式的除法在中考中出现的频率比较高,题型多见选择题与填空题,有时也会出现化简求值题,因此运算必须熟练。

二、重点、难点提示重点:平方差公式、完全平方公式,整式的除法及零指数幂的运算。

难点:乘法公式中字母的广泛含义及整式除法法则的应用。

【重点点拨】知识脉络图【典例精析】能力提升类例1 计算:(1)(-2a-b)(b-2a);(2)(2x+y-z)2.一点通:第(1)题中的b-2a=-2a+b,把-2a看成平方差公式中的“a”即可;第(2)题有多种解法,可把2x看成完全平方公式中的“a”,把y-z看成公式中的“b”,也可把2x+y看成公式中“a”,把z看成公式中的“b”。

答案:(1)(-2a-b)(b-2a)=(-2a-b)(-2a+b)=(-2a)2-b2=4a2-b2;(2)(2x+y-z)2=[(2x+y)-z]2=(2x+y)2-2z(2x+y)+z2=4x2+4xy+y2-4xz -2yz +z 2.点评:这两题都可以运用乘法公式计算,第(1)题先变形,再用平方差公式;第(2)题把三项和看成两项和,两次运用完全平方公式。

例2 计算:(1)[(-3xy )2·x 3-2x 2·(3xy 2)3·12y ]÷(9x 4y 2);(2)[(x +2y )(x -2y )+4(x -y )2]÷(6x ).一点通:本题是整式的混合运算,解题时要注意运算顺序,先乘方,再乘除,最后加减,有括号先算括号里的。

初中数学课件:乘法公式(1)平方差公式(2021年浙教版)

初中数学课件:乘法公式(1)平方差公式(2021年浙教版)

(a + b ) ( a – b ) = a2 - b2
计算(3)(-x-y)(-y+x) (4) (-2m-n)(n-2m)
解:(3)(-x-y)(-y+x) =(-y+ x)(-y-x)= (-y)²-x²= y²-x²
b a a b (a+b)(a-b)= a²-b²
(4) (-2m-n)(n-2m) =(-2m)²-n² =4m²-n²
注意
①利用平方差公式计算的关键是_准__确_确__定__a_和_b 完全相同的是a,互为相反的是b
②当a ,b是分数或负数或数与字母的乘积时,要把它们看成一个 整体用括号括起来,最后的结果又要__去_掉__括__号__,化__简_到__最__简_。
怎样确定a与b____________________________
③公式中的a,b可以是数,单项式,多项式。④公式还可以逆用。
应用: (x+a)(x+b)=x²+(a+b)+ab.
平方差公式:( a + b ) ( a – b ) = a ²- b²
口答 计算下列各题:
(1)(x +2 ) ( x –2 ) = x²– 4 = x²– 2² (2) (1 +3a ) ( 1 –3a)=1 – 9a²=1 – (3a)²
1
1、你能很快计算下列式子吗?(结果可用 幂的形式表示)
(2 1)(22 1)(24 1)(28 1) 1
利用平方差公式计算: (2+1)(22+1)(24+1)(28+1)+1
=(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1 =(28-1)(28+1)+1 =216-1+1 =216

浙教版七年级下册数学《乘法公式》导学案教案课堂教学实录教案

浙教版七年级下册数学《乘法公式》导学案教案课堂教学实录教案

浙教版七年级下册数学《乘法公式》导学案教案课堂教学实录教案浙教版七年级下册数学《乘法公式》导学案课件教案课堂教学实录5.4乘法公式(1)【教学目标】?知识目标:1、观察总结平方差公式的特点和结果。

