解耦控制系统仿真
解耦控制设计与仿真
解耦控制系统设计与仿真姓名:专业:学号:第一章解耦控制系统概述1.1背景及概念在现代化旳工业生产中,不停出现某些较复杂旳设备或装置,这些设备或装置旳自身所规定旳被控制参数往往较多,因此,必须设置多种控制回路对该种设备进行控制。
由于控制回路旳增长,往往会在它们之间导致互相影响旳耦合作用,也即系统中每一种控制回路旳输入信号对所有回路旳输出都会有影响,而每一种回路旳输出又会受到所有输入旳作用。
要想一种输入只去控制一种输出几乎不也许,这就构成了“耦合”系统。
由于耦合关系,往往使系统难于控制、性能很差。
所谓解耦控制系统,就是采用某种构造,寻找合适旳控制规律来消除系统中各控制回路之间旳互相耦合关系,使每一种输入只控制对应旳一种输出,每一种输出又只受到一种控制旳作用。
解耦控制是一种既古老又极富生命力旳话题,不确定性是工程实际中普遍存在旳棘手现象。
解耦控制是多变量系统控制旳有效手段。
1.2重要分类三种解耦理论分别是:基于Morgan问题旳解耦控制,基于特性构造配置旳解耦控制和基于H_∞旳解耦控制理论。
在过去旳几十年中,有两大系列旳解耦措施占据了主导地位。
其一是围绕Morgan问题旳一系列状态空间措施,这种措施属于全解耦措施。
这种基于精确对消旳解耦措施,碰到被控对象旳任何一点摄动,都会导致解耦性旳破坏,这是上述措施旳重要缺陷。
其二是以Rosenbrock为代表旳现代频域法,其设计目旳是被控对象旳对角优势化而非对角化,从而可以在很大程度上防止全解耦措施旳缺陷,这是一种近似解耦措施。
1.3有关解法选择合适旳控制规律将一种多变量系统化为多种独立旳单变量系统旳控制问题。
在解耦控制问题中,基本目旳是设计一种控制装置,使构成旳多变量控制系统旳每个输出变量仅由一种输入变量完全控制,且不一样旳输出由不一样旳输入控制。
在实现解耦后来,一种多输入多输出控制系统就解除了输入、输出变量间旳交叉耦合,从而实现自治控制,即互不影响旳控制。
互不影响旳控制方式,已经应用在发动机控制、锅炉调整等工业控制系统中。
变速恒频风电系统双PWM解耦控制仿真研究
L i H O H i- I u - e,H N X e IBn ,Z A u ,LU Jnj A u . i
( .i j e aoaoy o o t lT er n p l ai si C m l a dSs m,Taj 0 3 4 hn ) 1Ta i K yL brtr frC nr h o a dA pi o n o pit yt nn o y c n t ce e ini 30 8 ,C ia n
( . 理工 大学 , 1天津 天津 市复 杂控制 理论 与应用 重 点实验 室 ,天津
2天津 农学 院 ,天 津 . 308 0 30;3河北 沧州 供 电公司 ,河北 沧州 .
308 ; 0 3 4
0 10 ) 6 00
摘要 : 论 了随机 性风速 下 , 线性变 速恒 频双 馈风 力发 电系统 最大 风能捕 获控制 问题 。分 析 了满 足双馈 电机 讨 非 能量双 向流 动 的双脉 宽调制 ( WM) P 变换 器及 其数 学模 型 , 此处 采用双 P WM变 频器解 耦控 制策 略 , 子侧变 频 转
发 电系统 完整 的仿 真模 型 。利用 该模 型对 风 电系 统 的最 大 风 能追踪 控制 进行 了详 细 的仿 真研 究 , 证 了理论 验
及 仿真 分析 的正确 性 。 关键 词 : 双馈 风力 发 电机 :变 频器 :解耦 控制 中图分类号: M35 T 1 文献标识码 : A 文章编号 :00 10 2 1 )0 0 1— 3 10 — 0 X(0 1 1— 17 0
Th i u a in Re e r h o ra l p e i d Tu b n e S m l t s a c fVa ib e S e d W n r ie o Do b e PV Ⅵ I v r e c u l g Co t o u l- n e tr De o p i n r l n
三相异步电动机解耦控制仿真
三相异步电动机解耦控制仿真摘要: 关键字:引言异步电动机具有结构简单、制造容易、功率容量大、维护工作量小等优点,但要获得良好的动态性能却比直流电动机困难得多,随着科学技术的发展,交流传动取代直流传动已经成为不争的事实。
本文论述了电力传动系统的根本控制规律,推导了异步电动机按转子磁链和按定子磁链定向的动态数学模型,根据模型的特点,分析了矢量控制与直接转矩控制两种高动态性能交流调速系统的控制方法。
2 三相异步电动机的耦合3 三相异步电机解耦控制传递函数状态数学模型(1)三相静止坐标系到同步旋转坐标系下的转换矩阵VR ,即⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++=21 21 21)32sin(- ) 32-sin(- sin -) 32cos( )32-cos( cos θπθθπθπθθVR 其反变换矩阵VR -1为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++-=- 132sin 32cos 132sin 32cos 1sin cos 1ππ) (θ - ππ) (θ π) (θ-π) (θ θ θ VR)(000000002121111122112211q d d q m n d d d d m m m m q d q d i i i i L P T i i i i L L L L L L L L -=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∙⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙∙∙∙φφφφ)()())()( )()(1221112 2 21 1 1 221 12 1 12 2 21 221 2 2 221 