并能判断多项式相乘是否能运用平方差公式计算。

2、掌握平方差公式,并能从广泛意义上理解公式中字母的含义。

3、会运用平方差公式进行多项式的乘法运算。

4、会用平方差公式进行简便计算。

?过程与方法:通过运用多项式乘以多项式法则,观察、猜想、验证、平方差公式应用的条件和结论,并初步学会运用平方差公式。

?情感态度与价值观:通过“合作学习”,使学生体验数学有关结论的形成过程,养成良好的数学学习思考的习惯。

【教学重点、难点】?重点:掌握平方差公式?难点:构造图形来解释平方差公式,需要较强的综合运用数学的能力,是本节的教学难点。

【教学准备】电脑、投影【教学过程】一、设情景,引出课题:昨天我们学习了多项式相乘的法则。

(学生回忆)。

今天老师在一本参考书上看到这样一些多项式相乘和相乘的结果,请同学们观察他们的特点,并猜想下面的多项式相乘的结果。

(1)(_+2)(_-2)=_2-4(2)(3-a)(3+a)=9-a2(3)(5m+2n)(5m-2n)=25m2-4n2小组合作:1、这些多项式相乘有特点吗?有什么特殊?2、他们的结果有什么特点?和等式左边的多项式有什么联系?3、运用你观察的结论,猜想下列多项式相乘的结果。

并用所学的知识进行验证。

(a)(a+2)(a-2)=(b)(3-_)(3+_)=(c)(2m+n)(2m-n)=(d)(a+b)(a-b)=二、交流对话,探索新知:1、请学习小组的代表根据所观察的结论进行总结:(1)等式的左边是两个数(字母)的和乘以这两个数(字母)的差。

(2)等式的右边是这两个数(字母)的平方差。

2、以(a+b)(a-b)为例,师生共同猜想结论,并共同验证:(a+b)(a-b)=a2-ab+ab-b2=a2-b2教师揭示,这就是代数中重要的乘法公式之一:平方差公式。

初中数学乘法公式

初中数学乘法公式

初中数学乘法公式乘法是数学中最基本的四则运算之一、在初中数学中,学生需要掌握一些常用的乘法公式,以便能够灵活运用它们解决各种数学问题。

下面是一些常用的初中数学乘法公式:1.乘法交换律:a×b=b×a。

这条公式表示乘法运算中,两个数的顺序可以交换。

2.乘法结合律:(a×b)×c=a×(b×c)。

这条公式表示乘法运算中,多个数相乘的结果与它们的顺序无关。

3.乘法分配律:a×(b+c)=a×b+a×c。

这条公式表示乘法运算可以分配到括号中的加法或减法上。

4.同底数乘法:a^m×a^n=a^(m+n)。

这条公式表示相同底数的幂相乘时,底数不变,指数相加。

5.幂的乘法:(a^m)×(b^n)=(a×b)^(m+n)。

这条公式表示幂的乘方是指数相加,底数相乘。

6.乘法的幂:(a×b)^n=a^n×b^n。

这条公式表示多个数相乘的结果的乘方等于每个数分别乘方再相乘。

以上是初中数学常用的乘法公式,下面将逐个公式进行讲解和例题演示。

1.乘法交换律:a×b=b×a乘法交换律是指乘法运算中两个数的顺序可以交换,运算结果不变。

例如:3×5=5×3=152.乘法结合律:(a×b)×c=a×(b×c)乘法结合律是指多个数相乘时,它们的顺序可以变化,运算结果不变。

例如:(2×3)×4=2×(3×4)=243.乘法分配律:a×(b+c)=a×b+a×c乘法分配律是指乘法运算可以分配到括号中的加法或减法上。

例如:2×(3+4)=2×3+2×4=144.同底数乘法:a^m×a^n=a^(m+n)同底数乘法是指相同底数的幂相乘时,底数不变,指数相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.5乘法公式
一、教学目标
(一)知识目标
1、能根据完全平方公式的特点,正确运用完全平方公式进行简单计算。

2、通过完全平方公式的推导过程,了解公式的几何背景。

(二)能力目标
培养学生灵活运用公式解决问题的能力
(三)情感目标
1、学生主动探索,敢于实践,勇于发现的科学精神。

2、学生合作交流的能力和创新的意识。

二、学法引导
1.教学方法:尝试指导法、讲练结合法.
2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:
(1)切勿把此公式与公式
()222b a ab = 混淆,而随意写成()222b a b a +=+ .
(2)切勿把“乘积项”ab 2中的2丢掉.
(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变
为符合条件的形式,则应运用乘法法则进行计算.
三、重点·难点及解决办法
(一)重点
掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.
(二)难点
综合运用平方差公式与完全平方公式进行计算.(三)解决办法
加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.
2.引入完全平方公式,让学生用文字概括公式的内容,培养抽
象的数字思维能力.
3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.
4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.
七、教学步骤
(一)明确目标
1、会推导乘法公式中的两数和的平方公式:2222)b ab a b a ++=+(,了解公式的几何背景,并能进行简单的计算。