212212211+⎪⎪⎪⎪⎪⎭⎫⎝⎛∙⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙∙∙-∙-∙-∙-∙∙-∙-∙-∙-q d q d m m m mm m m m mm m m m q d q d i i i i L R L L L L R L L L L L L R L L L R L R L L L R L L L L R L R L L L L R L L L i i i i ϕλϕλϕλϕλλϕλϕλϕλϕ)(200 00 21211122q d d q q d m m i i L Lm PnT u u L L L L φφ-=⎥⎥⎥⎥⎦⎤⎪⎪⎭⎫⎝⎛∙⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--为:相应的电机转矩表达式)()()(0)()(0)()( )()()(1221122 221 221 22 21 221 22 221 22 212222221 221 22221 222 212212211+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∙⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙∙∙-∙--∙---∙--∙--∙∙q d q d m m m m m m m m m m m m m m m q d q d i i L L L L L L L L R L L L L L L L L L L L L L R L L L L L R L L -L L L R L R L L L L R L L L L L L L R -L R L L L i i φφλλλϕϕλϕϕφφ⎥⎥⎥⎥⎦⎤⎪⎪⎭⎫⎝⎛∙⎪⎪⎪⎪⎪⎭⎫⎝⎛11220 00 0 00 q d u u L L 转子磁链坐标系(M-T )下的电机状态方程及转矩表达式:)()()(0)()(0)()( )()()(1022 221 221 22 2m 21 221 22 221 22 2212222221 221 22221 222 21221211∙⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-∙--∙---∙--∙--∙∙∙∙∙∙∙∙∙∙L L L L L L L L R L L L L L L L L L L L L L R L L L L L R L L -L L L R L R L L L L R L L L L L L L R -L R L L L i i m m m mm m m m m m m m m m m m m t m λλλϕϕλϕϕφ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∙∙0211m t m i i φ+∙⎪⎪⎪⎪⎪⎭⎫⎝⎛0 00 0 00 22L L ⎪⎪⎭⎫⎝⎛11t m u u 式中221222221221-m m nt m m m it L L P T i L LmRm L R i L L φθϕλλλφφ===-=∙∙∙∙∙∙:。
解耦控制仿真实验(最全版)PTT文档
前言
耦合:操纵变量与被控变量之间是互相影响的,一 个操纵变量的变化同时引起几个被控变量变化的 现象。
前言
解耦:消除系统之间的相互耦合,使各系统成为独 立的互不相关的控制回路。 解得前馈补偿环节的传递函数
解得前馈补偿环节的传递函数 控制通道和干扰通道模型的辨识 被控量和控制量之间的适当匹配;
Gc22(s)
Gv2(s)
D22 (s)
G11 ( s )
G21 ( s )
G12 (s)
G22 (s)
控制通道和干扰通道模型的辨识
由阶跃响应曲线拟合动态模型
解得前馈补偿环节的传递函数
被控量和控制量之间的适当匹配;
控附制加通 解道耦和装干置扰q通i 道模型的辨识
解得前馈补偿环节的传递函数
被控量和控制量之间的适当匹配;
h (3 T ) K (1 a e 3 ) 0 .9h ( 5 )
h (4 T ) K (1 a e 4 ) 0 .9h ( 8 )
辨识方法 切线法 工程法 两点法
• 在HYSYS流程模拟系统上实施
感谢观看
r1 -
r2
-
Kc1 gc1
Kc2 gc2
调节器
1
K11 g11
y1
++
K21 g21
K12 g12
K22 g22
++
y2
2
过程
前馈解耦
r1 -
+
c1
Gc1
D11 (s)
+
1
y11
G11 (s)
y1
+
++
D21 (s)
球磨机单神经元自适应PID解耦控制系统仿真
2 上 海大学 机 电工程 与 自动化学 院 , . 上海 2 0 7 ) 00 2 摘 要 :针对球磨 机制粉 系统的多变 量 、 强耦合 、 非线性和时变性等特点 , 提出了球 磨机 自适应神经元 PD解 I
耦 的控制方法 . 将静态解耦逆矩 阵与球磨 机对 象串接 , 以解除球磨机多变量之 问的耦 合 , 再采用两个单神经元 自适应 PD控 制器对解 耦后 的两变量对象进行 闭环控制 . I 仿真结果表 明 , 该控 制法相 比常规 的 PD解耦控 制 I
S p. 2 0 e 08
文 章 编 号 :10 4 2 ( 0 8 0 0 0 0 0 6— 7 9 2 0 ) 3— 2 7— 4
球 磨 机 单神 经 元 自适 应 P D解 耦 控 制 系统 仿 真 I
程启 明 郑 , 勇 , 晓 潘伟锋 杨 ,
20 9 000
(. 1上海 电力学 院 电力与 自动化工程 , 上海
o i g e Ne r n Ad p i e PI f r Ba lM i f S n l u o a tv D o l l l
C N i n Z E G Y n , A G X a2P N We— n HE G Q . g , H N o g Y N i , A ie g mi o f