2、体会数形结合的思想方法。

(二)整体感知
让学生先计算两数和的平方的特例,再计算典型的2)(b a +,从而
得出两数和的平方公式,接着播放课件帮助学生理解这个公式的几何背景,再通过分析公式的特征,帮助学生理解公式并加深记忆,最后通过例题和练习使学生运用公式进行简单的运算。

对于两数差的平方公式,可以将()b a -看作()[]b a -+,这对于学生的数学概括能力的培养有好处,()2222b ab a b a +-=-可以当作公式直接用。

(三)教学流程
1.计算导入;求得公式
(1)我们已经学了什么乘法公式?请分别用式子和文字表示出来?
(2)有理数的减法法则是什么?
(3)按照幂的意义,a
a⋅可以记作什么?反过来,2a可以写作什么?
(4)多项式乘以多项式的法则是什么?
(5)用简便方法计算
①103×97
②103 × 103
要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘法公式.
引例:计算2)
a+,
(b
学生活动:计算2)
(b
a+,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.
22
2
2
+
=
a+

+
)b
b
ab
a
教师引导学生用文字概括公式.
方法:由学生概括,教师给予肯定、否定或更正,同时板书.
两数和的平方,等于它们的平方和,加上它们的积的2倍.2.结合图形,理解公式
根据图形完成下列问题:
如图:A图为正方形,
(1)图A 中正方形的面积为____________,(用代数式表示) 图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

分别得出结论:2222)b ab a b a ++=+(
学生活动:在教师引导下回答问题.
(互动)
(1)公式的左边是什么形式?(2)公式的右边是什么形式?(3)公式的右边有多少项?(4)公式的右边的符号有什么特点?
3.探索新知,讲授新课计算:
(1)2)32b a +( (2)2)22(b a +
教师讲解:在2)32b a +(中,把2a 看成a ,把3b 看成b ,在2)22(b a + 中把2a 看成a ,把2b 看成b ,则2)32b a +(、2)2
2(b a +,就可用完全平方公式来计算,即
解:(1)2)32b a +(
=22)3(322)2(b b a a +⋅⋅+
=229124b ab a ++
解:(2)2)22b
a +( =22)2
(222)2(b b a a +⋅⋅+
=22424b ab a ++ 4.尝试反馈,巩固知识
练习一:做练习题1:()23+x ;()22y x +
学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.
例5 计算:
(1)()2b a - (2)()232y x -
问:这两道要计算的式子有什么特点?
问:我们学多两数的和的平方的计算公式,那么这两道题能不能变形,以能够运用两数和的平方公式来计算呢?请同学们思考讨论。

解(1)(a -b )2
=[a +(-b )]2
=a 2+2 • a • (-b )+(-b )2
=a 2-2ab +b 2
(2)(2x -3y )2
=[2x +(-3y )]2
=(2x )2+2 •(2x )•(-3y )+(-3y )2
=4x 2-12xy +9y 2
达标反馈:练习2:做84页“讨论”,练习第2,3,4题
(2)图B 中,正方形的面积为
____________________,
Ⅲ的面积为______________,
Ⅰ、Ⅱ、Ⅳ的面积和为____________,
用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

5、学习小结
(1)内容总结
两数和的平方公式:注意公式中的字母取值具有广泛性。

公式中的a,b既可以取任意有理数,也可以是单项式、多项式等等。

(2)方法归纳
通过体验、探索与认识,由学生自己得出乘法公式;再通过观察公式的几何背景图形,例题与练习加深对乘法公式的理解、认识,形成一定的运用公式计算的能力。

6、巩固练习
习题第2,3,4题
7、板书设计(略)。

相关文档
最新文档