sr l on c dt blmi bet o eopig te os genuo d pie I o t l r e al cn e t a lojc f d cu l , nt i l e rnaa t D cnr l s i y e o l r n h w n vP oe aeue o t l w ai ls f e ope betnc sdl p h o p t m l i sl r sdt cnr ovr be c u l ojc i l e o .T ecm ue s ua o r ut o ot a od d o o ri tn e s
《2024年并联机构解耦机理研究与仿真分析》范文
《并联机构解耦机理研究与仿真分析》篇一一、引言随着机器人技术的不断进步,并联机构因其高精度、高负载能力以及良好的动态性能在各个领域得到广泛应用。
然而,并联机构的复杂性和耦合性一直是限制其性能提升的瓶颈之一。
解耦是提高并联机构性能的重要手段,对解耦机理的深入研究以及仿真分析对于推动并联机构的发展具有重要意义。
本文将针对并联机构的解耦机理进行深入研究,并通过仿真分析验证其有效性。
二、并联机构概述并联机构是一种多输入多输出的机器人机构,由动平台、静平台以及连接两者的若干支链组成。
由于并联机构的复杂性和多支链的耦合性,使得其控制难度较大。
为了更好地发挥并联机构的性能,解耦成为了一个重要的研究方向。
三、解耦机理研究1. 解耦定义与目标解耦是指通过一定的方法,使并联机构各支链之间的耦合关系得以消除或减弱,从而提高机构的运动性能和精度。
解耦的目标是使并联机构成为一个去耦合的独立系统,降低控制难度,提高系统的稳定性和精度。
2. 解耦方法(1)基于数学模型的解耦方法:通过建立并联机构的数学模型,利用矩阵运算等方法对耦合关系进行解耦。
(2)基于物理特性的解耦方法:通过改变并联机构的物理特性,如刚度、阻尼等,以实现解耦。
(3)基于智能控制的解耦方法:利用智能控制算法,如神经网络、模糊控制等,对并联机构进行解耦控制。
四、仿真分析为了验证解耦机理的有效性,本文采用仿真分析的方法对并联机构进行了解耦前后的对比分析。
仿真环境采用MATLAB/Simulink软件,建立并联机构的仿真模型,并对解耦前后的运动性能进行仿真分析。
1. 仿真模型建立根据并联机构的实际结构和工作原理,建立仿真模型。
模型包括动平台、静平台、支链以及驱动装置等部分。
通过设定初始条件和运动参数,模拟并联机构的实际工作情况。
2. 解耦前后的运动性能对比分析在仿真模型中,对解耦前后的并联机构进行运动性能对比分析。
主要包括以下几个方面:(1)运动轨迹对比:通过对比解耦前后并联机构的运动轨迹,分析解耦对运动精度的影响。
一种模糊解耦控制系统的设计与仿真研究
t e n c s ay if r t n, e y w s o e e p frd c u l g s se h e e s r n omai a n w wa a p n d u e o pi y tm.I s v d t e t u l so e u t n o n o o n t a e h r b e fd d ci fa o o a c r t te t a d l n t cl ac lt d t e d c u l g fr u a r dc ie P o tolrw su e o c n c u ae mah ma i l c mo e a d s t c lu ae h e o p i m l.P e it Ic n rl a s d t o — i r y n o v e
De in a i u a in s a c o o t sg nd S m l to Re e r h fa S r
o f Fuz y De o pl n r lS se z c u i Co t o y t m ng
ZHANG i g, L n ZHANG e —y a Z ENG W n u n, H En — r n a g
型 的辨 识 和 解 耦 器 的 精 确计 算 。并 采 用 预估 P 控 制 器 , 系 统实 施 控 制 。 仿 真结 果 表 明 , 用 的 新 型模 糊 解 耦 方 法 具有 较 I 对 采
好 的解耦能力且简单 、 易行 , 有较强的鲁棒性 。
关 键 词 : 变 量 ; 耦 ; 糊 控 制 多 解 模 中 图分 类 号 :P 7 T23 文 献标 识码 : B
第 7 第8 2卷 期
文 章 编 号 :06— 3 8 2 1 ) 8— 18— 4 10 9 4 (0 0 0 0 1 0
交流感应电机矢量解耦控制系统仿真研究
KAN a — h n Xi n o g,ZHANG e — x a g W n in
(nel e c o t l eh ooyIstt, hj n ni nvri , n b h j n 10 0 hn ) It i n eC nr c nlg tue Z ei gWa lU i s y NigoZ ei g 5 1 ,C ia lg oT ni a e t a 3
关键词 : 矢量变换 ; 解耦控制; 磁场定 向: 电流 内模控制
中图 分 类 号 :P9 . T 3 a i n o c u l d Ve t r Co t o y t m m u e i l to fDe o p e c o n r lS s e
ABS TRACT :n o d r t a e i t c o n h f c f t e p r me e s n n i e r y c u e y d fe e t fu I r e o t k n o a c u t t e e f to h a a t r o l a t a s d b i r n x e n i f l s t r t n ao gwi h a a i n f t r u o d i h e l e p rme tl s se ,t i p p r sa t t h au ai l n t t e v r to s o o q e l a n t e r a x e o h i i n a y t ms h s a e t rs wi t e h d n mi s n h o o smoo d li h —q r fr n e fa o a i g a y c r n u p e n to u e h y a c a y c r n u trmo e n t ed e e e c r me r t t ts n h o o ss e d a d i r d c st e n n I t r a d lC n r lme h d On t e b ss o ih a d r t rf x o i n e e tr c n r l h t t rc re t n e n lMo e o t t o . o h a i fwh c n o o u r t d v co o to ,t e sa o u r n l e c n r l r r e al d y d sg e 。a d r b s n s ft e c re t i tr a d l c n r l r t u h n n i e r o to l swee d t i l e i n d n o u t e s o h u r n n e n lmo e o to l o s c o ln a e e e p r me e swa n lz d a a t r sa ay e .B s d o h d l o e Ve t r C n r lsmu ai n s se w s e t b ih d n a e n t e mo e ,a wh l co o to i l t y t m a sa l e ,a d o s s b e u n l h i lt n su y w s c r e u e p c ie y wi n ih u u a u a i n ti d c t d t a , u s q e t t e smu a i t d a ar d o tr s e t l t a d w t o tf x s t r to .I n i a e h t y o i v h l f m t e smu ai n r s l ,t e c re ti tr a d lc n r le sc u d p o i e g o ta y—s ae a d d n mi r h i l t e u t h u r n n e n lmo e o to l r o l r v d o d se d o o s tt n y a c d c u l d p ro ma c n e o h mo e t h n n d lmima c i g e o p e e f r n e u d rb t d lmac i g a d mo e s t h n . KEYW ORDS:Ve t rta so ma i n De o p e o to ; il — o e tto ; n e n lmo e u e tc n r l c o r n f r t ; c u ld c n r l F e d o i r n a i n I t r a d lc r n o to
多变量解耦控制在潜操系统中的仿真研究
度控 制器 的设 计 。
2 潜 艇 水 下 垂 直 面 运 动 多 变 量 解 耦
自 抗 扰 控 制 器
2 1 潜 艇垂 直 面运 动 的耦合 性分 析 . 潜艇 水下 垂 直 面 运 动 控 制 系统 的输 人 为 围壳
i p o e fe h i u a i n s r v d a t rt e s m lt . o
K y W or s mu t a ib e d c u l g,i d p n e t c a n l o t o lr i l t n e d li r l e o p i v a n n e e d n h n e n r l ,smu a i c e o
总第 2 3 0 期
21 0 1年第 5 期
舰 船 电 子 工 程
Sh p Elc r i gi e i g i e ton c En ne rn
Vo. O 1 31 N .5
11 9
多 变 量 解 耦 控 制 在 潜 操 系 统 中 的 仿 真 研 究
王令 蓉 李 光磊
九江 320) 30 7 ( 军驻 九江地区军事代表 室 海
摘
要
针对 潜 艇 的水 下 垂 直 面 运 动 , 出 了一 种 多 变 量 解 耦 自抗 扰控 制 器 的研 究 方 案 , 过 仿 真 验 证 了其 控 制 效 果 ; 提 通
在分析 自抗扰控 制器在低噪声控制方 面存 在的不足和缺 陷的基础上 , 给出 了一 种独立通 道控制器 的设计 方案 , 根据仿 真结
Ab t a t I iw fu d r t rv r ia t n o u ma i e e e r h p a n mu t a i b e d c u l g f o a tv s r c n v e o n e wa e e tc l mo i f s b rn ,a r s a c l n o l v ra l e o p i r m c i e o i n
异步电机电流内模解耦控制系统分析与仿真_蒋卫宏
异步电机电流内模解耦控制系统分析与仿真蒋卫宏(连云港职业技术学院机电工程学院,连云港222006)摘要:在同步速d-q坐标系下异步感应电机动态模型和解耦控制原理的基础上引入了内模控制方法,详细设计了基于转子磁链定向和内模控制的定子电流调节器。
为了计及实际系统中异步感应电机磁场会随着电机负载(转矩)变化而呈不同程度的饱和以致电机参数的非线性,分析了电流内模控制器对这种非线性参数的鲁棒性,建立了整个异步感应电机矢量控制仿真系统,并分别对忽略磁路饱和和考虑磁路饱和两种情况下的系统进行了仿真分析。
结果表明电流内模控制调节器在模型匹配和失配下均能提供良好的转矩动和静态解耦效果。
关键词:矢量变换;解耦控制;磁场定向;电流内模控制中图分类号:T M341 文献标识码:A 文章编号:1003-8930(2007)05-0079-05Analysis and Simulation of Decoupled Control System ofAsynchronous Motor Using Internal Model Current ControlJIANG Wei-hong(Department of Electro mechanic,Liany ungang Technical Co llege,Liany ungang222006,China)Abstract:T he internal model contr ol method is intro duced based on t he dy namic mo del of asynchr o no us mo tor in d-q refer ence fr ame.And the desig n of stat or cur rent co ntr o ller is pr oposed in deta il based on r oto r flux or iented v ector co ntro l.In or der t o take pa rameter nonliner ar ity into account which is caused by lo ad v ariatio n in real system,ro bustness of t he cur rent int ernal model co ntro ller to such nonlinea rit y is ana ly zed, and the vecto r cno nt ro l simulation system is established.Simula tio n result s under flux saturat ion co nsider ed and not co nsider ed show that the cur rent inter nal model co nt ro ller can pr ov ide go od per for mance w ith matched model and unmat ched model.Key words:vecto r t ransfor mation;decoupled co ntro l;field-or ientation;internal model cur rent contr ol1 前言 交流异步电机是一个多变量、强耦合、非线性、时变系统,其瞬时转矩控制困难,难以获得如同直流电机一样的高动态调速性能。
纯电动汽车驱动系统电压解耦矢量控制仿真研究
V 1 2 No 2 o . , . 3
Ap . 01 r2 2
纯 电动汽 车 驱 动 系统 电压 解 耦 矢 量
控 制仿真研 究
石 文 ,李贵远 2
(. 京交 通大 学 机 械 与 电子控 制工程 学 院,北 京 10 4 ;. 宁 工业大 学 汽 车与 交通 工程 学 院 ,辽 宁 锦 州 1 10 ) I 北 0 04 2辽 2 0 1
石 文等 :纯 电动 汽车驱动 系统 电压解耦 矢量控制仿真研 究 一
17 1
12 矢 量控 制 模块 . 主要 包括 磁 通观 测器 模块 、调 节器 模 块 、 电压 解 耦 模块 和坐 标 变换 模块 【。 5 】 1 . 磁 通观 测 器子模 块 .1 2
= + r ㈣
个 电压 矢 量 U.S WM 控 制通 过 电流环 及 电压 解 x VP
图 5 逆 变器模块
耦 运算 获 得 的参 考 电压矢 量 ,通 过对 的合 成
2 仿真结果
系统 整 体仿 真模 型如 图 6 . 仿 真 中所 采 用 的 电机参 数 为 :额 定功 率 / 3 9 0 -
所 以
: +
警 一 一 十 0 。 竽
L 工
现 i 转 矩 电流 和 i s M s T磁 通 电流 的完 全解 耦 ,采 用 了按 转 子磁 场 定 向的方 法 。 该磁 场 定 向下在 M. T坐
标下 的 电压 方程 为 : 足+
uT
% + 畦 +
:
I = 一 。 ( cT i ] , R【 i 1 r, M 一 一 )p m
【 + os , ( c TM】 z , = R[ T ^ c + 1 r i 一 ) r ,
多温区温度控制系统的解耦方法与仿真
摘 要 : 对 多 温 区控 制 系统 中的 多 变 量 、 耦 舍 特 点 , 用 单 位 矩 阵静 态 解 耦 控 制 法 , 多 变 量 耦 舍 系 针 强 采 将 统 转化 成 单 变量 独 立 系统 , 用 S t 预 估 器 对 其进 行 控 制 。仿 真 实例 证 实 了这 种 方 法 的 有 效 性 。 并 mi h 关键词 : 位矩阵 ; 温区; 单 多 解耦 ;m t 预 估 器 S h i
充要 条件 。
本 文采用单 位矩 阵静 态解 耦对 精度 要求较 高 的温度控 制系 统耦 合 性 作 了相 关 的 处 理 , 之 达 使
中 图分 类 号 : 5 TP1 文献 标 识 码 : A
De o plng M e ho n i u a i n o m pe a u e Co r l cu i t d a d S m l to f Te r t r nt o S s e wih u t- e pe a u e Zo s y t m t M lit m r t r ne
ZHANG ib . i Ka. i LIM n
( o ee f tmai ,C o gigUn es yo ot adTe cmmuiai sC o gig4 0 6 ,C ia C lg o t n h n q i ri fP s n l o l o Au o n v t s e nct n , h nqn 0 0 5 h ) o n
多 温区温 度 控 制 系统 中 因变 量 较 多 、 各温 区
1 1 生产 工艺流 程及控 制要 求 .
之 间存 在较强 的交 联 耦合 作 用 , 得 传 统 的单 变 使
量 控 制方法 很难运 用 其 中。而解 耦控 制正 是实 现 多变量 系统 控 制 的有 效 方 法 之 一[ 卜引, 多 变 量 将 系统 分解为 多个 独 立 的 单 变 量 , 选择 合 适 的 方 再 法对 其进行 控制 。如 何实 现解 耦调 节和 控制是 过 程 控制领 域 中的研究 难题 和热 点 。有些 是把控 制
一种双模糊解耦控制器的设计与仿真
模 糊 控制具 有 不 建立 被 控 对 象 精 确 数 学模 型 ,
但可 以实 现 对 非 线 性 、 时变、 大 滞 后 系 统 控 制 的特
点 。因此 , 本文首先 对多输入 、 多输 出系 统 的关
[ 】 : K . G 1 1 K 1 2 G 1 2 ] [ ]
输入 、 输 出变量 间 的耦 合 程 度可 以用 相 对增 益 来 表
设计人员提出了解耦思想 , 其实质是设计适 当的补
偿器 , 将 一个 MI MO耦 合 控 制 系 统解 耦 为 多 个 独 立 的S I S O系统 , 或 将 其 耦 合 程 度 限 制 在 一 定 范 围 内¨ j 。其 发展 的代表 为 1 9 6 4年 Mo r g a n提 出 的全解 耦状 态空 间法 和 2 0世 纪 6 0年代 R o s e n b r o c k提 出的
A : L A
式( 3 ) 中,
A1
、 、
2 1 A2 2 J
1
一
2 1
一
2 0 1 2年 1 1月 2 6日收到
基础研究基金 ( G 9 K Y1 0 0 4 ) 、 陕西省 自然科学基金( 2 0 1 0 5 Q 8 O 1 5 ) 资 助
Kl l K2 2
示 ] 。某 系统输 入信 号 u 和输 出信号 y 间 的相 对
增益 定义 为
}
A 人
。
( 1 )
现代频率法 , 但是这两种方法都要求建立系统的精
确数 学模 型 , 因此 , 在 实 际运 用 中受 到 了一 定 程 度
的限制 。 式( 1 ) 中, △ =O ( A y=O )表示 除 U i ( Y )外 , 其他 变量 的值 均为 常数 。 设 双输 入. 双输 出控制 系统 数学模 型 为 :
基于解耦锁相的风电逆变并网控制系统仿真
∥,(一tot+p。1+口7)一∥,其中,妒=妒。1+妒~。可 将式(7)和(8)整理为
【::::】一u,1【∞。+0l+。一日,】+u_1×
『cos[-2(tot+9“)+q。
【sin[一2(tot+妒+1)+∥]J
图4双同步坐标系解耦锁相环结构模型
Fig.4 Structure model of the DDSRF・SPLL
uses
network side PWM inverter control and Voltage phase locked loop.A kind of current decoupling control strategy is proposed.It
the
pulse width modulation(SVPWM)on AC output current contr01.This method Can independently control the output current
Us(d-lq-1)。【::::】=r z二一,,“sc审,2盱1 【c。ions((∞to。t++妒qo++。'++p0)'’】+u5-1 cos(、-tot+q.)+l+0',)]
(8)
嘲一黑卜一-[!瀑“一一ttq_I瞄sin(220∽')】
(12)
式中,【%+,]_『cos…O'
】2【::::]一:a+一【c—os。(in2。02'p),,】一:。+ 【c。s(29,)j
to
loop(DDSRF—SPLL),it
can
detect the
component,and
forward the coordinate transforma・ put
establish
《并联机构解耦机理研究与仿真分析》范文
《并联机构解耦机理研究与仿真分析》篇一一、引言并联机构作为一种新型的机器人结构形式,因其高精度、高刚度、高负载能力等优点,在工业生产、医疗手术、航空航天等领域得到了广泛应用。
然而,由于并联机构中存在耦合现象,使得机构的运动控制和优化变得复杂。
因此,研究并联机构的解耦机理及其仿真分析具有重要意义。
本文将重点研究并联机构的解耦机理,并利用仿真分析验证其有效性。
二、并联机构解耦机理研究1. 并联机构基本原理并联机构主要由动平台、静平台和若干连杆组成,通过多个运动副将动平台与静平台连接。
在运动过程中,动平台和连杆之间的相对运动会产生耦合现象,影响机构的运动性能。
2. 解耦机理分析为了减小并联机构中的耦合现象,需要对机构进行解耦处理。
解耦机理主要包括两个方面:一是通过优化机构的结构参数,降低动平台与连杆之间的相对运动;二是通过控制策略,实现对机构的解耦控制。
在结构优化方面,可以调整连杆长度、角度等参数,使得机构在运动过程中产生的耦合现象最小化。
在控制策略方面,可以通过设计合适的控制器,实现对机构的精确控制,从而减小耦合现象的影响。
三、仿真分析为了验证并联机构解耦机理的有效性,本文采用仿真分析方法进行验证。
具体步骤如下:1. 建立并联机构仿真模型根据并联机构的结构参数和运动特性,建立仿真模型。
模型中包括动平台、静平台、连杆和运动副等元素。
2. 设定仿真条件根据实际需求,设定仿真条件,如机构的运动轨迹、速度、加速度等。
同时,设定解耦前后的对比条件,以便于分析解耦效果。
3. 进行仿真分析在仿真软件中,对并联机构进行仿真分析。
首先对未进行解耦处理的机构进行仿真,观察其运动过程中的耦合现象;然后对经过解耦处理的机构进行仿真,比较其运动性能与未解耦机构之间的差异。
4. 分析结果通过对比仿真结果,可以发现经过解耦处理的并联机构在运动过程中的耦合现象得到了明显改善,运动性能得到了提高。
同时,通过控制策略的实现,可以进一步减小耦合现象的影响,提高机构的运动精度和稳定性。
《2024年并联机构解耦机理研究与仿真分析》范文
《并联机构解耦机理研究与仿真分析》篇一一、引言随着工业自动化和机器人技术的不断发展,并联机构作为一种新型的机器人结构形式,其优越的运动性能和良好的承载能力在众多领域得到了广泛的应用。
然而,由于并联机构内部存在的耦合现象,导致其控制难度增加,从而影响了其运动性能和效率。
因此,研究并联机构的解耦机理及其仿真分析显得尤为重要。
本文旨在探讨并联机构的解耦机理,并通过仿真分析验证其有效性。
二、并联机构概述并联机构是一种由多个支链组成的机器人结构,其支链之间通过连接点共同形成一个末端平台。
这种机构形式使得并联机构在运动过程中能够承受更大的外力,且具有更高的刚度和更快的响应速度。
然而,由于支链之间存在复杂的耦合关系,导致并联机构的运动控制和优化变得复杂。
三、解耦机理研究为了解决并联机构中存在的耦合问题,本文提出了一种基于运动学解耦的方案。
该方案通过优化支链的布局和设计,使得各支链之间的运动相互独立,从而达到解耦的目的。
具体而言,我们首先对并联机构进行运动学分析,确定各支链之间的耦合关系;然后,通过优化支链的几何参数和运动参数,使得各支链之间的运动相互独立;最后,通过仿真验证解耦效果。
四、仿真分析为了验证解耦机理的有效性,我们采用MATLAB软件进行仿真分析。
首先,我们建立了并联机构的仿真模型,包括各支链的几何参数和运动参数;然后,通过仿真分析各支链之间的耦合关系和解耦效果;最后,对比解耦前后的运动性能和效率。
仿真结果表明,经过解耦处理后,并联机构的运动性能得到了显著提高。
各支链之间的运动相互独立,耦合现象得到了有效抑制。
同时,解耦后的并联机构具有更高的刚度和更快的响应速度,从而提高了工作效率。
五、结论本文研究了并联机构的解耦机理,并通过仿真分析验证了其有效性。
结果表明,通过优化支链的布局和设计,可以实现并联机构的解耦,从而提高其运动性能和效率。
本文的研究为并联机构的设计和控制提供了有益的参考。
然而,本文仅针对一种特定的并联机构进行了解耦研究,未来可以进一步拓展到其他类型的并联机构,以验证其通用性和有效性。
《并联机构解耦机理研究与仿真分析》范文
《并联机构解耦机理研究与仿真分析》篇一一、引言并联机构是一种具有多个分支的机械结构,广泛应用于各种自动化设备和机器人中。
然而,由于机构内部的耦合现象,其控制与操作往往面临一定的困难。
解耦技术作为解决这一问题的重要手段,其研究具有重要的理论意义和实际应用价值。
本文旨在探讨并联机构的解耦机理,并通过仿真分析验证其效果。
二、并联机构解耦机理2.1 并联机构特点并联机构由多个分支组成,各分支之间通过连接点与工作平台相连。
这种结构使得机构具有较高的刚度和承载能力,同时也有利于实现复杂运动轨迹的精确控制。
然而,由于分支间的相互影响,机构内部存在耦合现象,导致控制难度增加。
2.2 解耦机理解耦的目的是将并联机构中的耦合关系转化为相互独立的关系,以便于控制。
解耦方法主要包括物理解耦和数学解耦两种。
物理解耦主要通过优化机构的结构设计来实现,如调整分支的长度、角度等参数。
数学解耦则是通过引入适当的数学模型和算法来消除耦合关系。
本文重点研究数学解耦方法。
在数学解耦过程中,首先需要建立并联机构的数学模型。
然后,通过分析模型的耦合关系,确定解耦的目标和策略。
最后,利用优化算法对模型进行优化,实现解耦。
三、仿真分析3.1 仿真模型建立为了验证解耦机理的有效性,本文采用仿真软件建立了并联机构的仿真模型。
模型中包含了机构的各个分支、连接点以及工作平台等部分。
同时,还考虑了机构的动力学特性和运动学特性。
3.2 仿真过程与结果在仿真过程中,首先对未解耦的并联机构进行仿真,观察其运动过程中的耦合现象。
然后,应用解耦方法对机构进行优化,并对优化后的机构进行仿真。
通过对比仿真结果,可以明显看到解耦后的机构在运动过程中更加稳定,耦合现象得到明显改善。
此外,我们还对机构的运动精度、响应速度等性能进行了分析,结果表明解耦后的机构具有更好的性能。
四、结论本文研究了并联机构的解耦机理,并通过仿真分析验证了其效果。
结果表明,通过数学解耦方法可以有效消除并联机构中的耦合关系,提高机构的运动稳定性和性能。
钢球磨中储式制粉系统智能解耦控制仿真系统
1 引言
钢球 磨中储 式制 粉系 统是火 力发 电厂 热力 系统 中的关
键设 备,用 于将原煤研 磨成 易于充分燃 烧 的煤粉 。该系统是
关键词 :多 变量 ;解耦 ; 制 ;仿真模 型;钢球 磨 中储 式制 粉 系统 控
中 图分类 号:T 3 1 P9. 9 文献标识 码 :A
A i u a i n S s e o n e l e t c u l g Co t o f S m l to y t m f rI t l g n i De o p i n r l n o Co lPu v rz n y t mswih Ba l m a — l e ii g S se t l M
A tmain pr n, ot hn l tc o r ie i, e ig12 0 , hn ) uo t at tN r C ia e r we vr t B in 02 6 C ia o De me h E c iP Un sy j
Absr c :Co l u v r i g s se s wi a lm i r ta t a- lei n y tm t b l p z h l a e mu t a i b e to g y c u ld a d n n i e r h i o e a i g l l v ra l,sr n l o p e n o l a ;t e r p r t i n n c n i o s o e a y v o e t .T e p o lm fa t ma i n o u h s se e an n o v d a d b c me e e c o dt n R n v r ilnl i y h r b e o u o to f s c y t ms rm i s u s l e n e o sa rs a h r f c s i e c n o e . n t i p p r a smu a i n s se f r it lie td c u l g c n o fc a - u v rzn y t ms o u t o t l a I s a e , i lto y t m o n e l n e o p i o t l o l l e i i g s se nh r a r h g n r o p
基于多变量参考的风电机组解耦控制方法及仿真验证
基于多变量参考的风电机组解耦控制方法及仿真验证
邓华;李从飞;陈真;张琦;刘国炜
【期刊名称】《自动化应用》
【年(卷),期】2024(65)7
【摘要】变桨变速型风电机组分别采用变桨和转矩调节控制模式。
解耦控制被用于平滑切换2种控制模式,避免转矩与变桨调节同时作用或频繁切换带来的机组转速和功率振荡问题。
提出一种基于变桨角度、转矩输出、发电机转速等多种变量参考的变桨转矩解耦控制方法,并引入时间迟滞判断条件,实现转矩控制和变桨控制的解耦。
采用上述解耦控制策略,基于PLC可编程控制器、Bladed仿真软件构建了3 MW双馈型风电机组控制系统及仿真模型。
结果表明,额定风况附近,风电机组平均功率波动在±50 kW以内,统计功率曲线达到设计功率曲线要求,可满足额定风况附近风电机组的控制需求。
【总页数】4页(P124-127)
【作者】邓华;李从飞;陈真;张琦;刘国炜
【作者单位】国电南京自动化股份有限公司
【正文语种】中文
【中图分类】TP273;TK83
【相关文献】
1.基于LPV增益调度的风电机组控制验证与仿真分析
2.基于复杂热力系统动态特性的机组两级再热汽温多变量解耦控制方法
3.基于Matlab的风电机组控制系统研
究与仿真验证4.基于虚拟惯量模型和模糊PID算法的双馈风电机组频率解耦控制方法5.基于解耦锁相的风电逆变并网控制系统仿真
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合性设计型实验报告
系别:化工机械系班级:10级自动化(2)班 2013—2014学年第一学期
(2)确定解耦调节器
根据解耦数学公式求解对角矩阵,即
()()
()()()()()()
()()()()
()()()()⎥⎦
⎤
⎢
⎣
⎡
-
-
-
=
⎥
⎦
⎤
⎢
⎣
⎡
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
s
G
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
22
11
21
11
22
12
22
11
21
12
22
11
22
21
12
11
1
22
222
128.752.8 3.313.6530.15
1
216.282.8 5.882544055128.752.8 3.3
S S S S
S S S S S S
⎡⎤
++---
=⎢⎥
++++++
⎣⎦
采用对角矩阵解耦后,系统的结构如下图所示:
解耦前后对象的simulink阶跃仿真框图及结果如下:
1)不存在耦合时的仿真框图和结果
图a 不存在耦合时的仿真框图(上)和结果(下)2)对象耦合Simulink仿真框图和结果
图b 系统耦合Simulink仿真框图(上)和结果(下)
对比图a和图b可知,本系统的耦合影响主要体现在幅值变化和响应速度上,但影响不显著。
其实不进行解耦通过闭环控制仍有可能获得要求品质。
3)对角矩阵解耦后的仿真框图和结果
图c对角矩阵解耦后的仿真框图(上)和结果(下)
对比图a和图c可知,采用对角解耦器后系统的响应和不存在耦合结果一样,采用对角实现了系统解耦。
解耦后系统可按两个独立的系统进行分析和控制。
(3)控制器形式选择与参数整定
通过解耦,原系统已可看成两个独立的单输入输出系统。
考虑到PID应用的广泛性和系统无静差要求,控制器形式采用PI形式。
PI参数整定通过解耦的两个单输入输出系统进行,整定采取试误法进行。
当x1y1通道K p=20,K i=3时系统的阶跃响应如图:
当x2y2通道K p=35,K i=5时系统阶跃响应如图:
(4)系统仿真
采用对角矩阵解耦时,控制系统如下图所示:
为了比较解耦和不解耦两种情况,分别列出两种情况的Simulink框图和仿真结果。
不解耦时系统的Simulink仿真框图及结果(第二幅图中的响应曲线在t=1s处从上往下依次是通道x2y2的输入波形和响应波形、通道x1y1的输入波形和响应波形以及随机扰动波形):
解耦时系统的Simulink仿真框图及结果(第二幅图中的响应曲线从上往下依次是通道x2y2的输入波形和响应波形、通道x1y1的输入波形和响应波形以及随机扰动波形):
对比以上两条仿真曲线,系统解耦后系统的动态响应有了显著改善,由有超调振荡衰减过程变为无超调单调过程,系统阻尼比增大,调节时间变长。
填写说明:
1.实验类型:验证性、设计性或综合性。
2.表格不够填写,可抬高,增加页数。
3.签名、日期必须手写。